Thèse en cours

Apprentissage actif profond pour l'identification et la géolocalisation de sources de pollution atmosphérique en zone urbaine

FR  |  
EN
Auteur / Autrice : Huaijin Wang
Direction : Khalifa Djemal
Type : Projet de thèse
Discipline(s) : Sciences du traitement du signal et des images
Date : Inscription en doctorat le 06/05/2024
Etablissement(s) : université Paris-Saclay
Ecole(s) doctorale(s) : École doctorale Sciences et technologies de l'information et de la communication (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : IBISC - Informatique, BioInformatique, Systèmes Complexes
Equipe de recherche : IRA2: Interactions, Réalité virtuelle & Augmentée, Robotique Ambiante
Référent : Université d'Évry-Val-d'Essonne (1991-....)

Résumé

FR  |  
EN

Depuis quelques années, différents travaux de recherche scientifique ont démontrés que la qualité de l'air a un impact sur la santé et devient un sujet de plus en plus préoccupant à l'échelle urbaine. L'identification et la géolocalisation de sources de pollution atmosphérique est donc un enjeu important et repose sur l'utilisation d'un grand nombre de capteurs de gaz multimodaux fixes et/ou embarqués. En recherche scientifique, l'identification de sources polluantes repose sur la résolution d'un modèle inverse complexe mal posé au regard des données observées. La dispersion de polluants est généralement surveillée par des capteurs placés dans un domaine spatialement discret et fournissent des observations temporelles. Ces observations sont ensuite utilisées pour estimer les propriétés des sources de contaminants, par exemple leurs positions, leurs débits de rejet dans l'atmosphère et les paramètres du modèle régissant la dispersion de ces contaminants (par exemple la dispersion, la topographie du site, la météorologie, etc.). Ces estimations sont essentielles pour une évaluation fiable des dangers et des risques de contamination. Dans le cas particulier de plusieurs sources de contamination (avec des positions et des débits d'émission différents), les observations représentent un mélange ou une combinaison de deux ou plusieurs polluants. Dans ce cadre, le travail attendu consistera en la résolution d'un problème de localisation de sources polluantes en environnement de type urbain avec un réseau de capteurs fixes et/ou mobiles. En effet, à partir de données optimisées, issues de campagnes de mesures existantes, c'est-à-dire des sources identifiées et localisées dans un environnement connu, il s'agira dans un premier temps, de mettre en œuvre un modèle d'apprentissage profond avec la prise en compte de manière active des différents paramètres des capteurs. Dans un second temps, le modèle construit avec une stratégie d'apprentissage actif, sera ensuite capable d'identifier et de donner une estimation de la position des sources polluantes dans un environnement inconnu.