Apprentissage de la similarité pour le calcul de modèles numériques de surface par photogrammétrie aérienne et spatiale
Auteur / Autrice : | Mohamed Ali Chebbi |
Direction : | Marc Pierrot-Deseilligny, Ewelina Rupnik |
Type : | Thèse de doctorat |
Discipline(s) : | Sciences et Technologies de l'Information Géographique |
Date : | Soutenance le 12/07/2024 |
Etablissement(s) : | Université Gustave Eiffel |
Ecole(s) doctorale(s) : | École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2010-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire en Sciences et technologies de l'information géographique (Champs-sur-Marne, Seine-et-Marne) - Laboratoire en Sciences et technologies de l'information géographique (Champs-sur-Marne, Seine-et-Marne) |
Jury : | Président / Présidente : Gabriele Facciolo |
Examinateurs / Examinatrices : Marc Pierrot-Deseilligny, Ewelina Rupnik, Christian Heipke, Mathieu Aubry, Gwendoline Blanchet | |
Rapporteur / Rapporteuse : Christian Heipke |
Résumé
La thèse porte sur l’amélioration de la qualité des modèles numériques d'élévation (MNE) à partir d’imagerie aérienne et satellitaire. Notre démarche repose sur l’appariement dense d’images combinant la mesure de ressemblance et la régularisation semi-globale. Cependant, elle prévoit des corrélateurs neuronaux à la place des mesures de ressemblance classiques. Malgré les efforts de recherche considérables entrepris au cours des vingt dernières années, les mesures de ressemblance classiques (NCC, Census, etc...) sont généralement limitées surtout face aux zones d’images homogènes, proches des occlusions, ombragées et en présence de surfaces ayant des propriétés de réflectance non lambertienne. Alors que ces approches, fortement dépendantes de la notion de voisinage local, perdent de distinctivité en élargissant le contexte et face à ces scénarios difficiles, les architectures de réseaux neuronaux profonds offrent des capacités d’apprentissage étendues et peuvent appréhender des notions de similarité plus complexes capables ainsi de résoudre ces scénarios d’appariement complexes. Ce travail présente des architectures neuronales et des méthodes basées sur l’apprentissage profond pour l’appariement multi-images en photogrammétrie aérienne et satellitaire. Notre approche vise à apprendre des similarités transférables à l’ensemble des géométries de reconstruction (épipolaire, native et terrain) en œuvrant en accord avec l’a priori de nature géométrique des images. Tout d’abord, la fonction de similarité est apprise sur des paires d’images épipolaires. Ensuite, les similarités apprises sont transformées pour résoudre le problème de correspondance multi-vues sur la base de recalages épipolaires ou homographiques adaptés.Notre approche se démarque du paradigme de correspondance classique qui compense les imperfections des appariements par voisinage local avec des contraintes de surface semi-globales. Plus précisément, nos réseaux neuronaux apprennent de manière contrastive des scores de similarité globaux, expressifs et pixellaires par le biais d’architectures à large champ récepteur. Notre pipeline multi-vues ne nécessite pas de réapprentissage supplémentaire sur des jeux de données dédiés et exploite des géométries de transfert comme moyens pour calculer des descripteurs orientés robustes en géométrie native. Ces derniers sont ré-échantillonnés à chaque plan hypothétique pour évaluer les similarités le long de l’intervalle de profondeur. Contrairement à la fusion a posteriori des cartes de profondeur, notre stratégie multi-vues adopte un schéma de fusion a priori pondérant les similarités apprises par paires pour remplir puis régulariser la structure de coût. Nous établissons un équilibre de performances entre l’apprentissage profond de la similarité et la régression de bout en bout pour la mise en correspondance épipolaire et démontrons que nos modèles produisent des descripteurs généralisables pour la reconstruction de surfaces 3D multi-vues omni-scènes. En tirant parti des pipelines de correspondance multi-résolution hiérarchiques, nos corrélateurs neuronaux peuvent être facilement combinés avec des mesures de similarité classiques pour améliorer la précision des MNE. Les pipelines proposés sont implémentés dans MicMac, un logiciel photogrammétrique gratuit et open source