Transport diffeomorphique multi-echelle en anatomie computationnelle
Auteur / Autrice : | Thomas Pierron |
Direction : | Alain Trouve |
Type : | Projet de thèse |
Discipline(s) : | Mathématiques appliquées |
Date : | Inscription en doctorat le 31/08/2022 |
Etablissement(s) : | université Paris-Saclay |
Ecole(s) doctorale(s) : | École doctorale de mathématiques Hadamard (Orsay, Essonne ; 2015-....) |
Partenaire(s) de recherche : | Laboratoire : Centre de mathématiques et de leurs applications (1990-2019 ; Cachan, Val-de-Marne) |
Equipe de recherche : Apprentissage statistique et données massives | |
Référent : École normale supérieure Paris-Saclay (Gif-sur-Yvette, Essonne ; 1912-....) |
Mots clés
Résumé
Les descriptions actuelles des maladies du cerveau nécessitent souvent de mettre en relation différentes échelles allant du millimètre pour les tissus dans les appareils d'imagerie standard, au micron ou même nanomètre pour les cellules neuronales et les molécules. L'organisation de ces représentations pour un patient donné ou à l'intérieur d'une population pour la modélisation statistique et la compréhension des phénomènes pourrait alors être utile et assez difficile. On propose ici d'adresser quelques sujets dans cette direction dans un contexte d'anatomie computationnelle, en se basant sur deux idées principales : 1- Un transport diff́éomorphique multi-éhelle basé sur les idées du controle optimal et de la géométrie riemannienne, 2- Une représentation de l'information via les varifolds permettant une réduction des informations entre les échelles.