Eco-conception d'une base spatiale habitée sur la Lune

par Augustin Gallois

Projet de thèse en Systèmes embarqués

Sous la direction de Stéphanie Lizy-destrez et de Jean-Charles Chaudemar.

Thèses en préparation à Toulouse, ISAE , dans le cadre de École doctorale Systèmes , en partenariat avec ISAE-ONERA ACDC - Analyse, Commande Dynamique et Conception des systèmes (laboratoire) depuis le 01-11-2022 .


  • Résumé

    Le programme Artemis marque une étape fondamentale pour les vols spatiaux habités. Tous les yeux sont rivés sur la Lune : la NASA a récemment proposé un concept de passerelle de plate-forme orbitale lunaire (LOP-G ou passerelle) comme base pour l'exploration spatiale future. Dans ce contexte, une colonie lunaire doit être considérée comme un élément essentiel pour soutenir l'exploration et l'exploitation scientifiques et commerciales de la Lune. La conception d'une base spatiale aussi complexe, internationale et modulable nécessite un cadre dédié de méthodes innovantes et de stratégies opérationnelles. Par exemple, certains des obstacles scientifiques et techniques réels à résoudre sont : • Basé sur les outils et méthodologies de pointe développés par les chercheurs du Laboratoire de Concepts Avancés Spatiaux (SaCLaB) de l'Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO)* • Approches d'ingénierie système innovantes combinant : • MDO (Optimisation multidisciplinaire), • MBSE (Model Based Systems Engineering) • MBSA (Model Based Safety Assessment) • Définir les premières exigences de sécurité et d'autonomie afin de sécuriser la supervision et les opérations, • Mettre en œuvre les mécanismes FDIR (Failure, Detection, Isolation and Reconfiguration), • Appuyer les décisions de diagnostic des opérateurs au sol et des membres d'équipage, • Capter et faire émerger les besoins qualitatifs d'éco-conception

  • Titre traduit

    Eco-design of an inhabited space base on Moon Surface


  • Résumé

    A new era of space exploration has begun, as the Artemis program marks a fundamental step for human spaceflight. All eyes are on the Moon: NASA has recently proposed a Lunar Orbital Platform Gateway (LOP-G or Gateway) concept as the basis for future space exploration. The Moon and the cislunar environment will serve as training grounds for extra-terrestrial settlements (Mars, Asteroïds…), hosting the next developments of the space industry. In these times, so rich in plans and programs for exploration of the Moon and beyond are outlined by the ISEGC (International Space Exploration Coordination Group) roadmap [1]. In this context, a lunar settlement has to considered as a critical building block to support either scientific and commercial exploration and exploitation of the Moon. The design of such a complex, international and modular space base requires a dedicated framework of innovative methods and operational strategies. For example, some of the actual scientific and technical hurdles to be solved are: - the modeling and management of interfaces, in particular for pressure management (external interfaces with landers, rockets, surface vehicles, or spacesuits). - the modeling of critical resource flows (water, oxygen, power, food, etc.) and of the information (IoT home automation supervision, smart house…) - the non-quantitative constraints (e.g. legal, ethical, sustainable aspects, interior design, human factor, stressful environment ...) in a optimized architecture - the autonomy, sobriety and circularity in particular for the identification and the modeling of the scenarios of failures (losses of communication links, depressurization, fire, period of strong solar activities...) in an eco-design approach, in an eco-design approach, such as the integration of Life-Cycle Analysis (LCA) methods. Two-stages project: Based on the state-of-the-art tools and methodologies developed by the researchers of the Space Advanced Concepts Laboratory (SaCLaB) at the Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO) [2], this project will apply innovative systems engineering approaches combining MDO (Multi-disciplinary optimization), MBSE (Model Based Systems Engineering) and MBSA (Model Based Safety Assessment) so as to take into account: - first safety and autonomy requirements in order to secure supervision and operations, to implement FDIR (Failure, Detection, Isolation and Reconfiguration) mechanisms and support diagnostic decisions of ground operators and crewmembers, - secondly, to capture and elicit eco-design qualitative needs. Use case description: The study case could be the design of an inhabited space base on Moon Surface at the South pole, for two crewmembers in a timeframe of 2028, with an autonomy of 6 to 8 days so as to support an exploration mission of 14 days, thanks to the HLS (Human Landing Systems within 6.5 days). Once, the study will have evaluated some crucial data such as the maximal numbers of days for radiations cumulative dose and the optimal location of the modules around the Shackleton craters (according to lightning conditions, resources utilization and probes measurements), the resulting architecture will be extended first to the equatorial zone so as to define new modules and their critical functions (ECLSS, power, thermal ….) and then, to a complete lunar base at the South pole for a crew composed of 6 persons, living and working in full autonomy during six months.