Modélisation et contrôle de photobioréacteurs en régime de lumière dynamique
Auteur / Autrice : | Joel Ignacio Fierro Ulloa |
Direction : | Olivier Bernard |
Type : | Thèse de doctorat |
Discipline(s) : | Contrôle, optimisation, prospective |
Date : | Soutenance le 29/10/2024 |
Etablissement(s) : | Université Côte d'Azur |
Ecole(s) doctorale(s) : | École doctorale Sciences et technologies de l'information et de la communication |
Partenaire(s) de recherche : | Laboratoire : Institut national de recherche en informatique et en automatique (France). Unité de recherche (Sophia Antipolis, Alpes-Maritimes) |
Jury : | Président / Présidente : Jean-Baptiste Caillau |
Examinateurs / Examinatrices : Olivier Bernard, Jean-Baptiste Caillau, Francis Mairet, Eugenio Cinquemani, Pedro Gajardo, Benoît Chachuat | |
Rapporteur / Rapporteuse : Francis Mairet, Eugenio Cinquemani |
Mots clés
Résumé
Les microalgues peuvent produire de la biomasse en utilisant la lumière comme source d'énergie grâce à la photosynthèse. La biomasse algale est très productive pour produire des aliments pour animaux, des produits pharmaceutiques et, les microalgues peuvent également être utilisées pour le traitement des eaux usées. La culture de ces micro-organismes est réalisée dans des photobioréacteurs dont la forme, la taille et le mode d'utilisation varient. La source de lumière peut être naturelle ou artificielle et constitue l'un des facteurs les plus importants du processus. En outre, les microalgues sont connues pour leur taux de croissance rapide et leur capacité à se développer dans divers environnements, ce qui en fait une source très polyvalente. Elles absorbent le CO2, ce qui contribue à atténuer les émissions de gaz à effet de serre, et peuvent pousser sur des terres non arables. Les innovations en matière de génie génétique et d'optimisation des bioprocédés continuent d'améliorer l'efficacité et le rendement de la culture des microalgues. Cette thèse se concentre sur les modèles mathématiques qui décrivent les effets de la lumière sur la croissance des microalgues et explore les problèmes de contrôle liés à leur culture, en considérant les différents phénomènes qui se produisent dans les centres de réaction de la photosynthèse. L'analyse de la dynamique rapide de la photosynthèse est étudiée par le biais de la modélisation afin de comprendre comment différents modèles de lumière, y compris le mélange dans un photobioréacteur, peuvent affecter la croissance des microalgues.Lorsqu'un photobioréacteur utilise de la lumière artificielle, l'intensité de la lumière peut être définie comme une variable de contrôle. En explorant les différentes échelles de temps des phénomènes de photoinhibition et de photoacclimatation, les problèmes de contrôle optimal sont étudiés dans le but de maximiser la biomasse récoltée d'un photobioréacteur continu. L'utilisation du principe du maximum de Pontryagin et des méthodes directes d'optimisation sont utilisées pour traiter ce type de problèmes.D'autre part, comme chaque photobioréacteur et chaque espèce de microalgues est unique, le développement de modèles adaptables à différentes conditions est un défi important abordé dans cette thèse. Pour y parvenir, l'étude des modèles hybrides qui intègrent des équations différentielles ordinaires et des réseaux neuronaux artificiels est menée pour modéliser et contrôler les processus basés sur les microalgues. Cette thèse se propose de fournir un cadre complet pour l'optimisation de la culture des microalgues, en s'appuyant à la fois sur la modélisation mathématique et sur des techniques d'apprentissage automatique de pointe pour améliorer la productivité et l'efficacité dans divers scénarios de culture. En outre, elle cherche également à approfondir des sujets théoriques fondamentaux dans la théorie du contrôle optimal, afin de proposer et d'analyser de nouveaux algorithmes qui peuvent être utilisés pour d'autres types de problèmes.