Thèse en cours

Modèles individu-centrés de l'impact fonctionnel des hétérogénéités de diffusion et de distribution spatiale des protéines de signalisation cellulaire

FR  |  
EN

Accès à la thèse

Triangle exclamation pleinLa soutenance a eu lieu en 2012. Le document qui a justifié du diplôme est en cours de traitement par l'établissement de soutenance.
Auteur / Autrice : Bertrand Caré
Direction : Christophe RigottiHédi Soula
Type : Projet de thèse
Discipline(s) : Informatique
Date : Soutenance en 2012
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : École doctorale en Informatique et Mathématiques de Lyon (2009-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : Institut national des sciences appliquées (Lyon ; 1957-....)
Laboratoire : LIRIS - Laboratoire d'Informatique en Image et Systèmes d'information (Rhône ; 2003-....)
Jury : Président / Présidente : Guillaume Beslon
Examinateurs / Examinatrices : Christophe Rigotti, Hédi Soula, Guillaume Beslon, Carson C. Chow, Dirk Drasdo, Ovidiu Radulescu
Rapporteurs / Rapporteuses : Carson C. Chow, Dirk Drasdo

Résumé

FR  |  
EN

Les voies de signalisation cellulaires permettent aux cellules de percevoir et d'échanger de l'information sous la forme de signaux chimiques. Un tel signal génère une réponse de la cellule au travers des étapes cruciales de réception et transduction. Différents types de protéines sont organisés dans une cascade de réactions de proche en proche qui relaient le signal de l'extérieur vers l'intérieur de la cellule, notamment au travers de la membrane. Les protéines de signalisation sont restreintes à des compartiments avec des degrés de liberté différents, et diffusent soit dans la membrane cellulaire qui est bidimensionnelle, soit dans le cytoplasme qui est en trois dimensions. De plus, au sein même de ces espaces, leurs distributions respectives sont hétérogènes. Or l'étude de la dynamique des voies de signalisation repose classiquement sur des modèles mathématiques supposant une homogénéité de distribution spatiale. Nous avons développé des modèles de réactions biochimiques entre populations de molécules où l'état et la position de chaque molécule sont caractérisés. La diffusion et les interactions entre molécules simulées sont reproduites sur la base de processus stochastiques issus de la biophysique. Ceci permet de recréer des distributions spatiales et des modes de diffusion hétérogènes tels qu'observés en biologie et d'étudier leur effet sur la dynamique de la signalisation en simulation. L'exploitation des modèles a été menée sur les différentes étapes de signalisation. Premièrement, l'étude a porté sur l'interaction entre un ligand dans le milieu extracellulaire et des récepteurs membranaires fixes. Lorsque les récepteurs forment des grappes au lieu d'être répartis uniformément, cela provoque une perte de sensibilité globale de l'étage de réception. Deuxièmement, l'analyse a été poursuivie au niveau de l'étage de transduction entre les récepteurs et un effecteur au niveau de la membrane. Là aussi, une distribution en grappe plutôt qu'uniforme des récepteurs provoque une perte de sensibilité. Enfin, l'étude s'est portée sur un modèle intégrant un mécanisme de diffusion non-homogène en mettant en interaction des récepteurs mobiles et leur substrat membranaire. Lorsque des zones restreintes de diffusion ralentie sont définies sur la membrane, deux effets opposés apparaissent sur la dynamique de transduction : un phénomène d'amplification si le ralentissement affecte les deux protéines, et un phénomène de perte de sensibilité si seuls les récepteurs sont ralentis. Globalement, les résultats illustrent comment les hétérogénéités spatiales modifient les distributions de collision et d'évènements de réaction dans le temps et l'espace à l'échelle microscopique, et comment cela se traduit par un effet sur la dynamique globale de la voie de signalisation à l'échelle macroscopique.