Thèse en cours

Radiolocalisation Profonde en Milieux Complexes via Méthodes d'Intelligence Artificielle

FR  |  
EN
Auteur / Autrice : Ibrahim Sbeity
Direction : Elena Veronica Belmega
Type : Projet de thèse
Discipline(s) : Stic - ed em2psi
Date : Inscription en doctorat le 01/10/2021
Etablissement(s) : CY Cergy Paris Université
Ecole(s) doctorale(s) : Ecole doctorale Économie, Management, Mathématiques , Physique et Sciences Informatiques (EM2PSI)
Partenaire(s) de recherche : Laboratoire : Equipes Traitement de l'Information et Systèmes (Cergy-Pontoise, Val d'Oise ; 2002-....)

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Diverses technologies et standards de localisation sans fil à bas coût ont vu le jour ces dernières années (ex. standard UWB/IEEE802.15.4z, GPS RTK « low cost », radio cellulaire en bandes millimétriques...), couvrant ainsi les besoins d'une pluralité de nouveaux services topo-dépendants (ex. mobilité durable et transports intelligents, villes intelligentes, industrie 4.0, cyber-sécurité, etc.). Toutefois, en dépit des bonnes performances théoriques prêtées à ces systèmes, la présence d'obstructions radio et de trajets multiples dégrade en pratique considérablement la précision et la continuité de localisation (ex. localisation véhiculaire en canyons urbains, localisation indoor en milieux industriels denses…). Dans le cadre de cette thèse, on se propose d'évaluer le potentiel d'approches issues du domaine de l'intelligence artificielle, et en particulier de l'apprentissage automatique (profond), pour appréhender la richesse et la complexité des signaux radio reçus au regard du problème de localisation. Typiquement, on cherchera à tirer profit de l'information de localisation « cachée », que peuvent recéler les signaux multi-trajets conjointement observables au niveau de plusieurs liens radio en situation de mobilité. Contrairement aux traitements conventionnels, qui reposent majoritairement sur des modèles radio paramétriques posés a priori, simplistes et difficiles à calibrer, on cherchera alors à apprendre puis à généraliser les relations fortement non-linéaires unissant métriques radio (c.-à-d., de métriques extraites de signaux multitrajets/multi-liens à grande dimension) et descripteurs de localisation (ex. position relative/absolue, vitesse, orientation, conditions de visibilité…). Des stratégies de localisation dites « profondes » seront ensuite proposées afin de prédire, corriger et compléter les attributs de localisation manquants et/ou erronés, directement en termes de positionnement et de poursuite au niveau système (c.-à-d., sans en passer par des étapes intermédiaires de correction, au niveau de chaque lien radio indépendamment). Les approches proposées seront alimentées et testées au moyen de larges bases de données radio, comprenant des mesures collectées sur le terrain à partir de dispositifs radio réels, ainsi que des données synthétiques issues de simulations déterministes (de type tracer de rayons).