Thèse soutenue

Méthodes de couplage des modèles côtiers à phase résolue

FR  |  
EN
Auteur / Autrice : José Daniel Galaz Mora
Direction : Antoine RousseauMaria Kazolea
Type : Thèse de doctorat
Discipline(s) : Mathématiques et modélisation
Date : Soutenance le 26/06/2024
Etablissement(s) : Université de Montpellier (2022-....)
Ecole(s) doctorale(s) : École doctorale Information, Structures, Systèmes (Montpellier ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Institut Montpelliérain Alexander Grothendieck (Montpellier ; 2003-....)
Jury : Président / Présidente : Hélène Mathis
Examinateurs / Examinatrices : Véronique Martin, Elwin van't Wout
Rapporteur / Rapporteuse : Patricio Andrès Catalan, Laurent Debreu

Résumé

FR  |  
EN

Cette thèse s'intéresse au couplage de modèles hydrauliques en zone côtière, à phase résolue, couramment utilisés pour l'étude de la propagation des vagues près du rivage. Malgré de nombreux modèles et des exemples de couplage existants, il y a eu un manque significatif de consensus concernant les artefacts et les problèmes induits par ces stratégies, ainsi qu'une compréhension vague de la façon de les analyser et de les comparer. Pour aborder ce problème, cette recherche adopte une approche de décomposition de domaine, ancrée dans le principe que les modèles de vagues 3D (par exemple, Euler ou Navier-Stokes) servent de solution de référence. Structurée en deux parties, la thèse propose d'abord de nouveaux modèles et les évalue à travers des expériences numériques, identifiant des hypothèses spécifiques sur leur précision et leurs limites. Par la suite, un cadre théorique est développé pour élucider ces découvertes, en utilisant le modèle couplé unidirectionnel comme une référence intermédiaire pour distinguer les effets attendus et inattendus et catégoriser les erreurs par rapport à la solution 3D.L'erreur totale est divisée en trois parties : l'erreur de couplage, l'erreur du modèle de Cauchy, et l'erreur du modèle de demi-droite, et ces concepts sont appliqués au couplage linéaire des modèles de Saint-Venant et de Boussinesq en utilisant le modèle dit 'hybride'. L'analyse confirme que l'erreur de couplage prend en compte les réflexions aux interfaces et varie selon la direction de la propagation. De plus, grâce au choix du modèle unidirectionnel comme référence intermédiaire, cette analyse prouve plusieurs propriétés importantes telles que le caractère bien posé et la taille asymptotique des réflexions. En outre, la thèse aborde également le caractère faiblement bien posé du problème de Cauchy pour le modèle B et ses implications pour les solutions dépendantes du maillage qui ont été signalées. Comme produit dérivé, un nouveau résultat pour le problème de demi-droite du modèle linéaire B est obtenu, pour une classe plus générale de données aux limites, incluant une description de la couche limite dispersive, qui n'avait pas encore été abordée dans la littérature. La définition pragmatique proposée de l'erreur de couplage s'aligne avec et étend les notions existantes de la littérature. Elle peut être facilement appliquée à d'autres modèles BT, équations discrètes, cas linéaires et non linéaires (au moins numériquement), ainsi qu'à d'autres techniques de couplage, tous discutés dans le travail en perspective.