Thèse en cours

Echantillonnage efficace d'assemblages biomoléculaires complexes par les simulations moléculaires

FR  |  
EN

Accès à la thèse

AttentionLa soutenance a eu lieu en 2024. Le document qui a justifié du diplôme est en cours de traitement par l'établissement de soutenance.
Auteur / Autrice : Florence Szczepaniak
Direction : François DehezBenoit Roux
Type : Projet de thèse
Discipline(s) : Chimie
Date : Soutenance en 2024
Etablissement(s) : Université de Lorraine en cotutelle avec Université de Chicago
Ecole(s) doctorale(s) : C2MP - CHIMIE MECANIQUE MATERIAUX PHYSIQUE
Partenaire(s) de recherche : Laboratoire : LPCT - Laboratoire de Physique et Chimie Théoriques
Jury : Président / Présidente : Christophe Chipot
Examinateurs / Examinatrices : François Dehez, Nathalie Reuter, Benoit Roux, Bettina Keller, Laura Gagliardi, Aaron Dinner, Emmanuelle Bignon
Rapporteur / Rapporteuse : Nathalie Reuter, Bettina Keller

Résumé

FR  |  
EN

Les informations au niveau atomique sont essentielles pour décrire la structure et la dynamique des complexes biomoléculaires. Les travaux présentés dans cette thèse visent à explorer et à améliorer les techniques informatiques expliquant la formation de complexes, quantifiant les énergies libres de liaison ou décrivant la dynamique de systèmes multi-composants. J'ai d'abord développé un protocole pour calculer l'énergie libre de liaison d'un complexe protéine-ligand. Il s'appuie sur des transformations alchimiques réalisées dans un cadre mécanique statistique rigoureux. Le protocole est distribué au sein du plugin BFEE2, un outil conçu pour aider l'utilisateur à préparer tous les fichiers d'entrée nécessaires et à effectuer le post-traitement des simulations d'estimation d'affinité de liaison. La dynamique moléculaire (MD) et les simulations alchimiques ont été utilisées pour fournir des informations sur la formation de complexes protéiques spécifiques en termes de structure et de dynamique. L'ensemble des protéines Dpr et DIP, qui jouent un rôle clé dans la neuromorphogenèse du système nerveux de Drosophila melanogaster, offre un paradigme riche pour en apprendre davantage sur la reconnaissance protéine-protéine. De nombreux membres de la sous-famille DIP réagissent de manière croisée avec plusieurs membres de la famille Dpr et vice-versa. Bien qu'il existe un total de 231 hétérodimères Dpr-DIP possibles, seules 57 paires « apparentées » ont été détectées par des expériences de résonance plasmonique de surface (SPR), ce qui suggère que les 174 paires restantes ont une affinité de liaison faible ou peu fiable. Ici, j'ai évalué les performances des approches informatiques pour quantifier les affinités de liaison entre les protéines Dpr et DIP et j'ai identifié, au moyen d'une série de mutations ponctuelles, les résidus interfaciaux régissant la spécificité du processus de reconnaissance. En m'appuyant sur les transformations alchimiques, j'ai développé une méthode de simulation hybride dynamique moléculaire hors équilibre - Monte Carlo (neMD/MC) visant à améliorer l'échantillonnage de membranes inhomogènes, en contournant la lente diffusion latérale des différents constituants. Des molécules lipidiques choisies aléatoirement sont échangées pour générer des configurations qui sont ensuite acceptées ou rejetées selon un critère Metropolis basé sur le travail alchimique associé à la tentative d'échange calculé via une trajectoire courte. Les performances de l'algorithme hybride neMD/MC et sa capacité à échantillonner la distribution des lipides à proximité d'une hélice transmembranaire portant une charge nette sont illustrées pour un mélange binaire de lipides chargés et zwitterioniques. Pour maintenir l'équilibre entre un système simulé et un bain environnant infini, une version modifiée de l'algorithme neMD/MC a été développée, dans laquelle un lipide choisi au hasard dans le système simulé est échangée avec un lipide prélevé dans un système séparé faisant office de système thermodynamique. « réservoir » avec la fraction molaire souhaitée pour tous les composants lipidiques En parallèle de ces simulations, la dynamique des canaux ioniques pentamères ligand-dépendants (pLGIC) est étudiée. Lors de la liaison avec un agoniste, la conformation des protéines change pour contrôler le transport des ions vers et hors des cellules. À l'aide de diverses structures liées à des récepteurs nicotiniques, des simulations MD sont calculées. La conductivité et la stabilité du pore des pLGICs à l'état désensibilisé sont mesurées. Il a également été démontré que les fonctions de ces protéines dépendent de la composition lipidique. En recourant à des simulations alchimiques, la différence d'affinité protéine-lipide est calculée avec des lipides anioniques et zwitterioniques liés à la protéine.