Thèse en cours

Modélisations 2D et 3D, conception et réalisation d’un inducteur pour aimanter un ensemble de pastilles supraconductrices

FR  |  
EN

Accès à la thèse

AttentionLa soutenance a eu lieu le 28/06/2021. Le document qui a justifié du diplôme est en cours de traitement par l'établissement de soutenance.
Auteur / Autrice : Jakub Kapek
Direction : Jean LevequeKévin Berger
Type : Projet de thèse
Discipline(s) : Génie Electrique
Date : Inscription en doctorat le
Soutenance le 28/06/2021
Etablissement(s) : Université de Lorraine
Ecole(s) doctorale(s) : École doctorale IAEM Lorraine - Informatique, Automatique, Électronique - Électrotechnique, Mathématiques de Lorraine (1992-....)
Partenaire(s) de recherche : Laboratoire : GREEN - Groupe de Recherche en Energie Electrique de Nancy
Jury : Examinateurs / Examinatrices : Jean Leveque, Kévin Berger, Benoît Vanderheyden, Abelin Kameni ntichi, Marie-Ange Raulet
Rapporteurs / Rapporteuses : Benoît Vanderheyden, Abelin Kameni ntichi

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Aujourd’hui, les supraconducteurs trouvent de nombreuses applications, par exemple dans les câbles, les moteurs, les alternateurs ou la génération de champ magnétiques intenses. Les supraconducteurs sont disponibles sous forme de rubans, de fils ou de matériaux massifs. Le processus d'aimantation des supraconducteurs permet d'obtenir des supraconducteurs massifs avec un champ magnétique piégé de bien plus grande valeur que les aimants classiques à base de fer. Une aimantation correcte est la clé d'un champ magnétique piège très fort. Les travaux développés dans cette thèse concernent la modélisation en 2D et 3D, la conception et la réalisation d’un inducteur pour aimanter un ensemble de pastilles supraconductrices. D'une manière générale, il existe trois techniques d'aimantation des supraconducteurs : Zero Field Cooling (ZFC), Field Cooling (FC) et Pulsed Field Magnetization (PFM). Nous nous concentrons sur la PFM car c’est une solution plus compacte et moins onéreuse comparée aux autres techniques. Le procédé d’aimantation évoqué et tous les phénomènes qui en découlent ont été résolus en se basant sur la méthode des éléments finis (MEF) et à l’aide de différentes formulations. Dans ce travail, nous avons étudié et comparé en 2D et 3D la formulation en A, la formulation en H ainsi qu’une une formulation A – H en couplant les différentes variables sur les frontières des matériaux. La comparaison effectuée a montré les avantages de la formulation A – H dans la modélisation des problèmes liés aux supraconducteurs. En effet, dans certains cas, nous avons montré que l'utilisation de la formulation A – H permet de réduire le temps de simulation. Le modèle développé à partir de cette formulation constitue donc un outil intéressant pour de futurs travaux de dimensionnement et le développement d’applications des supraconducteurs au GREEN. Nous avons également dimensionné et étudié numériquement un modèle complet d’inducteur permettant d’aimanter un ou plusieurs supraconducteurs simultanément. Nous étudions deux configurations : le prototype I pour aimanter un seul supraconducteur (problème 2D) et le prototype II pour aimanter trois supraconducteurs (problème 3D). Ces deux configurations sont résolues en considérant les phénomènes électromagnétiques et thermiques ainsi que le couplage avec les équations du circuit alimentant l’inducteur. Les simulations ont montré que l’élévation de température dans le supraconducteur d’une dizaine de Kelvin générée lors de l’aimantation par PFM affectait le champ magnétique piégé. Il a été observé que la présence d’une ou plusieurs pastilles supraconductrices n’influençait pas l'impulsion de courant dans l’inducteur. Le champ piégé maximal obtenu numériquement pour le prototype I était de 706 mT et de 736 mT pour le prototype II. Les résultats obtenus ont ensuite été comparés aux résultats de la simulation. Cependant, certains supraconducteurs présentaient une forte inhomogénéité de leurs propriétés ce qui a eu pour conséquence de réduire le champ magnétique piégé observé expérimentalement. Des hypothèses ont été faites pour tenter de reproduire numériquement ces inhomogénéités et leurs effets. Néanmoins, ce calcul numérique ne peut se faire que par une modélisation 3D sans utilisation possible de symétries, et conduit à un de temps de calcul pouvant aller jusqu’à plusieurs jours. L'expérimentation avec des prototypes a permis d'obtenir un champ magnétique piégé maximal de 686 mT lors de l’aimantation d’une pastille, tandis qu’il était de 606 mT lorsque plusieurs pastilles ont été aimantées simultanément. Un abaissement de la température par l’utilisation d’un autre fluide cryogénique comme l’hydrogène liquide ou d’un autre système de refroidissement permettrait d’augmenter cette valeur de champ magnétique piégé à des valeurs beaucoup plus intéressantes pour les applications visées en génie électrique.