Thèse en cours

Exploration du Potentiel de NASICON en tant qu'Électrolyte Solide Efficace pour les Batteries à État Solide à Base de Sodium

FR  |  
EN

Accès à la thèse

Triangle exclamation pleinLa soutenance a eu lieu le 04/12/2023. Le document qui a justifié du diplôme est en cours de traitement par l'établissement de soutenance.
Auteur / Autrice : Eunike Mahayoni
Direction : Christian MasquelierVincent Seznec
Type : Projet de thèse
Discipline(s) : Chimie-Chimie des Solides et Sciences des Matériaux-25DCH1
Date : Inscription en doctorat le
Soutenance le 04/12/2023
Etablissement(s) : Amiens
Ecole(s) doctorale(s) : Sciences, Technologie, Santé
Partenaire(s) de recherche : Laboratoire : Laboratoire de réactivité et chimie des solides (Amiens)
Jury : Président / Présidente : Michel Armand
Examinateurs / Examinatrices : Christian Masquelier, Vincent Seznec, Marie Guignard, Pierre-Marie Geffroy, Jean-Noël Chotard
Rapporteurs / Rapporteuses : Marie Guignard, Pierre-Marie Geffroy

Résumé

FR  |  
EN

The limitation of the current lithium ion batteries drives the research into novel energy storage systems. Sodium solid-state batteries use solid electrolytes to transport sodium ions from one electrode to another, increasing the safety and energy density of the battery. NASICON materials have been dubbed one of the most promising solid electrolytes for sodium solid-state batteries, with high ionic transport properties. This study covers fundamental understanding and applications of Na1+xZr2SixP3-xO12¬, through extensive synthesis, characterizations, and fabrication of NASICON solid-state batteries. The NASICON structures are studied by synthesis of the material: varied Na concentrations, upscale synthesis, off-stoichiometry synthesis, and NZSP aliovalent substitution. Structural characterizations were done with X-ray Diffraction techniques, Raman spectroscopy, and Scanning Electron Microscopy. The ionic transport of the solid electrolyte was investigated using Electrochemical Impedance Spectroscopy at high frequencies (3 GHz-1 MHz) and classical frequency range (10 MHz-1 Hz). NASICON all-solid-state symmetrical batteries NVP | NZSP | NVP were assembled using the spark plasma sintering. The cells were electrochemically cycled at high temperatures (200 °C), showing low polarization and high specific capacity values (90% of theoretical capacity), with never-before-seen electrochemistry to explore.