Conception et caractérisation de composants photoniques sur silicium, nano-structurés à échelle sub-longueur d'onde, fabriqués par lithographie à immersion
Auteur / Autrice : | Warren Kut King Kan |
Direction : | Carlos Alonso-Ramos, Daivid Fowler |
Type : | Thèse de doctorat |
Discipline(s) : | Electronique, Photonique et Micro-Nanotechnologies |
Date : | Soutenance le 09/10/2024 |
Etablissement(s) : | université Paris-Saclay |
Ecole(s) doctorale(s) : | École doctorale Electrical, optical, bio-physics and engineering |
Partenaire(s) de recherche : | Laboratoire : Centre de nanosciences et de nanotechnologies (Palaiseau, Essonne ; 2016-....) |
Référent : Faculté des sciences d'Orsay | |
graduate school : Université Paris-Saclay. Graduate School Sciences de l’ingénierie et des systèmes (2020-….) | |
Jury : | Examinateurs / Examinatrices : Gilles Renversez, Gonzalo Wangüemert-Pérez, Daniel Benedikovic, Christian Seassal |
Rapporteur / Rapporteuse : Gilles Renversez, Gonzalo Wangüemert-Pérez |
Résumé
La technologie photonique sur silicium s'appuie sur les procédés matures de fabrication de l'industrie du semi-conducteur pour produire des composants opto-électroniques à échelle industrielle. Les métamatériaux à base de réseaux sub-longueur d'onde permettent de contrôler le confinement du mode et la dispersion, et ont ainsi été implémentés pour démontrer des performances de pointe de composants photoniques intégrés. Les effets de diffraction et de réflexions sont supprimés dans les matériaux sub-longueur d'onde. Leurs dimensions sont petites et sont environ de 100 nm. Jusqu'à présent, la majorité des composants sub-longueur d'onde ont été fabriqués par lithographie électronique. Or, cette technique n'est pas compatible avec une production à large échelle. Aujourd'hui, la lithographie à immersion se déploie dans les fonderies photoniques sur silicium. Elle permet de définir des dimensions aussi petites que 70 nm, avec un modèle de correction d'effets optiques de proximité. Le but principal de cette thèse est d'étudier la faisabilité de l'utilisation de la lithographie à immersion avec la correction d'effets optiques de proximité pour la fabrication de composants photoniques sub-longueur d'onde de pointe. Ces composants ont été développés sur des plaques de 300 mm de diamètre au CEA-Leti. Trois composants ont été étudiés, chacun avec une spécificité technologique : i) un diviseur de puissance avec une seule étape de gravure complète, ii) un réseau de couplage puce-fibre alternant des gravures partielles et complètes, et iii) une matrice d'antennes optiques, couvrant une large surface, avec une étape de gravure partielle. Le diviseur de puissance est constitué d'un coupleur par interférométrie multi-mode (MMI) avec des réseaux sub longueur d'onde pour contrôler la dispersion des modes optiques et ainsi pour obtenirune très large bande passante spectrale, qui a été mesurée expérimentalement à 350 nm, et qui en bon accord avec les simulations. La bande passante d'un MMI conventionnel sans structures sub longueur d'onde n'est que de 100 nm environ. Le réseau de couplage puce-fibre s'appuie sur une géométrie en forme de « L », avec des structures sub-longueur d'onde gravés partiellement et complètement, pour augmenter l'efficacité de couplage. Celle-ci a été mesurée à -1.70 dB (68 %) à une longueur d'onde de 1550 nm et représente la meilleure performance pour une telle structure complexe, utilisant une technologie autre que la lithographie électronique. Néanmoins, la valeur mesurée est inférieure à la valeur simulée de 0.80 dB (83 %). Une des raisons principales de cette performance limitée est la sensibilité de cette structure aux erreurs d'alignement entre les deux étapes de gravure pendant la fabrication. L'antenne optique est constituée de structures sub longueur d'onde partiellement gravées pour obtenir une grande surface d'émission de 48 µm×48 µm, réduisant ainsi la divergence du faisceau. Cette antenne a été implémentée comme antenne unitaire dans une matrice 4×4 à réseau phasé avec un pas de 90 µm×90 µm. A une longueur d'onde de 1550 nm, le faisceau émis par l'antenne unitaire a une divergence à mi-hauteur mesurée de 1.40° et celui émis par la matrice d'antennes a une divergence à mi hauteur de 0.25°. Ces valeurs sont en accord avec les valeurs simulées. Ces résultats servent comme preuve de concept de l'implémentation d'une telle antenne dans une matrice à réseau phasé. En résumé, les résultats de cette thèse illustrent le grand potentiel de la lithographie à immersion avec la correction d'effets optiques de proximité pour la fabrication de composants photoniques sub- longueur d'onde, ouvrant ainsi la voie pour la commercialisation de ces derniers.