Thèse soutenue

Elaboration de nouveaux multimatériaux à base de fibres de carbone, nanofils de silicium et polymères conducteurs électroniques pour électrodes de micro-supercondensateurs tout-solides flexibles
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Marc Dietrich
Direction : Saïd Sadki
Type : Thèse de doctorat
Discipline(s) : Matériaux, mécanique, électrochimie, génie civil,
Date : Soutenance le 02/03/2023
Etablissement(s) : Université Grenoble Alpes
Ecole(s) doctorale(s) : École doctorale Ingénierie - matériaux mécanique énergétique environnement procédés production (Grenoble ; 2008-....)
Partenaire(s) de recherche : Laboratoire : Systèmes moléculaires et nanomatériaux pour l’énergie et la santé (Grenoble)
Jury : Président / Présidente : Rachel Auzély-Velty
Examinateurs / Examinatrices : Patrice Simon
Rapporteurs / Rapporteuses : Thierry Brousse, Liliane Demourgues-Guerlou

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Le stockage d'énergie électrochimique embarqué est essentiel pour répondre à la demande croissante des appareils portables de faible puissance tels que les systèmes micro-électromécaniques (MEMS), les réseaux de capteurs autonomes, les étiquettes d'identification par radiofréquence (RFID) ou les dispositifs biomédicaux. La réalisation d’électrodes composites est un levier important pour l’amélioration des performances en terme de densité d’énergie et durabilité des dispositifs. Les SiNWs élaborés par CVD sont compatibles avec un système supercondensateurs purement capacitif, mais leur capacité peut être améliorée avec l’ajout de polymères conducteurs électroniques. Cette thèse présente le développement d’électrodes nanocomposites flexibles pour micro-supercondensateurs à base de nanofils de silicium (SiNWs). Les polymères conducteurs électroniques peuvent être déposés dans un milieu micellaire aqueux, ce qui permet un meilleur contrôle du dépôt sous forme de film mince à la surface des SiNWs. Cette optimisation morphologique se traduit par de meilleures performances au cyclage électrochimique. Ces nouveaux nanocomposites SiNWs et polymères conducteurs sont ensuite transférés vers un substrat flexible à base de feutres de carbones. L’électropolymérisation d’EDOT sur ces électrodes nanostructurées permet à l’électrode nanocomposite de fournir une capacitance de 22 mF.cm-2 avec une stabilité électrochimique limitant à 18% la perte de capacité au bout de 100 000 cycles en électrolyte aqueux. Pour s’affranchir des contraintes d’un électrolyte liquide, un électrolyte polymère est également développé à base de polysiloxanes fonctionnalisés et déposés sur les SiNWs pour le passage à un système tout-solide. Le système tout-solide présente une stabilité proche des 98% pour 100 000 cycles sur une tension de 3,0 V.