Thèse soutenue

Etude des Propriétés de Conduction Ionique des Matériaux Hybrides Nanoporeux de type MOFs

FR  |  
EN
Auteur / Autrice : Kiran Taksande
Direction : Sabine Devautour-VinotGuillaume Maurin
Type : Thèse de doctorat
Discipline(s) : Chimie et Physico-Chimie des Matériaux
Date : Soutenance le 23/03/2022
Etablissement(s) : Université de Montpellier (2022-....)
Ecole(s) doctorale(s) : École doctorale Sciences Chimiques (Montpellier ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Institut Charles Gerhardt (Montpellier ; 2006-....)
Jury : Président / Présidente : Marc Cretin
Examinateurs / Examinatrices : Sabine Devautour-Vinot, Guillaume Maurin, Marc Cretin, Georgeta Postole, Michaël Badawi, Isabelle Beurroies
Rapporteurs / Rapporteuses : Georgeta Postole, Michaël Badawi

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Ce travail a pour objectif l’étude de matériaux hybrides poreux de type Metal-Organic Frameworks (MOFs) et d’un cristal moléculaire en tant que conducteurs ioniques solides pour des applications dans le domaine de l’énergie et de l’environnement. Dans le premier cas, nous avons développé diverses stratégies pour optimiser et contrôler la teneur en sites acides de Lewis et en porteurs de charges de deux séries de MOFs afin de concevoir des matériaux aux propriétés de conduction protonique très prometteuses. A partir d’une approche basée sur la substitution progressive des ligands par des entités fonctionnalisées présentant des sources de protons acides, nous avons créé une série de MOFs, MIP-207-(SO3H-IPA)x-(BTC)1–x, dont la teneur en groupements sulfoniques, par l’intermédiaire du ligand SO3H-IPA, est contrôlée à façon. Le meilleur matériau qui combine stabilité structurale et conduction protonique élevée présente des performances sous humidité parmi les plus intéressantes au sein de la famille des MOFs conducteurs protoniques (e.g., σ = 2.6 × 10–2 S cm–1 à 363 K/95% d’humidité relative (RH)). Selon une autre approche, nous avons étudié un MOF mésoporeux connu (MIL-101(Cr)-SO3H) dont les parois des pores sont tapissées de sites protoniques et qui contient dans ses pores un liquide ionique, le chlorure chlorure de 1-Ethyl-3-methylimidazolium (EMIMCl) capable d’assurer le transfert de proton. L’encapsulation du liquide ionique, caractérisée par une série d’outils expérimentaux (sorption de diazote, DRX sur poudre, TGA/MS, DSC et analyse élémentaire), s’avère particulièrement efficace pour exalter les propriétés de conduction protonique des composites à la fois à l’état anhydre (σ473 K = 1.5 × 10-3 S cm-1) mais également à l’état hydraté (σ(343 K/60%-80%RH) ≥ 0.10 S cm-1). Enfin, ce travail a été étendu à une autre famille de solides poreux, à travers l’étude des propriétés de conduction ionique d’un cristal moléculaire à base de zirconium (Zr-3) qui contient des paires ioniques KCl. Nous avons démontré que ZF-3 transite d’un comportement isolant à l’état anhydre (σ = 5.1 x 10-10 S cm-1 à 363 K/0% RH) vers un comportement super-conducteur ionique en présence d’eau (σ = 5.2 x 10-2 S cm-1 à 363 K/95 % RH), suite à l’augmentation de la dynamique de ions Cl- sous hydratation. Par ailleurs, des simulations moléculaires ont permis de décrire les mécanismes microscopiques à l’origine des propriétés de conduction des matériaux étudiés. Ces avancées devraient permettre de développer dans le futur de nouveaux matériaux performants dans le domaine de la conduction protonique et ionique.