Thèse soutenue

Apprentissage profond pour la mise en application de l’EEG en conditions réelles

FR  |  
EN
Auteur / Autrice : Hubert Banville
Direction : Alexandre GramfortDenis Engemann
Type : Thèse de doctorat
Discipline(s) : Mathématiques et Informatique
Date : Soutenance le 24/01/2022
Etablissement(s) : université Paris-Saclay
Ecole(s) doctorale(s) : École doctorale Sciences et technologies de l'information et de la communication (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Institut national de recherche en informatique et en automatique (France). Unité de recherche (Saclay, Ile-de-France)
référent : Faculté des sciences d'Orsay
graduate school : Université Paris-Saclay. Graduate School Informatique et sciences du numérique (2020-....)
Jury : Président / Présidente : Slim Essid
Examinateurs / Examinatrices : Maarten De Vos, Guillaume Dumas, Suzanna Becker, Sebastian Stober
Rapporteurs / Rapporteuses : Maarten De Vos, Guillaume Dumas

Résumé

FR  |  
EN

Au cours des dernières décennies, les avancées révolutionnaires en neuroimagerie ont permis de considérablement améliorer notre compréhension du cerveau. Aujourd'hui, avec la disponibilité croissante des dispositifs personnels de neuroimagerie portables, tels que l'EEG mobile " à bas prix ", une nouvelle ère s’annonce où cette technologie n'est plus limitée aux laboratoires de recherche ou aux contextes cliniques. Les applications de l’EEG dans le " monde réel " présentent cependant leur lot de défis, de la rareté des données étiquetées à la qualité imprévisible des signaux et leur résolution spatiale limitée. Dans cette thèse, nous nous appuyons sur le domaine de l'apprentissage profond afin de transformer cette modalité d'imagerie cérébrale centenaire, purement clinique et axée sur la recherche, en une technologie pratique qui peut bénéficier à l'individu au quotidien. Tout d'abord, nous étudions comment les données d’EEG non étiquetées peuvent être mises à profit via l'apprentissage auto-supervisé pour améliorer la performance d’algorithmes d'apprentissage entraînés sur des tâches cliniques courantes. Nous présentons trois approches auto-supervisées qui s'appuient sur la structure temporelle des données elles-mêmes, plutôt que sur des étiquettes souvent difficiles à obtenir, pour apprendre des représentations pertinentes aux tâches cliniques étudiées. Par le biais d'expériences sur des ensembles de données à grande échelle d'enregistrements de sommeil et d’examens neurologiques, nous démontrons l'importance des représentations apprises, et révélons comment les données non étiquetées peuvent améliorer la performance d’algorithmes dans un scénario semi-supervisé. Ensuite, nous explorons des techniques pouvant assurer la robustesse des réseaux de neurones aux fortes sources de bruit souvent présentes dans l’EEG hors laboratoire. Nous présentons le Filtrage Spatial Dynamique, un mécanisme attentionnel qui permet à un réseau de dynamiquement concentrer son traitement sur les canaux EEG les plus instructifs tout en minimisant l’apport des canaux corrompus. Des expériences sur des ensembles de données à grande échelle, ainsi que des données du monde réel démontrent qu'avec l'EEG à peu de canaux, notre module attentionnel gère mieux la corruption qu'une approche automatisée de traitement du bruit, et que les cartes d'attention prédites reflètent le fonctionnement du réseau de neurones. Enfin, nous explorons l'utilisation d'étiquettes faibles afin de développer un biomarqueur de la santé neurophysiologique à partir d'EEG collecté dans le monde réel. Pour ce faire, nous transposons à ces données d'EEG le principe d'âge cérébral, originellement développé avec l'imagerie par résonance magnétique en laboratoire et en clinique. À travers l'EEG de plus d'un millier d'individus enregistré pendant un exercice d'attention focalisée ou le sommeil nocturne, nous démontrons non seulement que l'âge peut être prédit à partir de l'EEG portable, mais aussi que ces prédictions encodent des informations contenues dans des biomarqueurs de santé cérébrale, mais absentes dans l'âge chronologique. Dans l’ensemble, cette thèse franchit un pas de plus vers l’utilisation de l’EEG pour le suivi neurophysiologique en dehors des contextes de recherche et cliniques traditionnels, et ouvre la porte à de nouvelles applications plus flexibles de cette technologie.