Thèse soutenue

Imagerie sismique multi-paramètres : approche linéarisée par équation d'onde

FR  |  
EN
Auteur / Autrice : Milad Farshad
Direction : Hervé Chauris
Type : Thèse de doctorat
Discipline(s) : Géosciences et géoingénierie
Date : Soutenance le 09/12/2021
Etablissement(s) : Université Paris sciences et lettres
Ecole(s) doctorale(s) : École doctorale Géosciences, ressources naturelles et environnement (Paris ; 2000-....)
Partenaire(s) de recherche : Laboratoire : Centre de géosciences (Fontainebleau, Seine et Marne)
établissement de préparation de la thèse : École nationale supérieure des mines (Paris ; 1783-....)
Jury : Président / Présidente : Stéphane Operto
Examinateurs / Examinatrices : Hervé Chauris, Romain Brossier, Hélène Barucq
Rapporteurs / Rapporteuses : René-Edouard Plessix, Gilles Lambaré

Résumé

FR  |  
EN

L’imagerie sismique est l’une des méthodes les plus pertinentes pour l’estimation des paramètres physiques (vitesse, densité, …) depuis l’acquisition de données en surface. Avec l’hypothèse de séparation d’échelles, plusieurs méthodes d’imagerie décomposent le modèle de vitesse entre un macro-modèle lisse et un modèle de réflectivité. Le but des techniques de migration est de déterminer la réflectivité dans un macro-modèle donné. Parmi différentes solutions, la Reverse Time Migration (RTM) est devenue la méthode de choix pour les milieux complexes. Par définition, RTM est l’adjoint de l’opérateur de Born et souffre de différents artéfacts de migration. Des développements récents ont permis d’analyser la RTM avec une approche asymptotique. Ils ont conduit à une méthode directe pour inverser l’opérateur de modélisation, et apporter une solution quantitative en une seule itération. L’inverse direct suppose un milieu acoustique à densité constante, ce qui représente une limite forte pour les applications pratiques. Dans cette thèse, j’ai d’abord étendu l’applicabilité de l’inverse direct depuis une densité constante à une densité variable et vers les milieux élastiques. Dans le cadre de l’imagerie multi-paramètres, la principale limitation est la non unicité de la solution. Pour cela, je propose d’ajouter des contraintes avec une norme l1 sur chacune des classes de paramètres. De plus, je propose d’utiliser l’inverse direct pour accélérer la convergence de la RTM multi-paramètres. Les méthodologies sont développées et analysées sur des données synthétiques 2D et sur un cas réel marin.