Thèse soutenue

Interaction fluide-structure dans un dispositif vasculaire actif
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Antoine Fondaneche
Direction : Michel BergmannAngelo Iollo
Type : Thèse de doctorat
Discipline(s) : Mathématiques appliquées et calcul scientifique
Date : Soutenance le 03/09/2021
Etablissement(s) : Bordeaux
Ecole(s) doctorale(s) : École doctorale de mathématiques et informatique (Talence, Gironde ; 1991-....)
Partenaire(s) de recherche : Laboratoire : Institut de mathématiques de Bordeaux - Institut national de recherche en informatique et en automatique (France). Centre de recherche Inria de l'université de Bordeaux (Bordeaux)
Jury : Président / Présidente : Frédéric Gibou
Examinateurs / Examinatrices : Michel Bergmann, Angelo Iollo, Cédric Galusinski, Christophe Prud'homme, Gabriella Puppo
Rapporteurs / Rapporteuses : Cédric Galusinski, Christophe Prud'homme

Résumé

FR  |  
EN

Le recours à la simulation numérique de problèmes d'interaction fluide-structure est de plus en plus utilisée dans la plupart des secteurs d'activité. Pour résoudre ce type de problème, la majorité des études se concentre sur des approches lagrangiennes réputées très précises. Leur mise en oeuvre peut néanmoins devenir difficile pour certaines applications, notamment lorsque les déformations de la structure deviennent importantes ou que des variations topologiques se manifestent.Pour simuler de manière très versatile une grande diversité de problèmes d'interaction fluide-structure en deux dimensions impliquant des matériaux hyper-élastiques rigides, une méthode purement eulérienne a été favorisée. Dans le contexte des méthodes de domaines fictifs, la géométrie d'une structure est suivie de manière implicite via le formalisme level set, qui permet de définir une interface fluide-structure diffuse. Un modèle unifié à "un seul milieu" est résolu de manière monolithique à l'aide d'une méthode Volume Fini sur maillages cartésiens hiérarchiques de type quadtree. Cette approche offre un bon compromis entre précision du schéma numérique et faisabilité de la simulation du problème multi-physiques, notamment grâce au processus d’adaptation de maillage AMR dynamique. La construction des schémas de discrétisation en espace repose sur l'utilisation de stencils compacts, de sorte à garantir une efficacité optimale du parallélisme.La méthode numérique est validée conformément à la littérature et le bénéfice obtenu, en termes de temps de calcul, via l'utilisation de maillages adaptatifs dynamiques est mise en évidence. En s'appuyant sur une analyse asymptotique en une dimension du schéma de discrétisation, une stabilisation de la méthode Volume Fini est effectuée afin d’améliorer sa robustesse, en particulier pour une meilleure prise en compte de matériaux très rigides. La simulation d'un écoulement axisymétrique bidimensionnel dans un dispositif d'assistance cardiaque (géométrie LVAD) est proposée comme application bio-médicale.