Etude de la dynamique du lithium dans un système électrochimique Li-ion par traçage isotopique en combinant les spectrométries RMN et ToF-SIMS
Auteur / Autrice : | Manon Berthault |
Direction : | Eric De vito |
Type : | Projet de thèse |
Discipline(s) : | 2MGE : Matériaux, Mécanique, Génie civil, Electrochimie |
Date : | Inscription en doctorat le Soutenance le 25/03/2021 |
Etablissement(s) : | Université Grenoble Alpes |
Ecole(s) doctorale(s) : | École doctorale Ingénierie - matériaux mécanique énergétique environnement procédés production (Grenoble ; 2008-....) |
Partenaire(s) de recherche : | Laboratoire : CEA Grenoble / LITEN |
Jury : | Président / Présidente : Fannie Alloin |
Examinateurs / Examinatrices : Eric De vito, Nicolas Dupre, Herve Martinez, Jolanta Swiatowska, Daniel Lemordant | |
Rapporteur / Rapporteuse : Nicolas Dupre, Herve Martinez |
Mots clés
Mots clés libres
Résumé
De récentes études montrent que la dégradation des performances dune cellule Li-ion peut être associée à une inactivation dune partie du matériau délectrode. Celle-ci peut résulter de lisolement de particules vis-à-vis du réseau percolant, de la dissolution du matériau actif, de sa délamination, ou de la dégradation de sa structure à léchelle nanoscopique ou mésoscopique. Une perte de lithium actif peut également expliquer ces pertes de performance en cyclage. Par exemple, la formation de lInterphase dElectrolyte Solide (SEI), qui a lieu lors des premiers cycles électrochimiques, piège du lithium de façon irréversible. La perte de capacité spécifique associée à la création de cette couche est assez faible dans le cas des électrodes de graphite (9%), mais est conséquente pour des électrodes de silicium (jusquà 20%). De plus, cette interphase a un fort impact sur la durée de vie et la sécurité de la cellule. Mes travaux portent sur la dynamique du lithium au sein dune cellule Li-ion, en particulier de la SEI, et utilise une méthode particulière : le traçage isotopique. Cette approche se développe timidement depuis 2011, puisquune dizaine détudes seulement ont été publiées. Dans toute la littérature actuelle, les isotopes sont introduits dans différentes parties du système électrochimique (anode, cathode ou électrolyte) avant cyclage. Dans ce travail, les isotopes du lithium ont été ajoutés à différents états de charges (100% ou 0%) afin de marquer sélectivement la SEI. Plus précisément, laccumulateur subit une charge/décharge, est ouvert, puis lélectrode négative est prélevée et réinsérée dans une nouvelle cellule contenant lisotope complémentaire. En combinant des analyses de spectrométrie de masse dions secondaires à temps de vol (ToF-SIMS) et de résonance magnétique nucléaire (RMN) 7Li/6Li haute résolution à létat solide, il est possible de déterminer la distribution de 6Li et du 7Li dans différentes parties de lélectrode. Dans un premier temps, le développement basé sur la méthodologie présentée ci-dessus a été réalisé dans un système de demi-pile comprenant une électrode de graphite. Lhypothèse fondée sur la présence de potentiels effets de fractionnement isotopique a été examinée par ToF-SIMS et écartée. Les échanges de 6Li et 7Li apparaissant entre la SEI et lélectrolyte ont ensuite été étudiés par des expériences de diffusion pure et de couplage migration/diffusion en cyclage. Les résultats montrent que la diffusion libre des ions lithium dans la SEI de lélectrode de graphite délithiée est très rapide et quune homogénéisation complète des abondances isotopiques apparait en moins de 20 minutes. Ces échanges sont beaucoup plus lents lorsque des cycles de lithiation/délithiation sont effectués. Dans un second temps, la SEI dune électrode de silicium a été examinée en détail dans des conditions similaires. Celle-ci a été analysée par RMN, par ToF-SIMS ainsi que par spectrométrie de photoélectrons X (XPS). La première lithiation du silicium a également été étudiée. Les expériences déchanges isotopiques par diffusion pure ont cette fois été réalisées sur des électrodes lithiées. . Elles ont permis de mettre en évidence que plusieurs phénomènes conduisent à la redistribution des isotopes dans la SEI, comme dans les particules de silicium. Durant la première heure de contact, les échanges isotopiques conduisent à l'homogénéisation complète des isotopes. Nos résultats suggèrent également une cinétique de relaxation du lithium dans le silicium plus lente (50h), aboutissant à distribution des isotopes encore différente.