Élimination des produits pharmaceutiques de l'eau par des matériaux à base de carbone

by Bomin Fu

Doctoral thesis in Chimie de l'environnement

defended on 29-11-2021

in Lyon , under the authority of École Doctorale de Chimie (Lyon) , in a partnership with Institut de Recherches sur la Catalyse et l'Environnement de Lyon (Villeurbanne, Rhône) (laboratoire) and Université Claude Bernard (Lyon ; 1971-....) (établissement opérateur d'inscription) .

  • Alternative Title

    Removal of pharmaceuticals from water by carbon-based materials


  • Abstract

    In this study, the adsorption behavior of three pharmaceuticals contains Pemetrexed (PEME), Sulfaclozine (SCL) and Terbutaline (TBL) in water by different types of ACs (AC1, AC2, AC3) and biochars (MSP550, (MSP700, WSP550, WSP700) was investigated. The main purposes of this thesis were to explore the effects of different factors such as the adsorbent dose, contact time, pollutant concentration, temperature, pH and ions on the adsorption of pharmaceuticals to determine the optimal conditions for removing pharmaceuticals from water. In addition, the adsorption mechanisms between adsorbents and pharmaceuticals were researched using characterized analysis and theoretical methodology. The main conclusions are as follows: (1) AC1 and AC3 were better described by the Freundlich and Langmuir models, respectively, whereas both models could be used to fit the adsorptive isotherm of AC2. The higher the initial PEME concentration or the temperature, the higher the adsorption capacity was. The adsorption capacities of the adsorbents were in the following order, AC3 > AC2 > AC1, in agreement with their specific surface areas. A coexistence process of physical and chemical adsorption existed in all ACs as predicted by the best fitting obtained with the Dubinin–Radushkevich, pseudo–second–order kinetic and Elovich models. AC3 and AC2 containing more oxygenated groups, must adsorb PEME onto their surface according to a monolayer adsorption mechanism. Fitting procedure demonstrated that the equilibrium data obtained with these two materials can be fitted to the Langmuir isotherm. (2) The presence of both single and mixed salts was able to increase the adsorption affinity of ACs for PEME during static adsorption. In the dynamic adsorption mode, the penetration time and depletion time of the ACs column decreased with increasing initial PEME concentration. Under the same conditions, the penetration time of the AC3 column was faster, but its exhaustion time was slower compared to that of the AC1 column. The increase in temperature slowed down the penetration time of the ACs column and enhances the adsorption capacity of the adsorbent, thus slowing down the saturation time of the column. This indicates that dynamic adsorption is a heat absorption process, which is consistent with the trend of the static adsorption results. (3) The three biochars (MSP550, MSP700 and WSP550) were almost unable to adsorb PEME at 25°C, except for WSP700, while for SCL, all biochars did not work. TBL showed the best adsorption performance among all biochars. Both the initial pharmaceuticals concentration and the increase in external temperature helped to improve the adsorption capacity of the biochars. The adsorption of all biochars for PEME and SCL decreased with increasing pH of the system, however, the TBL adsorption on biochars showed a trend of increasing and then decreasing with increasing pH. Overall, the order of adsorption capacity of biochars reflected as WSP700 > MSP700 > MSP550 > MSP700. The adsorption affinity is influenced by many factors, including their cation exchange capacity, specific surface area, porosity, electrostatic interaction, hydrogen bonding and π-π interactions.


  • Abstract

    Dans cette étude, le comportement d'adsorption de trois produits pharmaceutiques contenant du Pemetrexed (PEME), Sulfaclozine (SCL) et Terbutaline (TBL) dans l'eau par différents types de CA (AC1, AC2, AC3) et biochars (MSP550, (MSP700, WSP550, WSP700) a été étudié. Les principaux objectifs de cette étude étaient d'explorer les effets de différents facteurs tels que la dose d'adsorbant, le temps de contact, la concentration de polluant, la température, le pH et les ions sur l'adsorption des produits pharmaceutiques afin de déterminer les conditions optimales pour éliminer les produits pharmaceutiques de l'eau. En outre, les mécanismes d'adsorption entre les adsorbants et les produits pharmaceutiques ont été étudiés en utilisant une analyse caractérisée et une méthodologie théorique. Les principales conclusions sont les suivantes : (1) AC1 et AC3 ont été mieux décrits par les modèles de Freundlich et Langmuir, respectivement, alors que les deux modèles ont pu être utilisés pour ajuster l'isotherme d'adsorption de AC2. Plus la concentration initiale de PEME ou la température étaient élevées, plus la capacité d'adsorption était importante. Les capacités d'adsorption des adsorbants étaient dans l'ordre suivant, AC3 > AC2 > AC1, en accord avec leurs surfaces spécifiques. Un processus de coexistence d'adsorption physique et chimique a existé dans tous les ACs comme prédit par le meilleur ajustement obtenu avec les modèles de Dubinin-Radushkevich, de cinétique de pseudo-second ordre et d'Elovich. Les AC3 et AC2 contenant plus de groupes oxygénés, doivent adsorber le PEME sur leur surface selon un mécanisme d'adsorption monocouche. La procédure d'ajustement a démontré que les données d'équilibre obtenues avec ces deux matériaux peuvent être ajustées à l'isotherme de Langmuir. (2) La présence de sels simples et mixtes a été capable d'augmenter l'affinité d'adsorption des ACs pour le PEME pendant l'adsorption statique. Dans le mode d'adsorption dynamique, le temps de pénétration et le temps de déplétion de la colonne d'ACs ont diminué avec l'augmentation de la concentration initiale de PEME. Dans les mêmes conditions, le temps de pénétration de la colonne AC3 était plus rapide, mais son temps d'épuisement était plus lent comparé à celui de la colonne AC1. L'augmentation de la température a ralenti le temps de pénétration de la colonne ACs et augmente la capacité d'adsorption de l'adsorbant, ralentissant ainsi le temps de saturation de la colonne. Cela indique que l'adsorption dynamique est un processus d'absorption de chaleur, ce qui est cohérent avec la tendance des résultats de l'adsorption statique. (3) Les trois biochars (MSP550, MSP700 et WSP550) étaient presque incapables d'adsorber le PEME à 25°C, à l'exception du WSP700, tandis que pour le SCL, tous les biochars n'ont pas fonctionné. TBL a montré la meilleure performance d'adsorption parmi tous les biochars. La concentration initiale des produits pharmaceutiques et l'augmentation de la température externe ont contribué à améliorer la capacité d'adsorption des biochars. L'adsorption de tous les biochars pour le PEME et le SCL a diminué avec l'augmentation du pH du système, cependant, l'adsorption du TBL sur les biochars a montré une tendance d'augmentation puis de diminution avec l'augmentation du pH. Dans l'ensemble, l'ordre de la capacité d'adsorption des biochars se reflète comme suit : WSP700 > MSP700 > MSP550 > MSP700. L'affinité d'adsorption est influencée par de nombreux facteurs, notamment leur capacité d'échange de cations, leur surface spécifique, leur porosité, l'interaction électrostatique, la liaison hydrogène et les interactions π-π.

Consult library

Version is available

Where is this thesis?

  • Library : Université Claude Bernard. Service commun de la documentation. Bibliothèque numérique.
See the Sudoc catalog libraries of higher education and research.