Thèse soutenue

Synthèse et caractérisation d'organogels par des techniques de rayons X

FR  |  
EN
Auteur / Autrice : Danilo Rosa Nunes
Direction : Pierre-Antoine Albouy
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 16/01/2020
Etablissement(s) : université Paris-Saclay
Ecole(s) doctorale(s) : École doctorale Physique en Île-de-France (Paris ; 2014-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : Université Paris-Sud (1970-2019)
Laboratoire : Laboratoire de physique des solides (Orsay, Essonne)
Jury : Président / Présidente : Philippe Roger
Examinateurs / Examinatrices : Franck Artzner, David Canevet, Nathalie Guillou, Amparo Ruiz-Carretero
Rapporteurs / Rapporteuses : Franck Artzner, David Canevet

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Les organogels sont un type particulier de gels formés dans des liquides organiques par un réseau de polymères supramoléculaires. Ces matériaux diffèrent principalement des autres classes de gels en raison de la nature de leur réseau. Les gélifiants de faible poids moléculaire (LMWG) ont tendance à s'auto-agréger dans une direction préférentielle. Cela conduit à la formation de structures allongées, principalement des fibres, qui, par une évolution continue du processus d'assemblage, forment un réseau fibrillaire auto-assemblé enchevêtré (SAFIN). Ce mécanisme d'auto-assemblage est dirigé par des interactions non covalentes telles que la liaison hydrogène, l'empilement π – π, les interactions donneur – accepteur, la coordination des métaux et les interactions de van der Waals. La formation d'un réseau basé uniquement sur des interactions faibles affecte considérablement l'intégrité structurelle, rendant les organogels métastables et thermoréversibles.Il existe une grande variété structurelle d'organogélifiants, ce qui en fait un type de matériau intéressant, permettant une large gamme de propriétés et d'applications. Le principal défi des organogels est de prédire quel gélifiant est capable de gélifier quel liquide. Par conséquent, la découverte de nouveaux organogélateurs se fait encore principalement fortuitement, et leurs capacités de gélification sont généralement vérifiées par des processus exhaustifs d'essais et erreurs. Ainsi, il devient nécessaire de développer une méthodologie capable de réduire le temps et les dépenses nécessaires à la recherche de nouveaux organogélateurs ou du réglage de leurs propriétés.Cette thèse contient deux approches expérimentales principales. La première porte sur la détermination de l’empilement moléculaire d'organogélateurs dans les fibres par des techniques de diffusion de rayons X. La deuxième approche consiste à optimiser une méthodologie basée sur les paramètres de solubilité de Hansen, qui peut être utilisée pour rationaliser la formation d'organogel. La combinaison de ces deux outils a permis d’étudier l’effet qu’une altération structurelle du gélifiant a sur l’organogélation. Cinq familles d'organogélateurs ont été synthétisées avec des chaînes alkyles linéaires de différentes longueurs. À partir de ces cinq familles, nous avons pu déterminer l’assemblage cristallin de trois d’entre elles. Ces familles montrent une évolution régulière de la sphère de gélification qui est cohérente avec l’empilement cristallin. Ainsi, pour cette famille, la prédiction des sphères de gélification est possible. Les deux familles restantes d'organogélateurs ont présenté une évolution irrégulière de la gélification et il n'a pas été possible de déterminer avec précision l’empilement cristallin. Ce comportement est probablement dû à de petites différences du mode de cristallisation des membres de la famille.