Thèse soutenue

Dynamique des agrégats et fibres pathologiques

FR  |  
EN
Auteur / Autrice : Kevin Pounot
Direction : Martin WeikTilo SeydelGiorgio Schiro
Type : Thèse de doctorat
Discipline(s) : Physique pour les sciences du vivant
Date : Soutenance le 10/06/2020
Etablissement(s) : Université Grenoble Alpes
Ecole(s) doctorale(s) : École doctorale physique (Grenoble ; 1991-....)
Partenaire(s) de recherche : Laboratoire : Institut Max von Laue-Paul Langevin (Grenoble) - Institut de biologie structurale (Grenoble)
Jury : Président / Présidente : Judith Peters
Examinateurs / Examinatrices : Gabriele Kaminski Schierle, Michael Decressac, Franz Brückert
Rapporteurs / Rapporteuses : Andreas Stadler, Fabio Sterpone

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Les maladies neurodégénératives, comme Parkinson ou Alzheimer, sont une menace croissante,avec une prévalence augmentant sans cesse. Ces maladies sont caractérisées par la présence de dépôts protéiques, appellés amyloïdes, dans le cerveau. Plusieurs protéines ont été identifiées dans ces dépôts comme étant des marqueurs de la maladie, dont l'alpha-synucléine pour Parkinson et tau pour Alzheimer. L'agrégation amyloïde est centrale dans les maladies neurodégénératives et constitue ainsi un cible privilégiée pour le diagnostic ou les essais cliniques.L'agrégation amyloïde est caractérisée par la formation d'un motif cross-β, qui consiste en un empilement de brins beta;, pouvant former ainsi de longues fibres. Dans certaines conditions,des particules de taille micrométrique peuvent être obtenus, tels que les 'particulates' ou les 'sphérulites'. Plusieurs études montrent que la formation des agrégats, en particulier au stade précoce,est impliquée dans la toxicité. En revanche, les raisons de l'agrégation des protéines ne sont pas bien comprises. Dans ce travail, nous avons cherché à comprendre les principes fondamentaux impliqués dans l'agrégation amyloïde, en étudiant les changements de dynamique du système protéine-solvent, ce qui de plus, pourrait aider le développement de nouvelles méthodes de diagnostic.Dans ce but, j'ai utilisé principalement la diffusion incohérente des neutrons et les simulations de dynamique moléculaire. La première fournit une dynamique moyennée sur l'ensemble des atomes d'hydrogène dans le système et la seconde fournit une vision atomique dans laquelle structure et dynamique peuvent être étudiées.En étudiant l'alpha-synucléine, j'ai montré que les mouvements des chaines latérales et principales - dynamique interne - sont inchangés par l'agrégation. Cependant, les mouvements de l'eau sont accélérés autour des fibres, ce qui provient d'une fraction de l'eau étant déplacée du coeur hydrophobe vers les régions terminales hydrophiles lors de la formation des fibres.Ainsi, l'entropie de l'eau est augmentée dans les fibres, ou le motif cross-beta; central semble être très efficace pour se protéger lui-même de l'intéraction avec le solvent. La comparaison de la gammaS-crystalline sauvage avec le mutant G18V montre que le mutant est moins dynamique, quel que soit l'état d'agrégation. Cette observation, et la comparaison de la dynamique interne avec l'hydrophobicité des protéines, montre que la dynamique interne dépend fortement de la composition en acides aminés et non pas de l'état d'agrégation. En outre,les ions métalliques peuvent aussi influencer la dynamique interne.Les mesures sur l'insuline, en présence ou absence de zinc montre que le métal aide à l'hydratation de la protéine, même à pH 1.8, où il interagit faiblement avec la protéine. Le zinc affecte aussi les interactions entre agrégats, probablement par écrantage électrostatique, étant donné que la formation de sphérulites est facilitée en son absence.Enfin, la possibilité de suivre en simultané, et sans ambiguïté, la dynamique interne et la diffusion du centre de masse a été démontrée en utilisant des scans à fenêtre d'énergie fixe sur l'instrument IN16B à l'ILL. Cette nouvelle méthode, appliquée au lysozyme, montre que la formation des 'particulates' se déroule en une étape, avec la dynamique interne restant constante tout au long du processus. Cette expérience pilote ouvre la voie à des études de fibrillation de protéines ayant un intérêt médical.Ensemble, ces résultats démontrent que l'on peut étudier le processus d'agrégation amyloïde avec beaucoup de détails, et il y a une grande opportunité d'étendre ce travail dans un contexte biologique afin de faire le lien entre les paramètres biophysiques de l'agrégation amyloïde et ses effets et sa toxicité in-vivo