Modèles neuronaux pour la recherche d'information : vers des approches sensibles à l'asymétrie basées sur des modèles d'attention
Auteur / Autrice : | Thiziri Belkacem |
Direction : | Mohand Boughanem, Taoufiq Dkaki |
Type : | Thèse de doctorat |
Discipline(s) : | Réseaux, télécoms, systèmes et architecture |
Date : | Soutenance le 28/11/2019 |
Etablissement(s) : | Toulouse 3 |
Ecole(s) doctorale(s) : | École doctorale Mathématiques, informatique et télécommunications (Toulouse) |
Partenaire(s) de recherche : | Laboratoire : Institut de Recherche en Informatique de Toulouse (1995-....) |
Mots clés
Résumé
Ce travail se situe dans le contexte de la recherche d'information (RI) utilisant des techniques d'intelligence artificielle (IA) telles que l'apprentissage profond (DL). Il s'intéresse à des tâches nécessitant l'appariement de textes, telles que la recherche ad-hoc, le domaine du questions-réponses et l'identification des paraphrases. L'objectif de cette thèse est de proposer de nouveaux modèles, utilisant les méthodes de DL, pour construire des modèles d'appariement basés sur la sémantique de textes, et permettant de pallier les problèmes de l'inadéquation du vocabulaire relatifs aux représentations par sac de mots, ou bag of words (BoW), utilisées dans les modèles classiques de RI. En effet, les méthodes classiques de comparaison de textes sont basées sur la représentation BoW qui considère un texte donné comme un ensemble de mots indépendants. Le processus d'appariement de deux séquences de texte repose sur l'appariement exact entre les mots. La principale limite de cette approche est l'inadéquation du vocabulaire. Ce problème apparaît lorsque les séquences de texte à apparier n'utilisent pas le même vocabulaire, même si leurs sujets sont liés. Par exemple, la requête peut contenir plusieurs mots qui ne sont pas nécessairement utilisés dans les documents de la collection, notamment dans les documents pertinents. Les représentations BoW ignorent plusieurs aspects, tels que la structure du texte et le contexte des mots. Ces caractéristiques sont très importantes et permettent de différencier deux textes utilisant les mêmes mots et dont les informations exprimées sont différentes. Un autre problème dans l'appariement de texte est lié à la longueur des documents. Les parties pertinentes peuvent être réparties de manières différentes dans les documents d'une collection. Ceci est d'autant vrai dans les documents volumineux qui ont tendance à couvrir un grand nombre de sujets et à inclure un vocabulaire variable. Un document long pourrait ainsi comporter plusieurs passages pertinents qu'un modèle d'appariement doit capturer. Contrairement aux documents longs, les documents courts sont susceptibles de concerner un sujet spécifique et ont tendance à contenir un vocabulaire plus restreint. L'évaluation de leur pertinence est en principe plus simple que celle des documents plus longs. Dans cette thèse, nous avons proposé différentes contributions répondant chacune à l'un des problèmes susmentionnés. Tout d'abord, afin de résoudre le problème d'inadéquation du vocabulaire, nous avons utilisé des représentations distribuées des mots (plongement lexical) pour permettre un appariement basé sur la sémantique entre les différents mots. Ces représentations ont été utilisées dans des applications de RI où la similarité document-requête est calculée en comparant tous les vecteurs de termes de la requête avec tous les vecteurs de termes du document, indifféremment. Contrairement aux modèles proposés dans l'état-de-l'art, nous avons étudié l'impact des termes de la requête concernant leur présence/absence dans un document. Nous avons adopté différentes stratégies d'appariement document/requête. L'intuition est que l'absence des termes de la requête dans les documents pertinents est en soi un aspect utile à prendre en compte dans le processus de comparaison. En effet, ces termes n'apparaissent pas dans les documents de la collection pour deux raisons possibles : soit leurs synonymes ont été utilisés ; soit ils ne font pas partie du contexte des documents en questions.