Thèse soutenue

Modélisation des écoulements en milieux géologiques fracturés : montée d'échelle et application à la géothermie profonde

FR  |  
EN
Auteur / Autrice : Tawfik Rajeh
Direction : Rachid AbabouManuel Marcoux
Type : Thèse de doctorat
Discipline(s) : Surfaces Interfaces Continentales Hydrologie
Date : Soutenance le 05/06/2019
Etablissement(s) : Toulouse, INPT
Ecole(s) doctorale(s) : École doctorale Sciences de l’univers, de l’environnement et de l’espace (Toulouse)
Partenaire(s) de recherche : Laboratoire : Institut de mécanique des fluides de Toulouse (1930-....)
Jury : Président / Présidente : Philippe Renard
Examinateurs / Examinatrices : Rachid Ababou, Manuel Marcoux, Benoît Nœtinger, Inga Berre, Michel Garcia, Dominique Bruel, Jean-François Thovert
Rapporteurs / Rapporteuses : Benoît Nœtinger, Inga Berre

Résumé

FR  |  
EN

Fractures dans les roches constituent un chemin préférentiel pour les écoulements et les transferts dans les milieux géologiques. Les roches poreuses fracturées se retrouvent dans diverses applications comme par exemple l’ingénierie pétrolière et gazière, le stockage géologique du CO2 et l’extraction d’énergie géothermique. Cette thèse de doctorat présente un ensemble d’analyses des propriétés géométriques, topologiques et hydrauliques des réseaux de fractures dans une perspective d’homogénéisation et d’application à la simulation numérique des réservoirs géothermique. La description des fractures planes en 3D, ou plus spécifiquement des réseaux de fractures discrets (dénommés « DFN » pour « Discrete Fracture Networks »), leurs propriétés statistiques et la façon de les modéliser sont étudiés. Comme la perméabilité joue un rôle essentiel dans l’écoulement et le transport dans les roches poreuses fracturées, nous avons dans un premier temps développé une procédure de changement d’échelle (upscaling) pour déterminer le tenseur de perméabilité équivalente des milieux poreux fracturé en 3D. Cette nouvelle approche est basée sur le principe de superposition, amélioré par des facteurs de connectivité déterminés tout d’abord empiriquement. Ces facteurs correctifs ont pour but de prendre en compte les propriétés de connectivité et de percolation des réseaux de fractures. Malgré son efficacité à prédire la perméabilité équivalente, la méthode proposée présente deux limitations dues essentiellement à la difficulté numérique de capter la percolation et les détails des connections des réseaux de fractures. Pour surmonter ces difficultés et pour effectuer des analyses plus fines des réseaux de fractures, un nouvel outil d’analyse des propriétés géométriques et topologiques des réseaux de fractures 3D a été développé. Dans cet outil, tous les attributs géométriques et topologiques (calcul d’intersections, longueurs de traces, amas percolant, etc.) des réseaux de fractures sont déterminés par un ensemble d’algorithmes. Ces algorithmes sont validés en détails, et leurs efficacités computationnelles sont démontrées. La finalité de ces outils algorithmiques est de donner une représentation des réseaux de fractures par graphes. Avec ces nouveaux outils, les capacités à traiter des réseaux de fractures 3D sont fortement améliorées. Ainsi, en utilisant la représentation en graphes, de nouvelles approches ont été développées concernant trois aspects des réseaux de fractures : (i) la percolation, (ii) le phénomène de groupement de fractures (Clustering) et (iii) la monté d’échelle de la perméabilité par la méthode des graphes. Un simulateur thermo-hydraulique a in fine été développé avec le code open source « OpenFoam ». L’objectif est d’appliquer les techniques de changement d’échelle développées dans cette thèse à des problèmes de simulations des réservoirs géothermiques. Un premier exemple prototype de système de deux puits d’injection-production dans un réservoir géothermique est simulé. D’autres cas sont en cours de traitement dans le cadre du projet GEOTREF ( www.geotref.com ).