Thèse soutenue

Nanocristaux multifonctionnels pour l'élaboration de sondes biologiques

FR  |  
EN
Auteur / Autrice : Sylvain Regny
Direction : Géraldine Dantelle
Type : Thèse de doctorat
Discipline(s) : Matériaux, Mécanique, Génie civil, Electrochimie
Date : Soutenance le 07/10/2019
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale Ingénierie - matériaux mécanique énergétique environnement procédés production (Grenoble ; 2008-....)
Partenaire(s) de recherche : Laboratoire : Institut Néel (Grenoble, Isère, France ; 2007-....)
Jury : Président / Présidente : Isabelle Gautier-Luneau
Examinateurs / Examinatrices : Gilles Ledoux, Yannick Mugnier, Cécile Rossignol, Sophie Brasselet
Rapporteurs / Rapporteuses : Luigi Bonacina, Christophe Coudret

Résumé

FR  |  
EN

La médecine s’intéresse de plus en plus à des systèmes nanométriques visant la détection précoce de cellules malignes, le traitement de ces dernières ou la compréhension de mécanismes biologiques. Des nanoparticules fluorescentes et des nanocristaux harmoniques aux propriétés non-linéaires intéressantes ont été étudiés comme agents de contraste pour l’imagerie biomédicale.Dans ce travail, nous avons recherché un matériau non-centrosymétrique dont la matrice permet un dopage d’ions lanthanides afin de développer des sondes multifonctionnelles, c’est-à-dire à la fois luminescentes et harmoniques. Nous nous sommes orientés vers l’iodate de lanthane de phase alpha, α-La(IO3)3, non-centrosymétrique. Dans un premier temps, nous avons développé des synthèses hydrothermales assistées par micro-ondes pour permettre de cristalliser la phase alpha et produire des particules de taille nanométrique (< 100 nm). La présence de nombreux pseudo-polymorphes nécessite le contrôle précis des paramètres de synthèse, en particulier de la température de synthèse, pour obtenir exclusivement des nanoparticules de α-La(IO3)3. L’étude de différents intermédiaires réactionnels (La(IO3)3(OH2), La(IO3)2.66(OH)0.33) nous a permis de mettre en évidence une transformation de phase entre ces composés et la phase α-La(IO3)3. Dans un deuxième temps, nous avons utilisé deux dispositifs optiques permettant de mesurer l’efficacité de génération de second harmonique : l’un permettant l’étude de nanocristaux de α-La(IO3)3 individuels et l’autre utilisant un ensemble de nanocristaux en suspension dans un solvant. Ce dernier, basé sur la diffusion Hyper-Rayleigh, nous a permis de quantifier la réponse non-linéaire de nanocristaux α-La(IO3)3 de diamètre 20-50 nm et de déterminer un coefficient non-linéaire < d > de 8 pm.V-1, comparable aux valeurs obtenues pour d’autres nanocristaux harmoniques tels que BaTiO3 ou LiNbO3. Enfin, nous avons montré la possibilité d’incorporer des ions lanthanides tels que Er3+ et Yb3+ dans ces nanocristaux d’iodate de lanthane, conduisant à des nanocristaux de α-La1-x-yYbyErx(IO3)3. Ces nanocristaux sont toujours actifs en génération de second harmonique et émettent simultanément un signal de photoluminescence. Ainsi, pour une excitation dans le proche infra-rouge (800 nm ou 980 nm par exemple), nous avons observé simultanément un signal de second harmonique et de photoluminescence par up-conversion. Nous avons démontré l’intérêt d’un co-dopage Yb3+/Er3+ pour une optimisation du signal d’up-conversion sous une excitation à 980 nm. Ainsi, par un dopage d’ions lanthanides tels que Er3+ et Yb3+, les nanocristaux de α-La(IO3)3 présentent une émission simultanée de génération de second harmonique et de photoluminescence. La combinaison de ces deux propriétés permet d’envisager d’utiliser ces nanocristaux bifonctionnels pour une imagerie par luminescence, technique classique, tout en la couplant avec une imagerie multiphoton, plus coûteuse mais présentant des avantages non-négligeables (rapidité de scans, meilleure sélectivité spatiale, sensibilité à la polarisation).