Thèse soutenue

Construction d’observables en cosmologie : vers de nouvelles sondes pour le secteur sombre

FR  |  
EN
Auteur / Autrice : Michel-Andrès Breton
Direction : Yann Rasera
Type : Thèse de doctorat
Discipline(s) : Physique. Astronomie, Astrophysique
Date : Soutenance le 26/09/2018
Etablissement(s) : Sorbonne Paris Cité
Ecole(s) doctorale(s) : École doctorale Astronomie et astrophysique d'Île-de-France (Meudon, Hauts-de-Seine ; 1992-....)
Partenaire(s) de recherche : établissement de préparation : Université Paris Diderot - Paris 7 (1970-2019)
Laboratoire : LUTH Laboratoire Univers et Théories (Observatoire de Paris - Section de Meudon)
Jury : Président / Présidente : James Bartlett
Examinateurs / Examinatrices : Yann Rasera, James Bartlett, Ruth Durrer, Dominique Aubert, Christian Marinoni, Julien Bel
Rapporteurs / Rapporteuses : Ruth Durrer, Dominique Aubert

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

La nature de l’énergie noire et de la matière noire est encore un mystère. De futures missions spatiales nous permettrons d’observer les propriétés et la distribution de milliards de galaxies mais quelle est la meilleure manière de contraindre la physique de ces composantes inconnues avec une telle quantité de données ? Le but de cette thèse est de chercher de nouvelles sondes du secteur sombre de l’univers dans le régime linéaire et non-linéaire de la formation des structures. La physique du secteur sombre laisse des empreintes dans la distribution des grandes structures à un temps donné (espace réel). Cependant leur distribution apparente telle que vue par un observateur (espace des redshifts) est légèrement différente de celle dans l’espace réel. En effet, les messagers (comme la lumière) sont perturbés pendant leur trajet depuis une source vers un observateur. Dans ce cas, quelle est la relation entre espace réel et espace des redshifts ? Comment extraire des informations cosmologiques de cette transformation ? L’essentiel de mon travail était de simuler des observables tout en prenant en compte tous les effets relativistes au premier ordre dans l’approximation de champs faible. Le lentillage gravitationnel faible modifie la position apparente des sources ainsi que leurs propriétés (forme, luminosité) tandis que les perturbations en redshift changent la distance radiale apparente des objets. Pour aborder ces questions, nous avons réalisé une simulation N-corps de grande taille et très résolue, idéale pour étudier les halos de taille entre la Voie Lactée et les amas de galaxie. Ensuite, nous avons suivi le trajet de photons dans la simulation en intégrant directement les équations de géodésique en utilisant comme seule approximation l’approximation de champs faible. Nous avons développé un algorithme qui nous permet de connecter un observateur à des sources via des géodésiques nulles. Par la suite, la matrice de lentillage est calculée grâce à un faisceaux lumineux tandis que le décalage spectral vers le rouge est directement calculé via sa définition donnée par la relativité générale. Grâce à cette bibliothèque de suivi de rayons lumineux, nous avons pu construire des catalogues de halos qui prennent en compte les effets relativistes. Grâce à ces catalogues nous avons pu retrouver des résultats standard à propos des distorsions dans l’espace des redshifts, du lentillage, et de l’effet Sachs Wolfe intégré avec grande précision. Nous avons également étudié le couplage subtil entre les distorsions dans l’espace des redshifts et le lentillage : Le lentillage Doppler. Enfin, nous avons exploré en détail les distorsions dans l’espace des redshifts dû aux effets relativistes. Avec notre simulation nous avons pu, pour la première fois, calculer le dipole de la function de corrélationcroisée entre 5 et 150 h − 1 Mpc, en incluant tous les termes relativistes. Aux grandes échelles nous retrouvons les résultats de la théorie linéaire : le dipole est dominé par l’effet Doppler dû à la présence d’un observateur à distance finie. Cependant, aux échelles non linéaires le dipole est dominé par l’effet de décalage spectral vers le rouge gravitationnel. Le dipole peut être une sonde du potentiel et dans ce cas du secteur sombre. Ce travail trouve beaucoup d’applications : la fonction de corrélation croisée entre différents observables (liées aux effets relativistes) pour différentes sources à des positions différentes peut être une nouvelle sonde intéressante pour le secteur sombre.