Thèse soutenue

Etude mathématique de la convergence de la PGD variationnelle dans certains espaces fonctionnels

FR  |  
EN
Auteur / Autrice : Hala Ossman
Direction : Abdallah El HamidiMustapha Jazar
Type : Thèse de doctorat
Discipline(s) : Mécanique des fluides
Date : Soutenance le 23/05/2017
Etablissement(s) : La Rochelle en cotutelle avec Université Libanaise
Ecole(s) doctorale(s) : École doctorale Sciences et ingénierie des matériaux, mécanique, énergétique et aéronautique (Poitiers ; 2009-2018)
Partenaire(s) de recherche : Laboratoire : Laboratoire des Sciences de l’Ingénieur pour l’Environnement (La Rochelle)
Jury : Président / Présidente : Jean-Michel Rakotoson
Examinateurs / Examinatrices : Abdallah El Hamidi, Mustapha Jazar, Jean-Michel Rakotoson, Antonio Falcó, Mejdi Azaïez, Toni Sayah, Ali Wehbe
Rapporteurs / Rapporteuses : Antonio Falcó, Mejdi Azaïez

Résumé

FR  |  
EN

On s’intéresse dans cette thèse à la PGD (Proper Generalized Decomposition), l’une des méthodes de réduction de modèles qui consiste à chercher, a priori, la solution d’une équation aux dérivées partielles sous forme de variables séparées. Ce travail est formé de cinq chapitres dans lesquels on vise à étendre la PGD aux espaces fractionnaires et aux espaces des fonctions à variation bornée, et à donner des interprétations théoriques de cette méthode pour une classe de problèmes elliptiques et paraboliques. Dans le premier chapitre, on fait un bref aperçu sur la littérature puis on présente les notions et outils mathématiques utilisés dans le corps de la thèse. Dans le second chapitre, la convergence des suites des directions alternées (AM) pour une classe de problèmes variationnels elliptiques est étudiée. Sous une condition de non-orthogonalité uniforme entre les itérés et le terme source, on montre que ces suites sont en général bornées et compactes. Alors, si en particulier la suite (AM) converge faiblement alors elle converge fortement et la limite serait la solution du problème de minimisation alternée. Dans le troisième chapitre, on introduit la notion des dérivées fractionnaires au sens de Riemann-Liouville puis on considère un problème variationnel qui est une généralisation d’ordre fractionnaire de l’équation de Poisson. En se basant sur la nature quadratique et la décomposabilité de l’énergie associée, on démontre que la suite PGD progressive converge fortement vers la solution faible de ce problème. Dans le quatrième chapitre, on profite de la structure tensorielle des espaces BV par rapport à la topologie faible étoile pour définir les suites PGD dans ce type d’espaces. La convergence de telle suite reste une question ouverte. Le dernier chapitre est consacré à l’équation de la chaleur d-dimensionnelle, où on discrétise en temps puis à chaque pas de temps on cherche la solution de l’équation elliptique en utilisant la PGD. On montre alors que la fonction affine par morceaux en temps obtenue à partir des solutions construites en utilisant la PGD converge vers la solution faible de l’équation.