Thèse soutenue

Etude théorique et expérimentale de µ-OLEDs en régime impulsionnel à très haute densité de courant

FR  |  
EN
Auteur / Autrice : Lei Zeng
Direction : Azzedine BoudriouaAlexis Fischer
Type : Thèse de doctorat
Discipline(s) : Sciences ingenieur
Date : Soutenance le 20/10/2016
Etablissement(s) : Sorbonne Paris Cité
Ecole(s) doctorale(s) : École doctorale Galilée (Villetaneuse, Seine-Saint-Denis)
Partenaire(s) de recherche : établissement de préparation : Université Sorbonne Paris Nord (Bobigny, Villetaneuse, Seine-Saint-Denis ; 1970-....)
Jury : Président / Présidente : Isabelle Sagnes
Examinateurs / Examinatrices : Mahmoud Chakaroun, Philippe Djemia, Lionel Hirsch
Rapporteurs / Rapporteuses : Olivier Bonnaud, Tony Maindron

Résumé

FR  |  
EN

Ce travail de thèse porte sur l’estimation de la possibilité d’atteindre le seuil laser dans un matériau organique par pompage électrique. Dans le but ultime de réaliser le laser organique à pompage électrique, un prérequis est d’injecter une haute densité de courant dans un dispositif électroluminescent fonctionnel. Dans un premier temps, le comportement de l’OLED soumise à haute densité de courant est simulé et un modèle d’estimation de seuil laser basé sur la matrice de transfert est proposé. Ces études théoriques indiquent l’existence d’une densité de population maximale d’excitons radiatives au début d’injection de courant et estime la nécessité de 8.7×1016 cm-3 au seuil laser. Ensuite, la caractéristique résolue en temps des μ-OLED à base d’Alq3 : DCM excitées par des impulsions électriques de courtes durées (< 100 ns) et à faible taux de répétition (10 Hz) sont étudiées à l’aide d’un système de microscope confocal calibré. Les caractéristiques de l’OLED sont en bon accord avec les simulations théoriques. Une densité de courant de 3.6 kA/cm² et un pic de luminance de 8.4×106 cd/m² ont été obtenus en injectant des impulsions de 30 ns. Le pic de luminance correspond à une densité de population de 3.6×1017 cm-3, soit supérieure au plus petit seuil laser en littérature. Il est donc possible de réaliser le laser dans cette fenêtre de temps de quelques nanosecondes.