Thèse soutenue

Contrôle temps-réel d'une bascule génétique

FR  |  
EN
Auteur / Autrice : Jean-Baptiste Lugagne
Direction : Grégory BattPascal Hersen
Type : Thèse de doctorat
Discipline(s) : Physique. Biophysique
Date : Soutenance le 13/12/2016
Etablissement(s) : Sorbonne Paris Cité
Ecole(s) doctorale(s) : École doctorale Frontières de l'innovation en recherche et éducation (Paris ; 2006-....)
Partenaire(s) de recherche : établissement de préparation : Université Paris Diderot - Paris 7 (1970-2019)
Laboratoire : Laboratoire Matière & Systèmes Complexes (Paris ; 2001-....)
établissement partenaire : Institut national de recherche en informatique et en automatique (France). Unité de recherche (Saclay, Ile-de-France)
Jury : Examinateurs / Examinatrices : Grégory Batt, Pascal Hersen, Hidde de Jong, Sven van Teeffelen, Meriem El Karoui, Mario Di Bernardo, Jérôme Bonnet
Rapporteurs / Rapporteuses : Hidde de Jong, Sven van Teeffelen

Résumé

FR  |  
EN

Les progrès récents de la microfluidique, la biologie synthétique, la microscopie automatisée rendent aujourd'hui possible le contrôle externe de l'expression des gènes en temps réel. Parmi les défis que devra relever le domaine du contrôle externe et temps-réel de l'expression des gènes, se trouve la possibilité de contrôler des réseaux de régulation génique aux dynamiques complexes et multi-stables et le contrôle de multiples gènes en parallèle. Pour faire avancer le domaine dans cette direction nous avons étudié la contrôlabilité d'un réseau bistable composé de deux gènes, appelé genetic toggle switch, ou bascule génétique, autour de son point d'équilibre instable sur de longues périodes. Dans ce document, nous présentons la mise en place d'une plateforme de contrôle externe de l'expression des gènes en cellule unique, ainsi que le développement d'un châssis cellulaire bactérien et d'une librairie de circuits de bascules génétiques à contrôler. Nous utilisons la plateforme pour diriger et maintenir notre système génétique dans sa région d'instabilité avec des techniques de stabilisation à la fois en boucle ouverte et en boucle fermée. Nous démontrons non seulement que les plateformes de contrôle in silico peuvent être utilisées pour contrôler un système génétique dans un état hors-équilibre, nous démontrons aussi la possibilité de maintenir une population de cellules dans leur région d'instabilité à l'aide de stimulations périodiques en boucle ouverte. Ces résultats suggèrent l'émergence de régimes de stabilité différents dans des réseaux de régulation génique lorsqu'ils sont soumis à des environnements fluctuants, et peuvent fournir de nouvelles perspectives dans l'étude de la prise de décision cellulaire. Nous présentons aussi une nouvelle approche pour l'analyse d'images de microscopie qui exploite l'information cachée dans plusieurs plans focaux autour du spécimen au lieu d'utiliser seulement un seul plan focal. L'objectif de cette méthode est d'identifier automatiquement les différentes parties d'une image à l'aide de techniques d'apprentissage-machine inspirées de l'imagerie hyperspectrale. La méthode facilite la segmentation de l'image et peut être facilement adaptée à différents organismes