Thèse soutenue

Mise à l’échelle d’un écoulement diphasique avec gravité dans un milieu géologique hétérogène : application au cas de la séquestration du CO₂

FR  |  
EN
Auteur / Autrice : Tri Dat Ngo
Direction : Emmanuel Mouche
Type : Thèse de doctorat
Discipline(s) : Mécanique des fluides
Date : Soutenance le 26/01/2016
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences mécaniques et énergétiques, matériaux et géosciences (Gif-sur-Yvette, Essonne ; 2015-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : Université Paris-Sud (1970-2019)
Laboratoire : Laboratoire des sciences du climat et de l'environnement (Gif-sur-Yvette, Essonne ; 1998-....) - France. Bureau de recherches géologiques et minières (1959-....)
Jury : Président / Présidente : Vincent Lagneau
Examinateurs / Examinatrices : Emmanuel Mouche, Vincent Lagneau, Roland Masson, Benoît Nœtinger, Pascal Audigane, Harold Auradou, Andro Mikelic
Rapporteurs / Rapporteuses : Roland Masson, Benoît Nœtinger

Résumé

FR  |  
EN

Ce travail de thèse porte sur la modélisation mathématique et la simulation numérique de la migration par gravité et capillarité du CO₂ supercritique injecté dans un site de séquestration géologique hétérogène. Les simulations sont réalisées à l'aide du code DuMux. Particulièrement, on s'intéresse à la mise à l'échelle, de l'échelle de la cellule à l'échelle du réservoir, d'un modèle d'écoulement diphasique CO₂ -saumure, au sein d'un milieu stratifié périodique constitué d'un réseau de barrières peu perméables horizontales, continues ou discontinues. La mise à l'échelle est effectuée par la méthode asymptotique à double échelle. Dans un premier temps, on considère le cas d'une colonne verticale parfaitement stratifiée. Un modèle homogénéisé est développé puis validé par simulation numérique pour différentes valeurs du nombre capillaire et du flux incident de CO₂ . La méthode d'homogénéisation est appliquée au cas d'un écoulement dans un milieu bidimensionnel constitué de strates discontinues. Par l'effet de gravité, le CO₂ s'accumule sous les strates peu perméables, ce qui conduit à un problème mathématique local non standard. Cette stratification est modélisée à l'aide de l'approche des courants de gravité. L'approche est étendue au cas des strates semi-perméables et en prenant en compte la capillarité. Le modèle mis à l'échelle est comparé à des simulations numériques effectuées pour différents types de strates, avec ou sans pression capillaire, et sa limite de validité est discutée pour chacun de ces cas. La dernière partie de la thèse est dédiée à l'étude des performances du code DuMux pour simuler par calcul parallèle l'injection et la migration de CO₂ dans des milieux hétérogènes tridimensionnels (milieu périodique stratifié, milieu fluviatile et milieu réservoir SPE10).