Thèse soutenue

Actine : entre structure et mouvement

FR  |  
EN
Auteur / Autrice : Julie Di Martino
Direction : Frédéric Saltel
Type : Thèse de doctorat
Discipline(s) : Biologie cellulaire et physiopathologie
Date : Soutenance le 04/12/2015
Etablissement(s) : Bordeaux
Ecole(s) doctorale(s) : École doctorale Sciences de la vie et de la santé (Talence, Gironde ; 1993-....)
Partenaire(s) de recherche : Laboratoire : BordeAux Research In Translational Oncology (2016-2021)
Jury : Président / Présidente : Christophe Cullin
Examinateurs / Examinatrices : Violaine Moreau, Damien Laporte
Rapporteurs / Rapporteuses : Isabelle Maridonneau Parini, David Durantel

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

L’actine est impliquée dans de nombreuses fonctions cellulaires physiologiques et pathologiques. Au cours de ma thèse j'ai analysé le rôle de l'actine i) lors de l’invasion tumorale et ii) dans la formation des fenêtres des cellules endothéliales sinusoïdales hépatiques. i) Les cellules tumorales forment des structures d’actine permettant la dégradation de la matrice extracellulaire (MEC) nommés invadosomes. Mes travaux ont permis de démontrer que la RhoGTPase Cdc42 régule la formation de la structure d’actine qu’est l’invadosome, tandis que la protéine d’échafaudage Tks5 est requise pour l’activité de dégradation aboutissant à un invadosome fonctionnel. Ces deux molécules constituent la signature moléculaire minimale des invadosomes. Nous avons établi que le collagène de type I qui est surexprimé dans le microenvironnement tumoral induit la formation d’invadosomes linéaires (Lis). Nous avons identifié le récepteur à domaine discoïdine 1 (DDR1) comme spécifiquement responsable de la formation des Lis. Son interaction avec le collagène fibrillaire permet le recrutement du facteur d’échange des RhoGTPases, Tuba et l’activation de la Cdc42 conduisant à la formation d’un Li. DDR1 est impliqué dans l’invasion tumorale et sa surexpression est de mauvais pronostic dans plusieurs cancers comme le poumon ou encore le sein. Le récepteur DDR1 est également impliqué dans la cohésion cellulaire au cours de la migration collective des cellules tumorales. Nous avons démontré que dans un contexte riche en collagène de type I, DDR1 a une double localisation et donc différents rôles associés dans la migration collective. D’une part un rôle de cohésion cellulaire et d’autre part un rôle dans la dégradation de la MEC. Nous tentons de démontrer que ces différentes fonctions impliquent différentes isoformes de DDR1. Nous souhaitons par la suite déterminer les mécanismes moléculaires qui régulent l’expression, la localisation et la signalisation associées aux différentes isoformes de DDR1. ii) Dans un contexte physiologique, les capillaires sanguins du foie présentent des pores transcellulaires ou fenêtres, qui permettent les échanges bidirectionnels entre le sang et les hépatocytes pour assurer la fonction de filtration de cet organe. Au cours du processus de fibrose ces fenêtres sont perdues, réduisant les échanges. Nous avons démontré le caractère réversible de la perte des fenêtres mais aussi que l’actine n’était pas impliquée dans la formation de ces structures. Nous avons développé une méthode de visualisation en microscopie haute résolution STED de ces structures, permettant pour la première fois une analyse sur cellule vivante. Par une approche de spectrométrie de masse couplée à notre nouvelle méthode d’observation en STED, nous voulons valider la co-localisation des fenêtres avec des marqueurs potentiels identifiés.