Analyses intégratives de biomarqueurs immunologiques dans les études épidémiologiques. Applications à trois études cliniques
Auteur / Autrice : | Marie-Quitterie Picat |
Direction : | Rodolphe Thiébaut |
Type : | Thèse de doctorat |
Discipline(s) : | Santé publique. Option : Epidémiologie |
Date : | Soutenance le 26/10/2015 |
Etablissement(s) : | Bordeaux |
Ecole(s) doctorale(s) : | École doctorale Sociétés, politique, santé publique (Talence, Gironde ; 2011-....) |
Partenaire(s) de recherche : | Laboratoire : Université de Bordeaux. Centre de recherche en épidémiologie et biostatistique |
Jury : | Président / Présidente : Geneviève Chêne |
Examinateurs / Examinatrices : Sylvie Chevret, Jean-Luc Pellegrin | |
Rapporteurs / Rapporteuses : Laurence Meyer, Dominique Costagliola |
Résumé
Les processus biologiques sont nombreux et leurs interactions complexes. Les mesures de cesphénomènes génèrent des biomarqueurs multiples. Ainsi, l’épidémiologie doit évoluer dans cecontexte de données complexes et de nature multidimensionnelle. Les maladies du systèmeimmunitaire et les troubles immunologiques qui leur sont associés constituent un bon exemplede pathologies où les questions clinico-épidémiologiques sont de plus en plus complexes,nécessitant des méthodes biostatistiques et épidémiologiques adaptées. Dans cette thèsed’Université, des méthodes permettant de prendre en compte les difficultés méthodologiquesgénérées par les données d’immunologie sont présentées autour de trois applicationscliniques. Notre approche consiste en l’utilisation de méthodes intégratives qui prennent encompte l’ensemble des mesures concernant une pathologie donnée. Nous montrons l’intérêtde l’analyse en composantes principales et de la classification hiérarchique ascendante pourrésumer et extraire l’information de données multiples de cytométrie en flux et celui desmodèles d’équations structurelles pour l’étude de relations complexes entre variables lors deprocessus multifactoriels. Enfin, via l’exemple d’un modèle de reconstitution immunitaireasymptotique utilisant une fonction exponentielle, nous illustrons l’importance de s’appuyersur la structure même des données et sur la compréhension des mécanismes biologiques quisous-tendent la variabilité de ces données dans la réflexion qui concourt au choix d’un modèlestatistique. Les méthodes et la réflexion proposées dans cette thèse sont transposables àd’autres domaines d’application avec des données multiples complexes.