Thèse soutenue

Roulement de variétés différentielles de dimensions quelconques

FR  |  
EN
Auteur / Autrice : Amina Mortada
Direction : Yacine ChitourAli Wehbe
Type : Thèse de doctorat
Discipline(s) : Génie informatique, automatique et traitement du signal
Date : Soutenance le 18/11/2014
Etablissement(s) : Paris 11
Ecole(s) doctorale(s) : Ecole doctorale Sciences et Technologies de l'Information, des Télécommunications et des Systèmes (Orsay, Essonne ; 2000-2015)
Partenaire(s) de recherche : Laboratoire : Laboratoire des signaux et systèmes (Gif-sur-Yvette, Essonne ; 1974-....) - Laboratoire de Mathématiques (Hadath, Liban)
Jury : Président / Présidente : Dorothée Normand-Cyrot
Examinateurs / Examinatrices : Yacine Chitour, Ali Wehbe, Dorothée Normand-Cyrot, Irina Markina, Frédéric Jean, Petri Kokkonen, Fátima SILVA-LEITE, Mohamad Mehdi
Rapporteurs / Rapporteuses : Irina Markina, Frédéric Jean

Résumé

FR  |  
EN

Nous étudions dans cette thèse le roulement sans glissement et sans pivotement de deux variétés lisses M et Ṁ l'une sur l'autre de dimensions et n et ṅ respectivement. L'objectif principal est de chercher des conditions nécessaires et suffisantes de la commandabilité du système commandé défini par le roulement. Dans le premier chapitre, on présente les motivations et le plan de la thèse ainsi les notations utilisées le long des chapitres. Dans le deuxième chapitre, on caractérise l'espace d'état du roulement quand M et Ṁ sont des variétés Riemanniennes lorsque n n'est pas nécessairement égal à ṅ et du développement quand M et Ṁ sont des variétés affines munies des connexions affines avec n = ṅ Ainsi, on donne les relèvements et les distributions correspondant aux deux notions précédentes. Le troisième chapitre contient quelques résultats de la commandabilité du système de roulement des variétés Riemanniennes. Plus précisément, on présente les conditions nécessaires de la non-commandabilité du roulement d'une variété Riemannienne 3-dimensionnelle sur une autre 2-dimensionnelle.Le chapitre 4 porte sur le roulement d'une variété Riemannienne de dimension 2 sur une autre de dimension 3. On trouve que la dimension d'une orbite non-ouverte quelconque de l'espace d'état appartient à {2,5,6,7}. Les aspects géométriques de deux variétés sont liés principalement avec le fait que la variété de dimension 3 contient une sous-variété totalement géodésique de dimension 2.Dans le dernier chapitre, on introduit et étudie un concept d'holonomie horizontale associé à un triplet (M,∇,Δ ) avec M variété différentielle connexe, ∇ connection affine complète sur M et Δ distribution complètement commandable. Si H^∇est le groupe d'holonomie associé à Ṁ on considère alors son sous-groupe obtenu uniquement en considérant le transport ∇- parallèle par rapport aux lacets dans M tangents à la distribution Δ On le note H_Δ^∇et on l’appelle groupe d'holonomie horizontal. On prouve que le groupe d'holonomie horizontal H_Δ^∇ est un sous-groupe de Lie de GL(n). Puis, on démontre par un exemple que la fermeture du groupe d'holonomie horizontal restreint (H_Δ^∇ )^0 n'est pas nécessairement égal à H_Δ^∇. A cette fin, on utilise le modèle du roulement avec M un groupe de Carnot homogène munie d'une connexion de Levi-Civita associée à une métrique Riemannienne sur l'espace Euclidien R^n munie de la connexion Euclidienne.