Thèse soutenue

Le rôle de Nrd1p et Ctk1p dans la terminaison de la transcription et le métabolisme des ARNs non-codant chez Saccharomyces cerevisiae

FR  |  
EN
Auteur / Autrice : Agnieszka Tudek
Direction : Domenico Libri
Type : Thèse de doctorat
Discipline(s) : Biologie moléculaire
Date : Soutenance le 21/03/2014
Etablissement(s) : Paris 11
Ecole(s) doctorale(s) : École doctorale Gènes, Génomes, Cellules (Gif-sur-Yvette, Essonne ; 2000-2015)
Partenaire(s) de recherche : Laboratoire : Centre de génétique moléculaire (Gif-sur-Yvette, Essonne)
Equipe de recherche : Métabolisme et fonction de l'ARN dans le noyau
Jury : Président / Présidente : Herman Van Tilbeurgh
Examinateurs / Examinatrices : Domenico Libri, Herman Van Tilbeurgh, Antonin Morillon, Françoise Stutz, Denis Lafontaine, Olivier Namy
Rapporteurs / Rapporteuses : Antonin Morillon, Françoise Stutz

Résumé

FR  |  
EN

L’ARN polymérase II (ARNPII) synthétise des ARNs codants et des ARNs non-codants (ARNnc) tels que les petits ARNs nucléaire/nucléolaire (sn/snoRNAs) et les CUTs (Cryptic Unstable Transcripts). Les CUTs sont des transcrits ubiquitaire souvent produits dans des régions codants dont la transcription peut interférer avec l’expression des gènes. Le contrôle de l’expression des ARNnc est essentiel et se fait aux niveaux de la terminaison de la transcription et la dégradation de l’ARN. Chez la levure Saccharomyces cerevisiae la terminaison de la transcription des gènes codants est effectuée par le Facteur de Clivage et de Polyadénylation (CPF), tandis que les ARNnc courts sont terminés par le complexe Nrd1p-Nab3p-Sen1p (NNS). La terminaison de la transcription est régulée par la phosphorylation du domaine C-terminal (CTD) de l’ARNPII composé de répétitions du motif Y1S2P3T4S5P6S7. Un niveau élevé de phosphorylation des résidus Ser5 près du promoteur permet l’activité du complexe NNS. La phosphorylation des résidus Ser2 est catalysée durant la transcription par la kinase Ctk1p et ces résidus sont reconnus par des éléments de la voie CPF. Mon travail de thèse a porté sur le mécanisme de terminaison de la transcription par le complexe NNS. La terminaison NNS dépend de la liaison de Nrd1p et Nab3p à des motifs dans l’ARN naissant et l’activité hélicase de Sen1p qui provoque le relarguage de la polymérase. La sous-unité Nrd1p interagit avec le domaine CTD de l’ARNPII phosphorylé sur Ser5 à travers son domaine CID (CTD-interaction domain). Le rôle du CID dans la terminaison à été proposé mais pas encore clairement démontré. En collaboration avec le groupe de P. Cramer (Université Louis-et-Maximilien de Munich Allemagne) nous avons mis en évidence que le CID est requis pour une terminaison efficace par la voie NNS et qu’il est important pour le recrutement de Nrd1p sur l’ARNPII. Le CID est aussi impliqué de manière directe ou indirecte dans l’interaction de Sen1p avec Nrd1p et Nab3p. En parallèle, avec le groupe de F. Holstege (Université Centre Médicale de Utrecht, Pays-Bas) nous avons montré que la phosphorylation en Ser2 du domaine CTD est requise pour une terminaison efficace par la voie NNS. De manière surprenante, ce résidu joue un rôle mineur dans la terminaison des ARNs codants effectuée par le complexe CPF. Les ARNs naissant terminés par le complexe NNS sont rapidement ciblés par le complexe nucléase exosome/Rrp6p et son cofacteur TRAMP ce qui mène a la maturation des sn/snoRNAs et la destruction des CUTs. Le complexe NNS interagit in vivo avec l’exosome et le complexe TRAMP, ce qui facilite la dégradation. Cependant les détails moléculaires de cette interaction restent inconnus. Nous avons montré que le domaine CID est requis et suffisant in vivo et in vitro pour l’interaction de Nrd1p avec la partie C-terminale de la sous-unité Trf4p du complexe TRAMP, que nous avons appelé NIM (Nrd1p-Interaction Motif). En collaboration avec le groupe de R. Stefl (Université Masaryk, République Tchèque) nous avons étudié par spectroscopie RMN la structure de ce motif NIM lié au CID. Nous avons mis en évidence que le CID lie le NIM et le CTD de façon similaire, et que ces interactions sont mutuellement exclusives. Le NIM se lie au CID environ 100 fois plus fortement qu’au CTD. Nous proposons que ces interactions alternatives de Nrd1p définissent des formes différentes du complexe NNS, une qui fonctionne dans la terminaison de la transcription, l’autre qui est active dans la dégradation. In vitro l’interaction du NIM avec le CID stimule l’activité poly(A)-polymérase de Trf4p ce qui suggère une fonction importante de cette interaction dans la dégradation. Nous montrons aussi que Rrp6p interagit directement avec Trf4p et cette liaison in vivo sert à recruter le complexe TRAMP à l’exosome Nous proposons que ce jeu serré d’interactions entre les complexes NNS, TRAMP et l’exosome/Rrp6p contribue à augmenter l’efficacité de dégradation de l’ARN in vivo