Thèse soutenue

Méthodes et structures non locales pour la restaurationd'images et de surfaces 3D

FR  |  
EN
Auteur / Autrice : Thierry Guillemot
Direction : Tamy BoubekeurAndrés Almansa
Type : Thèse de doctorat
Discipline(s) : Signal et images
Date : Soutenance le 03/02/2014
Etablissement(s) : Paris, ENST
Ecole(s) doctorale(s) : École doctorale Informatique, télécommunications et électronique de Paris
Partenaire(s) de recherche : Laboratoire : Laboratoire Traitement et communication de l'information (Paris ; 2003-....)
Jury : Président / Présidente : Julie Delon
Examinateurs / Examinatrices : Cyril Crassin, Pooran Memari
Rapporteurs / Rapporteuses : Pierre Alliez, Jean-Michel Morel

Résumé

FR  |  
EN

Durant ces dernières années, les technologies d’acquisition numériques n’ont cessé de se perfectionner, permettant d’obtenir des données d’une qualité toujours plus fine. Néanmoins, le signal acquis reste corrompu par des défauts qui ne peuvent être corrigés matériellement et nécessitent l’utilisation de méthodes de restauration adaptées. J'usqu’au milieu des années 2000, ces approches s’appuyaient uniquement sur un traitement local du signal détérioré. Avec l’amélioration des performances de calcul, le support du filtre a pu être étendu à l’ensemble des données acquises en exploitant leur caractère autosimilaire. Ces approches non locales ont principalement été utilisées pour restaurer des données régulières et structurées telles que des images. Mais dans le cas extrême de données irrégulières et non structurées comme les nuages de points 3D, leur adaptation est peu étudiée à l’heure actuelle. Avec l’augmentation de la quantité de données échangées sur les réseaux de communication, de nouvelles méthodes non locales ont récemment été proposées. Elles utilisent un modèle a priori extrait à partir de grands ensembles d’échantillons pour améliorer la qualité de la restauration. Néanmoins, ce type de méthode reste actuellement trop coûteux en temps et en mémoire. Dans cette thèse, nous proposons, tout d’abord, d’étendre les méthodes non locales aux nuages de points 3D, en définissant une surface de points capable d’exploiter leur caractère autosimilaire. Nous introduisons ensuite une nouvelle structure de données, le CovTree, flexible et générique, capable d’apprendre les distributions d’un grand ensemble d’échantillons avec une capacité de mémoire limitée. Finalement, nous généralisons les méthodes de restauration collaboratives appliquées aux données 2D et 3D, en utilisant notre CovTree pour apprendre un modèle statistique a priori à partir d’un grand ensemble de données.