Résoudre les jeux et le reste
Auteur / Autrice : | Abdallah Saffidine |
Direction : | Tristan Cazenave |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 08/07/2013 |
Etablissement(s) : | Paris 9 |
Ecole(s) doctorale(s) : | Ecole doctorale SDOSE (Paris) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision (Paris) - Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision |
Résumé
Il existe des algorithmes en meilleur d'abord efficace pour la résolution des jeux déterministes à deux joueurs et à deux issues.Nous proposons un cadre formel pour la représentation de tels algorithmes en meilleur d'abord.Le cadre est suffisamment général pour exprimer des algorithmes populaires tels Proof Number Search, Monte Carlo Tree Search, ainsi que l'algorithme Product Propagation.Nous montrons par ailleurs comment adapter ce cadre à deux situations plus générales: les jeux à deux-joueurs à plusieurs issues, et le problème de model checking en logique modale K.Cela donne lieu √† de nouveau algorithmes pour ces situations inspirés des méthodes Proof Number et Monte Carlo.La technique de l'élagage alpha-beta est cruciale dans les jeux à actions séquentielles.Nous proposons une extension de cette techniques aux stacked-matrix games, une généralisation des jeux à deux joueurs, à information parfaite et somme nulle qui permet des actions simultanées.