Thèse soutenue

Mécanismes et modélisation de l'accumulation foliaire du nickel par l'hyperaccumulateur Leptoplax emarginata

FR  |  
EN
Auteur / Autrice : David Coinchelin
Direction : François BartoliGuillaume Echevarria
Type : Thèse de doctorat
Discipline(s) : Sciences agronomiques
Date : Soutenance le 15/02/2011
Etablissement(s) : Vandoeuvre-les-Nancy, INPL
Ecole(s) doctorale(s) : RP2E - Ecole Doctorale Sciences et Ingénierie des Ressources, Procédés, Produits, Environnement
Partenaire(s) de recherche : Laboratoire : Laboratoire sols et environnement (Vandoeuvre-les-Nancy)
Jury : Président / Présidente : Jean-Louis Morel
Examinateurs / Examinatrices : Guillaume Echevarria, Jean-Louis Morel, Laurence Denaix, Pierre Berthomieu, Thierry Simonneau
Rapporteurs / Rapporteuses : Laurence Denaix, Pierre Berthomieu

Résumé

FR  |  
EN

Des modèles prédictifs de prélèvement d’éléments traces métalliques (ETM) par des plantes hyperaccumulatrices sont à développer pour rendre la phytoextraction opérationnelle. Ce travail a pour objectif de développer, calibrer et valider un modèle biophysique combiné d’accumulation foliaire et de mise en solution du nickel lors de cultures de l’hyperaccumulateur Leptoplax emarginata sur un sol fertilisé et contaminé en Ni. Une partie de ce modèle intègre un facteur de bioconcentration lié à la transpiration (TSCF) qui caractérise le mode de transport principal du Ni à travers la racine et jusqu’aux feuilles, lors d’une cinétique couplée de production de biomasse foliaire et de transpiration. Sur des plantes intactes et transpirantes, nous avons déterminé un TSCFNi supérieur à 1 du fait : (i) d’une grande perméabilité des racines à la fois au nickel et à l’eau et (ii) d’un transport actif du Ni largement prédominant. A l’opposé, le TSCFNi du blé de Printemps, plante exclusive, était inférieur à 0,02, et le coefficient de réflection correspondant proche de 1, ce qui caractérise des racines perméables à l’eau mais quasiment pas au nickel. L’exceptionnelle capacité de L. emarginata à accumuler et à tolérer le nickel dans ses feuilles, et plus précisément dans ses épidermes, serait également attribuable à ses transpiration et production de protéines soufrées très élevées, tout particulièrement au niveau de ses feuilles les plus jeunes. Enfin, après avoir couplé notre modèle biophysique d’accumulation foliaire du nickel au modèle de mise en solution des ETM développé par Ingwersen et al. (2006), nous avons optimisé les paramètres du modèle, notamment les paramètres physico-chimiques, et avons validé notre modèle sur des données cinétiques conjointes de quantités de nickel accumulé dans les feuilles de l’hyperaccumulateur et de concentration en nickel dans la solution du sol. Les perspectives de ce travail sont (i) un approfondissement des relations entre l’accumulation foliaire du nickel (ou d’un autre ETM) par un hyperaccumulateur, la transpiration et la production de protéines soufrées permettant une complexation de l’ETM et (ii) une adaptation du modèle pour le terrain, ce qui nécessite notamment une meilleure utilisation du couplage production de biomasse foliaire/transpiration et une prise en compte des cinétiques d’humectation et de dessiccation du sol (équation de Richards de transport d’eau en conditions non saturées), ce qui conduira à la mise au point d’un modèle 1D (la profondeur du sol) d’accumulation foliaire et de mise en solution d’ETM