Thèse soutenue

Invariants asymptotiques en géométrie conforme et géométrie CR

FR  |  
EN
Auteur / Autrice : Benoît Michel
Direction : Marc Herzlich
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 08/11/2010
Etablissement(s) : Montpellier 2
Ecole(s) doctorale(s) : Information, Structures, Systèmes (Montpellier ; École Doctorale ; 2009-2014)
Partenaire(s) de recherche : Laboratoire : Institut Montpelliérain Alexander Grothendieck (Montpellier ; 2003-....)
Jury : Président / Présidente : Paul Gauduchon
Examinateurs / Examinatrices : Marc Herzlich, Zindine Djadli, Vincent Minerbe
Rapporteurs / Rapporteuses : Erwann Delay

Résumé

FR  |  
EN

Cette thèse étudie l'utilisation de certains invariants asymptotiques en géométrie conforme et géométrie CR.La première partie est consacrée à la géométrie conforme. Nous calculons les premiers termes du développement asymptotique de la fonction de Green des opérateurs GJMS au voisinage de la diagonale, pour un facteur conforme normal au sens de Lee et Parker. Nous montrons que le terme constant de ce développement est covariant sous un changement de facteur conforme normal. Nous le rattachons à un invariant à l'infini de type masse ADM d'une métrique non compacte obtenue par projection stéréographique.La deuxième partie est consacrée à la géométrie CR. Nous calculons les premiers termes du développement asymptotique de la fonction de Green de l'opérateur de Yamabe CR au voisinage de sa singularité,dans le cas CR sphérique, et en dimension 3 dans une carte CR-normale au sens de Jerison et Lee, lorsque la constante de Yamabe-CR est strictement positive. Nous montrons la covariance pseudo-conforme du terme constant sous les changements de cartes respectivement CR-sphériques et CR-normales.La troisième partie donne une explication formelle à une annulation algébrique sur laquelle repose la définition de plusieurs invariants à l'infini de type masse ADM, qui n'avait pu jusqu'à présent qu'être constatée par un calcul direct.