Thèse soutenue

Optimisation de composites silicium-polymère-carbone pour électrodes négatives d’accumulateurs lithium-ion

FR  |  
EN
Auteur / Autrice : Jean-Sébastien Bridel
Direction : Dominique LarcherMathieu MorcretteJean-Marie Tarascon
Type : Thèse de doctorat
Discipline(s) : Sciences des matériaux
Date : Soutenance en 2010
Etablissement(s) : Amiens

Mots clés

FR

Mots clés contrôlés

Résumé

FR  |  
EN

Les accumulateurs électrochimiques, et notamment lithium-ion (Li-ion), sont des vecteurs de stockage d’énergie très adaptés à la multiplication des applications portables et à la nécessité d’utiliser de nouvelles sources énergies renouvelables et donc intermittentes. Pour en augmenter la densité d’énergie, l’utilisation de (semi)métaux pouvant former des alliages avec le lithium est l’une des voies étudiées pour remplacer les matériaux d’insertion carbonés à l’électrode négative. Le silicium est l’élément le plus attrayant puisque capable de délivrer plus de 3500 mAh/g correspondant à la formation de l’alliage Li3. 75Si mais sa mise en œuvre se heurte aux forts changements volumiques inhérents à la formation de ces alliages (≈250% pour Si  Li3. 75Si) qui provoque une perte de percolation électrique et de cohésion de l’électrode. Parmi les diverses approches proposées pour limiter ces effets, la plus prometteuse combine l’optimisation de la mise en forme de l’électrode et la sélection de liants polymériques efficaces. Pour cela, les sels de CMC (CarboxyMethylCellulose) se sont révélés très prometteurs puisqu’ils assurent, sous certaines conditions, des capacités et des tenues en cyclage excellentes mais il demeure nécessaire de comprendre l’origine de cette comptabilité et spécificité qui peut être due à la création d’une liaison covalente polymère-particules ou à la conformation du polymère. La synthèse de différents CMC (enrichi ou non en 13C) et d’autres polymères dérivés, associée à des techniques de caractérisation variées (RMN, Spectroscopie Infrarouge, analyses thermiques, spectroscopie d’impédance, imagerie…) et des réalisations d’électrodes par évaporation ou par solidification-sublimation ont permis d’établir des relations entre certaines caractéristiques macroscopiques des composites Si-carbone-polymère (porosité,), certaines caractéristiques moléculaires (conformation du polymère, interaction polymère-particules) et les performances électrochimiques des électrodes. La dégradation électrochimique de l’électrolyte sur ce type d’électrodes a également été étudiée, ainsi que son comportement macroscopique en cyclage in situ par Microscopie électronique à balayage. La compréhension de ces mécanismes a permis d’obtenir des performances électrochimiques exceptionnelles (Capacité supérieure à 3000 mAh/g pendant plus de 100 cycles, rendement de 99. 9 %) et ouvre maintenant des perspectives de transposition à d’autres métaux et à d’autres polymères.