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Une Approche Collaborative pour la Classification des Sites Web  

 

La croissance rapide de l'information numérique nécessite des systèmes de classification efficaces pour gérer et organiser le vaste répertoire de 

données en ligne. Cette thèse présente une approche collaborative pour la classification des sites web, tirant parti des méthodes traditionnelles 

et de l'apprentissage profond pour améliorer la précision et l'évolutivité. La recherche se concentre sur la base de données Olfeo, visant à affiner 

son processus de classification en utilisant des techniques de traitement du langage naturel (TAL) et d'apprentissage automatique.  

L'étude commence par une revue de littérature complète, détaillant les techniques traditionnelles de représentation de texte ainsi que les 

nouvelles techniques basées sur l'apprentissage par des réseaux de neurones profonds. Par la suite, nous présentons une revue complète sur la 

classification des pages et sites web dans la littérature en commençant par les méthodes basées sur les approches d'apprentissage statistiques 

traditionnelles, les réseaux de neurones profonds, et les approches hybrides.   

Elle introduit ensuite la méthodologie WeCA, en décrivant son cadre collaboratif et ses stratégies de combinaison de classifieurs tout en étudiant 

l'impact des donnés sur le mécanisme de la classification. La méthodologie est évaluée à travers des expériences approfondies sur des ensembles 

de données de pages web et de sites web, démontrant des améliorations significatives des performances de classification.  

Une contribution clé de cette recherche est le développement d'une approche de fractionnement stratifié pondéré (WSSA) pour le découpage 

des données, améliorant la représentation des pages web dans les tâches de classification. De plus, l'application pratique de WeCA sur la grande 

base de données Olfeo démontre sa robustesse et son efficacité dans des scénarios réels. Les résultats mettent en évidence le potentiel de la 

combinaison de techniques traditionnelles et avancées pour atteindre une précision de classification et une adaptabilité supérieure.  

Cette thèse contribue au domaine de la classification des sites web en présentant un modèle collaboratif et évolutif qui s'adapte à la nature 

changeante du contenu web. Les idées et méthodologies développées dans cette recherche fournissent une base pour les travaux futurs dans la 

catégorisation du contenu web, la recherche d'informations et les applications connexes.  
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A Collaborative Approach for Website Classification  

 

The rapid growth of digital information necessitates efficient classification systems to manage and organize the vast repository of online data. 

This thesis presents a collaborative approach for website classification, utilizing both traditional and deep learning methods to enhance accuracy 

and scalability. The research focuses on the Olfeo database, aiming to refine its classification process using Natural Language Processing (NLP) 

and Machine Learning (ML) techniques. The proposed Website Classification Approach (WeCA) integrates text chunking and collaborative 

classifier combination strategies to address the challenges of long text classification and metadata impact.  

The study begins with a comprehensive literature review, detailing traditional text representation techniques, statistical and neural network-

based methods, and hybrid approaches. It then introduces the WeCA methodology, outlining its collaborative framework and classifier 

combination strategies. The methodology is evaluated through extensive experiments on web pages and website datasets, demonstrating 

significant improvements in classification performance.  

A key contribution of this research is the development of a Weighted Stratified Split Approach (WSSA) for data splitting, enhancing the 

representation of web pages in classification tasks. Additionally, the practical application of WeCA on the Big Olfeo Database showcases its 

robustness and effectiveness in real-world scenarios. The findings highlight the potential of combining traditional and advanced techniques to 

achieve superior classification accuracy and adaptability.  

This thesis contributes to the field of website classification by presenting a scalable, collaborative model that adapts to the evolving nature of 

web content. The insights and methodologies developed in this research provide a foundation for future work in web content categorization, 

information retrieval, and related applications.  
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Chapter 1

Introduction

1.1 Context and Problem Statement

The digital era has ushered in an unprecedented volume of data on the inter-
net, presenting significant challenges in managing and organizing this vast
repository of information. Efficient classification of this data is not just bene-
ficial but essential for transforming raw data into actionable insights. Natural
Language Processing (NLP) and Machine Learning (ML) are pivotal in this
transformation, enabling sophisticated algorithms to parse, understand, and
categorize content effectively.

The project’s central aim is to harness NLP and ML to refine the classifi-
cation process within the Olfeo database, thereby enhancing its ability to
accurately categorize and utilize web-based information. This involves a
multi-faceted approach: firstly, using NLP tools to automate the extraction
of meaningful content from web pages; secondly, applying data mining tech-
niques to analyze and derive patterns from this information; and thirdly, em-
ploying collective decision-making strategies to synthesize the insights from
varied methodologies into a unified, optimal classification scheme.

This enhanced classification capability is expected to facilitate more nuanced
and accurate data organization, which is crucial for a wide range of appli-
cations, from content filtering to information retrieval. As the volume and

1



2 Introduction

complexity of online data continue to grow, the need for advanced, scalable
classification systems becomes increasingly critical. The following sections
will explore the state-of-the-art in text classification, highlighting recent re-
search and developments in this rapidly evolving field.

1.2 Objectives

1.2.1 Text Classification

Text classification is a vital task in natural language processing, essential
for assigning predefined categories to unstructured text. This process un-
derpins numerous applications, from sentiment analysis in social media [1]
to automated topic discovery in large datasets [2]. The main challenges here
involve the development of robust feature extraction methods, accurate text
representation, and the selection of optimal classifiers to manage varying
data characteristics.

Traditional approaches like the Bag-of-Words (BOW) and Term Frequency-
Inverse Document Frequency (TF-IDF) have long been the bedrock of text
classification [3]. However, these methods often lead to significant semantic
loss due to their inability to capture the deeper linguistic structures of text,
resulting in sparse, high-dimensional representations that are challenging
to manage. To mitigate these issues, dimensionality reduction techniques
such as Principal Component Analysis (PCA) and Autoencoders have been
utilized to compress the feature space while preserving essential information
[4, 5].

The emergence of Deep Learning (DL) has dramatically shifted the land-
scape of text classification. Word Embeddings (WE), like Word2Vec [6],
GloVe [7], and FastText [8], represent a paradigm shift by embedding words
in continuous vector spaces where linguistic relationships are encoded as spa-
tial relationships. These embeddings capture both implicit and explicit word
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relationships, enhancing semantic understanding and reducing the need for
complex feature engineering. Moreover, neural network architectures such
as Convolutional Neural Networks (CNNs) [9], Recurrent Neural Networks
(RNNs) [10], and Transformers [11] have enabled the exploration of deep
patterns in text, improving classification accuracy. Ensemble methods like
HDLTex [12], RMDL [13] and HTA-AGCRCNN [14] further refine this ap-
proach by combining multiple classifiers and learning strategies to enhance
robustness and adaptability.

1.2.2 Towards a Collaborative Approach for Website Classifica-
tion

The integration of traditional and deep learning methods in text classification
suggests a promising avenue for synergistic improvements in accuracy. This
thesis advocates for a hybrid, collaborative model that melds the strengths
of both paradigms through consensus-based systems. The primary challenge
in this integration is the effective aggregation of results from various classi-
fiers into a unified decision-making framework. This necessitates a focused
approach to the feature extraction phase, as the integrity and precision of
feature representation critically impact classification outcomes.

This project will explore advanced hierarchical analysis techniques that bal-
ance granular detail with the overarching need to detect and model critical
features effectively. This strategy addresses the challenges of irreversible text
modeling, where early errors can significantly degrade overall classification
performance. By promoting a collaborative architecture among different
phases of the classification process, this thesis aims to develop a dynamic
system that adapts to the evolving nature of web content, ensuring robust
and precise classifications. This approach aligns with the principles outlined
by , emphasizing the interdependence of feature detection and modeling in
achieving accurate recognition.



4 Introduction

1.3 Thesis Organization

This thesis is organized into four main chapters, each addressing different
aspects of the website classification problem using a blend of traditional and
deep learning methods.

Chapter 1 sets the stage by outlining the context and problem statement,
emphasizing the importance of efficient data classification in the digital age.
The objectives of the thesis are detailed, highlighting the challenges and
advancements in text classification and the need for a collaborative approach
to website classification.

The literature review (Chapter 2) comprehensively covers the evolution of
text classification, beginning with traditional techniques like rule-based meth-
ods and statistical representations. It progresses to more advanced topics
such as discrete vector space models, feature and dimensionality reduction,
and conceptual embedding. The chapter also focuses into neural network-
based representations, including static and dynamic word embeddings, and
the latest developments in fine-tuning-based embeddings. The exploration
of traditional machine learning methods like Naive Bayes, KNN, Decision
Tree, and SVM is included, alongside a detailed examination of deep learn-
ing approaches encompassing MLPs, CNNs, RNNs, attention mechanisms,
and transformers. Hybrid approaches are discussed to bridge the gap be-
tween various methodologies.

Chapter 3 introduces the Website Classification Approach (WeCA), focusing
on collaborative classification techniques. It outlines the strategies for clas-
sifier combination, including hard and soft strategies, and the distinctions
between adaptive and non-adaptive combiners. Advanced ensemble and hy-
brid approaches are explored, with a discussion on the merits and challenges
of each. The chapter culminates with a presentation of the WeCA method-
ology, detailing web page and website classification strategies.

Chapter 4 addresses the role of text chunking in enhancing website clas-
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sification. It discusses the impact of transformers on long texts and the
approaches for data splitting, including the Basic Split (BS) and Weighted
Stratified Split Approach (WSSA). The effectiveness of website classification
through chunked web pages is evaluated, supported by experimental results
and statistical analyses, including Cochran’s Q test.

Chapter 5 presents the practical application of the WeCA methodology and
its implementation on the Big Olfeo Database. It covers data and model
orchestration, machine learning operations (MLOps), and provides a com-
prehensive comparative analysis of classifiers. The chapter also evaluates the
performance of the WeCA methodology across different datasets, highlight-
ing the implications and insights derived from these experiments.

The concluding chapter 6 summarizes the key contributions of the thesis
and reflects on the broader perspectives of the research. It encapsulates
the findings, discusses the implications, and suggests potential directions for
future research in the field of website classification.





Chapter 2

Literature Review

2.1 Introduction

The exponential growth of digital content on the web has necessitated the
development of sophisticated techniques for website and web page classifi-
cation. Accurate classification is crucial for a wide range of applications,
including improving search engine performance, enhancing user experience,
enabling efficient content filtering, and supporting advanced data analytics.
This chapter presents an exhaustive survey of the methodologies employed
in website and web page classification, examining their evolution, strengths,
and limitations in addressing the complexities of web-based information.

A major challenge in classifying websites and web pages arises from the
diverse nature of their content, which includes text, images, videos, and
other media formats. However, since the majority of this content is text-
based, text classification techniques become crucial in addressing the overall
challenges of website classification. This shift from the broader aspects of
website classification to the specific focus on text analysis emphasizes the
need to develop robust methods capable of handling the complexity and
diversity inherent in web content.

In this chapter, we begin by reviewing traditional text representation tech-
niques such as Bag-of-Words (BOW) and Term Frequency-Inverse Docu-

7



8 Literature Review

ment Frequency (TF-IDF), followed by modern deep learning approaches
like Word2Vec, GloVe, and FastText to enhance semantic understanding.
This foundational exploration sets the stage for examining current website
and web page classification approaches, which are categorized into tradi-
tional, deep learning-based, and hybrid methods. Traditional approaches
rely on predefined rules or heuristic algorithms for straightforward, albeit
sometimes inflexible, solutions. Deep learning-based methods utilize neural
networks such as CNNs and RNNs to dynamically learn and extract intricate
patterns from web content. Hybrid approaches combine traditional and deep
learning methods, employing ensemble techniques and multi-model systems
to improve classification accuracy and robustness. This chapter provides
a comprehensive overview of these methodologies, illustrating their evolu-
tion and convergence in addressing the challenges of web-based information
classification.

This chapter is organized as follow: Section 1 discusses traditional statisti-
cal methods and their evolution and explores the influence of deep learning
models on text representation and classification. Section 2 introduces and
examines web page and website classification approaches using traditional
machine learning methods. Section 3 focuses on classification approaches
using neural network architectures and their contributions to the field. In
Section 4, we focus on the hybrid classification approaches. Finally, we con-
clude the chapter with a general conclusion of the literature review.

2.2 Text Representation Techniques

In the domain of NLP, the representation of text plays a foundational role in
determining the success of various tasks, from sentiment analysis to machine
translation. Text representation techniques transform raw textual data into
structured, numerical formats that can be ingested by ML models, bridging
the gap between human language and computational algorithms. Over the
years, several methods have been developed to achieve this, ranging from tra-
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ditional Bag-of-Words (BoW) and Term Frequency-Inverse Document Fre-
quency (TF-IDF) approaches to sophisticated embeddings and neural archi-
tectures. Each technique has its own strengths, limitations, and applicabil-
ity, shaped by the evolving demands and challenges of the NLP domain. As
many researchers have surveyed such techniques [15–22] we can observe that
the predominantly work encompasses two pivotal steps. The preliminary
step involves the conversion of input text (raw data) into a numerical for-
mat, typically represented as vectors or matrices. Subsequently, the design
and implementation of models are orchestrated for the meticulous process-
ing of the numerical data, aiming to achieve specified objectives or execute
particular tasks. The discussed manuscript primarily focuses on the former
step, elucidating how the evolution in text representation methodologies has
fostered a significant advancement in NLP capabilities, transitioning from a
rudimentary understanding of isolated textual components to a comprehen-
sive analysis of textual data.

In their work, (Patil et al., 2023) [22] delineate the categorization of em-
bedding learning methodologies into three distinct paradigms: rule-based,
statistical, and neural-network-based approaches. In the nascent stages of
NLP, exact matching techniques were predominantly employed, with Con-
text Free Grammar (CFG) being instrumental for textual analysis. This
phase was characterized by a substantial reliance on complex, rule-based
systems, a characteristic prominently exhibited in the architecture of search
engines of that era. With the progression of NLP, the paradigm shifted to-
wards approximate matching, introducing a margin of error tolerance up to a
defined threshold. However, this methodology posed inherent challenges due
to the ambiguous nature of natural languages and the complexities associated
with the development of exhaustive rule sets. These challenges inadvertently
catalyzed the exploration of statistical methodologies.

The advent of statistical methodologies marked a significant shift in focus
towards the analysis of word frequency. A spectrum of techniques emerged
under this paradigm, inclusive of One Hot Encoding (OHE), Bag of Words
(BoW), Term-Frequency (TF), and Inverse-Document-Frequency (IDF). In
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comparison to their grammar-based antecedents, these statistical methodolo-
gies were relatively facile to implement and notably augmented the accuracy
of models.

Nevertheless, the progression of NLP did not culminate here. Despite the
advantages, statistical approaches were invariably susceptible to the curse
of dimensionality. Additionally, the limitations in computational power ad-
versely impacted their performance efficacy on large-scale datasets. Thus,
the transition towards neural network-based approaches epitomizes the lat-
est phase in the evolutionary trajectory of NLP, signifying a continual quest
for enhanced text representation and analysis methodologies.

Furthermore, an integral yet often under-emphasized aspect of text represen-
tation is the process of text preprocessing, which serves as a precursor to the
aforementioned steps. Text preprocessing encapsulates a range of techniques
that aim to condition the raw text data into a cleaner, more standardized
form conducive for subsequent representation and analysis. Techniques such
as tokenization, stemming, lemmatization, stop-word removal, and normal-
ization are instrumental in this phase. By efficiently curating and preparing
the text data through these preprocessing measures, the downstream text
representation methodologies can operate more effectively and derive more
accurate and insightful interpretations of the textual data. The meticulous
execution of text preprocessing techniques invariably plays a pivotal role in
amplifying the efficacy and accuracy of NLP applications, underscoring its
significance in the broader NLP workflow. In this section we will focus into
the myriad text representation techniques following the same structure as
presented in [22], explaining their mechanisms, nuances, and significance in
powering today’s cutting-edge NLP solutions.

2.2.1 Rule-based Representations

The inception of the NLP field primarily catered to search engines and
question-answering systems relying heavily on pattern matching techniques,



2.2 Text Representation Techniques 11

utilizing sequences of characters, words, or parts of speech for matching pat-
terns [23]. Due to computational constraints, this era saw the hard coding of
regular expressions and complex logical rules. These patterns were pivotal
in document search and ranking or generating scripted responses in chat-
bots. Despite being well-suited for context-free programming languages, em-
ploying Context-Free Grammar (CFG) for parsing natural language, which
is context-sensitive, resulted in less flexible rules [24]. This approach was
marked by rigidity and necessitated hard coding for matching or extracting
text information, based on exact sequence or pattern matching.

The introduction of fuzzy expressions offered a respite by performing ap-
proximate matches, thus embodying uncertainties and vagueness inherent
in natural languages [25]. Fuzzy-CFG notably captured ambiguity and im-
preciseness in natural language queries [26]. Moving past the traditional
CFG approach, hard coding the semantics of specific words enhanced NLP
accuracy, with applications like Keyword Search on Databases (KWS) trans-
lating natural language queries to SQL format [27–29]. However, this was a
domain-specific solution with limited scope.

Notably, regular expressions considered word ordering and matching while
ignoring word meaning, context, and frequency. Though capable of simple
keyword searches and assisting in basic task executions, these CFG-based
systems lacked depth in semantic understanding, proving inefficient for tasks
like text summarization and machine translation. Consequently, researchers
veered towards exploring statistical approaches to address these limitations.

2.2.2 Statistical Representations

Statistical representations in NLP fundamentally revolve around convert-
ing words into numerical vectors, thereby representing an entire corpus as
a matrix comprised of these vectors. This conversion facilitates the reduc-
tion of documents of varying lengths to fixed-length numerical lists, thereby
providing a structured, uniform format for analysis. One of the primary
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advantages of such vector representations is the ability to employ linear al-
gebraic operations for manipulating these vectors, and computing distances
and similarities between them. This proves to be significantly beneficial as it
alleviates the necessity for manual coding of regular expressions and nested
conditional rules, which would otherwise be required to address a plethora
of problems.

The statistical representations encompass three primary categories: discrete
vector space, density vector space and continuous vector space.

2.2.3 Discrete Vector Space

In the discrete vector space (DVS), the text or corpus is subjected to a
preprocessing phase initially. This phase includes the elimination of stop-
words and the execution of stemming to ascertain the root or stem of each
word. Such preprocessing techniques, like stemming and lemmatization, are
instrumental in normalizing word endings, which ensures that variations of
a word are collated under a singular token. Additionally, the structure of
the matrices generated through these techniques is determined based on the
entities represented by the rows and columns. For example, a matrix where
rows signify documents and columns denote words or terms is termed as a
document-term matrix. Through such structured representations, statisti-
cal methodologies offer a robust foundation for analyzing and deciphering
patterns within textual data.

Bag of Words

The concept of "bag-of-words" (BoW) representation traces back to [30],
serving as an alternative to the sparse one-hot vector representations. Un-
der the BoW paradigm, a matrix representation of a corpus is constructed
where each row signifies a distinct sentence, and each column represents a
unique word from the vocabulary. The dimensions of this matrix, termed a
‘document-term’ matrix, are dictated by the number of sentences and the
vocabulary size of the corpus, expressed as:
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|number of sentences| x |V|.

As each sentence in the corpus is processed, the matrix is updated to reflect
either the occurrence (or lack thereof) or the frequency of every word. The
position of the sentence in the corpus and the dictionary position of the
current word are denoted by the row and column indices in the matrix,
respectively. Two variants of BoW emerge based on the nature of the values
recorded in the matrix: Binary BoW, where entries are binary (0 or 1)
indicating the absence or presence of a word, and non-binary BoW, where
entries denote the frequency of each word occurrence. BoW has provided
a foundation for handling textual data in a structured numerical format,
setting a precedent for subsequent text representation methodologies.

Let’s consider the example of a corpus with 3 documents: [D1 : "The cat
sat on the mat", D2 : "The dog sat on the log", D3 : "Cats and dogs are
great pets"]. Its corresponding vocabulary is : ["and", "are", "cat", "cats",
"dog", "dogs", "great", "log", "mat", "on", "pets", "sat", "the"].

Table 2.1: BoW example

Documents and are cat cats dog dogs great log mat on pets sat the
D1 0 0 1 0 0 0 0 0 1 1 0 1 2
D2 0 0 0 0 1 0 0 1 0 1 0 1 2
D3 1 1 0 1 0 1 1 0 0 0 1 0 0

One-Hot Encoding

One-Hot Encoding (OHE) is a vector representation method often used in
machine learning algorithms. In this method, each word in the vocabulary
is represented by a vector of length equal to the size of the vocabulary (the
total number of unique words in the corpus). The vector consists of all zeros
except for a single one at the index corresponding to the position of the word
in the vocabulary. In Table 2.2, we use the same last example for D1, D2
and D3.

N-grams

An n-gram is a contiguous sequence of n items from a given sample of text
or speech. Firstly introduced in (Katz et al., 1987) [31], n-grams are widely
used in NLP and computational linguistics. When processing text, an n-gram
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Table 2.2: OHE example

Documents and are cat cats dog dogs great log mat on pets sat the
D1 0 1 0 0 0 0 0 1 1 0 1 1 1
D2 0 0 0 0 1 0 0 1 0 1 0 1 1
D3 1 1 0 1 0 1 1 0 0 0 1 0 0

could be a sequence of words, letters, or phonemes. In [32–34], authors have
shown the power of n-gram models in language modeling such as machine
translation [34] and correcting spelling errors in context [32].

In the context of text mining and language modeling, n-grams offer a way to
capture some amount of phrase and sentence level context. The parameter
n is the order of the model. For instance, a unigram model (1-gram) only
considers the probability of each individual word to appear in the text. A
bigram model (2-gram) considers the probability of each word given the
previous word, and a trigram model (3-gram) considers the probability of
each word given the previous two words, and so on.

Mathematically, the probability of observing the i-th word wi in the context
of the previous n− 1 words can be calculated using the formula:

P (wi|wi−(n−1), wi−(n−2), . . . , wi−1) =
P (wi−(n−1), wi−(n−2), . . . , wi−1, wi)

P (wi−(n−1), wi−(n−2), . . . , wi−1)
.

(2.1)

Let’s consider the sentence: "The cat sat on the mat." The 2-grams (bigrams)
for this sentence would be: [’The cat’, ’cat sat’, ’sat on’, ’on the’, ’the mat’].

Table 2.3: Example Bigrams and Trigrams

Bigrams Trigrams

"The cat" "The cat sat"

"cat sat" "cat sat on"

"sat on" "sat on the"

"on the" "on the mat"

"the mat" -
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Category-based Embedding

This methodology emphasizes the pre-identified categories across a dataset,
contrasting with approaches where categories are dynamically recognized.
The categories are encoded in columns, forming a ’document-category’ ma-
trix, where each column corresponds to a particular category. This setup is
particularly effective when documents need to be sorted into predefined cat-
egories. Unlike OHE and BoW which assign a unique column for every word
in the vocabulary, Categorical Bag-of-Embeddings (CBE) significantly trims
down the dimensionality as the number of columns equates to the number of
categories, which is typically much lower than the vocabulary size. For in-
stance, in sentiment analysis, documents are mainly categorized as positive,
neutral, or negative, thus requiring only three columns in the matrix. The
sentiment of each word is determined through user-defined lexicons, updating
the respective category count in the matrix for each document. This repre-
sentation is described as dense, attributing to the fewer columns and mostly
non-zero values in rows, thereby requiring lesser storage and accelerating the
model training process due to reduced dimensions. This contrast with OHE
and BoW showcases CBE’s efficiency in both storage and computational
speed when dealing with predetermined categorical document classification.

The creation of lexicons, crucial for sentiment analysis in a CBE approach,
can be achieved through two primary methods. The heuristic method relies
on human-assigned polarity scores to words, with prominent hand-crafted
lexicons like Vader, AFINN, Emotion Lexicon, Bing Liu’s Lexicon, MPQA
Lexicon and General Inquirer [35–40] serving as notable examples. However,
this method is labor-intensive, possibly incomplete in covering all sentiment-
indicative words in a corpus, and poses challenges for languages unfamiliar to
the user due to unknown word polarities. Alternatively, the non-sentiment-
based method utilizes labeled input data to build a frequency dictionary,
mapping words to their occurrence counts across different classes, e.g., posi-
tive or negative sentiments. This technique helps deduce sentiment based on
word occurrence frequencies across classes, with an example being the word
‘happy’ mapped to its occurrence counts in positive and negative documents.
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In the CBE representation, vectors comprise frequency or count values focus-
ing on categorical (semantic) information, albeit at the expense of ignoring
syntactic, contextual, and word-ordering information. This representation
is more suited for applications dealing with short sentences, where word or-
der changes don’t dramatically alter meaning. It excels in category-based
counting tasks like sentiment analysis of reviews, junk email detection, troll
message identification, and sentiment or politeness assessment in chat mes-
sages, among others. Through this, the two lexicon composition approaches
impact the efficiency and applicability of the CBE method in different text
processing scenarios.

Term Frequency

The non-binary BoW methodology, while accounting for word frequency,
overlooks the relative significance of a word within a document or across a
corpus. A more nuanced understanding of word relevance, introduced by
(Salton, 1968) [41] through Term Frequency (TF), is essential for yielding
precise insights. This relevance can assist in identifying documents more
pertinent to specific query keywords.

In the TF model, word frequency within a document is evaluated. However,
solely relying on frequency can be misleading. For example, consider the
word ’ocean’ appearing 40 times in Document X and 800 times in Document
Y. A simple frequency comparison would suggest higher relevance of the
word ’ocean’ in Document Y. Yet, if Document X consists of only 100 words
while Document Y comprises 1 million words, ’ocean’ evidently holds more
weight in Document X.

To rectify this, Normalized Term Frequency (NTF) is employed, dividing
the term frequency of a word by the total number of words in the document.
This normalization delineates the importance of a word compared to others
in the same document. Through NTF, Document X would attain a higher
ranking for the query word ’ocean’ as opposed to Document Y, due to its
normalized term frequency.

In NTF, a document-term matrix is constructed with rows representing doc-
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uments or sentences, and columns denoting unique words in the corpus. Un-
like preceding models, this matrix incorporates normalized term-frequency
values rather than binary or frequency count integers, thus reflecting the
relative word importance within a document.

Upon projecting the NTF vectors into a vector space, the computation of
similarity scores between a query and a document or between multiple doc-
uments is feasible by examining the cosine angle between the vectors. A
cosine similarity value closer to 1 indicates a smaller angle between vectors,
reflecting a similarity in word proportions used in the documents, regardless
of document size. Conversely, a cosine similarity of 0 represents perpendic-
ular vectors with no common words, albeit potentially discussing the same
topic using different terminologies.

Table 2.4: NTF example

Documents and are cat cats dog dogs great log mat on pets sat the
D1 0 0 0,38 0 0 0 0 0 0,38 0,38 0 0,38 0,65
D2 0 0 0 0 0,38 0 0 0,38 0 0,38 0 0,38 0,65
D3 0,41 0,41 0 0,41 0 0,41 0,41 0 0 0 0,41 0 0

While the NTF model enhances precision by accounting for word impor-
tance, it retains a limitation of treating words independently and necessitat-
ing exact word matches for clustering documents. Like its predecessors, NTF
overlooks semantic relationships like synonyms, antonyms, and analogies.
Despite these shortcomings, NTF presents a more refined frequency-based
approach, elevating the understanding of word relevance within documents
compared to the earlier BoW and OHE techniques.

TF-IDF

While Normalized Term Frequency (NTF) sheds light on the significance of
a word within a particular document compared to other words in the same
document, it falls short of evaluating a word’s importance relative to the
entirety of the documents in a corpus. This deficiency can cause inaccurate
clustering of documents, especially when they contain commonly occurring
words such as "is," "are," "in," or "on." NTF might inaccurately score such
documents as highly similar due to the frequency of these common terms.
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To better discern a word’s uniqueness across a corpus, the Inverse Document
Frequency (IDF) metric, introduced by [42], comes into play. IDF highlights
the words that are unique to certain documents, representing distinctive
topics or concepts, and thereby facilitates more accurate document differen-
tiation and classification. Essentially, IDF lowers the similarity score when
non-unique, widely spread words are considered in document clustering.

The formula for IDF is expressed as the ratio of the total number of docu-
ments in the corpus to the number of documents containing a specific term,
where N represents the total documents, and dft denotes the document fre-
quency of term ti. Contrary to NTF, which boosts similarity scores for shared
words, IDF diminishes similarity scores if the shared words are commonplace
across the corpus.

IDF(t,D) = log

(
N

dft

)
(2.2)

Combining Term Frequency (TF) and IDF (TF*IDF) assigns a numeric value
to a word’s importance in a specific document, given its prevalence across
the corpus. This amalgamation of TF and IDF has been recognized for
its superior accuracy over previously discussed models in numerous studies.
Nonetheless, TF-IDF isn’t without flaws. The resultant matrices tend to
be high-dimensional and sparse, which necessitated the adoption of dimen-
sionality reduction techniques for better handling. Furthermore, TF-IDF
encounters challenges in semantic understanding, often failing to recognize
synonymy or differing spellings which result in dissimilar vector representa-
tions. Thus, advanced similarity measures like cosine [43] or Okapi BM25
[44] might still miss the mark in associating synonyms or distinguishing
antonyms.

Table 2.5: TF-IDF example

Documents and are cat cats dog dogs great log mat on pets sat the
D1 0 0 0,46 0 0 0 0 0 0,46 0,35 0 0,35 0,59
D2 0 0 0 0 0,46 0 0 0,46 0 0,35 0 0,35 0,59
D3 0,41 0,41 0 0,41 0 0,41 0,41 0 0 0 0,41 0 0
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In conclusion, while TF-IDF significantly improves document clustering and
word importance assessment over earlier methods, it still exhibits limitations
in semantic comprehension and requires dimensionality reduction strategies
to manage high-dimensional data effectively.

The Hyperspace Analogue to Language

The Hyperspace Analogue to Language (HAL) introduced in [45], brought
forth an automated method to explore word relationships using a co-occurrence
matrix. This matrix forms coordinates in a high-dimensional semantic space,
facilitating analysis of word interconnections, as discussed in [46]. Unlike pre-
vious attempts, where semantic spaces required manual definition of axes and
meanings—an error-prone approach due to judgement bias, HAL automates
this process using lexical co-occurrence techniques.

In HAL, the co-occurrence matrix is a square matrix, with its dimensions
equivalent to the vocabulary size, denoted by |V|. A context window slides
across text, capturing a few words at a time, and for each word (represented
by a row), every word preceding it within this window is deemed as co-
occurring. The values in the corresponding columns are increased by 1 for
every such co-occurrence. Essentially, this matrix documents the frequency
of co-occurrences between word pairs.

Take for instance a simple sentence: “The cat chased the mouse.” With a win-
dow size of 4, a co-occurrence matrix would be generated, documenting how
often words appear in the vicinity of others. Once the matrix is constructed,
distance metrics are employed to measure semantic similarity between word
pairs, which in turn helps in categorizing and classifying documents.

For example, the semantic similarity between the vectors for "cat" and
"mouse" would likely be higher compared to that between "cat" and "chased"
because the probability of "cat" and "mouse" co-occurring is higher. When
plotted in a multi-dimensional space, vectors close to each other form a
meaningful cluster, indicating a strong semantic relationship.

HAL’s approach lies in representing each word vector based on the contex-
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tual words surrounding it, indirectly inferring the word’s meaning from its
context. However, a limitation of the HAL model is that common words
can disproportionately influence the similarity measure. Frequent words,
although might have less semantic significance, could heavily skew the simi-
larity scores between word vectors.

For instance, if the words “book” and “movie” frequently share similar context
words, their vectors would be projected closer to each other in the semantic
space, suggesting a high similarity score, despite their different meanings.
This shows that while HAL offers a robust automatic approach to uncover-
ing word relationships, it can be misled by frequently occurring words, thus
requiring further refinement to accurately represent semantic relatedness be-
tween words.

2.2.4 Features and Dimensionality Reduction

Discrete space techniques, numerically represent a corpus using vectors and
matrices. While simple in execution, they often face issues of high dimen-
sionality and data sparsity, making model training time-consuming. To ad-
dress these challenges, dimensionality reduction techniques, categorized into
feature selection and feature transformation, were employed to represent in-
formation in a more condensed manner.

Feature Selection Techniques

Feature selection is a technique where only a subset of the original dimensions
is chosen as features. Within this domain, there are four primary methods:
Document Frequency (DF), Term-Frequency Variance (TFV), Mean TF-IDF
(MTI), and Information Gain (IG).

Document Frequency (DF) denotes the count of documents where a term
appears at least once. Terms are sorted based on their DF values, and those
with values above a certain threshold are selected, deeming the rest as non-
informative for category prediction. In contrast, the TFV method involves
ranking terms based on the variance of their frequency, capturing the term’s
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quality [47]. Only the top-k terms with the highest variance values are
selected as features. Additionally, χ2 (Chi-squared) [48] is a feature selection
method that measures the dependence between the term and the class label.
It assesses the probability that the observed distribution of the term across
various class labels occurs by chance. A high score indicates that the term
likely depends on the class and might be a good discriminative feature.

Meanwhile, the MTI approach determines the importance of a term by cal-
culating the MTI value for each term across all documents [49]. Terms are
then ranked by these values, and the top-k ones that meet the threshold cri-
teria are chosen. Lastly, Information Gain (IG) assesses how the presence or
absence of a term influences the obtained information for category prediction
[50], determining which feature is most beneficial in distinguishing between
classes.

In essence, these feature selection methods involve ranking terms based on
various criteria and then selecting a subset that meets specific thresholds,
ensuring the most relevant features are included.

Feature Transformation

Feature transformation reduces the dimensionality of data by converting a
high-dimensional space into one with fewer dimensions. Each dimension
in this reduced space is a linear or non-linear combination of the original
dimensions. Popular linear transformation methods include latent semantic
indexing, latent Dirichlet allocation, random indexing or projection, and
independent component analysis.

Latent Semantic Indexing (LSI) [51], utilizes Singular Value Decomposition
(SVD) to group co-occurring words under common topic vectors, enabling
documents with similar terms to have comparable representations in a latent
semantic space. This approach assigns greater weight to words that strongly
represent a topic, compressing the vocabulary into fewer topic-representing
columns and reducing the overall number of features. LSI is particularly ef-
fective for smaller documents and can handle synonyms by identifying high-
order semantic structures, making it valuable for automatic indexing and
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improving access to textual information in information retrieval [52]. How-
ever, LSI has limitations with polysemy, which Probabilistic Latent Semantic
Indexing (PLSI) addresses in [53].

PLSI uses a generative data model to manage polysemous words through
a mixture model representing "topics". Unlike LSI, PLSI employs a latent
variable model that allows documents to exhibit multiple topics, enhancing
the granularity and accuracy of topic representation. This model makes PLSI
a more sophisticated approach in handling the complexities of language,
enabling improvements over LSI in perplexity results for various text and
linguistic data collections [53].

Building on these ideas, Latent Dirichlet Allocation (LDA) [2] further ex-
tends the concept by allowing documents to show multiple topics to varying
degrees. LDA treats topic mixtures as hidden random variables, which en-
ables the model to generalize to new documents without a linear increase
in parameters. LDA’s nonlinear approach provides a more accurate alloca-
tion of words to topics than LSI but requires more training time, making it
suitable for specific applications like document summarization.

Transitioning from these probabilistic models, Independent Component Anal-
ysis (ICA) [54] explores data transformation from a different angle. Related
to blind source separation, ICA analyzes linear mixtures of independent com-
ponents to produce statistically independent results. Unlike LSI, which seeks
orthogonal combinations, ICA aims for components that are as independent
as possible. This method often uses Principal Component Analysis (PCA)
as a preprocessing step and is applied in various fields, including audio and
image processing [55].

Finally, Random Indexing (RI), based on the Johnson-Lindenstrauss lemma
1, preserves distances between points when projecting them into a randomly
selected subspace. RI’s incremental and scalable nature allows for dimen-
sionality reduction without the need for initial sampling of the entire dataset,
making it computationally less expensive than SVD. RI maintains constant

1https://dash.harvard.edu/handle/1/17369243 (accessed on 01/09/2023)
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dimensionality and provides results comparable to PCA, facilitating efficient
processing and analysis.

Together, these methods represent a spectrum of approaches for feature
transformation, each with its strengths and nuances, offering robust solu-
tions for managing and interpreting complex data in various applications.

2.2.5 Conceptual Embedding

Unlike the conventional BoW method, which relies on word occurrences for
text categorization, Explicit Semantic Analysis (ESA) enhances the approach
by incorporating common sense and broader contextual knowledge. Pro-
posed by [56], ESA utilizes concepts from Wikipedia to enrich document
representation. It represents texts as a weighted combination of predefined
natural concepts, effectively mapping text onto a semantic space.

For instance, imagine how ESA would interpret a text about solar technology.
While traditional BoW might focus solely on word frequencies, ESA would
go further, connecting phrases or words to relevant Wikipedia concepts like
"Photovoltaics," "Solar Energy," or "Renewable Resources," creating a more
detailed representation. ESA’s backbone is a semantic interpreter, which
transitions the text into a sequence of Wikipedia concepts, weighted by rel-
evance. The resultant "interpretation vectors" embody the text’s affinity
with these Wikipedia concepts. For instance, in the solar technology text, a
heavy weight might be assigned to the "Solar Energy" concept, reflecting its
centrality to the text. This model excels in identifying semantic relatedness
among texts. By comparing their respective interpretation vectors through
distance metrics like cosine similarity, the semantic closeness of different
texts can be evaluated.

At the core of this process is an inverted index, keeping track of the concepts
associated with each word. As ESA sifts through the text, it aggregates the
relevant concepts from this index into a weighted vector, with each entry
denoting a concept’s relevance to the text. Contrary to frequency-based
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methods, ESA relies on Wikipedia’s conceptual richness, providing a solid
understanding rather than mere word counts. This diverges from Latent Se-
mantic Indexing (LSI) as well, where the emphasis is on "latent concepts",
generated from tf-idf features, lacking the grounded human cognition inher-
ent in ESA’s approach.

Through contextual analysis, ESA maps documents onto Wikipedia or on-
tology concepts to generate features. This contextual approach empowers
ESA to tackle Natural Language Processing challenges like synonyms and
polysemy, delivering a semantic depth that’s instrumental in fostering a more
intuitive, human-like understanding of text.

2.2.6 Density-Based Distributed Embeddings

Traditional word embedding methods often utilize either discrete or con-
tinuous vector spaces to represent words. However, a different approach
explores the density-based distributed embeddings, where words are char-
acterized through Gaussian distributions within a latent embedding space.
In this setup, each word’s distribution, denoted by a mean and covariance
matrix learned from the data, encapsulates its linguistic properties.

Let’s focus into this with an example. Rather than showing the word "apple"
as a single point in a vector space, it’s portrayed as a Gaussian distribution
across a hidden space. This doesn’t just depict "apple" but includes as-
sociated concepts like "fruit", enabling a more nuanced grasp of semantic
connections.

The beauty of Gaussian embeddings, as illustrated in [57], lies in its ca-
pacity to provide a richer geometrical representation, allowing for a direct
portrayal of probability mass and uncertainty which is crucial for semantic
understanding.

Yet, a hurdle emerges when dealing with polysemous words—words with
multiple meanings. The unimodal nature of Gaussian distribution struggles
to represent such words accurately. For instance, the word "bank" can refer
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to a financial institution or the side of a river, but a single Gaussian dis-
tribution may create a generalized or biased representation leaning towards
one meaning over the other.

An ingenious solution is introduced in [58], proposing a multimodal distri-
bution approach, where each word is modeled using a mixture of gaussians.
In this model, each Gaussian component signifies a distinct meaning of the
word. Now, our word "bank" can have two Gaussian components, one lean-
ing towards the financial context while the other towards a riverbank context.

This multimodal model doesn’t just stop at a fixed number of Gaussian
mixtures. It also offers a training methodology to learn the parameters of
these mixtures, optimizing the representation of each word with multiple
meanings. Each Gaussian component is visualized as an ellipsoid, with its
center specified by the mean vector representing one distinct meaning of the
word, and the contour surface (described by the covariance matrix) reflecting
nuances in meaning and associated uncertainty.

For instance, in a graphical illustration, the word "plant" might have one
Gaussian component aligned with "flora" and "tree", while another compo-
nent aligns with "factory" and "industry", reflecting its distinct meanings
and related contexts.

This method steps away from point embeddings, advancing towards cap-
turing the richness and multiplicity of semantic relationships, essential for
predictive tasks in various applications. Through this, a more holistic and
nuanced semantic understanding is facilitated, paving the way for more ac-
curate and contextually rich word representations in natural language pro-
cessing tasks.

2.2.7 Neural Network-based representations

The embedding methodologies discussed in prior sections predominantly ad-
here to rule-based or statistical paradigms. A departure from this tradi-
tional stance is observed in neural network-based methods which automate
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the extraction of features, thereby encapsulating the syntactic and seman-
tic nuances inherent to language. This automation significantly mitigates
the manual rigors entailed in feature engineering. Customarily, these neural
models use tasks related to Language Modeling (LM) or Machine Translation
(MT) to engineer the embeddings. The resultant embeddings are real-valued
vectors that embody the semantic dimensions of words. The computational
intricacy of such models is inherently dictated by the quantity of parameters
necessitated for training.

The delineation of neural network-based embedding methodologies is broadly
categorized into two distinct paradigms: feature-based and fine-tuning-based
embeddings. In the feature-based paradigm, a pre-existing network is em-
ployed to yield language representations of varying granularities, encompass-
ing word, phrase, or sentence embeddings. This paradigm further extends
into two subclasses, namely static and dynamic embeddings. Static em-
beddings, characterized by their non-contextual nature, maintain a static
representation of a word irrespective of its contextual utilization. Such rep-
resentations are traditionally derived employing networks of lesser complex-
ity. Conversely, dynamic embeddings exhibit a fluid representation of words,
contingent on the contextual ambiance, thereby proficiently addressing the
aspect of polysemy, which pertains to the multiple meanings a word may
possess.

On the other hand, the fine-tuning-based paradigm initiates with a pre-
training phase on a language modeling objective executed in a self-supervised
manner. This phase is subsequently followed by a fine-tuning procedure on
downstream tasks such as classification, Named Entity Recognition (NER),
or Question Answering (QA) utilizing supervised data. This sequential pro-
cedure facilitates the model in customizing the generic language representa-
tions to cater to specific task requisites, thereby potentially ameliorating the
performance on those specified tasks.

The dichotomy into feature-based and fine-tuning-based methodologies elu-
cidates the versatility and adaptability ingrained in neural network-based
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embeddings for various linguistic representation chores. Each methodology,
with its unique operational modus operandi, fosters a more profound com-
prehension and superior representation of language, thus significantly con-
tributing towards effectively addressing a spectrum of challenges encountered
in NLP endeavors.

2.2.8 Static Word Embeddings

Word2Vec

Word2Vec [59] is a popular method for learning dense vector representations
of words, often called "word embeddings". These embeddings are learned
based on the context in which words appear in the text, capturing semantic
and syntactic relationships between words. Word2Vec uses a shallow neural
network model to learn these word representations. The model is trained
to reconstruct the linguistic context of words. It comes in two flavors: the
Continuous Bag of Words (CBOW) model and the Skip-Gram model.

In the CBOW model, the distributed representations of context (or sur-
rounding) words are combined to predict the word in the middle. While in
the Skip-Gram model, the distributed representation of the input (or center)
word is used to predict the context words.

The Skip-Gram model of Word2Vec is trained to find word representations
that are useful for predicting the surrounding words in a sentence or a docu-
ment. More formally, given a sequence of training words w1, w2, ..., wT , the
objective of the Skip-Gram model is to maximize the average log probability

1

T

T∑
t=1

∑
−c≤j≤c,j ̸=0

log p(wt+j|wt), (2.3)

where c is the size of the training context. The basic Skip-Gram formulation
defines p(wt+j|wt) using the softmax function :

p(wO|wI) =
exp(v′wO

TvwI
)∑W

w=1 exp(v
′
w
TvwI

)
, (2.4)
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where vw and v′w are the "input" and "output" vector representations of w,
and W is the number of words in the vocabulary.

Figure 2.1: Pretrained Word2Vec model example

Doc2Vec

The Doc2Vec model [6], also known as Paragraph Vector, is an extension of
the Word2Vec model that learns distributed representations of documents.
It allows us to represent variable-length pieces of text, such as sentences,
paragraphs, or entire documents, as fixed-length vectors. The model aims
to capture the semantic meaning and context of the documents.

The main idea behind Doc2Vec is to learn document embeddings by predict-
ing words within a document using continuous vector representations. Two
main architectures are commonly used in the Doc2Vec model: Distributed
Memory (DM) and Distributed Bag of Words (DBOW).

Distributed Memory (DM) Architecture: In the DM architecture, the
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model learns to predict a target word from a given context, considering
both the word vectors and a unique document vector. The document vector
serves as a memory that helps incorporate document-level information into
the prediction process.

Mathematically, let’s consider a document d with a sequence of words w1, w2, ..., wT .
The objective of the DM architecture is to maximize the average log probabil-
ity of predicting the target word wt given its context words wt−k, ..., wt−1, wt+1, ..., wt+k

and the document vector d:

1

T

T−k∑
t=k

log p(wt|wt−k, ..., wt−1, wt+1, ..., wt+k, d). (2.5)

The probability p(wt|wt−k, ..., wt−1, wt+1, ..., wt+k, d) is computed using the
softmax function :

p(wt|wt−k, ..., wt−1, wt+1, ..., wt+k, d) =
exp(v′wt

· vd)∑W
j=1 exp(v

′
wj
· vd)

, (2.6)

where v′wt
represents the vector representation of word wt, vd represents the

document vector, and W is the total number of words in the vocabulary.

Distributed Bag of Words (DBOW) Architecture: In the DBOW
architecture, the model treats each document as an unordered bag of words
and learns to predict randomly sampled words from the document using
only the document vector. Given a document d with a sequence of words
w1, w2, ..., wT , the objective of the DBOW architecture is to maximize the
average log probability of predicting a word wt sampled from the document,
given the document vector d:

1

T

T∑
t=1

log p(wt|d). (2.7)

Similar to the DM architecture, the probability p(wt|d) is computed using
the softmax function.

The model is trained using techniques such as negative sampling or hierarchi-
cal softmax to optimize the objective function. After training, the document
vectors can be used as fixed-length representations for various document-level
tasks, including document classification, clustering, and similarity analysis.
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GloVe

The GloVe model [7] is a popular unsupervised learning algorithm for ob-
taining dense word representations, often referred to as word embeddings.
It combines the advantages of both global matrix factorization methods and
local context window-based methods to capture semantic and syntactic rela-
tionships between words. The key idea behind the GloVe model is that word
co-occurrence statistics can be used to learn word vectors. The model aims
to learn word embeddings that are capable of capturing the ratios of word
co-occurrences across the entire corpus. These ratios provide meaningful
information about word semantics.

Let’s consider a co-occurrence matrix X, where each entry Xij represents
the number of times word j appears in the context of word i in the corpus.
The GloVe model seeks to learn word vectors wi and wj such that their dot
product, along with the biases bi and bj, captures the logarithm of the word
co-occurrence ratio :

wT
i wj + bi + bj = log(Xij). (2.8)

To prevent over-fitting and provide better generalization, the model in-
troduces a weighting term that assigns more importance to rare word co-
occurrences :

wT
i wj + bi + bj = log(Xij)− log(Xi), (2.9)

where Xi represents the total number of times word i appears in the corpus.

The model defines a cost function to measure the discrepancy between the
left-hand side and the right-hand side of the equation. It minimizes the sum
of squared errors over all word pairs:

J =
V∑
i=1

V∑
j=1

f(Xij)
(
wT

i wj + bi + bj − log(Xij) + log(Xi)
)2

, (2.10)

where V represents the size of the vocabulary, and f(Xij) is a weighting
function that allows for finer control over the importance of different word
co-occurrence pairs.
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The GloVe model is trained using gradient descent optimization to minimize
the cost function. The word vectors wi and biases bi are updated iteratively
to find the optimal values that capture the word co-occurrence ratios.

The GloVe model offers several advantages. It is able to capture both global
semantic relationships and local context-based information. It is computa-
tionally efficient compared to some other models. It also provides meaningful
representations even for rare words and out-of-vocabulary words. However,
the GloVe model has a few limitations. It requires a large corpus to effec-
tively capture the word co-occurrence statistics. It may not fully capture
fine-grained semantic relationships between words. It also does not consider
the order of words within the context window.

FastText

The FastText model [60] is an extension of the Word2Vec model that is de-
signed to capture subword information in addition to word-level information.
It allows for better representation of rare words and out-of-vocabulary words
by utilizing character n-grams. The main idea behind FastText is to repre-
sent each word as a bag of character n-grams, which are contiguous sequences
of characters of length n. By considering character n-grams, the model can
capture morphological and semantic information from the subwords.

Given a word w, the FastText model represents it as a combination of its
character n-grams. Let G(w) denote the set of character n-grams of word
w. The word vector representation of w, denoted as vw, is computed as the
sum of the vector representations of its character n-grams :

vw =
∑

g∈G(w)

zg, (2.11)

where zg is the vector representation of character n-gram g. Each character
n-gram has an associated vector representation, which is learned during the
training process.

The FastText model employs a skip-gram approach similar to Word2Vec
for learning the vector representations. The objective is to maximize the
average log probability of predicting the surrounding words given a target
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word. However, in FastText, the target and context words are represented
by their character n-grams. Mathematically, let w be the target word and c

be a context word. The objective function of FastText is defined as :

1

T

T∑
t=1

∑
−c≤j≤c,j ̸=0

log p(c|wt), (2.12)

where T is the total number of target-context pairs in the training corpus
and p(c|wt) is the probability of predicting context word c given the target
word wt. The context word c is represented by its character n-grams. To
compute the probability p(c|wt), FastText uses the softmax function, similar
to Word2Vec. The softmax probability is calculated as :

p(c|wt) =
exp(vc · vwt

)∑
c′∈C exp(vc′ · vwt

)
, (2.13)

where vc is the vector representation of the context word c, and C is the set
of all possible context words.

The FastText model is trained using stochastic gradient descent (SGD) to
minimize the negative log likelihood of the target-context pairs. After train-
ing, the learned vector representations can be used for various natural lan-
guage processing tasks such as text classification, information retrieval, and
word similarity.

2.2.9 Dynamic Word Embeddings

The practice of transferring information through predefined word vectors
such as Word2Vec and GloVe, as opposed to random initialization, has
demonstrated improved performance across various tasks. Despite this ad-
vancement, a notable limitation of such representations is their context-
independent nature, rendering them inadequate for disambiguating word
senses based on surrounding context. This inadequacy is particularly mani-
fest in scenarios where an ambiguous word assumes multiple, potentially un-
related meanings depending on its context. Therefore, the need for context-
sensitive representations is imperative to bolster transfer learning, especially
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in NLP tasks like named entity recognition, word sense disambiguation, and
co-reference resolution where contextual understanding is paramount.

Addressing this limitation, the emergence of contextualized word embeddings
has marked a significant stride. Unlike static embeddings, contextualized
embeddings are dynamic and adapt based on the contextual environment of
words. The pioneering models spearheading this advancement include CoVe,
ELMo, GPT, and BERT [61–64]. These models excel in generating contex-
tual embeddings that morph in alignment with the context, thus offering a
more nuanced representation of word semantics.

The inception of these embeddings is primarily through pre-trained Lan-
guage Modeling (LM) tasks, which learn to predict words based on their
contextual milieu using substantial text datasets. The training of the LM
on a general-domain corpus facilitates the capture of generic linguistic fea-
tures across different layers. This pre-training phase sets the foundation for
deriving context-rich embeddings, which are instrumental in comprehending
the semantics of words as dictated by their context.

The narrative now transitions towards a discussion on prominent contex-
tual embeddings engineered through various neural network architectures.
These architectures, underpinned by the principle of contextual understand-
ing, epitomize the evolving trajectory of embedding models geared towards
enhancing transfer learning in NLP. Through these advancements, the NLP
realm is better positioned to tackle tasks necessitating a deep-seated under-
standing of contextual interplays among words, thus broadening the horizon
of what can be achieved in language processing tasks.

Context2Vec

The Context2Vec (C2V) model, as proposed in reference [65], is an unsu-
pervised model adept at learning generic, task-independent representations
of a wide sentential context surrounding a target word, using a bidirectional
Long Short-Term Memory (LSTM) architecture. Unlike traditional models
that may struggle with variable-length contexts, C2V can encapsulate these
contexts within a fixed-size vector. It draws inspiration from the Continuous
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Bag Of Words (CBOW) architecture but elevates its capability by replacing
the simplistic neural model with a robust parametric model furnished by
bidirectional LSTM.

In this architecture, two LSTMs operate in tandem where one processes the
input from left to right and the other from right to left. These networks
function independently with distinct parameters for both left-to-right and
right-to-left word embeddings. Following this processing, the outputs from
both LSTMs are amalgamated through concatenation.

A significant divergence from CBOW is observed in C2V’s ability to consider
the entire sentence to derive the sentential context, superseding the limited
context window size in CBOW. This expanded contextual comprehension
is instrumental in capturing pertinent information that might be remotely
located from the target word. Consequently, target words that share similar
sentential contexts are observed to possess similar embeddings.

The efficacy of C2V in preserving crucial linguistic attributes like part-of-
speech and tense information, courtesy of the extensive sentential context,
is demonstrated in [65]. The experimental validation of C2V was conducted
across three distinct tasks: Sentence Completion, Lexical Substitution Task
(LST), and Word Sense Disambiguation (WSD). Remarkably, C2V outper-
formed the Average-of-Word-Embeddings (AWE) model across all evaluated
benchmarks, showcasing its superior capability in rendering rich contextual
representations conducive for various linguistic tasks.

Context Vectors

The Context Vectors (CoVe) approach [61], utilizes a neural machine trans-
lation (NMT) encoder to compute contextualized representations. CoVe
extracts its vectors from the deep LSTM encoder of an attention-based
sequence-to-sequence model initially trained for machine translation tasks.
Post training, this LSTM encoder gets repurposed for various Natural Lan-
guage Processing (NLP) tasks, exhibiting a notable transfer of learning. The
study underscores the potential of machine translation data, analogous to the
CNN’s ImageNet in computer vision, as a foundational source for developing



2.2 Text Representation Techniques 35

reusable models.

This method draws a parallel between the pairing of MT and LSTM, and the
well-known ImageNet and CNN pairing in the domain of computer vision.
An evident improvement in the performance of downstream NLP tasks is
observed when CoVe vectors are appended to the word vectors of the model,
compared to solely utilizing pre-trained word vectors from baseline models.

The fixed-length representations procured from the NMT encoder exhibit
superior performance in semantic similarity tasks in comparison to repre-
sentations obtained from monolingual encoders like language modeling. The
study also highlights a positive correlation between the volume of training
data used for the MT-LSTM and the performance of the downstream NLP
tasks.

The operational methodology involves feeding GloVe embeddings of English
words to the attentional sequence-to-sequence bidirectional LSTM model.
Upon training the MT-LSTM, the output from the encoder is designated
as CoVe. Essentially, GloVe word vectors are employed to generate these
context vectors (CoVe). In particular tasks like classification and question
answering, the GloVe vector of a word is concatenated with its corresponding
CoVe vector. The amalgamation of CoVe and GloVe exhibits a higher val-
idation performance across all tested classification and question-answering
tasks than models using only GloVe. Moreover, appending character n-gram
embeddings further augments the performance, demonstrating that the in-
formation encapsulated by CoVe complements both the word-level insights
provided by GloVe and the character-level data conveyed through character
n-gram embeddings.

Universal Language Model Fine-Tuning (ULMFiT)

ULMFiT, as proposed in [66], uses Language Modeling (LM) for pretrain-
ing, establishing LM as an optimal source task due to its ability to capture
myriad language facets including hierarchical relations, long-term depen-
dencies, and semantic and syntactic aspects. Unlike Machine Translation,
data for LM is copiously available which facilitates the pretraining process.
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In contrast, models like ELMo [62] and CoVe necessitate training the pri-
mary/test task model from scratch while treating the pre-trained embeddings
as fixed parameters, which curtails their utility. To surmount this limitation,
the ULMFiT approach introduces a fine-tuning transfer technique to eschew
task-specific modifications and the need for training downstream tasks from
scratch—a process that demands extensive datasets and protracted conver-
gence times.

The advancement in ULMFiT arises from its recognition that different layers
encapsulate varying types of information, necessitating distinctive extents of
fine-tuning. It unveils a pioneering fine-tuning approach termed discrimina-
tive fine-tuning, which permits the tuning of each layer with differentiated
learning rates. This conceptually simple but potent adjustment facilitates
the tailoring of parameters to task-specific features. In tandem, ULMFiT
introduces Slanted Triangular Learning Rates (STLR), a scheme which ini-
tially elevates the learning rate linearly before subjecting it to a linear decay.
This mechanism aids in adapting the parameters more effectively to the spe-
cific features of the task at hand.

Moreover, ULMFiT advances a gradual unfreezing technique to mitigate the
risk of catastrophic forgetting that could transpire if all layers were fine-tuned
simultaneously. This technique embarks on a cautious path of unfreezing,
beginning with the last layer—presumed to hold the least general knowl-
edge—and progressively unfreezing and fine-tuning all preceding layers for
one epoch, in a sequenced manner until all layers are fine-tuned and conver-
gence is achieved in the final iteration.

Collectively, the amalgamation of discriminative fine-tuning, slanted trian-
gular learning rates, and gradual unfreezing techniques not only fortifies the
ULMFiT method but also significantly enhances its performance across a
spectrum of datasets. This systematic approach underscores ULMFiT’s po-
tential in efficiently navigating the intricacies of pretraining and fine-tuning
in language modeling tasks.
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Embeddings from Language Models (ELMo)

ELMo [62], introduces a technique to obtain word embeddings using a bidi-
rectional LSTM model, offering a richer representation of words by encap-
sulating deeper and context-dependent facets of word meanings. Unlike
conventional word type embeddings, ELMo’s word representations are in-
fluenced by the entire input sentence, providing a more contextual under-
standing of each word.

The uniqueness of ELMo embeddings lies in their generation through a bidi-
rectional LSTM, trained on an extensive text corpus employing a Language
Model objective. By utilizing the internal states of a deep bidirectional
Language Model (biLM), ELMo amalgamates the representations from both
forward and backward language models, delivering a more nuanced word
representation. These embeddings, being the output of all internal layers of
the biLM, showed superior performance compared to using just the output
of the top LSTM layer.

The bidirectional LSTM network in ELMo is trained with a coupled Lan-
guage Model objective, and the embeddings are computed atop two-layer
biLMs with character convolutions, which are a linear function of the in-
ternal network states. This process ensures that ELMo representations are
deeper than traditional word vectors, as they encapsulate information from
all internal layers of the bidirectional language model. Within ELMo, the
higher-level LSTM states discern semantic and context-dependent aspects,
while the lower-level LSTM states concentrate on syntactic features. ELMo
extracts these context-sensitive features from both left-to-right and right-to-
left language models, creating a comprehensive contextual representation for
each token by concatenating these bidirectional representations.

Through this approach, ELMo embeddings encapsulate the intricate at-
tributes of word usage including syntax, semantics, and the variation of usage
across different linguistic contexts, effectively addressing polysemy. The pa-
per illustrates how ELMo embeddings significantly enhance state-of-the-art
performance across six demanding Natural Language Processing (NLP) chal-
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lenges like question answering, textual entailment, and sentiment analysis.
The comparative analysis revealed that for tasks where direct comparisons
were viable, ELMo surpassed CoVe, which computes contextualized repre-
sentations using a neural machine translation encoder. The superiority of
ELMo in modeling complex linguistic characteristics demonstrates its poten-
tial in advancing the field of word embeddings and contributing substantially
to tackling diverse NLP problems.

Generative Pre-Training (GPT)

The aspiration to amplify performance on discriminative tasks through unsu-
pervised pre-training has been a longstanding objective within the Machine
Learning research domain. (Radford et al., 2018) [63] introduced GPT, which
adopted a semi-supervised methodology aimed at language understanding
tasks, orchestrating a blend of unsupervised pre-training followed by super-
vised fine-tuning. The distinctive trait of the GPT setup is its absence of
dependency on the domain congruence between target tasks and the unla-
beled corpus utilized for pre-training.

The process initiates with the application of a Language Modeling objective
on the unlabeled data to ascertain the embeddings, which are subsequently
tailored to cater to the target tasks by employing the respective supervised
objectives. GPT utilized a dataset replete with extensive stretches of con-
tiguous text for pre-training, facilitating the generative model in learning to
condition on long-range information. This approach propelled GPT to ac-
complish new state-of-the-art results on 9 out of the 12 datasets evaluated.

Furthermore, the paper focused into an analysis concerning the impact of
various transferred layers from the pre-trained model on the accuracy of
downstream tasks, notably RACE and MultiNLI. The analysis revealed a
notable enhancement in accuracy with each additional transformer layer [11],
signifying that each layer encapsulated essential functionality conducive to
resolving target tasks.

To unravel the effectiveness of language model pre-training within transform-
ers, the authors orchestrated a zero-shot learning experiment. The outcomes
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inferred that the attentional memory within the transformer [11] consider-
ably bolstered transfer efficacy in comparison to LSTMs.

By pre-training on a diversified corpus encompassing long stretches of con-
tiguous text, GPT amassed significant world knowledge alongside the capa-
bility to process long-range dependencies. These acquired attributes were
subsequently and successfully channelized towards resolving discriminative
tasks such as question answering, semantic similarity assessment, entailment
determination, and text classification, underscoring the potential of unsu-
pervised pre-training in augmenting performance on discriminative tasks.

Bidirectional Encoder Representations from Transformers (BERT)

Pre-trained word embeddings have a recognized advantage over starting the
training process from scratch. Traditionally, a left-to-right Language Model-
ing (LM) objective has been utilized for pre-training. In contrast, BERT ad-
vances this process by employing a bidirectional Transformer encoder, amal-
gamating both left and right context to enhance masked word predictions.
(Devlin et al., 2018) [64] focus into pre-training deep bidirectional Trans-
former encoder representations using unlabeled text, jointly conditioned on
both left and right contexts across all layers. The process within the BERT
framework is bifurcated into pre-training and fine-tuning stages.

Initially, during pre-training, the model is educated on unlabeled data across
diverse tasks. The subsequent fine-tuning stage initiates with the BERT
model pre-loaded with pre-trained parameters, which are then fine-tuned
using labeled data derived from downstream tasks. Each of these tasks
possesses uniquely fine-tuned models, albeit initialized with identical pre-
trained parameters.

A noteworthy assertion by the authors is the potential detrimental effect of a
unidirectional approach on sentence-level and token-level downstream tasks.
This is exemplified in question-answering tasks where assimilating context
from both directions is pivotal. Unlike GPT, which is confined to a left-to-
right architecture, BERT transcends this limitation by considering context
from both directions. It achieves this through the Masked Language Model
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(MLM) pre-training technique, where certain tokens are randomly masked
and the model is tasked with predicting these masked tokens based on their
context. This strategy facilitates the fusion of both left and right context
within the representation. Moreover, BERT incorporates a Next Sentence
Prediction (NSP) task in its pre-training regimen.

BERT’s MLM methodology fosters deep bidirectional representations, dis-
tinguishing it from ELMo which employs a shallow concatenation of inde-
pendently learned embeddings. Given that crucial downstream tasks like
Question Answering (QA) and Natural Language Inference (NLI) necessi-
tate understanding the interrelationship between sentences, BERT’s bina-
rized next-sentence prediction task in pre-training is instrumental. The re-
sults showcased in Table 8 elucidate how BERT surpassed GPT and ELMo
across all GLUE tasks, with BERT-large exhibiting superior performance
over BERT-base. These findings accentuates the significant merit of bidi-
rectional pre-training for obtaining more enriched representations, laying a
solid foundation for enhanced performance in various downstream tasks.

Unified Pre-trained Language Model (UNILM)

While BERT excels in boosting performance for a vast array of natural lan-
guage understanding (NLU) tasks, its bidirectional nature limits its appli-
cation in natural language generation (NLG) tasks. To bridge this gap,
(Dong et al., 2019) [67] introduce UNILM, a multi-layer Transformer net-
work designed for both NLU and NLG tasks. UNILM is jointly pre-trained
on substantial text data, aiming at three unsupervised language modeling
objectives while sharing a common set of parameters. This pre-trained uni-
fied model is then fine-tuned and evaluated on diverse datasets encompassing
both understanding and generation tasks. Similar to BERT, UNILM can be
fine-tuned, and if necessary, augmented with task-specific layers to cater to
various downstream tasks.

Contrary to BERT’s primary focus on NLU tasks, UNILM’s flexibility al-
lows it to consolidate context for different language model types, rendering
it suitable for both NLU and NLG tasks. A key advantage of UNILM is
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its parameter sharing feature, which results in more generalized text repre-
sentations as they are concurrently optimized for varied language modeling
objectives, thereby reducing overfitting risks.

Moreover, UNILM’s application extends beyond NLU tasks; its sequence-to-
sequence language modeling capability makes it a favorable choice for NLG
tasks. It employs a masking technique to manage the amount of context a
token attends to while computing its contextualized representation. Upon
pre-training, these representations are further fine-tuned using task-specific
data from downstream tasks. The vector representation of each input token
is formulated by aggregating the corresponding token, position, and segment
embeddings. By utilizing bidirectional LM pre-training, UNILM is able to
encapsulate contextual information from both directions, thereby generat-
ing enhanced contextual text representations compared to unidirectional ap-
proaches. In summary, UNILM presents a versatile solution, expanding the
scope of both natural language understanding and generation tasks beyond
the capabilities offered by BERT.

2.2.10 Fine-Tuning-based Embeddings

Typically, word embedding research is centered on general-domain text gen-
eration. However, (Chiu et al., 2016) [68] highlight that this approach falls
short in domain-specific analysis of large datasets, such as in the legal, fi-
nancial sectors. In the following, we present some different word embedding
variations within the NLP realm, focusing on fine-tuned embeddings that
adapt and adjust to contextual shifts and downstream tasks.

Contrary to past methods where embeddings remained static post-input, the
new breed of embeddings evolves when applied to downstream tasks. Pre-
trained Language Models (LMs) use extensive text data to learn contextu-
alized text representations by predicting words based on their surrounding
context. These models can then be fine-tuned to align with downstream
tasks. Once transferred, the embeddings undergo fine-tuning on the target
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task data to absorb task-specific features, thereby enhancing performance
on downstream tasks.

While pre-training usually employs generic-domain data and tasks, the data
concerning target tasks often come from disparate distributions. This neces-
sitates the fine-tuning of the pre-trained LM on target task data to acclimate
to the unique aspects of said data. Notably, this fine-tuning approach reaches
convergence faster than initiating training from scratch. In such a system,
embeddings birthed from pre-training serve as input to the model, which
then undergoes refinement to boost performance on downstream tasks.

The categorization of fine-tuned embeddings based on downstream tasks
can be nuanced. Cross-Lingual Embeddings are designed to bridge lan-
guage barriers by facilitating mapping across languages. On the other hand,
Knowledge-Enriched Embeddings meld external knowledge to better seman-
tic understanding. Domain-Specific Embeddings are tailored to resonate
with the lexicon and semantics of particular fields. Multi-Modal Embed-
dings amalgamate information from diverse modalities like text and images
for more robust representations. Lastly, Language-Specific Embeddings are
honed to the linguistic peculiarities of specific languages, ensuring a custom-
fit for varying linguistic landscapes.

In conclusion, fine-tuning word embeddings to the context and tasks at hand,
especially in domain-specific scenarios, paves the way for more accurate and
insightful analysis, taking NLP applications a notch higher in performance
and relevance.

Cross-Lingual Embeddings

The research predominantly focuses on pre-training models using large unla-
beled corpora in English, followed by fine-tuning them on specific tasks with
smaller English supervised datasets, representing a monolingual approach.
However, a shift towards a cross-lingual method has emerged, wherein the
pre-training and fine-tuning are conducted in different languages, resulting in
multi-language spanned embeddings. Such encoders, when trained multilin-
gually, can encode sentences from multiple languages into a shared semantic
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space. These cross-lingual models can be categorized into cross-lingual un-
derstanding (XLU) and cross-lingual generation (XLG) models, with several
prevalent models under each category.

For instance, Google’s Multilingual NMT (M-NMT) [69] employs a standard
NMT system which, owing to shared parameters across language pairs, gen-
eralizes well beyond language boundaries, significantly improving the quality
of low-resource language pairs. Following pre-training on 12 language pairs,
this model exhibited capabilities for zero-shot translation and genuine trans-
fer learning, translating between language pairs unseen during training.

Contrary to BERT, which is trained only on English corpus, M-BERT is
trained on Wikipedia pages from 104 languages using a shared word-piece
vocabulary. Despite lacking a cross-lingual objective or parallel data, M-
BERT [70] surprisingly performed well in cross-lingual generalization, en-
abling task-specific annotation transfer from source to target languages, even
across different scripts.

Adding to this, the XML technique [71] introduces a Translation Language
Modeling (TLM) objective to enhance cross-lingual pre-training. Unlike tra-
ditional methods, TLM concatenates parallel sentences from source and tar-
get languages, masking random words in both to foster alignment between
representations of both languages.

Similarly, Unicoder [72], proposed in another study, employs three cross-
lingual tasks for pre-training, utilizing a Machine Translation dataset to train
various tasks like cross-lingual word recovery and cross-lingual paraphrase
classification. This approach aided Unicoder in becoming a better language-
independent encoder and learning language mappings from multiple angles.

On the other hand, XLG, unlike NMT, entails summary or response gener-
ation in the target language based on source language documents. Models
like XLM-RoBERTa (XLM-R) [73] and MASS [74] have shown significant
gains in cross-lingual benchmarks and various language generation tasks re-
spectively.
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XNLG, as discussed in [75], employs monolingual data for masked language
modeling (MLM) and a cross-lingual setting for cross-lingual MLM (cross-
MLM) during pre-training. This method uses bilingual sentence alignment
to encode cross-lingual texts into a shared embedding space. Post pre-
training, the model is fine-tuned on downstream natural language gener-
ation (NLG) tasks with monolingual data. This approach outperforms ma-
chine translation-based methods in cross-lingual question generation and ab-
stractive summarization tasks, significantly enhancing performance for low-
resource languages by leveraging rich-resource language information.

These varied approaches and models elucidate the evolving landscape of
cross-lingual embeddings, catering not only to language understanding but
also to language generation across a multitude of languages. This evolution
is gradually bridging the gap between languages, fostering a more inclusive
and accessible multilingual NLP domain.

Knowledge-Enriched Embeddings

Contextual word representations, devoid of any real-world entity informa-
tion, lack the capability to recall or retrieve factual knowledge about those
entities. This necessitates the infusion of knowledge information during
the pre-training tasks of most language models, enriching them with struc-
tured factual data, and subsequently enhancing language understanding.
Knowledge-Enriched Embeddings (KEE) emerge as a solution, offering word
embeddings supplemented with information from external sources like on-
tologies or knowledge graphs, making them potent for knowledge-driven ap-
plications such as entity typing and relation classification and extraction.
This knowledge information is structurally captured using a knowledge graph
in a triplet (h, r, t) format, which outlines a relational fact with a head entity
(h), a tail entity (t), and the relation type (r). Through the generation of
Knowledge Embeddings (KE) using knowledge graphs (KGs), entities along
with their relationship information are effectively embedded.

One notable approach is ERNIE [76], which takes the pre-training of a lan-
guage representation model a notch higher by utilizing both large-scale tex-
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tual corpora and KGs, maximizing the utilization of lexical, syntactic, and
knowledge information. By proposing a new pre-training task coined as de-
noising entity auto-encoder (dEA), ERNIE introduces knowledge into lan-
guage representation through informative entities. In this mechanism, cer-
tain token-entity alignments are randomly masked, prompting the system to
predict corresponding entities based on aligned tokens. ERNIE comprises
not just a Textual Encoder (T-Encoder) that captures lexical and syntactic
nuances, but also a Knowledgeable Encoder (K-Encoder) that aggregates
token and entity embeddings. Through this approach, ERNIE significantly
augments the performance on knowledge-driven tasks like Entity Typing and
Relation Classification.

On the other hand, KnowBert [62] proposes a method to embed multiple
knowledge bases (KBs) into large-scale models, enhancing their represen-
tations with structured, human-curated knowledge. KnowBert’s Knowl-
edge Attention and Recontextualization (KAR) method first identifies en-
tity spans in raw text, retrieves their embeddings from KB to construct
knowledge-enhanced entity span representation, and recontextualizes these
representations with word-to-entity span attention, facilitating long-range
interaction between entity spans in context. This enhancement showcases
improved perplexity and recall of entity facts, with downstream evaluations
indicating better performance over relationship extraction, entity typing, and
word sense disambiguation tasks.

A distinctive approach SentiLARE [77], aimed at bolstering language under-
standing and aiding downstream tasks in sentiment analysis. By introducing
a new label-aware MLM pre-training task with two subtasks for early fusion
and late supervision, it effectively integrates word-level linguistic knowledge
such as PoS tags and sentiment polarity into pre-trained models. The devised
sub-tasks forge a connection between sentence-level representation and word-
level linguistic knowledge, proving beneficial for sentiment analysis tasks as
corroborated by experiment outcomes showing superior performance across
various sentiment analysis tasks.
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K-BERT [78] addresses the concern of Knowledge Noise, which may arise
from an excessive incorporation of knowledge, potentially altering the in-
tended meaning of sentences. By introducing a soft position and visible ma-
trix, K-BERT manages to limit the impact of knowledge, transforming the
original sentence into a knowledge-rich sentence tree while maintaining the
original meaning. This approach demonstrates significant outperformance
over BERT, especially in domain-specific tasks, showcasing its potential in
tackling knowledge-driven problems requiring expert inputs.

Contrarily, KEPLER (KE) [79] adopts a unique strategy by utilizing en-
tity descriptions to encode and map text and entities to a unified semantic
space, without the necessity of a separate KE model. This approach not only
eliminates the need for an entity linker but also circumvents the additional
inference overhead. KEPLER, by encoding entities from their descriptions,
seamlessly bridges the gap between KE and PLM, aligning the semantic
space of text with the symbol space of entities in KGs. The model show-
cases its ability to generate embeddings for unseen entities based on their
descriptions, a feat unachievable by conventional KE methods. The integra-
tion of factual knowledge from external KGs into language representations
through joint training of KE and MLM objectives remarkably improves NLP
and KE applications, like relation extraction and entity typing.

Further notable contributions include the knowledge-enriched word embed-
dings (KEWE) provided by the authors in [80], which use knowledge graphs
to encode reading difficulty knowledge into words, evaluated on both En-
glish and Chinese datasets. In the biomedical domain, the authors in [81]
provide empirical evidence suggesting the improvement in word embeddings
quality when an external semantic knowledge base is combined with local
contextual information for generating biomedical concepts. Additionally, a
Knowledge-enriched answer generator (KEAG) is proposed by the authors
in [82], which exploits an external symbolic knowledge base to generate an-
swers. This variety of KEE models demonstrates the potential of integrating
external knowledge sources with local contextual information to significantly
enhance the quality of word representations, thereby substantially benefiting
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a plethora of NLP tasks such as entity recognition, relation extraction, and
semantic labeling.

Domain-Specific Embeddings

Embeddings generated from large generic corpora like Wikipedia may not
perform well in specialized domain tasks due to the lack of domain-centric
word distribution, especially observed in fields like biomedicine. Recent stud-
ies have shifted towards utilizing domain-specific corpora for pre-training
to achieve more tailored embeddings in various domains such as finance,
healthcare, and reviews [83], sentiments [84], emotions [85]. Notable re-
search [86, 87] demonstrated that domain-tailored embeddings, generated
from relevant sectors like biomedicine, oil/gas, and social media (Covid-19
Tweets), enhanced performance in corresponding NLP tasks. A study [88]
showed significant improvement in multi-label classification tasks when a
shallow neural network was trained on a large Radiology-related corpus.

BioBERT [89], SciBERT [90], ClinicalBERT [91] and PatentBERT [92] are
prime examples of models pre-trained on domain-specific corpora that out-
performed the original BERT in biomedical, scientific, clinical, and patent
classification NLP tasks respectively. SentiBERT [93], designed to capture
compositional sentiment semantics, effectively merged contextualized rep-
resentation with syntactic tree structure, showcasing a better capture of
semantic compositionality. The shift towards domain-specific pre-training
indicates a significant stride towards achieving improved domain-centric em-
beddings and performance in respective NLP tasks.

Multimodal Embeddings

The advancement of multimodal embedding models showcases the ability to
amalgamate information from audio, visual, and text modalities to foster
enhanced word embeddings through deep neural networks. Large neural
networks like [11, 64, 94] have marked significant progress in multimodal
settings.

In the realm of speech-based embeddings, generating embeddings for audio
words presents a challenge due to varying audio signal realizations of the
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same word token in different utterances. A notable attempt to overcome
these challenges is SpeechBERT [95], which tackles the end-to-end Spoken
Question Answering (SQA) task by learning audio and text jointly. It em-
ploys Text-BERT to extract semantic information from text data and utilizes
an RNN sequence-to-sequence autoencoder to capture the phonetic structure
of audio words. SpeechBERT managed to achieve state-of-the-art results on
the Spoken SQuAD dataset.

Turning towards image-based embeddings, the objective is to align text ele-
ments with regions in images. VisualBERT [96] and ViLBERT [97] employ
joint processing of image and text inputs and separate streams for language
and vision processing respectively to enrich the interaction between words
and objects. B2T2 [98], LXMERT [99], and VL-BERT [100] also offer in-
triguing approaches in bridging visual and textual modalities, with strate-
gies like multimodality-based masking and single-stream input processing.
Unicoder-VL [101] use a cross-modal pre-training framework to learn joint
representations of visual and linguistic contents.

On the video-based embedding front, VideoBERT in [102] represents videos
using visual words or tokens, focusing on learning and forecasting videos
along with aligning text and video domains. Contrastingly, CBT in [103]
opts for training each modality separately and maximizes mutual informa-
tion between modalities at the sequence level. VideoTranslate (VideoAsMT)
[104] conceptualizes video understanding as a machine translation task, em-
ploying an encoder-decoder architecture to generate text from multimodal
representations. UniVL [105] and HERO [106] extend the landscape with
their flexible model structures and hierarchical encoding of multimodal in-
puts, each targeting a nuanced understanding and generation of text and
video modalities.

In essence, these multimodal embedding models, with their varied tech-
niques, are stepping stones towards a robust integration of audio, visual,
and textual information which is fundamental for enhancing the capabilities
of deep neural networks in understanding and generating multimodal data.
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Language-Specific Embeddings

Domain-specific embeddings are specialized word embeddings trained on
large corpora within particular domains to seize the relationships between
terms and expressions pertinent to that domain. These domain-centric mod-
els can significantly boost the accuracy and performance of NLP tasks like
text classification, sentiment analysis, and named entity recognition within
those domains. Typically, the pretraining phase of attention-based models
unfolds in an unsupervised manner on vast domain-specific corpora, which
is then followed by fine-tuning on a smaller labeled dataset pertinent to the
domain.

Compared to general-purpose models, recent studies have demonstrated that
domain-specific models yield superior performance on NLU tasks within
their respective domains. These models [76, 107–119], largely built on the
BERT architecture, undertake the same pre-training tasks (MLM and NSP).
Moreover, most of these models have formulated their own pre-training and
test datasets, along with domain-specific benchmarking frameworks. Such
domain-tailored models contend that pretraining on smaller domain-specific
datasets can achieve comparable or even superior results relative to train-
ing on larger general-purpose datasets. For evaluating the performance of
domain-centric NLP models, benchmarks designed for those specific domains
are utilized. Analogous to how GLUE and SuperGLUE benchmark frame-
works are used for general English NLP tasks, domain-specific benchmarks
are employed to assess models tailored for domains like medical, legal, or
financial text analysis.

2.3 Traditional Machine Learning Approaches

Websites and Web pages classification has been extensively studied, with
researchers exploring different approaches and techniques to improve classi-
fication performance. In the following we group the existing works following
traditional machine learning based techniques.
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2.3.1 Naive Bayes (NB)

The Naive Bayes classifier is a popular probabilistic model used for text clas-
sification due to its simplicity and effectiveness. It operates on the principle
of conditional independence between features, making it suitable for large
datasets. This section explores various studies that have applied and en-
hanced the Naive Bayes algorithm for web page classification, demonstrating
its versatility and performance improvements through different modifications
and feature selection techniques.

(Li et al., 2005) [120] introduce a method for web page categorization using
a hybrid neural network architecture. They represent web pages as feature
vectors, weighted by term frequency and sentence significance, with PCA for
feature selection and SOFM for classification, showing substantial improve-
ments over KNN and Naive Bayes. (Petprasit et al., 2015) [121] propose a
methodology for classifying E-commerce web pages using MLP neural net-
works, achieving 97.60% accuracy, outperforming Naive Bayes, RBF, and
SVM. (Zhang et al., 2018) [122] develop a neural network model for detect-
ing phishing websites using deep learning and transfer learning, achieving
86% accuracy, surpassing SVM and decision tree methods.

(Tomar et al., 2006) [123] present a modified Naive Bayesian method for web
page categorization, using TF-IDF for word relevance, reducing computation
time, and improving accuracy. (Soon et al., 2010) [124] evaluate Naive Bayes,
Balanced Mixed Classification, and Mixed Classification with Priority to the
Statistical Method for automated information extraction from newspaper
advertisements, highlighting Naive Bayes efficiency. (Shaohong et al., 2011)
[125] explore web page classification using HTML tags and terms, showing
Naive Bayes outperforming SVM and KNN.

(Haleem et al., 2014) [126] employ the SPaC-MR classifier for text classifica-
tion, evaluated alongside SVM, J48, Naive Bayes, and PART, and propose
the improved SPaC-NF, demonstrating superior performance. (Zhang et al.,
2011) [127] address phishing attacks using texture-based features and classi-
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fiers, including SVM, Naive Bayes, and neural networks, achieving promising
results. (Hu et al., 2007) [128] combine text-based and image-based features
with classifiers like SVM, Decision Trees, and Bayesian Networks for recog-
nizing pornographic web pages, achieving accurate identification.

(Fersini et al., 2008) [129] enhance web document classification by evalu-
ating image-blocks and textual terms with classifiers such as Naive Bayes,
SVM, Decision Trees, and KNN, showing improved accuracy over traditional
TFxIDF models. (Suganya et al., 2017) [130] use the Cross Training based
Corrective (CTC) approach, enhancing classifier performance through coop-
erative adjustment of web page types, demonstrating potential improvements
with KNN, SVM, and Naive Bayes classifiers. (Abbas et al., 2016) [131] in-
vestigate a rule-based methodology for web page classification, utilizing word
frequency, association rule mining, and category-specific keywords, providing
insights into effective classification with potential Naive Bayes application.
(Patil et al., 2012) [132] review features and classifiers for web page classifica-
tion, including SVM, neural network agents, and decision rules, highlighting
efforts to optimize classification performance using diverse features and clas-
sifiers.

2.3.2 K-Nearest Neighbors (KNN)

The KNN algorithm is a non-parametric method widely used for classification
tasks. It classifies data points based on the majority class among its k-
nearest neighbors. This section reviews advancements in the KNN approach,
including enhanced feature selection, the incorporation of implicit links, and
various post-classification correction methods, showcasing its application in
web page classification and related tasks.

(Kwon et al., 2000) [133] introduce LIC, an enhanced KNN approach that in-
corporates feature selection, term-weighting using markup tags, and a revised
document-document similarity measure. Experimental results show signifi-
cant performance improvements over traditional KNN. (Xu et al., 2011) [134]
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propose a method using link information to classify web pages, exploiting
parent page reference information instead of relying solely on web content,
enhancing classification accuracy.

(Abdelbadie et al., 2014) [135] enhance KNN and other text classifiers through
Clique Based Correction (CBC), which uses implicit links between web pages
to form cliques for category rectification, improving accuracy. (Zheng et al.,
2015) [136] introduce the LWCS system, combining anchor graph hashing
with kNN for large-scale web page classification, demonstrating fast and
storage-efficient performance.

(Belmouhcine et al., 2016) [137] use implicit links from query logs combined
with KNN to compute similarities based on click frequencies, enhancing ef-
fectiveness through a two-level ranking process. (Kwon et al., 2003) [138] em-
ploy various features and classifiers, such as bag-of-words, N-grams, TF-IDF,
and link-based features, with Naive Bayes, SVM, memory-based reasoning,
decision trees, and neural networks for accurate classification.

(Kameshwari et al., 2017) [139] evaluate a different set of classifiers includ-
ing KNN, SVM, and Naive Bayes, likely considering features such as Bag-of-
Words, TF-IDF, N-grams, and word embeddings to enhance classification re-
sults. (Zheng et al., 2015) [136] conduct experiments with the LWCS system
for Chinese web pages, analyzing the parameter "k" in KNN and comparing
hash-based methods with the original vector-based method, demonstrating
fast and accurate performance.

(Li et al., 2005) [120] use Principal Component Analysis (PCA) and Self-
Organizing Feature Map (SOFM) for feature extraction in web sports news
classification, achieving higher precision, recall, and F1 measures compared
to Naive Bayes and KNN. (Jiao et al., 2010) [140] incorporate the hyperlink
factor into their web page classification approach, significantly enhancing
accuracy by using mutual information to measure feature relevance.
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2.3.3 Decision Tree (DT)

Decision Tree algorithms are intuitive and powerful tools for classification
that split data into subsets based on feature values, forming a tree-like
structure. This section presents various implementations of Decision Tree
classifiers for web page classification, highlighting improvements in feature
discretization, ensemble methods, and adaptations for handling structured
attributes, which enhance classification accuracy and efficiency.

(Mangai et al., 2012) [141] implement an algorithm that converts features
into discrete values for web page classification, significantly improving ac-
curacy compared to using continuous features. (Jelodar et al., 2015) [142]
assessed various decision tree-based algorithms for distinguishing between
non-advertisement and advertisement websites, finding that the J48 algo-
rithm outperformed others such as Decision Stump, Hoeffding tree, Logistic
model tree (LMT), Random Forest, Random tree, and REP Tree in terms
of accuracy and effectiveness.

(Andoohgin et al., 2018) [143] propose a technique for identifying hijacked
journals using a classification algorithm trained on a dataset of hijacked and
authentic journals, utilizing nine specific features to construct a decision tree
for effective detection.

(Dadkhah et al., 2015, 2016) [144] and [145] introduce features for detect-
ing hijacked journals, such as domain rank, domain age, and consistency
between the server’s country and the journal’s country. They employed var-
ious classification algorithms including Decision Stumps, J48, Random Tree,
and REP Tree using the WEKA software, with the Random Tree algorithm
achieving the lowest error rate.

(Estruch et al., 2006) [146] present the distance-based decision tree (DBDT),
which handles structured attributes like lists, graphs, and sets, using a split-
ting criterion based on the metric condition "is nearer than." This allows for
more flexible and nuanced decision-making within the decision tree learning
process.
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2.3.4 Support Vector Machines (SVM)

Support Vector Machines (SVM) are robust classifiers known for their ability
to handle high-dimensional data and create optimal hyperplanes for classifi-
cation. This section covers a range of SVM-based approaches for web page
classification, including dual feature space integration, content-based and
visual feature combinations, and advanced kernel methods, illustrating the
versatility and effectiveness of SVMs in diverse classification scenarios.

(Alvari et al., 2017) [147] developed a semi-supervised learning model us-
ing a dual feature space approach, combining six feature groups from ads
and geometric properties captured through a data adjacency graph. This
advanced SVM classifier integrated both feature spaces and outperformed
existing solutions. (Tian et al., 2013) [148] introduced a method for classi-
fying images on websites by integrating text and visual features, employing
SVM classifiers for each feature type and a multiple-classifier fusion tech-
nique, demonstrating superior performance compared to single classifiers.

(Abbasi and Chen, 2009) [149] proposed AZProtect, using a stack of SVM
classifiers to detect and classify fake websites based on content similarity and
duplication features. This solution showed promising results when trained on
500 websites. (Fersini et al., 2008) [150] enhanced term selection and weight-
ing by identifying important image-blocks within web pages, with SVM out-
performing other classifiers in precision and recall metrics.

(Ulges et al., 2011) [151] employed color-enhanced visual word features and
SVM classifiers to detect child pornography, improving automatic detection
through histograms of visual words. (Rowley et al., 2006) [152] addressed
large-scale image-based adult-content filtering by integrating various features
into an SVM classifier with RBF kernels, achieving a 50% detection rate for
adult-content images with a 10% false positive rate.

(Sun et al., 2003) [153] improved web classification by incorporating text and
context features like hyperlinks and HTML tags, finding that SVM classi-
fiers with title and anchor words significantly improved accuracy. (Kan et
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al., 2004) [154] proposed a two-phase pipeline using SVM classifiers, demon-
strating that URL-only features significantly enhanced performance.

(Belmouhcine et al., 2015a) [155] introduced an implicit links-based Gaus-
sian kernel for SVM classification, improving performance by incorporating
user’s intuitive judgments. In another study, (Belmouhcine et al., 2015b)
[156] combined web page representations from implicit graph structures with
various classifiers, significantly improving accuracy.

(Gu et al., 2016) [157] used Latent Dirichlet Allocation (LDA) to extract
features for web page classification, enhancing effectiveness when combined
with SVM. (Chen et al., 2006) [158] employed Latent Semantic Analysis
(LSA) and Web Page Feature Selection (WPFS) with SVM classifiers, finding
the anova kernel function most effective. (Soon et al., 2010) [124] explored
Information Extraction (IE) patterns for web classification using the C5.0
algorithm, achieving significant accuracy and suggesting further research into
Association Rule Mining (ARM).
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Table 2.6: Summary of Traditional ML based Approaches

Approach WS/WP Dataset TR Classifier Results
Andoohgin et al.

(2018) [143]
Website Dataset of 104

journal websites
Various features:
number of broken
links, number of
published articles

in a year,
consistency

between server
and journal

country, existence
of inactive links,

use of "-" in URL,
rank in search
engines, age of

domain, countries
visiting the

website, journal
aim and scope

Decision
Stump, J48,

Random Tree,
Random
Forest

Decision Stump: Error
rate: 17.31%, J48:
Error rate: 8.65%,

Random Tree: Error
rate: 0%, Random
Forest: Error rate:

0.96%
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Approach WS/WP Dataset TR Classifier Results
Jelodar et al. (2017)

[159]
Website Custom dataset TF-IDF, n-grams SVM, Naive

Bayes,
Decision Tree

SVM: Accuracy: 92%,
Naive Bayes: Accuracy:

88%, Decision Tree:
Accuracy: 85%

Alvari et al. (2017)
[147]

Website Custom dataset
(web pages)

Content features,
structure features

Semi-
supervised
learning,

SVM

Accuracy: 85%, F1:
0.84

Kameshwari et al.
(2017) [139]

Web
Page

Open Directory
Project (ODP)

Text features SVM, Naive
Bayes, KNN

SVM: Accuracy:
87.9%, Naive Bayes:
Accuracy: 89.0%,

KNN: Accuracy: 85.1%
Gu et al. (2016) [157] Web

Page
Custom dataset Content features,

link features
SVM,

Decision Tree
SVM: Accuracy: 89%,

F1: 0.87, Decision
Tree: Accuracy: 85%,

F1: 0.83
Belmouhcine et al.

(2016) [137]
Web
Page

Custom dataset Implicit
links-based kernel,
content features

SVM Accuracy: 91%,
Precision: 0.90, Recall:

0.89
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Approach WS/WP Dataset TR Classifier Results
Jelodar et al. (2015)

[142]
Website Custom dataset

prepared using
search engine

results

Text features J48, Decision
Stump, Ho-
effdingTree,
LMT, Ran-
domForest,

RandomTree,
REPTree

J48: Accuracy: 71.43%,
Precision: 0.682,
F-measure: 0.679

Zheng et al. (2015)
[136]

Web
Page

Ifeng.com TF-IDF KNN Improved performance
with KNN

Belmouhcine et al.
(2015) [156]

Web
Page

Custom dataset Implicit
links-based kernel,
content features

SVM Accuracy: 90%,
Precision: 0.89, Recall:

0.88
Wang et al. (2013)

[160]
Website WEBSPAM-

UK2006
Content features

(72), Link features
(81)

LC-training,
Link-

training2,
Co-training,
AdaBoost,

Decision Tree

LC-training: F1: 0.807,
AUC: 0.941,

Link-training2: F1:
0.816, AUC: 0.948

Tian et al. (2013) [148] Website Google Image
Search

VSM, GLCM SVM,
Bayesian
Network

Accuracy: 85%, F1:
0.84
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Approach WS/WP Dataset TR Classifier Results
Jayanthi et al. (2013)

[161]
Website Custom dataset

(emails)
TF-IDF, POS

tagging
SVM, Naive

Bayes,
Decision Tree

SVM: Accuracy: 91%,
F1: 0.89, Naive Bayes:
Accuracy: 87%, F1:
0.85, Decision Tree:
Accuracy: 83%, F1:

0.81
Mangai et al. (2012)

[141]
Web
Page

WebKB Discretization OneR, ID3,
J48, Naive

Bayes, Kstar

Naive Bayes: Accuracy:
97.09%, Kstar:

Accuracy: 96.43%
Egele et al. (2011)

[162]
Website PhishTank,

OpenPhish
URL features,

host-based
features

SVM,
Random
Forest

SVM: Accuracy: 95%,
F1: 0.94, Random

Forest: Accuracy: 93%,
F1: 0.92

Ulges et al. (2011)
[151]

Website Custom datasets
(pornography,

CSA)

Image and text
features

SVM Precision: 92%, Recall:
90%, F1: 0.91

Xu et al. (2011) [134] Web
Page

Sohu, Netease,
Yahoo, Javaeye,

CSDN

Vector Space
Model, link
information

LIC, KNN,
SVM

LIC: Accuracy: 99.6%,
SVM: Accuracy: 85.2%
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Approach WS/WP Dataset TR Classifier Results
Soon et al. (2010) [124] Web

Page
WebKB Text features SVM,

Decision
Trees

Accuracy: 78%, F1:
0.75

Jiao et al. (2010) [140] Web
Page

Custom dataset Text features Not specified Improved classification
accuracy by 10%

Fersini et al. (2008)
[150]

Web
Page

10,000 web pages
from Yahoo!
Directories

Term frequency-
weighting schemes,

image-block
analysis

SVM,
Multinomial
Naive Bayes

SVM: F1: 0.88, Naive
Bayes: F1: 0.82

Abbasi & Chen (2009)
[149]

Website Fake websites from
online trading
community
databases

Fraud cues (URLs,
keywords)

SVM Accuracy: 91%, Recall:
92%, Precision: 89%

Chen et al. (2006) [158] Web
Page

Sports news
dataset

Latent Semantic
Analysis (LSA),

Web Page Feature
Selection (WPFS)

SVM Accuracy: 82.5%

Rowley et al. (2006)
[152]

Web
Page

Custom dataset Feature extraction
(text, image, links)

SVM,
Decision

Trees, Neural
Networks

Error rates: SVM best
with 4.6%



2.3
T
rad

ition
al

M
ach

in
e

L
earn

in
g

A
p
p
roach

es
61

Approach WS/WP Dataset TR Classifier Results
Estruch et al. (2006)

[146]
Web
Page

Custom dataset
(sports news)

Graph-based
representation,
content-based

metrics

DBDT
algorithm

F1 measure: 0.764

Qi et al. (2006) [163] Web
Page

ODP dataset,
WebBase dataset

TF-IDF, Context
features (title,

URL)

SVM,
Bayesian
network
model

ODP: Accuracy:
91.4%, WebBase:
Accuracy: 56%

Li et al. (2005) [120] Web
Page

Custom dataset of
sports news
(Yahoo and

Google)

Term frequency-
weighting scheme,
PCA for feature
selection, block

importance
method

SOFM neural
network

Precision: 86.24%,
Recall: 88.12%, F1:

86.87%

Kan et al. (2004) [154] Web
Page

WebKB subset
(ILP 98 dataset)

URL fragments,
anchor text, title
text, page text

SVM,
FOIL-PILFS

F1 measure
(macro-averaged):
Improved across

various configurations
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Approach WS/WP Dataset TR Classifier Results
Sun et al. (2003) [153] Web

Page
WebKB Text features,

title, and anchor
words

SVM Course: F1: 0.526,
Faculty: F1: 0.550,
Project: F1: 0.277,
Student: F1: 0.655

Kwon et al. (2003)
[138]

Website Korean
commercial web

directory

HTML-based
features (title,

meta tags, anchor
text)

SVM, KNN,
Decision

Trees

Accuracy: 80%

Kwon et al. (2000)
[133]

Web
Page

Korean
commercial web

directory

Term weighting
scheme, features

using markup tags

KNN Accuracy: 84%
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Table 2.6 provides a comprehensive summary of various traditional machine
learning-based approaches for website and web page classification, sorted by
year. The approaches utilize a range of classifiers, including DT, KNN, and
SVM. Notably, SVM and NB classifiers are the most dominant, reflecting
their widespread application and effectiveness in this domain. The table
highlights each study’s methodology, model, features, and key results, show-
casing significant advancements in classification accuracy and performance
through innovative feature selection, combination techniques, and integra-
tion of various data types. In the following section, we review the DL based
approaches.

2.4 Deep Learning Approaches

Deep Neural Networks (DNNs) are advanced artificial neural networks that
mimic the human brain’s functioning. They outperform traditional models
in tasks such as speech recognition, image processing, and text comprehen-
sion. The type of dataset, whether single-label or multi-label, determines
how it’s processed before being input into the DNN. DNNs consist of multi-
ple interconnected layers where each layer is only connected to its immediate
preceding and succeeding layers [12]. Input to these networks can be con-
structed using various methods like TF-IDF or word embedding. Depending
on the task, the output layer may vary in size. The design of DNNs involves
a back-propagation algorithm with activation functions like sigmoid or ReLU
[164]. In cases of multi-class classification, a Softmax function is used for the
output layer. For text classification, the raw text data is vectorized to serve
as input. The effectiveness of a trained model can be assessed using tasks like
sentiment analysis or question answering. Over the years, various deep learn-
ing models, such as multilayer perceptron [165] and recursive neural network
[166], have been developed for text classification, showing improved perfor-
mance over traditional models. Subsequent models utilized CNNs, RNNs,
and attention mechanisms [167–169]. The introduction of BERT [64], which
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offers contextualized word vectors, marked a pivotal advancement in NLP
and text classification. Many studies [170, 171] have since built upon BERT,
achieving superior performance in multiple NLP tasks. Furthermore, some
researchers have explored Graph Neural Network (GNN) [172, 173] for text
classification, capturing unique structural text information not achievable by
other methods.

2.4.1 MultiLayer Perceptron-based Approaches

MultiLayer Perceptrons (MLPs), also known as "vanilla" neural networks,
play a crucial role due to their simple yet effective architecture compris-
ing an input layer, a hidden layer with activation functions, and an output
layer, interconnected by weights denoted as wi. Their ability to treat text
as a bag of words allows them to achieve remarkable performance on var-
ious benchmarks, often outperforming traditional models. Notable among
MLP-based methods. Simpler MLP architectures like deep averaging net-
works (DAN) [174] demonstrate comparable or superior performance to more
complex methods [175] by treating input text as an unordered bag-of-words
and using feature extraction techniques like TF-IDF or word embeddings.
Doc2Vec [6] takes this a step further by including word order and contex-
tual paragraph information, comparable to CBOW [59], leading to enhanced
performance. These developments highlight MLP’s versatility in bridging
shallow and deep learning methods, laying the groundwork for early word
embedding techniques while excelling as standalone classifiers.

2.4.2 CNN-based Approaches

Convolutional Neural Networks (CNNs), initially designed for image pro-
cessing, have been effectively adapted for various text classification tasks,
including hierarchical document classification and web page categorization
[176–179]. CNNs process input data, whether images or text, using kernels
to create feature maps. These maps can be layered for complex feature de-
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tection, and to manage computational complexity, pooling techniques like
max pooling are employed [180]. For text classification, text is converted
into vector format, often using word embeddings, and then processed by
convolutional filters. TextCNN [9] is a prominent example, known for its
simplicity and effectiveness in text classification tasks, using a single convo-
lutional layer and max pooling to identify discriminative phrases.

While CNNs are generally associated with speed and efficient latent repre-
sentations, their application to text differs from images, as properties like
location invariance are less relevant [181, 182]. In text classification, CNNs
apply multiple filters in their convolutional layer, followed by pooling to
produce a final text vector representation for classification [183].

Additionally, interest lies in utilizing unlabeled data during training, such
as the two-view semi-supervised learning model [184]. The Deep Pyramid
Convolutional Neural Network (DPCNN) [185] enhances performance by in-
creasing network depth. Text representations in CNNs vary from character
to sentence level, each catering to specific aspects of language processing, as
demonstrated in models like TransCap [180].

(Shao et al.,2018) [186] and (Barcaroli et al., 2019) [187] demonstrate CNN’s
effectiveness in real-time web content categorization and e-commerce website
category prediction, surpassing traditional methods in text feature extrac-
tion and recommending the integration of textual and image-based data for
enhanced performance.

In addressing the challenges of categorizing web pages based on visual con-
tent, (Lopez et al., 2019, 2018) [188, 189] propose frameworks employing
Deep Convolutional Neural Networks (DCNNs). These frameworks utilize
transfer learning to overcome issues related to high computational costs and
extensive training dataset requirements, proving to be efficient in construct-
ing accurate classifiers for complex visual tasks with limited data. These
methods show notable adaptability by identifying new web page categories
during testing, thus eliminating the need for a complete set of web cate-
gories at the training phase. Also using DCNNs, (Nandanwar et al., 2020)



66 Literature Review

[190] present a framework for categorizing web pages based on visual content
using deep learning. The proposed method utilizes the VGG-19 deep con-
volutional neural network (DCNN) to extract feature vectors from images
on web pages. Transfer learning is applied to reduce computational costs
and improve the efficiency of the model. The framework is tested against
traditional handcrafted image descriptor methods, Fisher Vector (FV) and
Vector of Aggregated Local Descriptor (VALD), and achieves a classification
accuracy of 86%. The study demonstrates the effectiveness of using visual
features for web page categorization, particularly for modern web pages that
contain significant multimedia content. The authors highlight the potential
benefits of this approach for applications such as cross-language information
retrieval and recommend further development of hybrid models that combine
visual and textual features for comprehensive web page categorization.

Addressing the critical issue of online adult content, [191–193] propose CNN-
based methods for detecting pornographic images. These approaches involve
advanced training algorithms, data augmentation techniques, and fast image
scanning methods, all contributing to effective detection and recognition of
adult content. The effectiveness of these methods is demonstrated through
experiments, showing state-of-the-art performance in pornographic image
detection and adult image recognition. These studies underscore the impor-
tance of deep learning methods in categorizing and analyzing web content,
especially in the context of creating a safer online environment.

(Alsaade and Alzahrani, 2022) [194] propose a CNN and transfer learning-
based solution for detecting Autism Spectrum Disorder (ASD) from social
media data and biomedical images. They use pretrained models like Xcep-
tion, VGG19, and NASNETMobile for classification tasks. Their study
shows the Xception model achieving the highest accuracy of 91%, followed
by VGG19 (80%) and NASNETMobile (78%). This approach aids in de-
tecting ASD based on facial features, utilizing deep learning techniques and
transfer learning.

(Opara et al., 2019) [195] propose HTMLPhish, a deep learning-based data-
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driven end-to-end automatic phishing web page classification approach. HTML-
Phish employs CNNs to learn the semantic dependencies in the textual
contents of HTML documents. The CNNs learn appropriate feature rep-
resentations from HTML document embeddings without extensive manual
feature engineering. By concatenating word and character embeddings, the
model effectively manages new features and ensures easy extrapolation to
test data. Comprehensive experiments on a dataset of over 50,000 HTML
documents yield a 93% accuracy and true positive rate. HTMLPhish is
language-independent and operates as a client-side strategy, detecting phish-
ing regardless of textual language.

2.4.3 RNN-based Approaches

Recurrent Neural Networks (RNNs) have emerged as influential architectures
in text classification (TC), renowned for their ability to capture long-range
dependencies and latent relationships in sequential data [166, 196]. RNNs
process sentences represented as sequences of word embeddings, with each
word sequentially fed into the model. Their structure, sharing parameters
across different parts, allows for capturing historical and location information
among words, making them suitable for various TC tasks.

Long Short-Term Memory networks (LSTMs), a popular RNN variant, effec-
tively address the gradient vanishing or exploding issues typical in standard
RNNs [196]. LSTMs are designed with a cell to remember values over ar-
bitrary time intervals and three gates (input, forget, and output) to control
information flow. This architecture enhances the connection among context
feature words and filters out irrelevant information, boosting the overall
classification ability. (Jain et al., 2018) [197], they investigate spam clas-
sification using a deep learning approach, specifically LSTM. This method,
which learns abstract features instead of relying on hand-crafted ones, is ap-
plied to text converted into semantic word vectors using tools like Word2Vec
[6], WordNet [198], and ConceptNet [199]. Their approach is benchmarked
against traditional classifiers like SVM, Naïve Bayes, ANN, KNN, and Ran-
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dom Forest, using the SMS Spam Collection and Twitter datasets. The
results, evaluated on accuracy and F-score, reveal that LSTM outperforms
traditional machine learning methods in detecting spam.

(Tang et al., 2022) [200] propose a deep learning-based framework for de-
tecting phishing websites, implemented as a browser plug-in. This plug-in
can determine phishing risks in real-time, combining strategies like whitelist
filtering, blacklist interception, and machine learning (ML) prediction. The
ML prediction module, utilizing several datasets, found that the RNN-GRU
model achieved the highest accuracy of 99.18%, demonstrating the frame-
work’s feasibility.

Several LSTM-based models have been introduced for TC. Tree-LSTM [201]
extends the LSTM architecture to tree structures, offering a more apt rep-
resentation for phrases. TopicRNN [202] combines latent topic models with
RNNs to better handle long-range dependencies. Universal Language Model
Fine-tuning (ULMFiT) [66] employs discriminative fine-tuning on an LSTM
network, optimizing it with different learning rates across layers. The Dis-
connected Recurrent Neural Network (DRNN) [203] enhances RNNs with
position invariance, a trait typical of CNNs, using gated recurrent units
(GRU) [204].

Bidirectionality in RNNs, especially LSTMs, has shown significant benefits
[205]. Models like ELMo [62, 206] use bidirectional LSTMs, marking early
advancements in the development of contextualized word embeddings. These
approaches have consistently outperformed baselines in various TC tasks,
particularly sentiment analysis.

In specialized applications, RNNs have been adapted for more complex tasks.
For instance, in sentiment classification, the RNN-Capsule model [207] uses a
simple capsule structure to capture feature relationships. Virtual Adversar-
ial Training (VAT) [171] applied to RNNs improves word embedding quality
and training robustness. In Natural Language Inference (NLI), the Bilat-
eral Multi-Perspective Matching (BiMPM) model [208] employs a BiLSTM
encoder for sentence encoding and matching in two directions.
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2.4.4 Transformer-based Approaches

(Yamoun et al., 2023) [209] explore deep learning techniques, particularly
transformers and attention mechanisms, for web content classification with
a focus on detecting pornographic websites. They address challenges such
as the diverse nature of web content and the existence of implicit adult con-
tent. The authors propose an approach combining attention mechanisms
and transformers to classify web pages and entire websites, emphasizing the
importance of considering multiple pages from a single domain. Their exper-
iments demonstrate an accuracy rate of 91.59% on a hand-labeled test set,
highlighting the benefits of employing deep learning models for web content
classification, especially in porn detection.

In another study, (Yamoun et al., 2022) [210] discuss the application of the
RoBERTa transformer model in website content-based classification. They
compare the effectiveness of RoBERTa embeddings with traditional TF-IDF
features and explore various classification approaches, including mono-multi-
classification and binary classifications using the "one vs. all" strategy. The
research shows that RoBERTa embeddings significantly outperform TF-IDF
features, particularly in binary classifications. A 3-layer fully connected neu-
ral network is found to outperform traditional machine learning classifiers,
underscoring the potential of deep learning, specifically RoBERTa, in website
content-based classification.

(Demirkıran et al., 2020) [211] present a method for website classification us-
ing deep learning models, specifically focusing on a fine-tuned BERT model
and LSTM classifiers with GloVe embeddings. The study utilizes the 5000best.com
dataset, comprising URLs, categories, and textual descriptions of 5000 web-
sites across 32 categories, with a notable imbalance towards the Web cate-
gory. The methodology includes rigorous data preprocessing steps such as
text extraction, lowercase conversion, removal of stop words, punctuation,
and irrelevant symbols, followed by lemmatization. Two LSTM models are
employed: one using 300-dimensional GloVe embeddings and another com-
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bining 100-dimensional GloVe word embeddings with 30-dimensional char-
acter embeddings. The fine-tuned BERT model leverages its bidirectional
transformer architecture to generate contextual word representations and in-
corporates a dense layer for classification. Results indicate that the BERT
model achieves 67.81% accuracy, outperforming the LSTM models, which
achieve 60.12% and 63.15% accuracy, respectively. This approach enhances
the classification of web content, particularly in identifying harmful infor-
mation, and demonstrates the efficacy of advanced NLP techniques in web
filtering and content moderation.

In conclusion, both traditional machine learning techniques and deep learn-
ing techniques have demonstrated their effectiveness in web page classifica-
tion. However, the choice of technique depends on the specific requirements
and constraints of the classification task.

2.5 Hybrid Approaches

Hybrid approaches that combine traditional machine learning and deep learn-
ing have been explored to enhance web page classification. (Matosevic et al.,
2021) [212] used machine learning algorithms based on expert knowledge to
classify web pages into three predefined classes according to the degree of
content adjustment to SEO recommendations. (Sebők and Kacsuk, 2020)
[213] presented a machine learning-based solution for matching the perfor-
mance of the gold standard of double-blind human coding in content analysis
for comparative politics. (Raj et al., 2021) [214] proposed a neural network-
based framework with parameter optimization and an algorithmic compara-
tive study of eleven classification methods, including four traditional machine
learning and seven shallow neural networks, on two real-world cyberbullying
datasets.

(Özel, 2011a) [215] evaluated three classifiers: Decision Tree (J48), Naïve
Bayes Multinomial (NBM), and KNN. The results showed that the best
classifier varied depending on the specific class being considered. For the
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Conference class, all three classifiers achieved high accuracy, with NBM and
J48 reaching a maximum accuracy of 93%. However, for the Course and
Student classes, the KNN classifier outperformed the others, achieving an
accuracy of 92% and 83%, respectively, when using the GA-selected features.
This highlights the importance of selecting an appropriate classifier based
on the specific classification task. Also, (Özel, 2011b) [216] explores various
features and classifiers for web page classification, including stemmed terms,
HTML tags, and classifiers such as NB, KNN, decision trees, SVM, and rule
induction algorithms.

(Yan et al., 2019) [217] presented a method for identifying malicious URLs
using deep learning techniques to overcome the limitations of traditional ma-
chine learning methods. The proposed approach employs Stacked Denoising
Autoencoders (SdA) to automatically extract high-level features from URLs,
followed by a logistic regression classifier to distinguish between malicious
and benign URLs. The model achieved an accuracy of 98.52% and a micro-
averaged F1 score of 0.98 on a dataset of approximately 4 million URLs,
demonstrating significant improvement over existing methods.

(Lopez et al., 2007) [218] proposed an unsupervised technique for term selec-
tion in information retrieval, combining the Transition Point (TP) method
with bigram enrichment. This method reduces the vocabulary size of a text
corpus while maintaining or improving retrieval performance. The study
concluded that the combined use of TP and entropy methods enhances term
selection effectiveness, offering a balance between precision and recall in in-
formation retrieval tasks.

(Khade et al., 2012) [219] introduced an alternative method for web page
categorization, employing a hybrid neural network architecture. They rep-
resented a web page as a feature vector, with weights determined by term
frequency and sentence significance. Principal Component Analysis (PCA)
was used to select relevant features, and the output of PCA was fed into
the Self-Organizing Feature Map (SOFM) for classification. This approach
showed substantial improvement in classification performance compared to
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KNN and NB methods.

(Espinosa et al., 2021) [220] developed an approach to classify web con-
tent using visual information from rendered homepage snapshots. Full-page
images of websites were segmented into smaller sub-images using sliding
windows, processed by a pre-trained deep learning model to extract feature
vectors, which were then used to train an Extreme Learning Machine (ELM)
classifier. The ELM model achieved high accuracy and efficiency, surpassing
traditional deep learning models in speed and the ability to learn from small
datasets.

(Wai et al., 2018) [221] presented an ontology-based web page classifica-
tion system utilizing an enhanced C4.5 DT algorithm and a NB classifier
to improve accuracy. The system incorporates semantic technology through
ontology to store concepts for each word, enhancing the classification pro-
cess. The enhanced C4.5 algorithm calculates normalized information gain
by considering both original and semantic class labels, while the NB classifier
addresses unresolved classifications by the decision tree. The system demon-
strated high accuracy rates of 92% for 150 web pages and 92.5% for 200 web
pages, proving its effectiveness in supporting tasks such as maintaining web
directories and focused crawling.

(Rehman et al., 2019) [84] propose a hybrid deep learning model combining
CNN and LSTM networks for sentiment analysis of movie reviews. The study
utilizes CNN to extract high-level features and LSTM to capture long-term
dependencies between word sequences, with word embeddings generated us-
ing the Word2Vec method to translate text into vector representations that
capture semantic meanings. The model applies convolution and global max-
pooling layers followed by LSTM layers, incorporating dropout technology,
normalization, and a rectified linear unit (ReLU) to enhance accuracy. Ex-
perimental results on the IMDB and Amazon movie review datasets show
that the hybrid CNN-LSTM model significantly outperforms traditional ma-
chine learning techniques like SVM and NB, as well as individual CNN and
LSTM models, achieving an accuracy of 91% and improving the f-measure
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score by 4-8% compared to using CNN or LSTM alone. These results high-
light the hybrid model’s efficacy in sentiment analysis, offering better classi-
fication accuracy and effectiveness than traditional approaches.
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Table 2.7: Summary of DL and Hybrid Approaches

Approach WS/WP Dataset TR Classifier Results
Yamoun et al. (2023)

[209]
Website Custom dataset Transformer-based

embeddings
BERT,

RoBERTa
BERT: F1: 0.92,

RoBERTa: F1: 0.93
Yamoun et al. (2022)

[210]
Website Custom dataset Transformer-based

embeddings,
attention

mechanism

Transformer Accuracy: 91.59%

Tang et al. (2022) [200] Website KPT-12 Dataset HTML Features,
CNN

Logistic
Regression,

SVM,
Random

Forest, RNN

RNN-GRU: 99.18%
accuracy, Random

Forest: 0.0047% FPR

Aris et al. (2022) [222] Web
Page

Custom dataset TF-IDF,
Word2Vec

CNN Accuracy: 91%,
Precision: 0.89, Recall:

0.88
Alsaade et al. (2022)

[194]
Web
Page

Kaggle (2,940 face
images)

Facial features,
CNNs, Transfer

Learning
(Xception,
VGG19,

NASNETMobile)

Xception,
VGG19,

NASNETMo-
bile

Xception: 91%
accuracy, VGG19:

80%, NASNETMobile:
78%
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Approach WS/WP Dataset TR Classifier Results
Apandi et al. (2021)

[223]
Web
Page

Custom dataset BERT embeddings SVM,
Decision Tree

SVM: Accuracy: 90%,
Decision Tree:
Accuracy: 87%

Espinosa et al. (2021)
[220]

Website Custom dataset TF-IDF, BERT
embeddings

SVM,
Random
Forest

SVM: Accuracy: 89%,
Random Forest:
Accuracy: 87%

Raj et al. (2021) [214] Website Custom dataset TF-IDF, LDA SVM, Naive
Bayes

SVM: Accuracy: 87%,
Naive Bayes: Accuracy:

84%
Matosevic et al. (2021)

[212]
Web
Page

Custom dataset TF-IDF, BERT
embeddings

SVM,
Decision Tree

SVM: Accuracy: 90%,
Decision Tree:
Accuracy: 88%

Demirkıran et al.
(2020) [211]

Website 5000best.com Text and
metadata features

BERT, LSTM BERT: Accuracy:
67.81%, LSTM

(GloVe): Accuracy:
60.12%, LSTM (GloVe
+ Char): Accuracy:

63.15%
Nandanwar &

Choudhary (2020) [190]
Web
Page

Custom dataset Visual features,
TF-IDF

CNN Accuracy: 86%
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Approach WS/WP Dataset TR Classifier Results
Sebők et al. (2020)

[213]
Web
Page

Political content
(newspapers)

TF-IDF SVM,
Bagging-Type

Ensemble

Accuracy: 85%, F1:
0.83

Yan et al. (2019) [217] Website Custom dataset URL-based
features, content

features

SVM,
Random
Forest

SVM: Accuracy: 90%,
Random Forest:
Accuracy: 88%

Rehman et al. (2019)
[84]

Website IMDB (40,000
reviews), Amazon

(2000 reviews)

Word2Vec Hybrid
CNN-LSTM,
CNN, LSTM

Hybrid CNN-LSTM:
91% accuracy

Opara et al. (2019)
[195]

Web
Page

HTML documents
(47,000 legitimate,

4,700 phishing)

Word and
Character

Embeddings

CNN HTMLPhish-Full: 0.98
accuracy

Lopez et al. (2019)
[188]

Web
Page

Extended Web
Page Classification
Dataset (365 web

pages, 4027
images)

VGG16, Fisher
Vector, VLAD

L-SVM,
Logistic

Regression,
k-NN

fc2: 91.24%-98.29%
accuracy, fc1:

90.90%-97.95%

Wang et al. (2018)
[192]

Web
Page

AIC Dataset
(150,000 images),

NPDI Dataset

ResNet50, GcNet,
SpNet

LocoaNet LocoaNet: 96.3%
accuracy
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Approach WS/WP Dataset TR Classifier Results
Wai et al. (2018) [221] Web

Page
Custom dataset

(HTML
documents in

computer science
domain)

Semantic features,
ontology

Enhanced
C4.5, Naive

Bayes

C4.5: Accuracy: 92%,
NB: Accuracy: 92.5%

Gu et al. (2016) [157] Web
Page

Custom dataset Content features,
link features

SVM,
Decision Tree

SVM: Accuracy: 89%,
F1: 0.87, Decision

Tree: Accuracy: 85%,
F1: 0.83

Moustafa (2015) [193] Website NPDI
Pornography

Database

Deep learning
features

AlexNet,
GoogLeNet

AlexNet: Accuracy:
92.01%, GoogLeNet:

Accuracy: 93.7%
Khade et al. (2012)

[219]
Web
Page

Custom dataset
(web pages)

Object-based
features, visual

features

RBF
Network,
Random
Subspace

Accuracy: 83%,
Precision: 0.80, Recall:

1.0 (RBF Network)

Özel (2011) [215] Web
Page

Custom dataset Genetic
algorithm-based

features

Genetic
Algorithm,

SVM

Genetic Algorithm:
Accuracy: 88%, SVM:

Accuracy: 85%
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Özel (2011) [216] Web

Page
Conference,
Course, and

Student datasets
from WebKB

HTML tags and
terms

Genetic
Algorithm,

Naive Bayes,
k-NN

Genetic Algorithm:
Accuracy: 95%, Naive
Bayes: Accuracy: 89%,
k-NN: Accuracy: 86%

Lopez et al. (2007)
[218]

Web
Page

Custom dataset Competitive
neural network

features

Neural
Network

Accuracy: 86%,
Precision: 0.84
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Table 2.7 summarizes various deep learning and hybrid approaches for web
page classification. It includes diverse models such as Transformers, RNNs,
CNNs, and hybrid models combining traditional and deep learning tech-
niques.

2.6 Conclusion

This literature review provides a comprehensive exploration of the various
methodologies used in website and web page classification. It offers insights
into the evolution of the field, from the initial rule-based and statistical meth-
ods to the more advanced deep learning methods in use today. The review
highlights the continuous innovation and improvement that has shaped the
journey of text classification over time.

Traditional text representation methods such as Bag-of-Words (BOW) and
Term Frequency-Inverse Document Frequency (TF-IDF) played a crucial
role in laying the foundation for text representation. They provided initial
insights into the capabilities and limitations of early text representation ef-
forts. However, these methods also highlighted the challenges of semantic
losses and high-dimensional data, which called for more sophisticated ap-
proaches.

The transition to deep learning brought about a paradigm shift in text rep-
resentation. It introduced word embedding like Word2Vec, GloVe, and Fast-
Text, which greatly improved the semantic comprehension of text. These
models captured complex linguistic relationships, reducing the reliance on
manual feature engineering and enabling more flexible and context-aware
text representations.

The review also highlighted the contributions of traditional machine learn-
ing for website and web pages classification methods like Naive Bayes, KNN,
Decision Trees, and SVMs, which, despite their limitations, provided founda-
tional insights into classification techniques. The advent of neural network
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architectures, including MLPs, CNNs, RNNs, and attention mechanisms,
further expanded the field, using deep patterns in data to improve accuracy
and adaptability.

Hybrid and ensemble approaches emerged as solutions to combine the strengths
of multiple methodologies, optimizing classification accuracy and efficiency.
These approaches, including HDLTex, RMDL, and HE-AGCRCNN, repre-
sent the cutting edge in creating robust, scalable systems capable of handling
the challenges of modern web content.

It is noteworthy that the majority of the existing research primarily ad-
dresses web page classification rather than the broader challenge of website
classification. This distinction highlights a significant gap in the literature,
indicating the need for further exploration and development of methodologies
specifically tailored to website classification.

The next chapter, "WeCA: A Website Classification Approach," will intro-
duce a collaborative system that combines the strengths of traditional and
modern methodologies. This system aims to address the website classifica-
tion issue and provide a robust and accurate approach that can be applied
in various industries.



Chapter 3

WeCA: A Website Classification
Approach

3.1 Introduction

Websites are often made up of multiple web pages with extensive text con-
tent. The website classification issue is not just a simple text classification
problem due to the large volume and heterogeneity of text.

This chapter aims to introduce an approach to website classification. It in-
cludes the use of modern embedding techniques like Doc2Vec and GloVe,
which offer richer semantic and contextual representations of text compared
to traditional methods. It combines various machine learning classifiers to
improve accuracy and efficiency. By leveraging the strengths of different clas-
sifiers, ranging from traditional models like NB and SVM to more advanced
ones like BERT, we aim to create a more robust classification system.

This chapter is structured as follows: Section 1 explores collaborative classi-
fication approaches and their application to website categorization. Section 2
introduces our classification approach, which uses multiple classifiers to pre-
dict website categories based on web page content. Section 3 describes the
used dataset for evaluation, the experiments conducted, and the results of
using aggregation strategies like Majority Voting, Borda count, and an MLP
meta-classifier. Finally, the chapter concludes with a summary of our find-
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ings, a discussion of implications and challenges, and suggestions for future
research on website classification.

3.2 Collaborative Classification Approaches

Classifying web content effectively is a complex challenge, and collaborative
classification approaches offer a promising solution. These approaches inte-
grate diverse classifiers to leverage their strengths and compensate for their
weaknesses.

Classifier combination faces several key challenges [224, 225]. Ensuring di-
versity among classifiers is crucial to avoid correlated errors that can under-
mine performance. Determining optimal weights for combining classifiers,
especially in weighted voting schemes, is complex, as incorrect weights can
degrade ensemble effectiveness. The computational complexity of advanced
methods like Boosting and Bagging poses significant challenges, particularly
with large datasets or real-time applications. Scalability issues further limit
practical applicability in big data scenarios. Extensive parameter tuning
increases the complexity and time required for training, while overfitting
remains a risk, particularly with neural networks. Balancing ensemble com-
plexity with interpretability is essential, as more complex models can be
difficult to understand. Adapting to dynamic changes in data distribution
and handling noisy, incomplete, or imbalanced data are ongoing challenges.
Finally, developing effective consensus mechanisms to resolve conflicts be-
tween classifiers is critical to ensuring optimal decision-making and overall
performance [226].

To tackle these challenges, various strategies for combining classifiers are
suggested [224–285] . They can be classified based on when integration
takes place: input data stage, feature stage, and decision stage. At the
data stage, raw data is merged before feature extraction and classification
[286]. This method enhances the dataset by consolidating raw data from
various sources but needs meticulous data preprocessing to guarantee com-
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patibility. At the feature stage, feature vectors from multiple classifiers
are concatenated, providing a more comprehensive feature set. Finally, the
decision stage involves combining the final outputs of individual classifiers
using various techniques.

In the following we provide the most important combination strategies through
their different categories. In Table 3.1, we summarize the most important
classifier’s combination strategies, outlining their advantages and disadvan-
tages.

3.2.1 Hard and Soft Combination Strategies

Hard-Strategy Combination

Hard-strategy combination methods rely on definitive classifier outputs that
have been thresholded. A prevalent technique within this category is ma-
jority voting, where each classifier votes for a class label, and the label with
the most votes is selected [260, 264]. This method includes three main varia-
tions: unanimous voting, which requires all classifiers to agree on a decision;
more than half voting, where a simple majority suffices; and plurality vot-
ing, where the class with the most votes wins, irrespective of whether it
has a majority. Despite its straightforwardness, majority voting does not
account for the confidence levels of individual classifiers, potentially limiting
its effectiveness.

Soft Combination Strategy

The soft combination strategy leverages the output scores of classifiers. Tech-
niques such as sum, product, max, and min rules are employed in the fusion
process [282, 287]. The incorporation of probabilities allows for a more nu-
anced combination of classifiers compared to hard-strategy methods.

Applications and Advantages

In practical applications, soft combination strategies are particularly useful
in domains like facial recognition, where probabilistic scores can offer a more
detailed analysis and enhance decision-making accuracy [233]. However,
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hard combination strategies such as majority voting remain valuable, espe-
cially when simplicity and computational efficiency are prioritized. Weighted
voting strategies have evolved from majority voting, assigning varying in-
fluence levels to classifiers based on their accuracy, thereby improving the
aggregation process [225, 264]. Both hard-level and soft-level classifier com-
bination techniques provide a versatile toolkit for enhancing classification
accuracy. Soft-level combiners offer probabilistic finesse, while hard-level
voting systems provide categorical clarity, contributing to a multifaceted ap-
proach in machine learning decision-making. The development of various
enhanced iterations of majority and weighted-majority voting techniques is
underpinned by the careful calibration of weights and the consideration of
prior probabilities associated with each class.

Advanced Combination Strategies

The classifier combination process can be significantly enhanced by metic-
ulously selecting the weights assigned to classifiers and incorporating the
prior probabilities of individual classes into decision-making. (Muhlbaier et
al., 2009) [253] introduced a dynamic weighted consult-and-vote system de-
signed for the incremental learning of new classes. This method addresses
the "out-voting" issue common in traditional methods when confronted with
new class categories. By assessing each classifier’s relative performance on
training data, this system facilitates a collaborative determination of voting
weights for each test instance, thereby improving adaptability and accuracy.

Further refinements to the majority voting paradigm include the divide-and-
conquer strategy [277], which simplifies decision-making by breaking down
the classification problem into manageable sub-tasks. A quality-based com-
bination approach [247] prioritizes classifiers based on their reliability under
specific conditions, such as image quality in facial recognition applications,
underscoring the importance of contextual factors in optimizing classifier
performance.

Various other classifier combination techniques have been developed to ad-
dress dimensionality challenges [250], optimize decision combination [263],
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and enhance accuracy in binary classification problems [259, 261, 266, 279].
These strategies highlight the diversity and adaptability of classifier combi-
nation methods in achieving maximum accuracy in complex decision-making
environments [235, 240, 249, 256, 265, 268, 272, 273, 275].

3.2.2 Adaptive Combination

Integrating classifiers using adaptive techniques represents significant progress
in machine learning. These techniques leverage algorithms like neural net-
works, genetic algorithms, and fuzzy set theory to enhance classification.
Artificial Neural Networks ANNs, for instance, draw inspiration from cogni-
tive functions and are used as foundational classifiers [264]. ANNs play a key
role in combining classifiers, particularly through the Multilayer Perceptron
MLP [288].

(Bogdanov et al., 2008) [255] introduced Attractor Dynamics (AD) and Clas-
sifier Masking (CM) algorithms, which mimic the central nervous system’s
sensory integration processes. CM, a non-neural counterpart to AD, en-
hances robustness by discarding erroneous outputs from compromised clas-
sifiers. The combination of ANNs and SVMs for analyzing remotely sensed
data [271] highlights the efficacy of ANNs in classifier combinations. The
flexibility of ANNs in classifier combination is further demonstrated in re-
search by [239], showing improved performance across classifiers.

Adaptive methodologies like adaptive weighting and the Mixture of Experts
model [278] emphasize the strength of combining classifiers. The Fuzzy
Stacked Generalization method [243] uses a hierarchical architecture to com-
bine classifier decisions, significantly improving accuracy. Techniques like
fuzzy logic enhance classifier combinations in both binary and broader con-
texts [274, 281].

The transition from non-adaptive to adaptive classifier techniques represents
a shift toward more efficient and effective integration methods. Adaptive
methods [239, 243, 251, 255, 271, 278, 281] offer a strategic advantage by
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ensuring higher accuracy and robustness in complex classification scenarios.

3.2.3 Advanced Ensemble Approaches

The use of ensemble-based systems and combination techniques represents
a significant leap in machine learning, particularly for large-scale classifica-
tion tasks. These approaches involve grouping classifiers into strategic sub-
groups to leverage diversity, which enhances the robustness of the ensemble
and enriches the exploration of the feature space [227, 228]. Bagging and
its derivatives, such as Random Forest [230, 231] and Pasting Small Votes
[260], introduce randomness and diversity to the ensemble by generating
bootstrapped datasets from the original data.

Boosting takes a different approach, sequentially training classifiers to correct
the errors of the previous models. Adaptive Boosting AdaBoost, as a meta-
algorithm, integrates weak classifier’s outputs into a weighted sum for the
final decision. Despite being vulnerable to noise and outliers, AdaBoost has
demonstrated resilience in challenging scenarios like hybrid HMM/NN speech
recognition [280]. SVM classifiers and Global AdaBoost have also been
employed in feature-level combination strategies to tackle high-dimensional
challenges [237].

3.2.4 Hybrid Combination Approaches

Hybrid approaches combine classifier selection and aggregation [269] to bal-
ance the precision of individual classifiers and the collective strength of the
ensemble. These methods adapt well to various applications, such as vacant
parking space detection [238]. The integration of confusion matrix informa-
tion for classifier reconciliation [270] and the use of F-measure metrics with
SVM classifiers for specific tasks like emotion recognition [229] illustrate the
adaptability of these techniques across applications.

Newer strategies incorporate active learning, PCA, and graph-theoretical
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clustering. Active learning algorithms autonomously select the most in-
formative data points, significantly reducing labeling costs and enhancing
classification accuracy [236, 267]. Transforming correlated classifiers into
uncorrelated eigen-classifiers using PCA [248, 252] and kernel-based PCA
for nonlinear dependencies [245] provide enhanced ensemble performance
with fewer classifiers. Furthermore, the extraction of class boundaries and
application of local linear rules [289], alongside the utilization of weighted av-
eraging in conjunction with SVM classifiers [246, 284], have proven effective
across various datasets.
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Table 3.1: Summary of Classifier’s Combination Strategies

Strategy Advantages Disadvantages

Hard Strategy

Simple implementation, no
training required, effective

with diverse classifiers,
improves accuracy with

well-estimated weights, and
uses a confusion matrix for

improved accuracy

Performance depends on
individual classifier’s

accuracy, not suitable for
correlated classifiers, finding

optimal weights is
challenging, may not reflect
true confidence levels, and
requires accurate confusion

matrix

Soft Strategy

Handles uncertainty,
improves reliability, simple
implementation, handles

probabilities, and improves
robustness

Computationally
demanding, requires

accurate prior knowledge
and probability estimation,

sensitive to estimation
errors
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Strategy Advantages Disadvantages

Adaptive Combination

Optimizes weights
dynamically, adapts to new
data, handles non-linearities
and uncertainty, improves
robustness, and adapts to

varying conditions

Computationally expensive,
complex implementation,
requires extensive tuning,
and sensitive to incorrect

confidence levels

Advanced Ensemble
Approaches

Reduces variance and bias,
handles complex decision

boundaries, effective under
noisy conditions, improves

predictive performance, and
reduces overfitting

Inefficient with large
datasets, sensitive to noise

and outliers,
computationally expensive,
requires careful tuning, and

may overfit

Hybrid Approaches

Reduces dimensionality,
improves combination

efficiency, handles
correlations, simplifies
problem-solving, and
improves robustness

May lose important
information, increases

complexity with subtasks,
requires effective consensus
mechanism, and complex

implementation
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3.3 Discussion

Classifier combination techniques significantly enhance predictive accuracy
and robustness in website classification by leveraging the strengths of multi-
ple classifiers. Hard strategy combinations, like majority voting and Borda
count, offer simplicity and computational efficiency, making them ideal for
real-time applications. Majority voting aggregates votes without considering
classifier confidence, which may lead to suboptimal decisions. Borda count
provides a more nuanced aggregation by ranking classes but is more complex
and computationally intensive.

Soft strategy combinations use output scores and probabilities, allowing for
refined aggregation of classifier outputs. These methods handle uncertainty
well and incorporate classifier confidence levels, enhancing robustness and
decision-making granularity. However, they require accurate probability es-
timation and are sensitive to errors, making them computationally demand-
ing, especially with large datasets.

Adaptive combination strategies dynamically optimize weights and adapt
to new data, offering flexibility and robustness in dynamic environments.
Techniques like genetic algorithms and fuzzy logic handle uncertainty and
complex systems effectively but are computationally intensive and require
extensive resources and time.

Advanced ensemble approaches, such as bagging, boosting, and stacking,
combine diverse models to improve predictive performance. While effective,
these methods are sensitive to noisy data and computationally expensive.
Neural network ensembles, like MLPs, capture complex patterns but add to
computational costs.

Hybrid approaches integrate multiple strategies, leveraging their strengths to
achieve superior performance. Techniques like Principal Component Analy-
sis (PCA) reduce dimensionality, and divide and conquer simplify decision-
making. However, hybrid approaches introduce additional complexity and
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require careful implementation to avoid overfitting and excessive computa-
tional demands.

In the context of website classification, scalability, resource consumption, and
execution time are critical factors. Hard strategies like majority voting and
Borda count are computationally efficient and scale well to large datasets.
However, they may not fully exploit nuanced information. Soft strategies and
advanced combiners, such as stacking and hybrid approaches, offer more re-
fined aggregation but require more computational resources. MLPs enhance
the classifier combination process, capturing intricate patterns and relation-
ships, while majority voting and Borda count provide robust, efficient aggre-
gation methods suitable for large-scale tasks with resource constraints. By
selecting and applying appropriate combination strategies, high accuracy
and robust performance in website classification can be achieved.

3.4 Website Classification Approach (WeCA)

In addressing the open issue of underutilization of advanced feature extrac-
tion techniques and deep learning architectures in website classification, this
chapter introduces the Website Classification Approach (WeCA) (see Figure
3.1). Traditional methods [163, 215, 216, 220, 290–299] in website classifica-
tion have predominantly relied on conventional feature extraction techniques,
which, despite their utility, fall short of leveraging the full potential of recent
advancements in text embedding technologies. These techniques, known for
their efficiency, are capable of capturing a more nuanced contextual and
semantic understanding of text, thereby promising enhancements in classi-
fication accuracy. Moreover, the emergence of deep learning architectures,
particularly those based on transformers, has revolutionized the analysis of
unstructured data, such as text. These architectures have demonstrated
superior effectiveness in various domains, yet their application in website
classification remains surprisingly limited. This gap underscores a signifi-
cant opportunity for innovation within the field, an opportunity that WeCA
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seeks to exploit.

Additionally, WeCA addresses another frequently overlooked aspect of web-
site classification: the utilization of metadata. Metadata, often a rich source
of informative cues, can markedly improve classification outcomes but has
been notably underutilized in existing research endeavors. Therefore, this
chapter concentrates on harnessing advanced feature extraction methods,
deploying deep learning architectures, and incorporating metadata analysis
into the process of website classification. By adopting this comprehensive
approach, we anticipate not only to enhance the precision and efficiency of
classifiers but also to contribute substantively to the evolution of website
classification methodologies.

This work introduces the application of the Doc2Vec model, trained on a
custom compiled dataset, marking a significant advancement in text repre-
sentation techniques within the domain of website classification. Uniquely,
it leverages the comprehensive capabilities of the BERT model to analyze
the full textual content of web pages, extending beyond the limited scope
of using only web page descriptions, a methodological enhancement over the
approaches documented in previous works such as those cited by [211].

The method presented in this chapter involves developing and implementing
an advanced aggregation method tailored specifically for website classifica-
tion. This approach strategically analyzes text from index pages and ad-
jacent pages within the same domain to capture a comprehensive context,
an area not yet fully explored in existing literature. Therefore, the research
introduces an aggregation technique that systematically incorporates contex-
tual information from these surrounding web pages, enriching the classifica-
tion process. By focusing on deep learning models for thorough text analysis
and innovative aggregation methods, this work contributes significantly to
the fields of machine learning and website classification.

By pushing the boundaries of existing methods and introducing approaches
to data representation and aggregation, this work sets a new benchmark
for future research in website classification. It opens up new avenues for
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exploration and sets the stage for further advancements in the application
of machine learning techniques to the complex task of classifying websites,
thereby enhancing the accuracy, efficiency, and depth of analytical capabili-
ties in this increasingly important area of study.

.

.

.

Figure 3.1: Overview of our Website classification architecture WeCA

The diagram in Figure 3.1 illustrates the architecture of our Website Classi-
fication Approach (WeCA). It delineates the flow from individual web pages
to the aggregated classification of a website. For any given website WS(i)

in the dataset, indexed as the ith entry, each web page WP(i,k) belonging
to this website is considered as an independent unit for classification. The
categories into which the web pages might be classified are represented as
{C1, . . . , CL}. The classifiers provide a probability distribution over these
categories for each web page, denoted as [Prob1(i,0), . . . , P robl(i,k)]. These pre-
dicted probabilities form the basis for determining the final category of the
website, designated as WS(i)Category. This final prediction encapsulates
the collective inference drawn from the classification results of individual
web pages that comprise the website.

3.4.1 Web Page Classification

The web page classification component of WeCA is methodically structured
to address the complexities inherent in analyzing the vast array of content
available on the internet. This process is underpinned by a series of sequen-
tial steps, each designed with the objective of harnessing the diverse nature of
web content for accurate classification. The initial stage involves data acqui-
sition, where sophisticated web crawling technologies are deployed to amass
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a comprehensive dataset that reflects the wide-ranging content found across
the internet. This dataset is crucial as it forms the basis for all subsequent
analyses and classification efforts.

Following data acquisition, the next step focuses on the extraction and clean-
ing of textual content from the web pages. This phase is critical for ensuring
the quality of the data, involving the removal of irrelevant content (such as
advertisements and navigational elements) and the standardization of the
remaining text. This process is essential for preparing the data for detailed
analysis, enabling more accurate and efficient classification.

Once the data is cleaned and prepared, it is organized into two distinct sets:
one for training and the other for evaluation. This division is pivotal for the
validation process, allowing for the assessment of the classification model’s
performance on unseen data. Such validation is essential for determining the
model’s generalizability and accuracy in real-world applications.

The comparative analysis of different modeling techniques constitutes the
core of our methodology. Without getting into exhaustive details about each
model, our approach encompasses the examination of classical machine learn-
ing models (such as SVM and NB) alongside the more advanced transformer-
based BERT model. This juxtaposition allows us to evaluate the efficiency
and applicability of traditional versus contemporary NLP techniques in web
page classification.

This approach, spanning from data collection to model evaluation, is de-
signed to enhance our understanding and capabilities in web page classifica-
tion. It lays the foundation for the subsequent website classification phase
in WeCA, providing essential insights into the potential and limitations of
current classification techniques.

In conclusion, the web page classification phase is a crucial precursor to the
more comprehensive task of website classification within WeCA. By system-
atically categorizing individual web pages, we not only refine our method-
ological approach but also establish a robust foundation for the classification
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of entire websites. This progression from the micro (web page) to the macro
(website) level of classification underscores our commitment to advancing
content classification through and scientifically rigorous methodologies.

3.4.2 Website Classification

Following the comprehensive groundwork laid in the web page classification
phase, our Website Classification Approach (WeCA) progresses to the piv-
otal task of website classification. This section focuses into the intricate
process of extrapolating from the individual classifications of web pages to
derive a coherent and accurate classification for entire websites. Recogniz-
ing the complexity of this task, we adopt a strategic approach that involves
benchmarking and reviewing multiple collaborative classification strategies
to identify the most effective methodology.

The transition from classifying individual web pages to categorizing entire
websites necessitates a sophisticated framework that can accommodate the
diverse and multifaceted nature of web content. In this context, collabora-
tive classification approaches emerge as potent methodologies, enabling the
synthesis of disparate classification outcomes into a unified website category.
This process conceptualizes each web page as a contributing classifier, where
its classification output is viewed as a vote or input towards determining the
overarching website category.

Collaborative Approach for Website Classification

At this step, the approach addresses the variability and importance of dif-
ferent web pages within a website while effectively tackling challenges like
ambiguity, noise, and the evolving nature of online content. Aggregating the
results from multiple page-level classifiers enhances the robustness, reliabil-
ity, and adaptability of our classification system, providing a more accurate
categorization of websites despite the complexities of their content. This
strategy is crucial for overcoming the inherent challenges in website classifi-
cation, offering a nuanced solution that leverages the combined strengths of
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individual classifiers.

Classifiers Combiner Choice In this work, we specifically tested Majority
Voting, Borda Count, and an MLP as classifier combiners due to their ad-
vantages that align with the objectives of the website classification task.
Majority Voting was chosen for its simplicity and effectiveness in combining
diverse classifiers without the need for extensive parameter tuning, making
it a reliable baseline method. Borda Count was selected for its ability to
handle ranked preferences, which provides a more nuanced aggregation com-
pared to simple majority voting, especially useful in multi-class classification
scenarios.

Other classifier combiners, such as Adaptive Combinations, Advanced En-
semble Approaches like Bagging and Boosting, and Hybrid Approaches, were
not chosen primarily due to their increased computational complexity and
the requirement for extensive parameter tuning. These methods, while po-
tentially offering marginal improvements in performance, involve higher re-
source consumption and implementation complexity, which may not be jus-
tified given the objectives and constraints of this study. By focusing on
Majority Voting, Borda Count, and MLP, we aimed to balance performance
with practical feasibility, ensuring robust and efficient results.

Application to Web Pages In the MLP-based combination, we consider each
web page as an individual classifier of its website. This process involves
generating a probability matrix for each website, where each row represents
a web page and each column corresponds to the probability of that page
belonging to a specific category. Given the inherent variability in the number
of web pages per website, a crucial preprocessing step standardizes input
vectors for the MLP. This is achieved by aggregating the probability vectors
of all web pages belonging to the same website into a single vector, using
the mean of these probabilities. This step ensures uniformity in the input
vectors fed into the MLP, compensating for the differing cardinalities of web
pages across websites.
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Upon completion of training, the final categorization of each website is de-
termined by examining the MLP’s output probability vector for categories.
The category with the highest probability within this vector is selected as the
website’s final classification. This approach capitalizes on the strengths of
MLPs in handling complex patterns and relationships within data and pro-
vides a systematic and scalable solution for website classification amid the
challenges posed by the variable composition of web pages across different
websites.

For the Borda count and majority vote strategies, the process of classifying
websites involves a unique approach to handling the probability distributions
generated for each web page. Each web page effectively serves as a classi-
fier for its respective website, contributing to an aggregate decision on the
website’s category based on the collective predictions of its pages.

In the Borda count-based strategy, the probabilities assigned to each cate-
gory by a web page are interpreted as votes, with each category receiving
points based on its position in a descending order of probabilities. Specifi-
cally, for each web page, categories are ranked according to their probability
values, and points are assigned inversely to their ranks (e.g., the highest
probability category receives the most points). The points from all web
pages belonging to a website are then aggregated for each category. The
category with the highest total points across all web pages is determined to
be the final classification for the website. This method effectively accounts
for the relative confidence of each web page’s predictions, offering a nuanced
aggregation mechanism that goes beyond mere majority rule, ensuring that
more confidently predicted categories have a proportional impact on the final
decision.

Conversely, the majority vote-based strategy adopts a more straightforward
approach. Here, the category with the highest probability on each web page
is considered the ’vote’ from that page. The final classification of a website is
then decided based on the category that receives the majority of votes from
all web pages within that website. In cases where the number of web pages
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varies significantly across websites, this approach provides a simple yet effec-
tive means of aggregating predictions. However, it primarily focuses on the
most probable category from each page, potentially overlooking the valuable
information contained in the distribution of probabilities across categories.

For both Borda count and majority vote strategies, the aggregation process
is directly influenced by the inherent structure of the probability distribu-
tions generated for each web page. While the Borda count offers a method
that leverages the full spectrum of probability distributions to inform the
aggregation process, the majority vote strategy emphasizes simplicity and
clarity in decision-making. Each strategy brings its strengths to the task of
website classification, with the choice between them hinging on the specific
requirements and constraints of the classification task, such as the desired
balance between accuracy and interpretability, as well as the computational
resources available.

In the following sections, we introduce our datasets used for the experiments,
followed by the experimental procedures, obtained results, and an in-depth
discussion.

3.5 Dataset

The experiments in this chapter relies on a subset of the Olfeo dataset,
encompassing web pages across 10 categories, with the scope of the investi-
gation restricted to English-language websites. The data collection process
employs a custom crawler designed to navigate not only the target websites
but also their adjacent web pages within the same domain. This approach re-
sulted in the compilation of a dataset comprising 96741 web pages from 3125
unique domains. The categorical distribution of these domains, as shown in
Figure 3.2, underscores the presence of imbalance across different categories.
Textual content was extracted from the raw HTML using specified tags, sim-
ilar to the method described by [290], with an additional focus on metadata
tags that often include concise texts like titles and descriptions, varying in
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length from 10 to nearly 100 tokens.

Figure 3.2: Total Web Pages per Category

The approach in this chapter encompasses two primary experimental scenar-
ios aimed at evaluating the efficacy of various automatic website classification
approaches. The datasets in question are tailored for website classification
tasks and present distinct textual characteristics that offer varied challenges
and insights into the classifier’s performances.

The MDO dataset focuses exclusively on metadata, such as titles, descrip-
tions, and keywords associated with websites. The purpose of this dataset
is to analyze how well classifiers perform when they’re limited to the suc-
cinct and often keyword-rich information typically used for summarization
and quick reference. At depth 0, classifiers are evaluated solely on their
ability to leverage this concentrated form of data to make accurate classifi-
cations. When the scenario shifts to depth 1, the classifier’s performances
are re-evaluated to understand the influence of neighboring web page con-
text, this includes analyzing whether additional, potentially less structured
content can aid or impede the classification accuracy when paired with the
metadata.
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Figure3.3 presents the distribution of tokens in the MDO dataset. Figure3.4
presents the distribution of tokens per web pages for the whole dataset at
depth 1.

Figure 3.3: Tokens Distribution on the MDO Dataset at depth 1

The CDO dataset contains content-data only, sourced directly from the
body text of websites. This dataset aims to simulate a scenario where clas-
sifiers have access to full, unstructured textual content, providing a more
verbose and comprehensive view of a website’s thematic elements. At depth
0, the classifiers’ ability to discern and categorize websites based on this ex-
tensive information is put to the test. When the analysis moves to depth
1, it examines how classifiers incorporate neighboring content from linked
pages, providing a wider context that could potentially enrich the classifiers’
understanding and improve their classification capabilities.

Lastly, the MCD dataset is a fusion of the previous two, combining meta-
data with content data to present a more holistic dataset that represents the
full spectrum of textual information a website can offer. The purpose here is
to evaluate the classifiers in a scenario that closely mimics real-world condi-
tions, where both concise metadata and elaborate content are used in tandem
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Figure 3.4: Tokens Distribution per Web Pages at depth 1

to understand and categorize websites. The meta data are concatenated at
the top of each web page content with respect to their web pages.

It is noteworthy that at depth 1, the index web page is considered as any
other web pages since we shuffle the data before training/fine-tuning models.

In the following we dive into the experimental protocol and details of our
implementations en running environment. We follow up by deep and detailed
discussion of the obtained results.

3.6 Experiments

Our experimental protocol is designed to dissect and evaluate the efficiency
of various website classification approaches within the realm of web content
analysis. Conducted in Python, this experiment relies on the robust capabil-
ities of well-established libraries, ensuring the integrity and reproducibility
of our results. We engaged the scikit-learn library’s NB classifier implemen-
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tation [300], renowned for its comprehensive algorithmic suite, and adopted
the ThunderSVM classifier for its GPU-accelerated performance, following
the recommendations of [301].

To generate our text embeddings, we relied on the Gensim library’s Doc2Vec
model [302, 303], trained for 20 epochs to reach an optimal balance between
precision and computational feasibility. For our GloVe embeddings, we uti-
lized the pretrained model on the Common Crawl corpus with a vocabulary
of 2.2 million terms, leveraging the higher-dimensional vectors to enrich our
text analysis with deep semantic insights. For both Doc2Vec and GloVe the
vectors dimension is 300.

The intricate architectures of the CNN is based on [9] and [304]. Long
Short-Term Memory (LSTM) networks were constructed within the PyTorch
framework [305] based on the work of [306]. In the embedding layer we used
the same previous GloVe embeddings, thus embedding contextual awareness
within the classification mechanism. For fine-tuning the BERT model, we
capitalized on the ktrain library (an abstraction over Keras), aligning with
[307] approach to model training.

Within this experimental section, we introduce the WeCA, an approach for-
mulated to assess the accuracy of website classification. WeCA is a compos-
ite approach encompassing various machine learning classifiers, such as SVM
and NB, as well as advanced DL models, including CNN and LSTM. Each
classifier is dissected across multiple web-oriented datasets—namely, MDO,
CDO, and MCD—crafted to capture the multifaceted nature of web content.
The unique facet of this work is its exploration of classifier efficiency at two
distinct levels of data depth: the depth 0 evaluation serves as the benchmark,
measuring each model’s capacity to navigate the elemental aspects of web
content based only on the index web page of each website. In contrast, the
depth 1 examination goes deeper, revealing the potential enhancements or
detriments that additional context may contribute to classification precision.
Notably, this experiments also contemplated an excursion into the analysis
at depth 2 but concluded that such an extension does not significantly am-
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plify classifier efficacy, thus containing our inquiry within the limits of depth
1.

The data is partitioned, dedicating 70% to training and the remaining 30%
to testing, ensuring a substantial data volume for model refinement while
maintaining a robust set for validation. It is noteworthy that during the
depth 0 phase, the need for aggregation is obviated due to the singular focus
on index web pages. However, at depth 1, this process becomes essential,
as the analysis expands to include the adjacent pages, thereby posing an in-
tricate challenge of classification amidst an amalgamated data environment.
This bifurcation in our protocol not only stresses the classifier’s adaptability
but also their resilience in the face of increasing data complexity.

The computational experiments are powered by ROMEO supercomputer
center, utilizing its high-performance NVIDIA P100 NV-Link GPUs. This
potent computational infrastructure is pivotal in accommodating the de-
manding model training and classification processes integral to the experi-
ments.

3.6.1 Implementation Details

In the following we provide more detail about the implementation of the
CNN, LSTM and MLP architectures. Furthermore, we present results of the
SVM hyperparameters process.

CNN and LSTM Architectures

The implemented CNN is based on [304]. The process begins with tokeniz-
ing the input text from web pages into individual words. Each sequence is
then adjusted to fixed lengths of 56, 100, and 128 tokens through trunca-
tion or padding to ensure uniform input dimensions. Tokens are mapped
to 300-dimensional GloVe word embeddings, creating embedding matrices
of 56x300, 100x300, and 128x300. Multiple 1D convolutional filters of var-
ious sizes (e.g., 3, 4, 5) are applied to the embeddings to capture different
n-gram features. These filters are followed by "ReLU" activation functions
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to introduce non-linearity. The convolutional layer outputs are then sub-
jected to 1-max pooling, which extracts the most significant feature from
each feature map, reducing dimensionality while retaining essential informa-
tion. The pooled outputs are concatenated into a single feature vector, and
dropout regularization is applied to prevent overfitting. This vector is passed
through a fully connected layer, and a softmax activation function produces
classification probabilities for each category.

The LSTM implementation is based on the work of [306]. The implemen-
tation begins with tokenizing the input text and adjusting sequences to
fixed lengths of 56, 100, and 128 tokens, ensuring uniform input dimensions
through truncation or padding. Tokens are then mapped to 300-dimensional
GloVe embeddings, forming sequences of 56x300, 100x300, and 128x300.
The embedding matrix is processed through an LSTM layer with 128 units,
designed to capture temporal dependencies within the text. The LSTM ar-
chitecture includes input gates, forget gates, and output gates to manage the
flow of information effectively. Dropout regularization with a rate of 0.5 is
applied to the LSTM output to prevent overfitting and enhance generaliza-
tion. The output from the LSTM layer is passed through a fully connected
layer with 128 units and a "Tanh" activation function, which helps in learn-
ing complex relationships within the data. Finally, a softmax activation
function is applied to produce classification probabilities for each category.

In both CNN and LSTM implementations, the sequence length of 128 tokens
proved to be the most effective. This length enables the models to capture
sufficient context from the text while maintaining computational efficiency,
leading to improved classification accuracy.

MLP

We aggregate the probability vectors from different classifiers using several
hard methods, including sum, max, and median. After thorough evaluation,
we find that the mean of the probability vectors provides the best results in
terms of classification accuracy.

The architecture of the MLP model is designed to process these mean proba-
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bility vectors and produce a final classification output. The MLP starts with
an input layer consisting of 10 neurons, corresponding to the 10-dimensional
mean probability vectors derived from the web pages. Following the input
layer, the MLP includes two hidden layers, each with 128 neurons, using
the "ReLU" activation function to capture complex patterns and interac-
tions within the input data. To prevent overfitting, dropout regularization
is applied after each hidden layer with a rate of 0.5, enhancing the model’s
generalization capabilities. The final layer is a dense layer with 10 neurons,
using a softmax activation function to output the final classification proba-
bilities for each category.

We conduct extensive hyperparameter optimization to determine the optimal
configuration for our MLP model. The optimization process involves experi-
menting with different learning rate schedules and optimization strategies, in-
cluding constant learning rate, constant learning rate with momentum, con-
stant learning rate with Nesterov’s momentum [308], inverse-scaling learning
rate, inverse-scaling with momentum, inverse-scaling with Nesterov’s mo-
mentum, and the Adam optimizer. The best results are achieved with a
learning rate of 0.0001 and the Adam optimizer.

SVM Hyperparameters

One of the determining tasks when building machine learning models is hy-
perparameter optimization. A correct optimization of hyperparameters is
directly reflected in the performance of the model. This is why hyperparam-
eter optimization has been an active research area for several years. Fortu-
nately, today there are several alternatives that can be followed for optimiz-
ing machine learning models such as [309, 310]. Each of these alternatives
propose various optimization paradigms. Likewise, each of these optimiza-
tion tools proposes a different usability approach which can become more or
less flexible depending on the case. In their work [310], they introduced a
new optimization framework called Optuna. The main goal is somehow to
unify the optimization paradigms following an authoritative define-by-run
API. Due to that, the code script written retains extreme modularity, and
the user could actively compose “search spaces” for the hyperparameters.
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Optuna’s design aims to find a balance between the sampling algorithms
(Gaussian Process, Random search, TPE. . . ) and pruning algorithms (beta-
alpha pruner, Asynchronous Successive Halving. . . ).

In order to process our hyperparameter optimization task for the SVM, we
use Optuna with a Bayesian optimizer as a sampler and the ASHA as a
pruning algorithm. Through the framework we define our objective func-
tion which includes our search space of C, Gamma and the Kernel. The
search space we set for these parameters was as follow: for C we took from
20, 21, ..., 2n (we follow a power of 2 rules) with n ∈ [0, 3], for Gamma we
took from [10−1, 10−2, 10−3, 10−4] and for the kernel, we set rbf and linear as
the two main options. We redefined SVM algorithm in order to allow us to
do a majority vote classification and cross validation score was used as the
score to be maximized through the optimization function. After defining our
trial number which we set at 20, we lunch the script and wait till we get the
best parameters for SVM for each experimental scenario. Table 3.2 sums up
all the SVM hyperparameters obtained with Optuna for each dataset.

Table 3.2: SVM Hyperparameters

Depth Dataset C Gamma Kernel

0

MCD 2 0.1 rbf

MDO 4 0.01 rbf

CDO 2 0.01 rbf

1

MCD 4 0.1 rbf

MDO 2 1 rbf

CDO 4 0.1 rbf



3.6 Experiments 107

GloVe Embedding

When using GloVe with SVM and NB, we first tokenize each web page,
preprocess and filter the tokens to remove any irrelevant or noisy data, and
then map these cleaned tokens with GloVe embeddings vectors, resulting
in a vector for each token. To obtain a final vector representation for each
web page, we aggregate these token vectors by computing their mean. This
averaged vector serves as the web page’s representation, capturing the overall
semantic content, which is then used as input for the SVM and NB classifiers.

3.6.2 Evaluation Metrics

In the following we present the main metrics we use to evaluate our models.
We extract two base metrics from each experiment. These metrics are the
accuracy and the F1-score that we describe below. Accuracy is defined as
the number of true positives and true negatives divided by the number of
true positives, true negatives, false positives, and false negatives :

Accuracy =
TP + TN

TP + TN + FP + FN
.

The F-score is a way of combining the precision and recall of the model, and
it is defined as the harmonic mean of the model’s precision and recall :

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
, F1 =

2 ∗ Precision ∗Recall

Precision+Recall
.

3.6.3 Web Page Classification

In the following we discuss the obtained results over the web page classifica-
tion before any aggregation is applied at depth 1.
Depth 0 (Single Page Analysis)

In depth 0, where only the index page of each website was used for classi-
fication, BERT demonstrated remarkable performance, achieving accuracies
of 75.03% on the MDO dataset, 80.59% on CDO, and 88.87% on MCD. Its
advanced language comprehension capabilities proved effective in processing
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Table 3.3: Classifiers Accuracies before Aggregation Strategies (Web Pages)

Depth Clf MDO CDO MCD

0

BERT 75,03 % 80,59 % 88,87 %

SVMDoc2V ec 80,40 % 76,79 % 77,02 %

NBDoc2V ec 72,01 % 70,11 % 73,80 %

SVMGloV e 81,54 % 77,01 % 76,90 %

NBGloV e 72,61 % 68,00 % 75,32 %

LSTM 81,53 % 79,44 % 84,12 %

CNN 80,22 % 79,11 % 85,63 %

1

BERT 81,90 % 87,37 % 89,01 %

SVMDoc2V ec 82,70 % 83,08 % 79,13 %

NBDoc2V ec 78,12 % 76,69 % 76,38 %

SVMGloV e 84,20 % 84,33 % 85,02 %

NBGloV e 79,00 % 78,55 % 78,63 %

LSTM 80,30 % 82,05 % 84,89 %

CNN 83,13 % 85,70 % 86,00 %

and classifying a single page, demonstrating a clear advantage in scenarios
where detailed content analysis is essential.

The SVM classifiers, paired with either Doc2Vec or GloVe embeddings, dis-
played notable performance. SVM combined with Doc2Vec achieved accu-
racies of 80.40% on MDO, 76.79% on CDO, and 77.02% on MCD. However,
SVM with GloVe performed slightly better with scores of 81.54% on MDO,
77.01% on CDO, and 76.90% on MCD. This suggests that GloVe’s broader
semantic features provided an edge in some datasets, allowing SVM to better
capture the nuances in web page text.

For NB (NB), the results were more moderate. When using Doc2Vec, NB
achieved accuracies of 72.01% on MDO, 70.11% on CDO, and 73.80% on
MCD. The GloVe embeddings led to slightly better results, with scores of
72.61% on MDO, 68.00% on CDO, and 75.32% on MCD. This reflects NB’s



3.6 Experiments 109

simpler probabilistic approach, which doesn’t fully leverage the richer text
representations.

Deep learning models such as LSTM and CNN demonstrated high accuracy
scores. The LSTM model achieved accuracies of 81.53% on MDO, 79.44%
on CDO, and 84.12% on MCD, indicating its ability to handle sequences
effectively. The CNN model showed similar performance, scoring 80.22% on
MDO, 79.11% on CDO, and 85.63% on MCD, highlighting its capacity for
capturing significant features in web pages.
Depth 1 (Single Page and Neighboring Pages Analysis)

At depth 1, where the analysis extended to include neighboring pages, BERT
maintained its leading performance, increasing its scores to 81.90% on MDO,
87.37% on CDO, and 89.01% on MCD. The additional context from neigh-
boring pages enriched BERT’s understanding of the text, enhancing its clas-
sification capabilities.

SVM classifiers also showed improvements with the extra context. SVM
combined with Doc2Vec saw its scores increase to 82.70% on MDO, 83.08%
on CDO, and 79.13% on MCD. SVM with GloVe further improved to 84.20%
on MDO, 84.33% on CDO, and 85.02% on MCD. These improvements high-
light the importance of leveraging additional data to improve classification
accuracy, particularly for models that rely on feature-rich embeddings.

NB classifiers with Doc2Vec showed modest improvements, reaching accura-
cies of 78.12% on MDO, 76.69% on CDO, and 76.38% on MCD. With GloVe
embeddings, NB improved slightly to 79.00% on MDO, 78.55% on CDO, and
78.63% on MCD. Despite the gains, NB’s simpler nature meant it couldn’t
fully utilize the embeddings, leading to less significant improvements com-
pared to SVM.

Deep learning models also improved at depth 1, with LSTM reaching 80.30%
on MDO, 82.05% on CDO, and 84.89% on MCD, showcasing its sequential
data processing strengths. CNN improved to 83.13% on MDO, 85.70% on
CDO, and 86.00% on MCD, emphasizing its robust feature extraction capa-
bilities, which proved beneficial for classification.
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SVM and NB Comparison with Doc2Vec and GloVe Embeddings

Comparing the SVM and NB classifiers with both Doc2Vec and GloVe em-
beddings reveals several insights. SVM with Doc2Vec provided consistent
performance at both depth 0 and depth 1, indicating its strong classification
capability across varied web page data. However, SVM with GloVe generally
outperformed Doc2Vec across the datasets, suggesting that GloVe’s semantic
richness offers a more comprehensive understanding of web page content.

For NB, the difference between Doc2Vec and GloVe was less pronounced.
With Doc2Vec, NB performed reasonably well but lagged behind SVM due
to its simpler probabilistic assumptions. GloVe slightly improved NB’s ac-
curacy, but the model’s inherent limitations meant it couldn’t exploit the
embeddings to their full potential.

In summary, while all models improved with additional context at depth 1,
deep learning models like BERT and CNN exhibited the highest classifica-
tion accuracy. SVM benefited from using GloVe embeddings, but NB did
not exhibit as significant of an improvement, revealing the constraints of
probabilistic models in web page classification.

3.6.4 Website Classification through Collaborative Approaches

In the following we discuss the obtained results over the website classification
after the aggregation is applied at depth 1.
Majority Voting Based Strategy

Using majority voting for aggregation at depth 1 significantly improved clas-
sification accuracy for most classifiers. BERT’s accuracy improved to 83.68%
on MDO, 89.22% on CDO, and 90.70% on MCD. This improvement shows
that majority voting can effectively leverage BERT’s understanding of text
and enrich the aggregation of predictions from multiple pages.

SVM classifiers also benefited from the majority voting aggregation. SVM
with Doc2Vec saw accuracies improve to 85.06% on MDO, 84.27% on CDO,
and 81.70% on MCD. With GloVe embeddings, SVM’s accuracy reached
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Table 3.4: Classifiers Accuracies (Majority Vote)

Depth Clf MDO CDO MCD

1

BERT 83,68 % 89,22 % 90,70 %

SVMDoc2V ec 85,06 % 84,27 % 81,70 %

NBDoc2V ec 82,00 % 80,61 % 80,22 %

SVMGloV e 86,23 % 85,30 % 86,47 %

NBGloV e 82,87 % 80,15 % 80,91 %

LSTM 84,17 % 85,11 % 87,91 %

CNN 85,97 % 87,09 % 89,77 %

Table 3.5: Classifiers Accuracies (Borda Count)

Depth Clf MDO CDO MCD

1

BERT 83,07 % 88,94 % 90,10 %

SVMDoc2V ec 85,07 % 83,67 % 80,97 %

NBDoc2V ec 80,77 % 78,80 % 79,02 %

SVMGloV e 85,90 % 84,93 % 86,16 %

NBGloV e 82,18 % 81,00 % 81,60 %

LSTM 83,90 % 85,50 % 87,12 %

CNN 85,30 % 86,78 % 89,27 %

Table 3.6: Classifiers Accuracies (Meta-Classifier Aggregation Strategy)

Depth Clf MDO CDO MCD

1

BERT 83,15 % 88,91 % 90,33 %

SVMDoc2V ec 85,20 % 84,57 % 81,38 %

NBDoc2V ec 81,91 % 80,00 % 79,98 %

SVMGloV e 86,09 % 85,23 % 86,49 %

NBGloV e 82,00 % 80,37 % 80,03 %

LSTM 84,13 % 85,70 % 87,54 %

CNN 85,70 % 87,01 % 89,66 %
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86.23% on MDO, 85.30% on CDO, and 86.47% on MCD. These improve-
ments highlight how the aggregation method helps SVM to utilize the richer
text representations more effectively.

NB classifiers with Doc2Vec also improved with majority voting, achieving
82.00% on MDO, 80.61% on CDO, and 80.22% on MCD. With GloVe em-
beddings, NB’s performance was 82.87% on MDO, 80.15% on CDO, and
80.91% on MCD. Despite NB’s improvements, its performance still lagged
behind other classifiers, reflecting its simpler classification approach.

Deep learning models also saw improved results using majority voting. LSTM
reached 84.17% on MDO, 85.11% on CDO, and 87.91% on MCD, while CNN
reached 85.97% on MDO, 87.09% on CDO, and 89.77% on MCD. The signif-
icant improvement in accuracy for these models illustrates the effectiveness
of majority voting in combining their predictions.
Borda Count Based Strategy

The Borda count aggregation strategy also produced significant improve-
ments at depth 1. BERT achieved accuracies of 83.07% on MDO, 88.94%
on CDO, and 90.10% on MCD, demonstrating how the Borda count method
complements its deep understanding of text.

SVM classifiers showed notable improvements using the Borda count strat-
egy. SVM with Doc2Vec improved to 85.07% on MDO, 83.67% on CDO, and
80.97% on MCD. Using GloVe, SVM achieved 85.90% on MDO, 84.93% on
CDO, and 86.16% on MCD. The Borda count helped SVM better interpret
the rich embeddings, boosting its classification accuracy.

NB classifiers with Doc2Vec saw accuracies of 80.77% on MDO, 78.80% on
CDO, and 79.02% on MCD, and with GloVe, they scored 82.18% on MDO,
81.00% on CDO, and 81.60% on MCD. Despite these improvements, NB
classifiers still lagged behind SVM and deep learning models, highlighting
NB’s simpler capabilities.

Deep learning models also benefited from the Borda count strategy. LSTM
achieved 83.90% on MDO, 85.50% on CDO, and 87.12% on MCD, while
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CNN reached 85.30% on MDO, 86.78% on CDO, and 89.27% on MCD. This
aggregation method effectively capitalized on the strengths of these models.
MLP Based Strategy

The meta-classifier aggregation strategy used an MLP to combine predic-
tions, which resulted in further improvements. BERT achieved accuracies of
83.15% on MDO, 88.91% on CDO, and 90.33% on MCD, demonstrating the
MLP’s ability to effectively aggregate predictions.

SVM classifiers with Doc2Vec improved to 85.20% on MDO, 84.57% on CDO,
and 81.38% on MCD. With GloVe, SVM improved to 86.09% on MDO,
85.23% on CDO, and 86.49% on MCD, highlighting the strength of combin-
ing the embeddings with a meta-classifier for improved predictions.

NB classifiers with Doc2Vec saw slight improvements, scoring 81.91% on
MDO, 80.00% on CDO, and 79.98% on MCD. With GloVe, NB achieved
82.00% on MDO, 80.37% on CDO, and 80.03% on MCD. These results indi-
cate that even though NB classifiers improved, the meta-classifier approach
was more effective with complex models.

The deep learning models showed strong performance with the meta-classifier
aggregation strategy. LSTM reached 84.13% on MDO, 85.70% on CDO, and
87.54% on MCD, while CNN achieved 85.70% on MDO, 87.01% on CDO,
and 89.66% on MCD. The meta-classifier successfully integrated predictions
from these models, showcasing the effectiveness of this strategy for enhancing
accuracy.

Overall, aggregation strategies significantly improved classification accuracy
for all models. BERT and deep learning models, in particular, exhibited the
most substantial improvements. Majority voting provided a straightforward
yet effective way to combine predictions, while the Borda count and meta-
classifier strategies offered more nuanced methods for leveraging multiple
classifiers. SVM benefited from these strategies as well, especially when
using GloVe embeddings. NB classifiers, while showing some improvements,
generally underperformed compared to other classifiers, highlighting their
limitations in handling complex classification tasks.
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3.6.5 Discussion

Comparing classification at depth 0 and depth 1 reveals the impact of lever-
aging aggregation strategies. At depth 0, where classification is based solely
on the index page of websites, classifier performance is inherently limited.
BERT, with its advanced language understanding capabilities, demonstrates
decent accuracy, but it still falls short in capturing the full context of the
website’s content. Traditional models like SVM and Naive Bayes struggle
more in this context, highlighting the challenges of relying on a single page
for website classification.

In contrast, depth 1 incorporates aggregation methods, allowing classifica-
tion to consider multiple web pages from each website. Majority voting,
which involves combining the classification results of individual web pages,
shows a noticeable improvement in accuracy across most classifiers. For ex-
ample, accuracy for Naive Bayes on the MCD dataset jumps from around
72% at depth 0 to over 80% at depth 1. This improvement demonstrates
the effectiveness of majority voting in boosting the classification results by
leveraging the additional data from multiple pages.

Other aggregation methods, such as the Borda count, also display enhanced
classification accuracy at depth 1. This method, which ranks each class based
on its relative probability across web pages, further refines classification de-
cisions compared to majority voting. However, majority voting stands out
due to its simplicity and effectiveness, offering a significant boost in accuracy
while maintaining computational efficiency.

BERT’s accuracy is further enhanced at depth 1, reaching over 83% in some
cases due to the aggregation strategies employed. This highlights how ad-
vanced models like BERT, when combined with effective aggregation meth-
ods, can significantly enhance website classification.
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3.6.6 Impact of Metadata on Classification Performance

The choice of dataset plays a crucial role in determining the performance
of classification models. In our experiments, three distinct datasets were
used: Metadata-Only (MDO), Content-Only (CDO), and Metadata-Content
(MCD). Each dataset presents unique challenges and opportunities for ma-
chine learning models, influencing the effectiveness of various classification
approaches.

Metadata-Only (MDO): The MDO dataset, consisting solely of metadata,
primarily includes structured data such as titles, tags, and other descriptors.
This data type often provides a concise summary of the content, leading to
high classification performance when the metadata accurately reflects the
content. However, its limited scope can make it challenging for classifiers
to handle ambiguous or less informative metadata. In this dataset, models
using advanced embeddings like GloVe or Doc2Vec with Support Vector Ma-
chines (SVM) tend to perform well. The SVM with GloVe classifier achieved
accuracy scores of 81.54% at depth 0 and improved further with majority
voting aggregation.

Content-Only (CDO): The CDO dataset includes the textual content of web
pages, offering a richer source of data compared to metadata alone. This
dataset often provides more nuanced information, which is beneficial for
deep learning models that can leverage semantic features from the full text.
BERT, which excels at capturing deep contextual relationships, stands out
with its performance on the CDO dataset. It achieves the highest accuracy
among classifiers due to its ability to comprehend context deeply.

Metadata and Content (MCD): The MCD dataset combines both metadata
and content, providing the most comprehensive representation of web pages.
This dataset enables classifiers to leverage the complementary strengths of
metadata and content for classification tasks. The integration of metadata
and content provides classifiers like BERT and SVM with an enriched data
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environment, leading to higher accuracy scores. For instance, the SVM clas-
sifier achieved 84.2% accuracy with GloVe embeddings at depth 1, while
BERT reached up to 90.33% with aggregation strategies.

The results highlight that the type of dataset used significantly influences
classifier performance. Classifiers generally perform best on the MCD dataset
due to the combined strengths of metadata and content. However, the choice
of classifier also matters. Deep learning models like BERT show remarkable
adaptability to all datasets, while traditional models such as SVM and Naive
Bayes vary in effectiveness depending on the dataset and embedding strategy
used.

3.7 Conclusion

In this chapter, we introduced WeCA and demonstrated its effectiveness
through rigorous experimental evaluation. WeCA was designed to elevate
the accuracy and efficiency of website classification, capitalizing on advanced
text representation techniques and strategic classifier aggregation. Our in-
vestigation spanned a variety of classifiers, including Support Vector Ma-
chines (SVM), Naive Bayes (NB), Convolutional Neural Networks (CNN),
and Long Short-Term Memory networks (LSTM), alongside two prominent
embedding techniques: the custom-trained Doc2Vec and the widely recog-
nized pretrained GloVe embeddings. The analysis was conducted across
multiple datasets to ensure a thorough evaluation of WeCA’s classification
capabilities.

A significant technological barrier that WeCA successfully overcame was the
integration of diverse data sources for classification. The results unequivo-
cally showed that combining metadata with content (as seen in the MCD
dataset) considerably boosted classification performance across all classifiers.
This integration harnessed the complementary strengths of both metadata
and content, providing a more holistic view of web pages. Moreover, WeCA
adeptly addressed the challenge of contextual information utilization. The
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transition from utilizing solely index pages (depth 0) to incorporating infor-
mation from neighboring web pages (depth 1) was shown to substantially
improve classification outcomes. This emphasized the critical role of contex-
tual and neighboring page data in enhancing the classifier’s understanding
and performance.

Among the findings, SVM and CNN classifiers demonstrated exceptional
performance with GloVe embeddings, benefiting from GloVe’s extensive lin-
guistic coverage and semantic depth. Similarly, the custom-trained Doc2Vec
embeddings presented promising outcomes, particularly with SVM, high-
lighting the advantages of domain-specific embeddings in refining classifica-
tion accuracy. Furthermore, WeCA’s employment of aggregation strategies,
notably the meta-classifier approach, showcased the potential to fine-tune
classifier outputs, achieving superior accuracy, especially in complex datasets
like MCD at depth 1.

WeCA distinguished itself by addressing several technological barriers in
website classification. It showcased adaptability in data source integration,
effectively leveraged contextual information from web pages, and utilized so-
phisticated machine learning techniques to optimize classification outcomes.
Through this approach, WeCA not only contributed to the advancement
of website classification methodologies but also laid a solid foundation for
future research and application in this domain.

Looking ahead, the next chapter will focus on addressing two pivotal chal-
lenges: scalability and the management of the vast amounts of text con-
tent encountered in web pages. The forthcoming discussion will outline a
new approach designed to tackle these issues, aiming to further enhance the
robustness and applicability of website classification frameworks. By inno-
vating solutions to these challenges, we aim to extend the capabilities of
WeCA, ensuring its scalability and efficiency in processing extensive text
data, thereby solidifying its position as a leading methodology in the field of
digital content classification.





Chapter 4

Text Chunking To Improve Website
Classification

4.1 Introduction

The advent of transformer models has marked a revolutionary leap in the
field of NLP, setting new benchmarks across a spectrum of tasks, from senti-
ment analysis and text summarization to language translation. Models like
BERT and RoBERTa have been at the forefront, demonstrating unparal-
leled capabilities in understanding the nuances of human language. Their
architecture, built on the self-attention mechanism, allows them to capture
contextual relationships in text, regardless of the distance between words.
This feature has enabled the development of systems that can comprehend
and generate human-like text, opening up possibilities that were previously
unattainable.

Despite their remarkable benefits, transformer models are not without lim-
itations. One significant challenge is their handling of long text sequences.
The quadratic complexity associated with their self-attention mechanism
restricts the input sequence length, making the processing of extensive doc-
uments computationally expensive and memory-intensive. This limitation
becomes particularly pronounced in tasks requiring the analysis of lengthy
texts, such as classifying comprehensive web pages, where the essence and
context might span several thousand words (see Figure 3.4). Traditional
approaches to address this challenge, such as segmenting texts or employing
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models designed for longer sequences like Longformer and BigBird, often
lead to compromises on contextual integrity or entail increased computa-
tional demands.

In response to these challenges, this chapter introduces the Weighted Strat-
ified Split Approach (WSSA), a novel methodology designed to circumvent
the limitations posed by the fixed-length input constraint of transformer
models. WSSA is based on text chunking and a weighted stratification
strategy, enabling efficient processing of long documents while preserving
the contextual richness necessary for high-accuracy classification tasks. This
approach not only enhances the applicability of BERT and RoBERTa to
longer texts but also offers a more resource-efficient alternative to models
specifically engineered for extended sequences.

The chapter aims to provide a comprehensive exploration of the implemen-
tation and benefits of the WSSA in the context of website classification.
It examines the theoretical underpinnings of transformer models, elucidates
the challenges of processing long text sequences, and articulates how the
WSSA addresses these issues. Through rigorous experimental validation,
the chapter demonstrates the efficiency of WSSA in improving classification
performance, offering insights that extend beyond website classification to
broader NLP applications.

4.2 Transformers and Long Texts

Transformer models, renowned for their revolutionary impact on various
NLP tasks, encounter inherent limitations when tasked with managing ex-
tensive textual data. This section provides an overview of various strategies
developed to enhance the functionality of transformer models for handling
long text sequences. By exploring these methodologies, we aim to highlight
how transformers can be adapted for use in scenarios that involve extensive
textual data. This exploration is intended to show the transition from the
theoretical capabilities of transformer models to their practical application



4.2 Transformers and Long Texts 121

in managing long texts, identifying the methods that enable these models
to process significantly larger amounts of data than they were originally
designed for.

4.2.1 Long Text Classification Approaches

The field of long text classification has witnessed significant advancements
through various innovative approaches aimed at addressing the inherent chal-
lenges associated with processing extensive textual data [311–323]. These
advancements can be broadly categorized into two main strategies: enhance-
ments to attention mechanisms for managing long texts and developments
of models for long text classification.

In the field of attention mechanism improvements, the Longformer model
introduced by (Beltagy et al., 2020) [311] incorporates a "sliding window"
technique, allowing for the efficient processing of sequences up to 4096 tokens
while preserving global context awareness. The BigBird model proposed by
(Zaheer et al., 2020) [312] employs sparse attention patterns to further ex-
tend processing capabilities to sequences of up to 8192 tokens. Through the
use of such specialized mechanisms both models process extensive sequences
efficiently, while significantly reducing their computation complexity. For the
longformer the complexity is mathematically represented as O(n ·w+n · g),
where n is the sequence length, w is the fixed window size, and g is the
number of tokens with global attention. This results in a linear complexity
relative to the input size when w and g are kept much smaller than n. Sim-
ilarly, the computational complexity of BigBird is linear with respect to the
input length, expressed as O(n), under standard parameter settings. BigBird
enhances the reach of each token through a triad of attention mechanisms:
sliding window, global and random. This design ensures that each token
can effectively access a broad context, thereby maintaining comprehensive
context awareness while keeping computational demands in check.

Another notable contribution is the Transformer-XL presented in (Dai et
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al., 2019) [313], which introduces a segment-level recurrence mechanism de-
signed to capture dependencies beyond fixed context lengths. Additionally,
compressive transformers, as proposed by (Rae et al., 2020) [314], utilize ran-
dom projections to condense long sequences, potentially reducing the com-
putational complexity associated with attending to extended text sequences.
However, the specifics of this reduction depend on the compression function’s
implementation details. The BP-Transformer, presented by (Ye et al., 2019)
[315], employs binary partitioning and blockwise self-attention to model long-
range context efficiently, achieving a complexity of O(k ·n · log(n/k)), where
k is a hyperparameter controlling attention density. (Qui et al., 2019) [316]
also divide sequences into blocks to compute self-attention more effectively,
although this partitioning might limit the ability to capture detailed depen-
dencies across segments.

To address scalability, (Wang et al., 2020) [317] introduced the Linformer,
which leverages a linear-complexity self-attention mechanism, significantly
reducing the computational demands for long sequences from O(n2) to O(n).
The Reformer, developed by (Kitaev et al., 2020) [320], optimizes trans-
former efficiency through the use of reversible layers and sparse factoriza-
tions, bringing the complexity down to O(n log n). The Performer, pro-
posed by (Choromanski et al., 2020) [321], rethinks the attention mechanism
to lower memory usage and enhance model scalability, with computational
complexity akin to that of the Linformer. (Roe et al., 2020) [319] focus
on computational efficiency improvements by adopting content-based sparse
attention and routing transformers that leverage sparsity patterns. Fur-
thermore, (Kitaev et al., 2020) [318] introduce an adaptive attention span
feature allowing transformers to dynamically adjust the attention window,
thereby increasing efficiency in managing long-range dependencies. While
these strategies present significant improvements in scalability and mem-
ory efficiency for processing longer text sequences, they also introduce new
complexities and require precise tuning of model parameters.

Some other works proposed to tackle the issue differently. In the research
conducted by [322, 323] addresses crucial limitations of Transformer-based
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models such as BERT in handling long text sequences, which is particularly
challenging in the context of extensive real-world datasets.

In [322] (Tuteja et al., 2023) investigate several strategies to adapt Trans-
former models for processing lengthy legal documents efficiently. Their ap-
proach involves a detailed evaluation of various Transformer architectures,
including RoBERTa and Longformer, against a traditional baseline combin-
ing TF-IDF with Neural Networks. The study meticulously assesses different
methods of document chunking and selection to optimize text processing.
Specifically, they explore strategies like selecting the most informative sec-
tions of documents or segmenting documents into manageable chunks that
are individually processed and then aggregated. Their evaluation demon-
strates that the performance of advanced models varies significantly across
datasets, indicating the need for tailored strategies that consider the distinc-
tive characteristics of each dataset. This nuanced approach highlights the
complexity of effectively applying Transformer models to real-world NLP
tasks, particularly in the legal domain.

On the other hand, (Jaiswal et al., 2023) [323] recently proposed ChunkBERT
in parallel and independently to our work which introduces a new methodol-
ogy to extend BERT’s processing capabilities beyond the standard 512-token
limit. ChunkBERT employs a strategic chunking process where the text is
divided into smaller segments, each of which is processed independently us-
ing BERT. The outputs are then combined using convolutional neural net-
works (CNNs) to synthesize the information from different chunks. This
method significantly reduces memory usage to just 6.25% of what is typ-
ically required by BERT, without necessitating specialized hardware like
custom CUDA kernels. This enhancement allows for scalable and efficient
processing of extended texts. The effectiveness of ChunkBERT is rigorously
tested through comprehensive benchmarks across various long-text classifi-
cation tasks. The results demonstrate that ChunkBERT not only effectively
manages to process long texts but does so with a high degree of efficiency,
making it a viable solution for a wide range of NLP applications that involve
lengthy documents.
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4.2.2 Discussion

The reviewed approaches reveal the complexity and challenges involved in
handling long text sequences with Transformer-based models. Both sets of
studies introduce innovative methods aimed at overcoming the inherent lim-
itations of traditional models. Techniques such as attention modifications,
sequence partitioning, model efficiency improvements, and the development
of specialized architectures like ChunkBERT are explored to enhance scal-
ability, memory efficiency, and reduce computational overhead. However,
these approaches also come with their own set of challenges. While they
show advancements in handling extensive sequences, they often introduce
increased computational complexity, require extensive resource allocation,
or necessitate fine-tuned parameter adjustments to achieve optimal perfor-
mance.

Furthermore, approaches that partition long texts into manageable chunks
can sometimes struggle to maintain the integrity of contextual relationships
across partitions. This can potentially lead to a loss in modeling capacity,
especially in capturing fine-grained dependencies that are critical for under-
standing complex texts. Therefore, it becomes crucial to carefully weigh
the trade-offs between computational efficiency, modeling capacity, and the
specific demands of the task. Future research should focus on refining these
techniques to enhance their adaptability and ease of implementation.

In the following section we introduce the data splitting techniques used in
the ML field, we then provide a detailed description of our proposed data
splitting approach and its application to our website classification approach.

4.3 Data splitting and website classification approach

In the field of machine learning and statistical analysis, the process of divid-
ing datasets into training, validation, and testing sets is crucial for building
robust and generalizable models. This subdivision ensures that models are
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not only trained effectively but also validated and tested under conditions
that mimic unseen real-world data. Among the various techniques employed
for data splitting, non-stratified and stratified splits are particularly signifi-
cant. Non-stratified splits involve random division of data without regard to
the distribution of variables, while stratified splits ensure that each subset of
data reflects the overall distribution of key variables, especially the target or
outcome variable. This section explores the methodologies and implications
of these splitting strategies, providing a foundation for understanding their
application and importance in machine learning workflows.

In this section, we present the basic split method that will be used as a
baseline to compare with our weighted stratified split approach and then we
follow up with our method for website classification.

4.3.1 Basic Split (BS)

There are two types of basic data splitting [324–327]. The first type is a basic
split with non-stratified data and the second type is with stratified data.
The main difference between the two lies in how the subsets are created and
whether they preserve the distribution of categories in the original dataset.
Basic Non-Stratified Split (BNSS)

A non-stratified split, commonly referred to as a random split, is a method
used to divide a dataset into multiple subsets, such as training and testing
sets, without taking into account the distribution of target variables or any
specific features within the data. This approach is widely used in machine
learning and statistical modeling, primarily because of its simplicity and
straightforward implementation [324–327].

In a non-stratified split, each data point xi in the dataset D has an equal
probability of being assigned to either the training set Dtrain or the testing
set Dtest. Typically, this is achieved using a uniform random distribution.
The selection process can be mathematically described by a random variable
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Zi for each data point xi, where Zi follows a Bernoulli distribution :

Zi ∼ Bernoulli(p). (4.1)

Here, p represents the probability of a data point being included in the
training set. The value of p is often set based on the desired split ratio; for
example, p = 0.7 for a 70% training and 30% testing split. Therefore, the
process for each data point xi can be defined as :

xi ∈

Dtrain if Zi = 1,

Dtest if Zi = 0.
(4.2)

While non-stratified splitting is straightforward and requires minimal com-
putation, it does not guarantee that the training and testing sets will be
representative of the overall dataset, particularly in cases where the data
contains imbalanced classes or skewed distributions. This can lead to mod-
els that are biased or perform poorly on unseen data due to overfitting or
underfitting.

In practice, non-stratified splitting is suitable for large datasets with a rela-
tively uniform distribution of features. However, for datasets with significant
imbalances or when the distribution of the target variable is crucial for pre-
dictive accuracy, stratified splitting is generally recommended to ensure that
each class is adequately represented in both training and testing subsets.

This approach underscores the importance of understanding the character-
istics of the dataset when choosing a splitting strategy, as the choice can
significantly impact the performance and generalizability of the resulting
models.
Basic Stratified Split (BSS)

A stratified split is a method used in statistics and machine learning to di-
vide a dataset into subsets (such as training and testing sets) while ensuring
that each subset is representative of the entire dataset in terms of key char-
acteristics, typically the distribution of the target or outcome variable. This
technique is particularly useful when the dataset has imbalanced classes or
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categories that need to be equally represented in each split to prevent biased
or skewed model training results [324–327].

Consider a dataset D consisting of N samples. Let yi be the target variable
for each sample xi, for i = 1, 2, . . . , N . In a stratified split, the dataset is
divided into subsets such as Dtrain and Dtest in such a way that the proportion
of each category of y in D is approximately the same in these subsets.

Let Ck be the set of indices of samples belonging to category k in the dataset,
where k is one of the possible classes of the target variable y. The proportion
of the dataset D that belongs to category k can be calculated as

pk =
|Ck|
N

, (4.3)

where |Ck| is the cardinality of set Ck, i.e., the number of samples belonging
to category k.

In a stratified split, the objective is to ensure that each subset of the dataset,
for example, Dtrain and Dtest, maintains this proportion pk for each category
k. Mathematically, if |Dtrain| = n and |Dtest| = N − n, the number of
samples from category k in Dtrain should be approximately

|Ck,train| ≈ n · pk. (4.4)

Similarly, the number of samples from category k in Dtest should be approx-
imately

|Ck,test| ≈ (N − n) · pk. (4.5)

Stratified sampling ensures that each training and testing set is a good repre-
sentative of the overall population, particularly important in scenarios where
certain classes are underrepresented. This method helps in achieving more re-
liable and generalizable training outcomes, especially for classification prob-
lems where class imbalance could significantly skew the training process.

However, implementing a stratified split requires careful handling of the data
to maintain these proportions, especially when dealing with multiple cate-
gorical variables or when classes are heavily imbalanced. Additionally, while
stratified splits help in maintaining statistical properties across splits, they
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might complicate the sampling process, requiring more sophisticated algo-
rithms to ensure the splits are done correctly.

4.3.2 Weighted Stratified Split Approach (WSSA)

The traditional data splitting technique, commonly known as the BSS, ini-
tially guided our experiments by categorizing and distributing web pages
based on their respective categories. However, this method soon revealed
significant imbalances, disproportionately favoring larger websites in the
training set and smaller websites in the testing set. To address this data
imbalance challenge effectively, we propose the WSSA. This approach aims
to balance data distribution between training and testing sets by considering
the relative weight of each website.

WSSA is designed to counter the limitations of maximum sequence length in
conventional transformer-based models used for website classification. Mod-
els like BERT and RoBERTa, with a maximum sequence length of 512 to-
kens, often lose critical contextual information from longer web pages. Our
approach involves chunking these web pages into smaller, stratified blocks
and calculating the weight of each website based on the number of chunks it
generates. This method ensures that larger web pages do not unduly domi-
nate the training set, maintaining a balanced representation of each category
in both training and test sets.

Our procedure begins with the entire dataset, where each web page is chun-
ked into segments with a maximum sequence length of 500 tokens. We then
calculate the weight of each website based on the number of blocks ni it
generates. Specifically, the weight wi of a website Di is defined as:

wi =
ni∑N
i=1 ni

, (4.6)

where ni is the number of blocks generated from the web pages of website
Di, and

∑N
i=1 ni is the total number of blocks in the dataset. N represents

the total number of websites.
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To determine the frequency fCℓ
of each category Cℓ, we sum the weights wi

of each website Di within the same category:

fCℓ
=

N∑
i=1

wi 1{Di∈Cℓ}, (4.7)

where 1{Di∈Cℓ} is an indicator function, taking the value 1 if Di belongs to
category Cℓ, and 0 otherwise.

We illustrate this calculation with an example in Table 4.1, which shows the
frequency computation for a dataset with 9 websites and 2 categories (C1

and C2).

Table 4.1: Category Frequencies from Weighted Sums

Cat Di ni wi fCℓ

D1 3 0.1304

C1 D2 2 0.0869 0.4781

D3 2 0.0869

D4 4 0.1739

D5 1 0.0434

D6 2 0.0869

C2 D7 1 0.0434 0.5219

D8 3 0.1304

D9 5 0.2173

With these weights and frequencies calculated, we initiate the weighted strat-
ified splitting process. Starting with the whole dataset, we randomly select
websites and sum their weights S until the cumulative sum reaches approx-
imately 70% of the category frequency for the training set fCℓ

. We incorpo-
rate a Cauchy criterion ϵ for flexibility, ensuring the cumulative sum S falls
within a small range of the threshold:

S =
k∑

i=1

wi with 0.7fCℓ
− ϵ ≤ S ≤ 0.7fCℓ

+ ϵ, (4.8)

Each selected website is excluded from further selections. Once the cumula-
tive sum S meets the Cauchy criterion around the threshold, we finalize the
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drawn websites. If the cumulative sum S exceeds the threshold 0.7fCℓ
, we

adjust by including or excluding the last drawn website based on the Cauchy
criterion, or more randomly choose another website until the criterion is sat-
isfied.

Finally, we recover the respective chunked blocks of the drawn websites to
form the training set. Websites not selected are allocated to the test set.
This process ensures a balanced distribution of data across training and
testing sets, accounting for both website sizes and category frequencies, thus
maintaining the representativeness of each category.

This method ensures a balanced and informative dataset, promoting fair
and effective model evaluation. The Figure 4.1 presents the process of our
proposed Weighted Stratified Split Approach (WSSA). Algorithm 1 presents
the pseudo-code for our WSSA approach.
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Figure 4.1: Overview of our proposed weighted stratified approach (WSSA)

Through this systematic process, training and testing sets of websites are
composed to incorporate a representative cross-section of the dataset, con-
sidering both the quantity and distribution of data across categories. This
approach aims to establish an equitable representation of website documents
of varying sizes in the training and testing sets, effectively mitigating poten-
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tial biases and fostering an accurate assessment of classification models.

Algorithm 1 Weighted Stratified Split Approach (WSSA)
Input: Dataset D of websites with their respective web pages, Threshold T for train-

ing set proportion (e.g., 0.7), Cauchy criterion ϵ for flexibility in the threshold,
Maximum sequence length L for chunking (e.g., 500 tokens)

Output: Training set Train_Set and testing set Test_Set

Initialize total_blocks← 0 foreach website Di in D do
Chunk each web page in Di into segments of length L Calculate ni ← number of
chunks generated for Di total_blocks← total_blocks+ ni

end
Initialize weights wi for each website foreach website Di in D do

wi ← ni

total_blocks

end
Initialize category frequencies fCl

for each category Cl foreach category Cl in D do
fCl
←

∑
wi for all websites Di in Cl

end
Initialize empty lists Train_Set← [] and Test_Set← []
foreach category Cl in D do

cumulative_sum ← 0 selected_websites ← [] Shuffle the list of websites in Cl

while cumulative_sum < T × fCl
do

Randomly select a website Di from Cl cumulative_sum← cumulative_sum+wi

Append Di to selected_websites if cumulative_sum ≥ (T × fCl
)− ϵ then

break
end

end
foreach website Di in selected_websites do

Add chunked blocks of Di to Train_Set
end
foreach remaining website Di in Cl do

if Di /∈ selected_websites then
Add chunked blocks of Di to Test_Set

end
end

end
return Train_Set, Test_Set

4.3.3 Website Classification through Chunked Web Pages

In the evolution of WeCA (see chapter:3), we have adapted to a more gran-
ular method by integrating the classification of chunked web pages. This
adaptation is pivotal as we move beyond page-level classification to aggre-
gate these chunks for a comprehensive website classification. The Majority
Voting strategy has been instrumental in this process, where each chunked
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web page acts as a micro-classifier within its parent website, casting votes
towards the overall classification.
Chunked Web Pages as Micro-Classifiers

In our refined approach, web pages are dissected into smaller chunks, align-
ing with the limitations of traditional transformer-based models and ad-
dressing the information-dense nature of web content. These chunks serve
as micro-classifiers. Their combined classification outcomes are pivotal to
understanding the broader thematic elements of a website. This nuanced
strategy accommodates the varied and significant aspects of different web
page sections, ensuring that even the subtlest thematic shifts within a web-
site are accounted for in the classification process.
Adopting Majority Voting for Chunked Classification

The Majority Voting strategy is particularly well-suited for this refined ap-
proach as we have seen in Section 3.4. Each chunk casts a vote for its clas-
sification outcome, contributing to the majority consensus for the website’s
category. The website’s final classification reflects the category receiving
the majority of votes from its constituent chunks. This method effectively
balances the representation of content, ensuring that both extensive and con-
cise sections within a website are equally considered. It mitigates the risk of
larger web pages overshadowing smaller but potentially more thematically
relevant sections.

By utilizing the Majority Voting strategy in the context of chunked web
pages, we attain a balanced and democratic classification system. This sys-
tem not only respects the diversity of content within each website but also
aligns with the computational constraints posed by processing large-scale
web data. The result is a robust and equitable framework that stands re-
silient in the face of web content variability, ensuring accurate and fair clas-
sification across the web landscape.
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Figure 4.2: Overview of the chunks as website micro-classifiers architecture

Figure 4.2 depicts the classification pipeline for a website WS(i) using the
chunking approach. The process begins with the ith website, WS(i), which is
decomposed into a series of web page chunks, WP(i,1),WP(i,2), . . . ,WP(i,ki).
Each chunk, Ch(i,k,j), j = 1, . . . , nk, k = 1, . . . , ki is individually classified
by a classifier. The outputs from these classifiers are then directed into
a probability matrix [Prob1(i,k,ni,k), . . . , P robL(i,k,ni,k)

], where they are aggre-
gated using MVS. This matrix is key to the subsequent aggregation method,
which synthesizes the individual chunk classifications to determine the fi-
nal category for the website, WS(i)Category. The flow of the process from
chunked web pages to a unified website classification demonstrates how mul-
tiple pieces of content can be combined to yield a singular, coherent category
assignment for a website.

4.4 Experiments

In our experiments, we compare the implemented approaches of automatic
website classification through two main case studies. In the first case, we
evaluate the performance of our classifiers over the text we gathered from
the index page of each website to which we refer by depth = 0. In the
second case study, we want to know how the classifiers would perform on the
index web page of each website and also the gathered information from their
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neighboring web pages in a +1 radius to which we refer to as depth = 1. In
each of our experiments we used a cross validation step and a class majority
voting aggregator to get the final website category since we are classifying
websites and not web pages. In the following, we provide the used datasets,
the evaluation metrics and our experimental results.

4.4.1 Datasets

From the Olfeo URLs dataset, we selected 10 categories while considering
only English websites. The crawler we designed is made in a way to crawl
the target website and also its neighboring web pages per each website.
After crawling the data, we end-up with a dataset of 96741 web pages for
3368 unique websites, Table 4.2 sums-up a general view of our dataset by
categories and the generated chunks of 500 tokens for each category. Figures
4.3, 4.4 and 4.5 show the data distribution for all datasets showing how the
category proportions are similar to the original dataset. We follow by the
text extraction from the raw HTML was performed using the same HTML
tags as [290], and we additionally extracted text from the metadata tags,
which often contained short texts such as the title and description of the
web page, with a length ranging from 7 to nearly 100 tokens.

We compare various models for automatic website classification through two
case studies. The first case evaluates the performance of classifiers based
on text obtained from the index page of each website, while the second
case considers both the index page (depth 0) and the information from the
surrounding web pages within a radius of +1 (i.e. depth 1), these web pages
are obtained from the links inside the index web page, where we only consider
the first top 50 links to crawl. The objective of these two cases is to determine
the effect of including additional information from surrounding web pages on
the classifiers performance. Moreover, in order to compare the effectiveness
of our proposed Weighted stratified split approach, we generate a baseline
database and evaluate the models on each of them. For each dataset, 70%
of the data is used as training data from which we take another 10% for the
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validation data and finally the last 30% are used as test data. The datasets
we use are described as below :

1. Basic Split Baseline Data (BSSBD): To generate this dataset we
use the BS on the whole dataset. We split the data (i.e. web pages)
following a stratified strategy in order to counter the imbalanced data
bias as said in the beginning. It is noteworthy that when depth is 0
there is no need for an aggregation step, since we classify only the index
web pages in this dataset and no chunking has been performed, the web
pages were fed as it is.

2. Weighted Stratified Split Approach Dataset (WSSAD): To gen-
erate this dataset, we first take the original dataset and generate text
chunks of 500 token each. We then perform the proposed WSSA on the
resulted chunks of web pages to generate the train and test sets. In Ta-
ble 4.2 the number of websites represents the existing unique websites
referred by their index web pages which also is the number of web pages
at depth 0, in the rest of the columns is stated the number of web pages
respectively chunks both at depth 1.

Table 4.2: Crawled Dataset and Chunked Blocks

Category Websites Web Pages ChunksDepth=1 ChunksDepth=0

tourism_hotel 756 (22,45 %) 20051 (20,73 %) 51300 (20,06 %) 1980 (21,20%)

business_services 587 (17,43 %) 16918 (17,49 %) 47658 (18,64 %) 1689 (18,09%)

bank_insurance 543 (16,12 %) 13623 (14,08 %) 37106 (14,51 %) 1523 (16,31%)

education 367 (10,90 %) 10327 (10,67 %) 28010 (10,95 %) 1046 (11,20%)

fashion_beauty 196 (5,82 %) 7261 (7,51 %) 17917 (7,01 %) 518 (5,55%)

cars_motor 194 (5,76 %) 6481 (6,70 %) 18572 (7,26 %) 591 (6,33%)

home_garden_interior 188 (5,58 %) 6432 (6,65 %) 15555 (6,08 %) 501 (5,36%)

escort_services 185 (5,49 %) 6204 (6,41 %) 16135 (6,31 %) 528 (5,65%)

consumer_services 202 (6,00 %) 5696 (5,89 %) 14624 (5,72 %) 557 (5,96%)

counterfeit 150 (4,45 %) 3748 (3,87 %) 8865 (3,47 %) 406 (4,35%)

Size 3368 96741 255742 9339
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Figure 4.3: Distribution of Websites, Web Pages and Chunked blocks

Figure 4.3 represents the distribution of the Websites, Web Pages and Chun-
ked blocks before applying any split. Figures 4.4a and 4.5a show the dis-
tribution of websites, web pages and chunks across various categories before
and after applying data splitting. In the other hand, figures 4.4a and 4.4b
show the distribution of websites across BSSBDtr, BSSBDte, WSSADtr and
WSSADte.

Figure 4.5a shows the distribution of web pages across BSSBDtr, BSSBDte.
Figure 4.5b presents the distribution of chunks across WSSADtr and WSSADte.

Table 4.3 shows the number of websites for each category in the training and
test sets, along with the overall dataset size. Additionally, Table 4.4a and
Table 4.4b provide data distribution details for the BSSBD and WSSAD
datasets, respectively, showing the distribution of web pages and chunked
blocks in the training and test sets for each category.
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(a) Distribution of Websites, BSSBDtr, BSSBDte sets (depth = 0)

(b) Distribution of Websites, WSSADtr, WSSADte sets (depth = 0)

Figure 4.4: Distribution of Websites before and after applying BSS and WSSA
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Table 4.3: Websites for each generated train/test set after BSS and WSSA (depth = 0)

Category BSSBDtr BSSBDte WSSADtr WSSADte

tourism_hotel 529 (22,44%) 227 (22,45%) 543 (23,29%) 213 (20,54%)

business_services 411 (17,44%) 176 (17,41%) 396 (16,99%) 191 (18,42%)

bank_insurance 380 (16,12%) 163 (16,12%) 378 (16,22%) 165 (15,91%)

education 257 (10,90%) 110 (10,88%) 257 (11,03%) 110 (10,61%)

fashion_beauty 137 (5,81%) 59 (5,84%) 140 (6,01%) 56 (5,40%)

cars_motor 136 (5,77%) 58 (5,74%) 133 (5,71%) 61 (5,88%)

home_garden_interior 132 (5,60%) 56 (5,54%) 124 (5,32%) 64 (6,17%)

escort_services 129 (5,47%) 56 (5,54%) 126 (5,41%) 59 (5,69%)

consumer_services 141 (5,98%) 61 (6,03%) 130 (5,58%) 72 (6,94%)

counterfeit 105 (4,45%) 45 (4,45%) 104 (4,46%) 46 (4,44%)

Size 2357 1011 2331 1037

Table 4.4: Data Distribution for BSSBD and WSSAD

(a)
Web Pages Distribution for train/test sets in BSSBD (depth = 1)

Category BSSBDtr BSSBDte

tourism_hotel 13944 (20,40 %) 6107 (21,51 %)

business_services 12082 (17,68 %) 4836 (17,03 %)

bank_insurance 9718 (14,22 %) 3905 (13,75 %)

education 7009 (10,25 %) 3318 (11,69 %)

fashion_beauty 5107 (7,47 %) 2154 (7,59 %)

cars_motor 4505 (6,59 %) 1976 (6,96 %)

home_garden_interior 4842 (7,08 %) 1590 (5,60 %)

escort_services 4558 (6,67 %) 1646 (5,80 %)

consumer_services 3929 (5,75 %) 1767 (6,22 %)

counterfeit 2657 (3,89 %) 1091 (3,84 %)

Size 68351 28390
(b)

Chunked blocks Distribution for train/test sets in WSSAD (depth = 1)

Category WSSADtr WSSADte

tourism_hotel 35910 (20,06 %) 15390 (20,06 %)

business_services 33360 (18,64 %) 14298 (18,63 %)

bank_insurance 25974 (14,51 %) 11132 (14,51 %)

education 19606 (10,95 %) 8404 (10,95 %)

fashion_beauty 12541 (7,01 %) 5376 (7,01 %)

cars_motor 13000 (7,26 %) 5572 (7,26 %)

home_garden_interior 10885 (6,08 %) 4670 (6,09 %)

escort_services 11291 (6,31 %) 4844 (6,31 %)

consumer_services 10235 (5,72 %) 4389 (5,72 %)

counterfeit 6205 (3,47 %) 2660 (3,47 %)

Size 179007 76735
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(a) Distribution of Web Pages, BSSBDtr, BSSBDte sets (depth = 1)

(b) Distribution of Chunks, WSSADtr, WSSADte sets (depth = 1)

Figure 4.5: Distribution of Chunks and Web Pages before and after applying BSS and
WSSA
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4.4.2 Evaluation Metrics

In this section, we present the main metrics we use to evaluate our models.
After establishing the confusion matrix for each experiment. We then mea-
sure the accuracy. We then follow with a comparison inter-classifiers over
the same datasets with the Cochran’s Q test in order to establish that the
obtained results are consistently significant.
Cochran’s Q test

Cochran’s Q test can be regarded as a generalized version of McNemar’s test
that can be applied to evaluate multiple classifiers. In a sense, Cochran’s Q
test is analogous to ANOVA for binary outcomes.

To compare more than two classifiers, we can use Cochran’s Q test, which
has a test statistic Q that is approximately, (similar to McNemar’s test),
distributed as χ2 with L − 1 degrees of freedom, where L is the number
of models we evaluate (since L = 2 for McNemar’s test, McNemar’s test
statistic approximates a χ2 distribution with one degree of freedom). More
formally, Cochran’s Q test tests the null hypothesis that there is no difference
between the classification accuracies (i.e., H0 : p1 = p2 = · · · = pL).

Let {D1,. . . ,DL} be a set of classifiers who have all been tested on the same
dataset. If the L classifiers don’t perform differently, then the following Q
statistic is distributed approximately as chi-square with L − 1 degrees of
freedom :

QC = (L− 1)
L
∑L

i=1G
2
i − T 2

LT −
∑Nts

j=1(L
2
j)
. (4.9)

Here, Nts is the size of the test dataset, Gi is the number of objects out of
Nts correctly classified by Di, i = 1, . . . L; Lj is the number of classifiers out
of L that correctly classified object zj ∈ Zts, where Zts = {z1, ...zNts

} is the
test dataset on which the classifiers are tested on; and T is the total number
of correct number of votes among the L classifiers [224, 328] :



142 Text Chunking To Improve Website Classification

T =
L∑
i=1

Gi =

Nts∑
j=1

Lj. (4.10)

To perform Cochran’s Q test 4.9 4.10, we typically organize the classifiers
predictions in a binary Nts × L matrix M . The ijth entry of such matrix
Mi,j is 0 if a classifier Dj has misclassified a data example (vector) zi and
1 otherwise (if the classifier predicted the class label l(zi) correctly) [328].
Hence,

Gi =

Nts∑
i=1

Mi,j, j = 1, . . . , L. (4.11)

And,

Li =
L∑

j=1

Mi,j, i = 1, . . . , Nts. (4.12)

4.4.3 Classification Results

All the experiments are implemented using Python and run through the
super calculator ROMEO1. Transformer models were fine-tuned using hug-
gingface library (version 4.29.2). Due to resources limitations, we used a max
sequence length for Longformer and BigBird of 1024 with a training and val-
idation batch size equal to 4 (low GPU memory) and the learning rate was
1e-5. For BERT and RoBERTa the max sequence length is by default 512,
the training batch size was 16 and the validation batch size was 32 and the
learning rate for both models was 5e-5. For the rest of the parameters, we
kept the default ones. All the models were fine-tuned for 40 epochs.

The results in Table 4.6 present the accuracies obtained after applying the
Majority Voting Strategy (MVS) to aggregate the predictions of classification
models. The focus here is on the performance of the models on the Weighted
stratified split approach (WSSAD), as compared to the Basic Split Baseline
Dataset (BSSBD).

1https://romeo.univ-reims.fr/
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Table 4.5: Model Fine Tuning Time (with FT for Fine Tuning and IT for Inference
Time)

BSSBD WSSAD

Depth Clf FT (mn) IT (s) FT (mn) Inf (s)

0

BERT 15,8 0,0033 14,9 0,0012

RoBERTa 4,9 0,0032 13,1 0,0012

Longformer 26,7 0,0208 126 0,0203

BigBird 54,6 0,0210 498 0,0891

1

BERT 48,7 0,0033 216 0,0011

RoBERTa 48,3 0,0031 216 0,0012

Longformer 204 0,0206 2880 0,0203

BigBird 288 0,0207 8640 0,0908

Across different depths and classifiers, the accuracies achieved on the WS-
SAD dataset consistently outperform those obtained on the BSSBD dataset.
Notably, the accuracies on WSSAD are higher for most combinations of
depth and classifier. For instance, considering the results at depth 0, both
BERT and RoBERTa models achieve higher accuracies on WSSAD (93.09%
and 93.10%, respectively) compared to BSSBD (89.55% and 88.33%, respec-
tively). This improvement is also observed for the Longformer and BigBird
models, where the accuracies on WSSAD (92.96% and 91.59%, respectively)
surpass those on BSSBD (89.15% and 82.77%, respectively).

Moving to depth 1, we see a similar trend. BERT and RoBERTa models
attain higher accuracies on WSSAD (91.90% and 92.14%, respectively) com-
pared to BSSBD (90.70% and 89.96%, respectively). While the Longformer
model exhibits a slightly lower accuracy on BSSBD (87.60%) compared to
WSSAD (90.71%), the BigBird model demonstrates a noteworthy increase
in accuracy on WSSAD (86.59%) compared to BSSBD (85.42%).

These results highlight the effectiveness of the weighted stratified split ap-
proach employed in the WSSAD dataset. By considering the content and
context of web page chunks, the WSSAD dataset provides a more comprehen-
sive representation of web pages, enabling the classification models to make
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Table 4.6: Accuracies after MVS

Depth Clf BSSBD WSSAD

0

BERT 89,55% 93,09%

RoBERTa 88,33% 93,10%

Longformer 89,15% 92,96%

BigBird 82,77% 91,59%

1

BERT 90,70% 91,90%

RoBERTa 89,96% 92,14%

Longformer 87,60% 90,71%

BigBird 85,42% 86,59%

more accurate predictions. The consistently higher accuracies obtained on
the WSSAD dataset demonstrate its value in improving the performance of
classification models for web page classification tasks.

Therefore, the weighted stratified based split approach in the WSSAD dataset
showcases its significance in enhancing the accuracy of classification models.

4.4.4 Cochran’s Q Test Results

In our study, we formulate the following hypotheses for the Cochran’s Q test:

• Null Hypothesis (H0) : There are no significant differences in the
performances of the classifiers on the classification task. In other words,
the classifiers predictions are consistent across instances, and any ob-
served differences are due to random fluctuations.

• Alternative Hypothesis (H1) : There are significant differences
in the performances of the classifiers on the classification task. This
suggests that certain classifiers demonstrate superior or inferior perfor-
mance compared to others, and the observed differences are not solely
attributable to chance.

By subjecting our data to the Cochran’s Q test, we aim to rigorously assess
the significance of these differences and gain a deeper understanding of the
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relative strengths and weaknesses of the classifiers under consideration. This
statistical analysis will enable us to make informed decisions about the most
effective classifiers for our task.

The table presented below displays the outcomes of the Cochran’s Q tests
conducted for all classifiers across each dataset. Our initial focus is on com-
paring the classifiers across different datasets at varying depths. To ensure
the applicability of the Cochran’s Q test for classifiers trained on different
datasets, we create two new test datasets. Subsequently, we evaluate the fine-
tuned BERT and RoBERTa models on these newly generated test datasets.
This approach allows us to comprehensively assess the performances of the
classifiers, facilitating fair and meaningful comparisons even when dealing
with varying training datasets.

Table 4.7: Cochran’s Q Test Results

(a)
Cochran’s Q Test Inter-Datasets

Depth Test dataset Cochran’s Q p-value

0
BSSBD 45.887 5.99e-10

WSSAD 50.464 6.36e-10

1
BSSBD 3.674 0.2988

WSSAD 131.372 2.97e-15
(b)

Cochran’s Q Test for BERT and RoBERTa

Depth Test dataset Cochran’s Q p-value

0
BSSBDnew 87.38 3.22e-12

WSSADnew 90.55 7.47e-12

1
BSSBDnew 85.40 6.06e-13

WSSADnew 140.592 5.31e-21

The results of the Cochran’s Q test, as presented in Table 4.7, provide valu-
able insights into the performance of classifiers across different datasets and
depths.

The Cochran’s Q test results provide a clear demonstration of the significant



146 Text Chunking To Improve Website Classification

impact of the WSSAD on classifier performance evaluation. For the inter-
dataset (Table 4.7a), at Depth 0, the BSSBD dataset yielded a Cochran’s Q
value of 45.887 with a p-value of 5.99e-10, indicating significant differences in
classifier performances. Similarly, the WSSAD dataset showed a Cochran’s
Q value of 50.464 with a p-value of 6.36e-10, reinforcing the rejection of
the null hypothesis (H0) and confirming substantial differences in perfor-
mance. At Depth 1, however, the BSSBD dataset produced a Cochran’s Q
value of 3.674 with a p-value of 0.2988, suggesting no significant differences
in classifier performances. In contrast, the WSSAD dataset at the same
depth exhibited a Cochran’s Q value of 131.372 with a p-value of 2.97e-15,
highlighting significant differences.

The intra-dataset (Table 4.7b) analysis further supports these findings. For
Depth 0, the BSSBDnew dataset resulted in a Cochran’s Q value of 87.38 with
a p-value of 3.22e-12, while the WSSADnew dataset showed a Cochran’s Q
value of 90.55 with a p-value of 7.47e-12, both indicating significant per-
formance differences. At Depth 1, the BSSBDnew dataset had a Cochran’s
Q value of 85.40 with a p-value of 6.06e-13, and the WSSADnew dataset
presented a Cochran’s Q value of 140.592 with a p-value of 5.31e-21, again
demonstrating significant differences.

These results underscore the effectiveness of the WSSAD approach in re-
vealing performance variations that are not detected by the BSSBD dataset.
The significant differences highlighted by the WSSAD method at both depths
emphasize the importance of employing appropriate stratified data splitting
techniques for achieving more reliable and insightful evaluations of classifier
performance.

Overall, the Cochran’s Q test illustrates the critical role of dataset selection
and model choice in evaluating classifier performance. It demonstrates that
different datasets and models can result in significant variations in classifier
performances. Therefore, researchers and practitioners should exercise cau-
tion in their selection of datasets and models to ensure accurate and reliable
evaluations in natural language processing tasks.
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4.4.5 RoBERTa-based WeCA Performance on a New Test Dataset

In the following we focus more in depth in RoBERTa’s performance to asses
both the baseline BSSBD fine-tuned model and WSSAD based fine-tuned
model. To do so, we generate a New Test Dataset (NTD) as described in
Table 4.8. We then use RoBERTABSSBD and RoBERTAWSSAD in WeCA (us-
ing MVS) and apply them to website classification (Depth 0 and Depth 1).
In the first experiment, we use the web pages of a website as input, while in
the second, we use the chunks of a website. The obtained results are summa-
rized in Table 4.9 which presents the accuracy, Cochran’s Q test statistics,
and corresponding p-values for RoBERTaBSSBD and RoBERTaWSSAD

at two different depths. We follow the same Hypothesis as seen in Subsection
4.4.4.

Table 4.8: New Test Dataset (NTD)

Category Websites Web Pages Chunks Chunksdepth=0

tourism_hotel 37 (9.64%) 311 (10.05%) 3841 (11.40%) 331 (9,68%)

business_services 42 (10.94%) 256 (8.28%) 2110 (6.26%) 239 (6,99%)

bank_insurance 48 (12.50%) 399 (12.90%) 4709 (13.98%) 518 (15,15%)

education 33 (8.59%) 365 (11.80%) 4947 (14.69%) 389 (11,37%)

fashion_beauty 39 (10.16%) 302 (9.76%) 3568 (10.59%) 350 (10,23%)

cars_motor 31 (8.07%) 280 (9.05%) 3333 (9.89%) 313 (9,15%)

home_garden_interior 45 (11.72%) 411 (13.29%) 5233 (15.55%) 575 (16,81%)

escort_services 30 (7.81%) 230 (7.44%) 2735 (8.12%) 217 (6,35%)

consumer_services 36 (9.38%) 289 (9.34%) 3421 (10.16%) 322 (9,42%)

counterfeit 43 (11.20%) 200 (6.47%) 1094 (3.25%) 166 (4,85%)

Sum 384 3093 33691 3420

Evaluation on Web Pages

The performance of RoBERTa models on web pages is shown in Table 4.9a.
At depth 0, RoBERTaWSSAD achieved an accuracy of 91.10%, compared to
87.81% for RoBERTaBSSBD. The Cochran’s Q test statistic for this depth
was 15.551 with a p-value of 3.89e-11, indicating a statistically significant
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Table 4.9: RoBERTa’s Performance on NTD with Cochran’s Q Test

(a) Evaluation of Websites Classification using Web Pages as Input

Depth Model Accuracy Cochran’s Q p-value

0
RoBERTaBSSBD 87,81 %

15.551 3.89e-11
RoBERTaWSSAD 91,10 %

1
RoBERTaBSSBD 89,76 %

67.137 6.40e-10
RoBERTaWSSAD 92,12 %

(b) Evaluation of Websites Classification using Chunked Blocks as Input

Depth Model Accuracy Cochran’s Q p-value

0
RoBERTaBSSBD 89,77 %

30.112 2.09e-11
RoBERTaWSSAD 92,54 %

1
RoBERTaBSSBD 91,09 %

127.92 4.66e-9
RoBERTaWSSAD 94,01 %

improvement. Therefore, we reject the null hypothesis (H0) and accept the
alternative hypothesis (H1), as there are significant differences in the perfor-
mances of the classifiers.

At depth 1, RoBERTaWSSAD achieved an accuracy of 92.12%, whereas RoBERTaBSSBD

achieved 89.76%. The Cochran’s Q test statistic was 67.137 with a p-value of
6.40e-10, further demonstrating a significant improvement. Again, we reject
the null hypothesis (H0) and accept the alternative hypothesis (H1).
Evaluation on Chunked Blocks

The performance of RoBERTa models on chunked blocks is shown in Table
4.9b. At depth 0, RoBERTaWSSAD achieved an accuracy of 92.54%, com-
pared to 89.77% for RoBERTaBSSBD. The Cochran’s Q test statistic for this
depth was 30.112 with a p-value of 2.09e-11, indicating a significant improve-
ment. Hence, we reject the null hypothesis (H0) and accept the alternative
hypothesis (H1).

At depth 1, RoBERTaWSSAD achieved an accuracy of 94.01%, whereas RoBERTaBSSBD

achieved 91.09%. The Cochran’s Q test statistic was 127.92 with a p-value
of 4.66e-9, again indicating a significant improvement. We therefore reject
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the null hypothesis (H0) and accept the alternative hypothesis (H1).

In Summary, the results clearly show that RoBERTa, when fine-tuned using
WSSAD, outperforms the BSSBD on both web pages and chunked blocks.
The Cochran’s Q test results further validate the statistical significance of
the performance improvements observed with WSSAD. These findings high-
light the effectiveness of the WSSA in improving the robustness and accuracy
of RoBERTa for website classification tasks. By rejecting the null hypoth-
esis (H0) in favor of the alternative hypothesis (H1), we confirm that the
observed improvements are not due to random chance but reflect genuine
enhancements in model performance.

4.5 Conclusion

One of the most known open issue in the research community is processing
large-scale text sequences in many NLP tasks. In this chapter, we proposed a
novel simple statistical approach, namely Weighted Stratified Split Approach
(WSSA), for website classification. We evaluated its performance using pop-
ular language models, including BERT, RoBERTa, Longformer and BigBird,
on the WSSAD dataset. We compared the results to the baseline dataset
(BSSBD) and observed that BERT and RoBERTa achieved high accura-
cies. However, their maximum sequence length limitation hampered their
performance on longer web pages.

To address this limitation, we introduced the WSSA split, which divides
web pages into stratified chunks, allowing for the retention of contextual
information while maintaining a balanced distribution of categories. WSSA
approach outperforms Longformer and BigBird models, which struggle with
longer texts and complex web page content.

WSSA achieves high accuracies with Longformer and RoBERTa for depth-
0 classification tasks and surpasses BigBird for depth-1 classification tasks.
However, we acknowledge the slight discontinuities introduced by the chunk-
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ing process and the dependency of the majority voting strategy on individual
model accuracies and noisy chunks. We also notice that the best results are
obtained through the combination of index web pages, RoBERTa model and
our WSSAD dataset. This result shows how efficient website classification
can be done while being low-cost in resources and time consumption unlike
other models.

Overall, our study demonstrates the effectiveness of the WSSA split in im-
proving website classification accuracy and overcoming the limitations of
BERT and RoBERTa models. These findings have implications for applica-
tions such as information retrieval and content filtering.



Chapter 5

Application of WeCA to the
Large-Scale Olfeo Database

5.1 Introduction

Large-scale data presents a unique set of challenges that can complicate data
processing, analysis, and storage. As datasets grow in volume, variety, and
velocity, traditional data processing techniques often fall short, requiring
innovations in both technological approaches and analytical methods. The
challenges of managing large-scale data include ensuring data quality and
integrity, dealing with heterogeneous data types, and extracting meaningful
insights in a timely manner. Managing large-scale data presents a set of
challenges that can complicate data processing, analysis, and storage.

In the context of ML and NLP, these challenges are magnified. Developing
models that can effectively learn from and make predictions on large-scale
datasets requires not only sophisticated algorithms but also strategic data
management to ensure that the models are both accurate and robust. As
datasets grow, maintaining the balance between computational resource al-
location and model performance becomes increasingly critical. Addressing
these challenges is essential for advancing the capabilities of ML systems and
harnessing the full potential of large-scale data.

In this chapter, we explore the application of our developed techniques for
website classification, which sets the stage for a thorough analysis and practi-
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cal implementation on datasets of different sizes. We start by applying these
techniques to a larger dataset as an initial step. This initial application
serves as a foundation, enabling us to assess the effectiveness and efficiency
of our methods on a broader scale.

This chapter is organized as follows: in Section 1, we present an overview
of the website classification system. Section 2 describes the full dataset and
the themed datasets along with their respective categories. In Section 3, we
present our experiments and results. Finally, in Section 4, we conclude with
our findings and perspectives.

5.2 Overview of the website classification system

The proposed system architecture (see Figure 5.1) is designed to efficiently
handle large-scale data processing and machine learning operations. It con-
sists of three main components: Data Orchestration, Model Orchestration,
and Machine Learning Operations (MLOps). Data Orchestration manages
the acquisition, processing, and storage of data, ensuring a seamless flow
of data throughout the system. Model Orchestration oversees the training
and evaluation of machine learning models, focusing on optimizing their per-
formance and adaptability by varying the data used to answer the task of
website classification. MLOps, or Machine Learning Operations, is a set of
practices that aims to deploy and maintain machine learning models in pro-
duction reliably and efficiently.This step is essential for the deployment and
monitoring of these models, incorporating continuous validation, deployment
strategies, and performance analysis to maintain and enhance the system’s
efficacy. In the following, we introduce each component in details.

5.2.1 Data Orchestration (DOr)

Data orchestration is crucial for managing and facilitating the flow of data
within proposed system It encompasses a series of sophisticated operations
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Figure 5.1: Overview of the implemented system

that begin with data acquisition from a distributed source and extend to the
preparation of this data for further processing stages. This subsection focuses
on the initial stages of data orchestration, specifically detailing our crawler’s
functionality and its integration into the data management workflow.
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Crawler API

The Crawler API is a crucial part of our data orchestration process, de-
signed to efficiently gather and process raw HTML content from specified
web sources. Implemented internally in Python using the Scrapy frame-
work, the API utilizes asynchronous processing for concurrent downloads,
significantly speeding up data collection. The system follows a multi-tier ar-
chitecture, separating data collection, processing, and storage layers. Ansible
is used for configuration management and deployment automation, ensuring
consistent environments across development, staging, and production.

The crawler targets pre-defined URLs and expands its search to include
up to 50 neighboring pages within the same domain. Multi-threading al-
lows it to handle multiple web pages simultaneously, reducing the total time
required for data collection. The key tools used include Scrapy for crawl-
ing, BeautifulSoup for HTML parsing, NLTK for text processing, Dask for
data manipulation, and Elasticsearch for scalable data storage and real-time
analysis. Docker is used to containerize the application, ensuring consistency
across different environments and simplifying deployment.

Error handling includes a retry mechanism for transient network issues and
an alert system to notify administrators of persistent problems. The collected
raw HTML data is stored in Elasticsearch, facilitating easy access, retrieval,
and real-time data analysis. Preprocessing involves HTML parsing, text
extraction, and normalization using BeautifulSoup and NLTK, transforming
the data into a structured format suitable for model training and analysis.

Performance metrics indicate the crawler processes approximately 200 pages
per minute, collecting around 1GB of data per hour. Docker ensures efficient
resource utilization by isolating crawling tasks in containers, which can be
scaled horizontally as needed. Automated deployment with Ansible ensures
consistent and repeatable setups, with the architecture allowing for quick
deployment of additional crawler instances to handle increased load or dis-
tribute tasks across multiple servers. This setup provides the foundation of
the data collection and processing tasks.
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Data Cleaning

In the task of website classification, preprocessing HTML content is essential
to optimize the performance and accuracy of large language models (LLMs).
In the following we present key steps of the preprocessing task necessary for
effective model training.

The preprocessing begins with data cleaning to ensure the quality and in-
tegrity of the training data to ensure the elimination of noisy and redundant
data, inconsistencies, and irrelevant elements:

• Removing Duplicate Entries: Eliminates redundant data that could
bias the model.

• Handling Missing or Erroneous Values : Incorrect data or gaps in
HTML can lead to inaccurate model training. Techniques include im-
putation (filling missing values based on other data points) and deletion
(removing sections of data that lack essential information).

• Parsing : Involves analyzing the HTML structure to extract meaning-
ful text. It transforms HTML elements into structured data usable for
classification, extracting valuable information from elements like head-
ers, paragraphs, and links.

• Normalization : May involve converting text to a common case,
though the decision to use lowercase or maintain original casing de-
pends on the specifics of the LLM. This step standardizes textual data
to ensure uniformity and consistency, minimizing complexity for mod-
els. It also standardizes other elements like numerical data and dates
to create a coherent dataset.

• Language Detection : Detecting the language of the website’s con-
tent is crucial before further processing. This step tailors subsequent
text processing to the specific linguistic rules and nuances of the con-
tent’s language, important for multilingual pages.

These preprocessing steps are essential for efficiently fine-tuning the LLMs for
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website classification. By implementing processes such as cleaning, parsing,
normalizing, and detecting the language of the data, these actions prepare
the models to accurately learn from and generalize the training data.
Data Storage

We store the raw HTML web pages in Elasticsearch (ES) cloud data stor-
age to facilitate analysis when needed and to accommodate the dynamic
evolution of the web. This approach ensures the availability of the data,
eliminating the need to repeatedly crawl the same data. Additionally, the
cleaned text data extracted from the HTML is also stored in the same cloud
storage, providing organized access to both raw and processed data for effi-
cient retrieval and use in various applications. This method streamlines the
workflow and enhances the effectiveness of data management practices.

5.2.2 Model Orchestration (MO)

Model Orchestration within our system architecture is primarily focused
on managing the training and evaluation of machine learning models effi-
ciently. This component is crucial for ensuring that the models we develop
are both effective and reliable, capable of performing well across various
datasets and operational scenarios. Through MO, we handle each model’s
lifecycle, from its initial configuration and training through to its thorough
evaluation against performance metrics.

The MO is designed to streamline the deployment of models and their in-
tegration with the overall system, including the Data Orchestration and
MLOps components. It supports consistent model performance and aids in
the seamless transition of models from the development stage to production.
This structured approach ensures that all models meet the necessary stan-
dards before they are deployed, contributing significantly to the robustness
and reliability of our machine learning operations.



5.2 Overview of the website classification system 157

WSSA Data Splitting

In this step, the process begins with the retrieval of cleaned data from the
cloud database, ensuring that the data used for model training and evalua-
tion is of high quality and free from inconsistencies Once retrieved, this data
undergoes a crucial step od data splitting using the Weighted Stratified Split
Approach (WSSA), a method we have developed and detailed in Chapter 4.
This approach is designed to split the data in a way that maintains a repre-
sentative distribution of different classes or categories, which is essential for
training unbiased and generalizable models.
Preprocess

Within the preprocessing block, we employ the HuggingFace framework to
process the data comprehensively from start to finish, culminating in the
generation of embeddings that are crucial for training our LLMs. The Hug-
gingFace framework is instrumental in transforming raw data into a format
that can be effectively utilized by the classification mechanism. This prepro-
cessing involves several key steps outlined by the HuggingFace framework (to-
kenizing text into consistent tokens, converting them to numerical represen-
tations, assembling these into tensors, processing in uniform batches, adding
special tokens for model requirements, and generating attention masks and
token type IDs for relevant data identification).

This thorough and methodical approach ensures that the data is not only
prepared for model ingestion but is also optimized for the best performance
of the classification mechanism. The use of the HuggingFace framework
standardizes this process, making it scalable and repeatable across different
datasets and model architectures, ultimately enhancing the robustness and
reliability of our predictive models.
Fine-tuning and Evaluation

In the fine-tuning block, the primary focus is on adapting a pre-trained large
language model (LLM) to our specific data and task requirements using the
HuggingFace framework. This fine-tuning is crucial because it allows the
general capabilities of the pre-trained model to be specialized to the nuances
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and specifics of our dataset, which enhances its applicability and performance
in our targeted scenarios.

• Model Preparation : We begin by selecting a suitable pre-trained
model from the HuggingFace model hub, which has been initially trained
on a large and diverse corpus. This pre-training provides the model with
a broad understanding of language, which we then tailor to our specific
needs.

• Hyperparameter Optimization : Before fine-tuning begins, we de-
termine the optimal hyperparameters that will govern the fine-tuning
process. These parameters, such as learning rate, batch size, and num-
ber of epochs, are crucial as they significantly affect the model’s learning
dynamics and the effectiveness of the fine-tuning.

• Fine-Tuning Process : Using our preprocessed and split data, the
fine-tuning process involves making targeted adjustments to the model’s
weights. Unlike initial training, fine-tuning requires fewer epochs and
adjustments because the model is already knowledgeable about the lan-
guage features. The goal here is to refine this knowledge so the model
can effectively apply it to the specific characteristics of our data.

By specifically adjusting how the model processes and responds to our data,
fine-tuning enhances the model’s ability to generalize well on new, unseen
data while maintaining high accuracy on the type of content it will encounter
in deployment.

Using the HuggingFace framework throughout this process not only facili-
tates these steps but also ensures they are conducted efficiently and with the
support of a robust, community-driven toolkit.

Finally, in the evaluation block, WeCA is utilized to determine the final
classification of websites which is detailed in Chapter 3.
Tracking API

The entire process including data splitting, model training, fine-tuning, and
evaluation is encapsulated and managed by the MLflow Tracking API. This
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API provides a systematic way to log and store all relevant data and model
metrics throughout the model’s lifecycle. MLflow contributes to the orches-
tration and subsequent stages by storing model checkpoints, dataset indices,
classification results, and parameters to ensure reproducibility, performance
tracking, and integration with MLOps for efficient deployment and continu-
ous improvement (for a detailed review please refer to MLflow1).

By leveraging MLflow Tracking API, our Model Orchestration component
not only enhances the management and traceability of our machine learning
models but also supports the broader goal of maintaining a robust, scalable,
and transparent AI system. This integration plays a pivotal role in stream-
lining the entire lifecycle of our models, from development to deployment.

5.2.3 Machine Learning Operations (MLOps)

In the MLOps component, model validation serves as a pivotal decision point
that dictates subsequent actions based on the analysis of classification re-
sults from the MO component. This component is structured to handle both
scenarios where the model is validated as either sufficient or insufficient ac-
cording to predefined criteria (i.e. model’s accuracy through time). Here’s
how the process unfolds:

Model Validation and Conditional Analysis upon receiving classifica-
tion results, initial validation checks if the model meets performance criteria
(i.e. if the model’s accuracy is above a certain acceptable threshold, 87% in
this proposed system). If the model fails, detailed data and model analysis
are conducted to identify and resolve issues. If the model passes, it pro-
gresses to deployment using BentoML API (for more details please refer to
BentoML2).

Deployment and Performance Monitoring after deployment, contin-
uous performance monitoring detects deviations from expected standards.
If performance triggers are activated, the system initiates analysis to ad-

1https://mlflow.org/docs/latest/introduction/index.html
2https://docs.bentoml.com/en/latest/
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dress potential issues, ensuring the model operates effectively and adapts to
evolving conditions.

This structured approach in the MLOps component ensures that our mod-
els are not only developed and deployed efficiently but are also maintained
proactively to adapt to evolving conditions and requirements. This method-
ology supports continuous improvement and alignment with operational goals,
ensuring the long-term efficiency and reliability of the classification mecha-
nisms.

5.3 Dataset

The Olfeo3 dataset curated and analyzed in this chapter encapsulates a com-
prehensive web crawl conducted from 2015 to 2022. This dataset was con-
structed with the objective of exploring web dynamics and potential biases,
all while adhering to rigorous data quality protocols. The crawl was exe-
cuted to a depth of one link from the starting pages using a custom-designed
crawler API, which is thoroughly described in the WeCA Chapter 3. Post-
crawl, the web pages underwent the cleaning and storage process before being
divided into data chunks, as depicted in Chapter 4.

In the face of incomplete data within the initial set, our methodology involved
filtering out underrepresented categories. Consequently, the final dataset in-
corporates only those categories with at least three websites, amounting to a
total of 60 individual categories. These categories were further classified into
9 overarching themes based on the client’s specifications. The distribution
and structure of these themes are restricted by the client’s criteria, which
imposed a specific framework on our dataset categorization. Thus, we intro-
duced three types of datasets for our experiments. First, we use the whole
dataset based on its categories to which we will refer to it as FDC, secondly
we do the same as the latter but this time we consider the themes as the
categories, this dataset is referred to as FDTC. Lastly, we divide the whole

3www.olfeo.fr
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dataset to generate subset datasets referring to each theme in our whole
dataset.

The dataset, as summarized in Table 5.1, encompasses 6592 websites across
the defined categories. These websites collectively consist of 131,553 web
pages, which are further segmented into 722,003 discrete chunks of data.
This delineation is not merely quantitative; it represents a systematically
categorized dataset that underpins the experimental inquiries set forth in
this experiment. The big data size of this dataset thus presents both a
challenge and an opportunity to test the methods developed in Chapters 3
and 4. For a more detailed view of the dataset see Table 5.2.

Table 5.1: Big Dataset Summary

Theme Label Count Categories Websites Web pages Chunks

Legal Risk 6 402 (6,10%) 10337 (7,86%) 32037 (4,44%)

Security Risk 3 24 (0,36%) 162 (0,12%) 2116 (0,29%)

Adult Content 4 33 (0,50%) 345 (0,26%) 4555 (0,63%)

Risk of Unauthorized Disclosure 5 28 (0,42%) 200 (0,15%) 2571 (0,36%)

Bandwidth 5 213 (3,23%) 2318 (1,76%) 30875 (4,28%)

Leisure and Social Activities 19 2294 (34,80%) 52447 (39,87%) 266672 (36,94%)

Education 3 566 (8,59%) 11939 (9,08%) 49380 (6,84%)

Consumer Services 9 2000 (30,34%) 32335 (24,58%) 226018 (31,30%)

Business Services 6 1032 (15,66%) 21470 (16,32%) 107779 (14,93%)

Sum 60 6592 131553 722003

Table 5.1 provides a comprehensive summary of FDC categorized into various
themes. Each theme is represented by its label, indicating different content
categories, along with corresponding counts across websites, web pages, and
text chunks. In the other hand, Table 5.2 offers a detailed breakdown of
FDC categorized into various themes and subcategories. Each theme is pre-
sented alongside its corresponding categories, showcasing the distribution of
websites, web pages, and text chunks within each category.
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5.4 Experiments

The technical foundation of our experiments relies on Python 3.10, Docker
for containerization, Huggingface framework for natural language processing,
MLflow for machine learning lifecycle management, and BentoML for model
serving. Version control and automated deployment are facilitated by a
GitLab CI/CD pipeline. The computational demands are met by a cloud
service equipped with up to four A100 GPUs.

In our experiments, we utilize a variety of models to tackle the complexity
of web content classification. Notably, the XLM-R (XLM-RoBERTa) model,
in both its ’large’ and ’base’ configurations, stood out due to its extensive
training on multilingual datasets, making it a cornerstone of our analysis.
This model harnesses the power of cross-lingual representation, making it
especially adept at processing and understanding a wide range of languages
and dialects. Furthermore, the mBERT (Multilingual BERT) model, avail-
able in both uncased and cased versions, was evaluated to understand the
influence of case sensitivity on classification performance. These models are
among the most sophisticated in the field of NLP, providing nuanced insights
into language and offering robust solutions for navigating the vast terrain of
web data.

In the following, we present an analysis of the performance of advanced
language models applied to the classification of a large-scale dataset. This
analysis includes a comparison of accuracy and weighted F-scores for mod-
els across both categorical and thematic classifications. We evaluate the
models effectiveness in handling diverse web content and highlight signifi-
cant patterns and discrepancies in their performances. The discussion aims
to interpret these outcomes, offering insights into the practical implications
for the application of natural language processing techniques in web content
analysis. This thorough evaluation contributes to the broader understanding
of the strengths and limitations of current language models for our task of
website classification applied in the big data context.
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Concurrently, we continuously evaluated the performance of multilingual
LLMs, focusing on their ability to adapt to and process content across various
languages within the dataset, identifying operational strengths and weak-
nesses. All results are presented in Tables 5.3 and 5.4.

Table 5.3: Summary of all Experiments Accuracies

Dataset Label RoBERTa mBERTbaseuncased
mBERTbasecased XLM-Rlarge XLM-Rbase

FDC / 65,68 % 69,88 % 69,38 % 72,09 % 75,58 %

FDTC / 73,43 % 79,12 % 77,00 % 81,33 % 83,01 %

Theme 1 Legal Risk 90,32 % 92,00 % 92,69 % 96,35 % 96,85 %

Theme 2 Security Risk 91,73 % 93,27 % 91,12 % 96,34 % 96,67 %

Theme 3 Adult Content 92,22 % 95,76 % 90,98 % 90,09 % 97,60 %

Theme 4 Risk of Unauthorized Disclosure 64,50 % 66,34 % 66,90 % 67,24 % 71,03 %

Theme 5 Bandwidth 83,74 % 86,09 % 86,06 % 85,54 % 90,58 %

Theme 6 Leisure and Social Activities 71,60 % 74,40 % 73,62 % 77,15 % 76,89 %

Theme 7 Education 87,10 % 87,14 % 87,39 % 88,32 % 91,55 %

Theme 8 Consumer Services 80,92 % 81,01 % 80,37 % 85,34 % 85,67 %

Theme 9 Business Services 74,00 % 78,07 % 79,04 % 80,87 % 82,18 %

Table 5.4: Summary of all Experiments Weighted F-Scores

Dataset Label RoBERTa mBERTbaseuncased
mBERTbasecased XLM-Rlarge XLM-Rbase

FDC / 64,54 % 68,98 % 67,17 % 69,63 % 74,45 %

FDTC / 71,35 % 77,49 % 75,11 % 80,37 % 81,27 %

Theme 1 Legal Risk 88,37 % 89,96 % 91,98 % 93,91 % 95,78 %

Theme 2 Security Risk 90,49 % 90,78 % 89,58 % 95,01 % 95,46 %

Theme 3 Adult Content 91,15 % 93,88 % 88,76 % 87,87 % 95,86 %

Theme 4 Risk of Unauthorized Disclosure 62,16 % 65,57 % 65,24 % 66,49 % 70,04 %

Theme 5 Bandwidth 82,92 % 84,86 % 85,12 % 84,30 % 88,44 %

Theme 6 Leisure and Social Activities 69,88 % 73,23 % 71,71 % 75,20 % 74,53 %

Theme 7 Education 85,43 % 86,40 % 85,99 % 86,57 % 90,01 %

Theme 8 Consumer Services 78,43 % 80,03 % 78,02 % 84,54 % 83,92 %

Theme 9 Business Services 72,38 % 75,78 % 78,28 % 78,82 % 80,38 %

5.4.1 Comparative Analysis of Classifiers through FDC and FDTC

The first phase of our experimentation involve a category-based classification
of the entire dataset to determine the framework’s effectiveness in catego-
rizing web content into predefined categories, evaluating precision and recall
rates across diverse themes. Additionally, we expanded our scope by treating
themes as categories themselves, applying our models to the entire dataset
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under this broader schema. This aimed to observe how model performance
shifted when transitioning from specific categories to more general themes.

In FDC, classifiers are scrutinized for their ability to discriminate between
numerous finely divided categories:

• RoBERTa lags with an accuracy of 65.68% and a weighted F-score
of 64.54%. These figures indicate that while RoBERTa can handle
individual categories, its performance is not optimal in a multifaceted
setting.

• mBERT Variants show an improvement in both metrics over RoBERTa,
with the uncased variant displaying an accuracy of 69.88% and a weighted
F-score of 68.98%. The cased variant has similar accuracy at 69.38% but
a slightly lower F-score at 67.17%, which could imply that the uncased
variant has a better balance of precision and recall in this context.

• XLM-R Models outperform the field, particularly the base model
with the highest accuracy of 75.58% and a weighted F-score of 74.45%.
These scores suggest that the XLM-R base is most attuned to the task’s
demands, successfully identifying category-specific linguistic patterns.

FDTC provides a view of how models manage broader content groupings,
where themes may present more generalized linguistic features:

• RoBERTa shows a significant performance boost in FDTC, with an
increase in accuracy to 73.43% and a weighted F-score of 71.35%. This
suggests that RoBERTa is more adept at theme-level generalization
than fine-grained category differentiation.

• mBERT Variants see similar improvements, with the uncased model
reaching an accuracy of 79.12% and a weighted F-score of 77.49%. The
cased variant also shows gains but remains slightly behind its uncased
counterpart, underscoring the potential impact of case sensitivity on
thematic classification.

• XLM-R Models continue to lead, with the base variant achieving an
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accuracy of 83.01% and a weighted F-score of 81.27% in FDTC. The
large variant also performs strongly, with an accuracy of 81.33% and
a weighted F-score of 80.37%. The superior performance of XLM-R
models in the thematic dataset underscores their robust capacity for
capturing and generalizing across diverse linguistic landscapes.

When comparing FDC and FDTC, it’s evident that all classifiers demon-
strate enhanced performance metrics in the FDTC, suggesting that thematic
classification poses less complexity and challenges for these models compared
to detailed categorical classification. This improvement is reflected in both
accuracy and weighted F-scores. Particularly noteworthy is the increase in
weighted F-scores from FDC to FDTC, especially for RoBERTa and mBERT
models. This enhancement might be attributed to a clearer thematic distinc-
tion aligning well with the pre-training corpora of these models. Moreover,
the consistent robustness of XLM-R models across both datasets underscores
their versatility in seamlessly transitioning between detailed and generalized
classification tasks without any significant loss in performance.

5.4.2 Comparative Analysis of Classifiers on Theme-Based Datasets

The second experimental phase split the dataset into sub-datasets corre-
sponding to each theme, allowing for an in-depth analysis of the model’s
capabilities with theme-segregated content. This provided insights into the
specificity and adaptability of the models to theme-focused classification
challenges.

The results from both accuracy and weighted F-scores provide a nuanced
view of how each classifier deals with the intricacies of different thematic
contents.

• Legal Risk (Theme 1): A domain requiring precision, where the
XLM-R models, particularly the base variant with an accuracy of 96.85%
and a weighted F-score of 95.78%, show outstanding ability to capture
the formal register and specialized lexicon.
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• Security Risk (Theme 2): Similar to Theme 1, this theme demands
a grasp of specialized terminology, which is well-met by XLM-R models,
with the base variant reaching an accuracy of 96.67% and a weighted
F-score of 95.46%, suggesting adeptness in handling security-related
content.

• Adult Content (Theme 3): Here, the nuanced understanding of
social and cultural contexts is critical. The XLM-R base model’s high
accuracy (97.60%) and weighted F-score (95.86%) suggest superior con-
textual sensitivity and content discernment.

• Risk of Unauthorized Disclosure (Theme 4): The lowest scores
across all themes for every model, with XLM-R base having the highest
weighted F-score of 70.04%, indicate a universal challenge posed by
this theme, which may require models to have more nuanced training
on privacy-related content.

• Bandwidth (Theme 5): A technical theme where all models perform
relatively well, but the XLM-R base still leads with an accuracy of
90.58% and a weighted F-score of 88.44%, indicating its effectiveness in
technical domains.

• Leisure and Social Activities (Theme 6): Showcases the challenge
of informal, varied content. The XLM-R large performs the best among
models, with a balanced approach to a diversity of linguistic expressions.

• Education (Theme 7): Reflects content with a range of complexity,
from academic to general knowledge. Here, XLM-R base scores an
accuracy of 91.55% and a weighted F-score of 90.01%, showcasing its
capability in processing educational material.

• Consumer Services (Theme 8): Encompasses a variety of language
uses, from marketing to service feedback, where XLM-R models show
higher scores, indicating their flexibility and broader understanding of
consumer discourse.

• Business Services (Theme 9): The professional and technical lan-
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guage of this theme is best captured by the XLM-R base, with an
accuracy of 82.18% and a weighted F-score of 80.38%, suggesting that
XLM-R models are well-suited for business-related content.

The performance of models across thematic datasets reveals a distinct pat-
tern in the ability of various classifiers to handle thematic content. XLM-R
models consistently demonstrate high performance, which emphasizes their
strong capability to generalize and adapt across a range of thematic contents.
This adaptability is a significant asset, as it suggests that XLM-R models
are adept at managing the diversity inherent in thematic datasets.

mBERT models, including both the uncased and cased variants, also show
strong performance. However, there is noticeable variability in their effec-
tiveness across different themes. This variation could be indicative of the
models’ sensitivity to the linguistic nuances and the specific demands of
each domain. Such sensitivity implies that while mBERT models are gener-
ally capable, their performance might be optimized by tuning them to the
specific linguistic and conceptual characteristics of each theme.

RoBERTa, on the other hand, exhibits a lower performance in category-based
classification but shows improvement when applied to thematic contexts.
Nonetheless, it does not reach the benchmark set by the XLM-R models.
The variation in RoBERTa’s performance across different themes could be
attributed to its pre-training corpus and model architecture. These aspects
of RoBERTa might be less suited for the task of thematic generalization
when compared to the XLM-R models, suggesting a potential area for further
model refinement to improve its adaptability to thematic content.

5.4.3 Performance Analysis

The analysis of performance across the classifiers provides insights into sev-
eral key aspects that determine the success of language models in web content
classification tasks. A critical factor is the scope and diversity of the training
data, particularly for multilingual models. The XLM-R’s exceptional train-
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ing on a multilingual dataset is a contributing factor to its distinguished
performance. Its capability to process and understand various contexts in
multiple languages grants it a notable advantage, especially in Whole Dataset
Themes as Categories (FDTC), where themes can manifest a broader spec-
trum of linguistic diversity.

Additionally, the investigation into the effects of case sensitivity on model
performance has yielded some enlightening observations. The consistent out-
performance of the mBERT (base uncased) model compared to its cased
counterpart has implications for the development of NLP applications. This
uncased model’s ability to lead suggests that the presence of case information
in text data may not significantly enhance the model’s ability to comprehend
the context within web content classification, indicating potential benefits in
ignoring case.

Lastly, when examining the granularity of content categorization against the
ability to generalize, the XLM-R base model stands out. It not only navi-
gates the fine-grained distinctions within the Whole Dataset Category-based
(FDC) effectively but also demonstrates an exceptional capacity for general-
izing in FDTC. This versatility is paramount for classifiers that are expected
to contend with the challenging and varied landscape of web content, adapt-
ing their approach to match the level of specificity required by the task at
hand. The leading performance of the XLM-R base underscores its readi-
ness for a wide array of classification challenges, from the detailed to the
thematic.

5.4.4 XLM-R and Fine-tuning Benchmark

Evaluating fine-tuning techniques for pre-trained language models is crucial
for optimizing model performance, managing computational resources, and
enhancing the overall understanding of model adaptation strategies. Stan-
dard fine-tuning, while effective, demands significant computational power,
making techniques like LoRA, QLoRA, and adapters valuable alternatives.
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These methods offer efficient parameter updates, reducing training costs
while achieving competitive performance. Evaluating these techniques helps
identify the most suitable approach for specific tasks and datasets, ensuring
models are both effective and resource-efficient.

In this section, we detail the fine-tuning techniques employed in our exper-
iments, focusing on Standard Fine-Tuning, Low-Rank Adaptation (LoRA),
Quantized LoRA (QLoRA), and Adapter-based methods. Each technique is
applied to the XLM-RoBERTa base model to evaluate their performance on
the website classification tasks. Table 5.5 summarize the pros and cons of
these three techniques. Table 5.6 summarize the obtained weighted F-score
results of this benchmark.

Standard fine-tuning involves updating all the parameters of the pre-
trained model during the training process. This method leverages the entire
capacity of the model to adapt to the specific downstream task. By fine-
tuning all layers, the model learns task-specific features that enhance its
performance on the given dataset.

Low-Rank Adaptation (LoRA) is a parameter-efficient adaptation method
that introduces low-rank matrices into the existing model layers. Instead
of fine-tuning all the model parameters, LoRA updates only the introduced
low-rank matrices, significantly reducing the number of trainable parameters
and computational overhead. This method is particularly useful for scenar-
ios with limited computational resources while still achieving competitive
performance [329].

Quantized LoRA (QLoRA) builds on the LoRA approach by further
quantizing the low-rank matrices. This quantization reduces the memory
footprint and computational requirements even more than LoRA, making it
suitable for deployment in resource-constrained environments. Despite the
reduced precision, QLoRA maintains a performance close to full-precision
models, making it an attractive option for practical applications [330].

Adapters methods involve adding small neural network modules (adapters)
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between the layers of the pre-trained model. During fine-tuning, only the
parameters of these adapters are updated while keeping the original model
parameters fixed. This approach drastically reduces the number of trainable
parameters and allows for efficient task adaptation. Adapters have been
shown to be effective in multi-task learning and transfer learning scenarios
[331].

Table 5.5: Pros and Cons of Fine-Tuning Techniques

Technique Pros Cons
Standard

Fine-Tuning • Full model adaptation
• Best performance

• High computational cost
• Requires significant re-

sources

LoRA
• Reduced number of train-

able parameters
• Computationally efficient

• Slightly lower performance
• Additional complexity in

implementation

QLoRA
• Further reduces memory

footprint
• Suitable for resource-

constrained environments

• Potential performance drop
due to quantization

• Requires careful tuning

Adapters
• Efficient task adaptation
• Drastically reduces train-

able parameters

• Typically lower perfor-
mance than full fine-tuning

• May not generalize as well
to all tasks
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Table 5.2: Detailed Whole Dataset Themes and Categories

Theme Category Websites Web pages Chunks

1

Counterfeiting and Copyright Infringement 150 (37,31%) 3748 (36,26%) 8865 (27,67%)
Illicit Drugs 14 (3,48%) 100 (0,97%) 2137 (6,67%)
Gambling 17 (4,23%) 67 (0,65%) 1530 (4,78%)

Pirated Music, Films, Software 17 (4,23%) 53 (0,51%) 2297 (7,17%)
Terrorism, Violence, Explosives and Poisons 19 (4,73%) 165 (1,60%) 1073 (3,35%)

Escort Services 185 (46,02%) 6204 (60,02%) 16135 (50,36%)

2
Proxies, Redirectors 7 (29,17%) 38 (23,46%) 502 (23,72%)

Parked Domains 8 (33,33%) 103 (63,58%) 1364 (64,46%)
URL Reducers 9 (37,50%) 21 (12,96%) 250 (11,81%)

3

Sex, Pornography 8 (24,24%) 51 (14,78%) 1810 (39,74%)
Weapons, Hunting, Safety Equipment 8 (24,24%) 135 (39,13%) 1037 (22,77%)

Dating Services 8 (24,24%) 87 (25,22%) 930 (20,42%)
Alcohol and Tobacco 9 (27,27%) 72 (20,87%) 778 (17,08%)

4

Web Hosting, ISP 3 (10,71%) 35 (17,50%) 109 (4,24%)
Personal Pages 9 (32,14%) 9 (4,50%) 270 (10,50%)

Blogs 9 (32,14%) 9 (4,50%) 1719 (66,86%)
Forums, Wikis 3 (10,71%) 22 (11,00%) 400 (15,56%)

Social Networks 4 (14,29%) 125 (62,50%) 73 (2,84%)

5

"Get paid to surf" Programs 17 (7,98%) 352 (15,19%) 532 (1,72%)
Television 50 (23,47%) 770 (33,22%) 10432 (33,79%)

Video Sharing 46 (21,60%) 44 (1,90%) 4916 (15,92%)
Website Analytics 50 (23,47%) 769 (33,18%) 4753 (15,39%)

Radio 50 (23,47%) 383 (16,52%) 10242 (33,17%)

6

Traditional Religions 250 (10,90%) 787 (1,50%) 10626 (3,98%)
Photography, Image Databases 50 (2,18%) 795 (1,52%) 10361 (3,89%)

Cars, Motor Sports 194 (8,46%) 6481 (12,36%) 18572 (6,96%)
Sports 60 (2,62%) 879 (1,68%) 12030 (4,51%)
Cinema 50 (2,18%) 730 (1,39%) 9705 (3,64%)
Weather 50 (2,18%) 444 (0,85%) 5630 (2,11%)

Mobile Phones, Logos, Ringtones 50 (2,18%) 815 (1,55%) 10427 (3,91%)
Fashion, Beauty, Wellness 196 (8,54%) 7261 (13,84%) 17917 (6,72%)

Tourism, Hotels 756 (32,96%) 20051 (38,23%) 51300 (19,24%)
Art and Culture 50 (2,18%) 823 (1,57%) 10855 (4,07%)

Social Issues 50 (2,18%) 743 (1,42%) 10207 (3,83%)
Media, News 50 (2,18%) 1210 (2,31%) 16472 (6,18%)

Online Shopping 50 (2,18%) 896 (1,71%) 11701 (4,39%)
IT and Computing 50 (2,18%) 918 (1,75%) 11739 (4,40%)

Video Games, Online Games 50 (2,18%) 884 (1,69%) 11792 (4,42%)
Celebrities 50 (2,18%) 745 (1,42%) 10285 (3,86%)
Restoration 50 (2,18%) 815 (1,55%) 11140 (4,18%)

Pets and Animals 50 (2,18%) 738 (1,41%) 10358 (3,88%)
Home, Garden, Interior Decorating 188 (8,20%) 6432 (12,26%) 15555 (5,83%)

7
Science, Research 134 (23,67%) 944 (7,91%) 12905 (26,13%)

Education 367 (64,84%) 10327 (86,50%) 28010 (56,72%)
Childhood 65 (11,48%) 668 (5,60%) 8465 (17,14%)

8

Real Estate 155 (7,75%) 2299 (7,11%) 30704 (13,58%)
Jobs 155 (7,75%) 2276 (7,04%) 30358 (13,43%)

Investment, Personal Finance 155 (7,75%) 2302 (7,12%) 31103 (13,76%)
Classified Ads 147 (7,35%) 1221 (3,78%) 16813 (7,44%)

Banks, Insurance, Social Benefits 543 (27,15%) 13623 (42,13%) 37106 (16,42%)
Health 154 (7,70%) 2387 (7,38%) 32260 (14,27%)

Consumer Services 202 (10,10%) 5696 (17,62%) 14624 (6,47%)
Search Engines, Portals 464 (23,20%) 2315 (7,16%) 30144 (13,34%)

Online Auctions 25 (1,25%) 216 (0,67%) 2906 (1,29%)

9

Law, Taxes 77 (7,46%) 1299 (6,05%) 17089 (15,86%)
Government 172 (16,67%) 1345 (6,26%) 17566 (16,30%)

Business Services 587 (56,88%) 16918 (78,80%) 47658 (44,22%)
Business Forums, Wikis 86 (8,33%) 1180 (5,50%) 15940 (14,79%)

Translation 86 (8,33%) 146 (0,68%) 1937 (1,80%)
Guides, Maps, Traffic Conditions 24 (2,33%) 582 (2,71%) 7589 (7,04%)
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Table 5.6: Weighted F-Scores for the Fine-Tuning Techniques

Dataset Label Standard Fine-Tuning LoRA QLoRA Adapters

FDC / 75,58 % 73,21 % 73,63 % 69,11 %

FDTC / 83,01 % 80,52 % 81,23 % 78,74 %

Theme 1 Legal Risk 96,85 % 93,45 % 93,16 % 89,54 %

Theme 2 Security Risk 96,67 % 94,64 % 93,27 % 90,93 %

Theme 3 Adult Content 97,60 % 93,32 % 91,78 % 91,14 %

Theme 4 Risk of Unauthorized Disclosure 71,03 % 68,01 % 68,72 % 65,21 %

Theme 5 Bandwidth 90,58 % 88,98 % 88,52 % 87,96 %

Theme 6 Leisure and Social Activities 76,89 % 73,34 % 74,09 % 72,32 %

Theme 7 Education 91,55 % 88,27 % 85,83 % 86,02 %

Theme 8 Consumer Services 85,67 % 84,39 % 83,76 % 80,12 %

Theme 9 Business Services 82,18 % 81,01 % 80,48 % 79,77 %
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Discussion

Standard fine-tuning consistently achieves the highest weighted F-scores
across all datasets. This method involves updating all model parameters,
allowing the model to fully adapt to the specific task. The scores range from
71.03% for "Risk of Unauthorized Disclosure" to 97.60% for "Adult Con-
tent," showcasing the effectiveness of this technique in utilizing the model’s
full capacity for different types of classification tasks. This indicates that
standard fine-tuning, while resource-intensive, maximizes the model’s per-
formance by making full use of its parameters.

LoRA generally performs well but shows a slight decrease in performance
compared to standard fine-tuning. The weighted F-scores range from 68.01%
to 94.64%, indicating that while LoRA is efficient in reducing the number
of trainable parameters, it does come at a cost of reduced performance. For
instance, in the "Adult Content" category, LoRA achieves 93.32%, which is
noticeably lower than the 97.60% achieved by standard fine-tuning. This
suggests that while LoRA is useful for scenarios with limited computational
resources, it may not always match the highest performance levels of full
fine-tuning.

QLoRA shows competitive performance with LoRA, with weighted F-scores
ranging from 68.72% to 93.27%. This method combines the benefits of LoRA
with quantization to further reduce memory and computational require-
ments. Despite these efficiencies, the slight performance drop compared to
standard fine-tuning and LoRA suggests that the quantization process may
introduce some loss in precision, affecting the overall model performance.
Nevertheless, QLoRA remains a strong candidate for resource-constrained
environments, offering a good balance between efficiency and performance.

Adapter-based fine-tuning demonstrates the lowest performance among the
evaluated techniques, with weighted F-scores ranging from 65.21% to 91.14%.
This method involves updating only small neural network modules added to
the pre-trained model layers, significantly reducing the number of trainable
parameters. While adapters offer efficient task adaptation, the reduced num-
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ber of trainable parameters appears to limit their performance compared to
the other techniques. For example, the score for "Legal Risk" is 89.54%,
which is lower than the scores achieved by both LoRA and QLoRA. This
indicates that adapters, while efficient, may not be as effective for tasks
requiring comprehensive model adaptation.

In summary, the results indicate that while standard fine-tuning yields the
highest performance, it requires significant computational resources. LoRA
and QLoRA provide efficient alternatives with competitive performance,
suitable for scenarios where computational resources are limited. Adapter-
based fine-tuning, although less effective in this comparison, still offers a vi-
able solution for multi-task learning and transfer learning scenarios, particu-
larly when resource efficiency is paramount. Overall, the choice of fine-tuning
technique should consider the trade-off between performance and computa-
tional efficiency, tailored to the specific requirements and constraints of the
application at hand.

5.5 Conclusion

In this chapter, we have systematically approached the classification of a
large-scale, multilingual dataset, deploying a suite of sophisticated language
models to parse and categorize web content. Our experiments and findings
have significantly contributed to the understanding of how different models
handle the vast and varied landscape of web data, offering insights into the
biases inherent in web dynamics.

Through rigorous experimentation, we have demonstrated that the dichotomy
of data — whether treated categorically or thematically — can be effec-
tively navigated using current language models, specifically the XLM-R and
mBERT variants. The strategic division of the dataset enabled us to miti-
gate the challenges posed by the big data characteristics of volume, variety,
and velocity, thus addressing concerns of web dynamics bias. The thematic
approach, in particular, proved to be a robust method in conquering these
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challenges, providing a more coherent and generalizable basis for classifica-
tion than granular categories.

Our research has laid a foundation for the application of dynamic and dis-
tributed classifier combination techniques, such as those found in Multi-agent
systems, which could further enhance the efficiency and accuracy of web
content classification. This approach could leverage the strengths of various
models, distributing tasks to optimize performance and adaptability.

Looking forward, future research should explore the benchmarking of newly
open-sourced Large Language Models (LLMs) and their direct application to
our use case. There is significant potential for these models to offer improved
understanding and interpretation of web content, especially when applied in
a distributed manner that captures the complex, dynamic nature of web
data.

In conclusion, the methodologies and findings detailed in this chapter pro-
vide a valuable contribution to the field, expanding the toolkit for tackling
web dynamics bias and setting a course for future research in big data clas-
sification. The continuous evolution of language models and classification
techniques promises further advancements, guiding us toward more nuanced
and sophisticated approaches to understanding the web’s intricate fabric.





Chapter 6

Conclusion

6.1 Introduction

This thesis has systematically tackled the substantial challenges associated
with website and web page classification, addressing the evolving needs of
an era dominated by digital data proliferation. As the internet continues
to expand, the volume and variety of content demand advanced and effi-
cient classification systems to enhance accessibility, relevance, and security
of information. This research journey has encompassed a comprehensive ap-
proach that includes in-depth reviews of existing methods, development of
new methodologies, and their application in practical settings to improve
text classification and optimize web content categorization.

The importance of this work lies not only in its contribution to academic
knowledge but also in its practical implications for industries ranging from
digital marketing to cybersecurity. By enhancing the precision and efficiency
of classification systems, this thesis supports the broader goal of making web
content more navigable and useful for various stakeholders, including content
creators, marketers, and end-users.

Through an examination of traditional, neural network-based, and hybrid
methodologies, this thesis has provided clarity on the evolution of text clas-
sification techniques. It has highlighted the transition from foundational
statistical methods, which laid the groundwork for initial classification ef-
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forts, to more sophisticated neural network models that offer deeper insights
into content semantics and user context. This progression has been instru-
mental in developing the Website Classification Approach (WeCA) and the
Weighted Stratified Split Approach (WSSA), both of which signify major
advancements in the field.

6.2 Contributions

1. Survey on Text Representation Techniques and Web Classi-
fication Approaches: The thesis provides a detailed survey of text
representation techniques and web page and website classification ap-
proaches in Chapter 2. This study offers a foundational understanding
of the methods evolution and current state, serving as a resource for
researchers and practitioners.

2. Development and Validation of the Website Classification Ap-
proach (WeCA): The WeCA methodology, documented in the Chap-
ter 3 and also published in [332]: M. Zohir Koufi, Z. Guessoum, A.
Keziou, I. Yahiaoui, "Toward Website Classification," 2023 IEEE/WIC
International Conference on Web Intelligence and Intelligent Agent
Technology (WI-IAT), Venice, Italy, 2023, pp. 306-310, doi: 10.1109/WI-
IAT59888.2023.00049, advances website classification. This approach
combines techniques into a hybrid model that shows improved accuracy
and adaptability for web content classification.

3. Text Chunking with the Weighted Stratified Split Approach
(WSSA): The thesis introduced WSSA to improve website classifica-
tion, particularly for long texts. This method is detailed in Chapter
4 and also published in [333] : Koufi, M.Z., Guessoum, Z., Keziou,
A., Yahiaoui, I. (2024). Text Chunking to Improve Website Classifica-
tion. In: Pereira, A.I., Mendes, A., Fernandes, F.P., Pacheco, M.F.,
Coelho, J.P., Lima, J. (eds) Optimization, Learning Algorithms and
Applications. OL2A 2023. Communications in Computer and Infor-
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mation Science, vol 1981. Springer, Cham. https://doi.org/10.1007/978-
3-031-53025-8_15.

4. Scalability and System Implementation for a Larger Dataset:
The scalability of the WeCA and WSSA methodologies and their ap-
plication to a larger dataset led to the implementation of a system for
Olfeo (Chapter 5). This application showed the methods effectiveness
in real-world settings. The use of multilingual LLMs and dichotomy
strategies addressed scalability challenges in web content classification,
enabling the handling of diverse and large web content.

6.3 Perspectives

Future research in website and web page classification can expand in several
directions:

1. Exploration of Deep Learning Architectures: Investigation into
deep learning architectures can improve semantic understanding and
contextual analysis of web content.

2. Integration with Emerging Technologies: Converging NLP and
ML with technologies like blockchain and quantum computing could
lead to more secure and efficient web content classification systems.

3. Expansion to Multimodal Contexts: Extending methodologies to
handle multimodal data (text, images, video) will address comprehen-
sive classifications across media types, building on the success of mul-
tilingual LLMs.

4. Dynamic Multi-Agent Based Solutions in Collaborative Ap-
proaches: Adopting dynamic multi-agent-based solutions will facili-
tate responsive and adaptive collaborative approaches, enhancing the
system’s ability to evolve in complex environments.

5. Implementation of a RAG System for Better Evolution: In-
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troducing a RAG system will provide a structured way to evaluate and
refine the classification solution, ensuring adaptability.

6. Use of Vector Databases: Implementing vector databases will sup-
port efficient storage and retrieval of complex data structures, enhancing
the performance of the classification system.

7. Focus on Personalization and User-Centric Models: Developing
personalized and user-centric classification models using user feedback
and adaptive learning mechanisms can improve user engagement and
satisfaction.

8. Ethical Considerations and Bias Mitigation: Addressing ethical
considerations and mitigating biases in algorithms is essential to ensure
transparent and fair systems.

In conclusion, this thesis has established a path for exploration and develop-
ment in the field of website and web page classification. The insights gained,
methodologies developed, and systems implemented pave the way for future
innovation and research to effectively meet the digital age challenges.
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