
Three Essays in Sustainable Last-Mile
Deliveries and Humanitarian Logistics

a dissertation presented
by

Minakshi PunamMandal

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Business Administration
and

Doctor en Sciences de Gestion
de l’Ecole Doctorale

«Economie, Management, Mathématiques, Physique et Sciences
Informatiques»

ED 405
CY Cergy Paris Université

in the subject of
Operations and Data Analytics

Presented and defended on the 3rd of December, 2024

Jury

Laurent Alfandari Co-supervisor Professor, ESSEC Business School
Claudia Archetti Co-supervisor Professor, University of Brescia
Teodor Gabriel Crainic Referee Professor, Université du Québec á Montréal
Ana Barbosa-Povoa Referee Professor, University of Lisbon
Ivana Ljubić President Professor, ESSEC Business School
Ahmadreza Marandi Examiner Assisstant Professor, Eindhoven University of Technology



©2024 –Minakshi PunamMandal
all rights reserved.



Three Essays in Sustainable Last-Mile Deliveries and
Humanitarian Logistics

Abstract

This thesis is motivated by challenges in two areas: last mile deliveries and humanitarian logistics.

With a rising demand in e-commerce, it becomes imperative to work towards making it sustainable,

economical, and efficient. The first part of the thesis contributes to this field. The last part deals

with disastermanagement, focusing on earthquake preparedness. Earthquakes are one of the deadliest

natural disasters that can cause catastrophic damages, leading to loss of life and property and displac-

ing thousands of people. Thus, preparing for it becomes crucial. Mixed-integer linear programming

(MILP) techniques have been used to study the problems, and both heuristic and exact methods are

employed to solve them.

In Chapter 2, we explore the potential of using public transportation systems for freight delivery,

where we intend to utilize the spare capacities of public vehicles like buses, trams, metros, and trains,

particularly during off-peak hours, to transport packages within the city instead of using dedicated de-

livery vehicles. The study contributes to the growing literature on innovative strategies for performing

sustainable last-mile deliveries. We study an operational level problem called the Three-Tier Delivery

Problem on Public Transportation, where packages are first transported from the Consolidation and

Distribution Center (CDC) to nearby public vehicle stations by delivery trucks. From there, public

vehicles transport them into the city area. The last leg of the delivery is performed to deliver the pack-

ages to the customers using green vehicles or eco-friendly systems. We employ decomposition-based
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matheuristics to solve our models. Our results on instances that mimic realistic cities show that this

system has the potential to reduce the length of trips performed by traditional delivery trucks by 86%,

thereby reducing the negative social and environmental impacts of existing last mile delivery systems.

The paper based on this work is currently under revision in the journal Soft Computing. This work

was also presented at the EURO 2021 conference, the Odysseus 2021 conference, the VeRoLog 2022

conference, and the 2nd EUROYoung workshop.

Chapter 3 tackles the problems of workforce sizing and shift scheduling of a logistic operator de-

livering parcels in the last mile segment of the supply chain. Our working hypothesis is that the rel-

evant decisions are affected by two main trade-offs: workforce size and shift stability. A large work-

force is able to deal with demand fluctuations but incurs higher fixed costs; by contrast, a small work-

force might require excessive outsourcing to third-party logistic providers. Stable shifts, i.e., with pre-

dictable start times and lengths, improve worker satisfaction and reduce turnover; at the same time,

they might be less able to adapt to an unsteady demand. Through an extensive computational cam-

paign based on a novel mathematical formulation, we test these assumptions. We find that extreme

shift stability is, indeed, unsuitable for last-mile operations. On the other hand, introducing a very

limited amount of flexibility achieves similar effects as moving to a completely flexible system while

ensuring a better work-life balance for the workers. Several recent studies in the social sciences have

warned about the consequences of precarious working conditions for couriers and retail workers and

have recommended—among other things—stable work schedules. Our work provides an actionable

decision-support tool to achieve this objective without sacrificing the company’s bottom line. The pa-

per based on this work is currently under revision at the European Journal of Operational Research,

and the work was presented at the TSL 2023 conference and the 3rd EUROYoung workshop.

In Chapter 4, we shift our focus to humanitarian logistics. We are all privy to the damage and de-

struction caused by earthquakes. Earthquakes are typically followed by major and minor aftershocks.
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They also lead to other secondary disasters like tsunamis, floods, avalanches, building collapses, etc.

We study an uncapacitated facility location problem for storing relief materials in the event of such a

disaster. We adopt a two-stage budgeted-robustness approach. We consider a major earthquake in the

first stage, followed by aftershocks in the second stage. We propose severalMILP formulations for our

problem and employ Branch-and-Cutmethods to solve two of them. The performance of ourmodels

is analyzed on synthetically generated instances, followed by a case study on Turkey, which is highly

prone to earthquakes. Managerial insights are finally provided regarding, in particular, the relevance

ofmodeling the second-stage aftershocks and its impact on the optimal locations of the facilities. The

paper based on thework in this chapter is in the final stages of completion, and theworkwas presented

at the POMS 2023 conference and the ISMP 2024 conference.
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Trois essais sur les livraisons durables du dernier kilomètre et
logistique humanitaire

Résumé

Cette thèse est motivée par des enjeux dans deux domaines : l’optimisation des livraisons du dernier

kilomètre et la logistique humanitaire. Avec une demande croissante enmatière de commerce électron-

ique, il devient impératif de travailler à le rendre durable, économique et efficace. La première partie

de la thèse contribue à ce domaine. La dernière partie traite de la gestion de catastrophes humanitaires

et plus particulièrement de la préparation aux tremblements de terre. Ceux-ci constituent l’une des

catastrophes naturelles les plus meurtrières, entraînant des dommages gigantesques, des pertes de vies

humaines et de biens et le déplacement de milliers de personnes. Il est donc crucial de s’y préparer.

Des techniques de programmation linéaire en nombres entiers mixtes (MILP) ont été utilisées pour

étudier les problèmes de la thèse et desméthodes heuristiques et exactes sont utilisées pour les résoudre.

Dans le chapitre 2, nous explorons le potentiel des réseaux de transport public pour la livraison de

marchandises en ville, enutilisant les capacités inutilisées de véhicules publics comme les bus, tramways,

métros et trains, en particulier pendant les heures creuses, pour transporter des colis dans une ville ou

agglomération au lieud’utiliser des véhicules de livraisondédiés. L’étude contribue à la littérature crois-

sante sur les stratégies innovantes d’optimisation des livraisons durables du dernier kilomètre. Nous

étudions un problème de niveau opérationnel appelé Problème de livraison à trois niveaux dans les

transports publics, où les colis sont d’abord transportés en camion du centre de consolidation et de

distribution (CDC) vers les stations de véhicules publics à proximité. De là, des véhicules publics les
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transportent vers le centre-ville. La dernière étape de livraison est effectuée pour livrer les colis aux

clients à l’aide de véhicules dits ”verts”, ou respectueux de l’environnement. Nous utilisons des méth-

odes mathématiques d’optimisation basées sur la décomposition pour résoudre nos modèles. Nos

résultats sur des exemples imitant des villes réalistes montrent que ce système peut diminuer de 86 %

la durée des trajets effectués par les camions de livraison traditionnels, réduisant ainsi les impacts so-

ciaux et environnementaux négatifs des systèmes existants de livraison du dernier kilomètre. L’article

basé sur ces travaux est actuellement en cours de révision dans la revue Soft Computing. Ce travail

a également été présenté lors de la conférence EURO 2021, de la conférence Odysseus 2021, de la

conférence VeRoLog 2022 et du 2e atelier EUROYoung.

Le chapitre 3 aborde les problèmes de dimensionnement de la main-d’œuvre et de planification

des équipes d’un opérateur logistique livrant des colis dans le segment du dernier kilomètre de la

chaîne d’approvisionnement. Notre hypothèse de travail est que les décisions pertinentes sont affec-

tées par deux compromis principaux : le volume demain-d’œuvre et la stabilité des équipes. Unemain-

d’œuvre nombreuse est capable de faire face aux fluctuations de la demande mais supporte des coûts

fixes plus élevés ; en revanche, une main-d’œuvre réduite peut nécessiter une sous-traitance excessive

à des prestataires logistiques tiers. Des quarts de travail stables, avec des heures de début et des durées

prévisibles, améliorent la satisfaction des travailleurs et réduisent le roulement du personnel ; dans le

même temps, ils pourraient avoir une moindre capacité à s’adapter à une demande instable. Grâce à

une vaste étude numérique basée sur une nouvelle formulation mathématique, nous testons ces hy-

pothèses. Nous constatons qu’une stabilité extrême des changements de vitesse n’est pas adaptée aux

opérations du dernier kilomètre. D’un autre côté, l’introduction d’un degré très limité de flexibilité

produit des effets similaires à ceux d’un passage à un système totalement flexible, tout en garantissant

un meilleur équilibre entre vie professionnelle et vie privée pour les travailleurs. Plusieurs études ré-

centes en sciences sociales ont alerté sur les conséquences des conditions de travail précaires pour les
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coursiers et les travailleurs du commerce de détail et ont recommandé, entre autres, des horaires de

travail stables. Notre travail fournit un outil d’aide à la décision exploitable pour atteindre cet objectif

sans sacrifier les résultats financiers de l’entreprise. L’article basé sur ces travaux est actuellement en

cours de révision au European Journal of Operational Research, et les travaux ont été présentés lors

de la conférence TSL 2023 et du 3e atelier EUROYoung.

Au chapitre 4, nous nous concentrons sur la logistique humanitaire. Nous connaissons tous les

dégâts et destructions causés par les tremblements de terre. Ceux-ci sont généralement suivis de ré-

pliques majeures et mineures. Ils conduisent également à d’autres catastrophes secondaires comme

des tsunamis, des inondations, des avalanches, des effondrements de bâtiments, etc. Nous étudions

un problème de localisation d’installations (sans capacité fixée a priori) pour stocker le matériel de sec-

ours en cas d’une telle catastrophe. Nous adoptons une approche de robustesse budgétisée en deux

étapes. Nous considérons un séisme majeur dans un premier temps, suivi de répliques dans un deux-

ième temps. Nous proposons plusieurs formulations MILP pour notre problème et employons des

méthodes de Branch-and-Cut pour résoudre deux d’entre elles. Les performances de nos modèles

sont analysées sur des instances générées synthétiquement, suivies d’une étude de cas sur la Turquie,

très sujette aux tremblements de terre. Des éclairages managériaux sont enfin apportés concernant

notamment la pertinence et l’apport de la modélisation des répliques au-delà du seul séisme principal,

et son impact sur les localisations optimales des installations. Le document basé sur les travaux de ce

chapitre est en phase finale d’achèvement et les travaux ont été présentés à la conférence POMS 2023

et à la conférence ISMP 2024.
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The last mile delivery (LMD) is the most expensive part of the whole freight delivery process, in

addition to being the least sustainable one. 53% of the total shipping costs occurs in the last mile. It

affects not only the shipping companies but urban life as well. LMD can have a multitude of nega-

tive impacts on the triple bottom line of sustainability– people, planet, and profit (Rai et al., 2017a;

Viu-Roig & Alvarez-Palau, 2020). On the other hand, LMD grows to be more competitive everyday.

Boom in e-commerce and evolving customer demands is leading to faster (same-day or few-hour) and

cheaper deliveries starting to become the norm. Deloison et al. (2020) predicts a 78% growth in ur-

ban LMD by the year 2030. To satisfy e-commerce demand, remain relevant, and meet sustainability

expectations, LMD companies have been adopting innovative strategies for the delivery process.

Verlinde (2015) provides a comprehensive list of the negative environmental, social, and economic

impacts of LMD, which we briefly summarize here.

• Environmental impacts: Perhaps the greatest negative impact of LMD is faced by the environ-

ment. Emissions of harmful pollutants like CO2, particulate matter (PM), and other green-

house gases (GHGs) by delivery trucks deteriorate the air quality in urban areas. Moreover,

high volume of demands and expectations of lower delivery times only worsen the situation

putting more vehicles on roads and also causing congestion.

• Social impacts: Environmental impacts also lead to social impacts by hampering the living

quality in urban areas. Traffic and congestion on roads increase accidents, health risks, and

noise pollution. In the recent years, fast-paced LMDs have led to an increase in the gig econ-

omy, where freighters are usually independent workers and not employed with the company,

and thus, do not have job security or access to health insurance. Furthermore, fast delivery

schedules may lead to unsafe driving on roads and unreliable working hours for the freighters.

• Economic impacts: Traffic and congestion on roads lead to unreliable deliveries and thus pro-
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mote mistrust among the customers. It also causes the delivery person to lose time. The cost

of government regulations and planning also contribute to the costs of delivery.

However, not all is gloomy, as there has been a disruption in innovations in the last-mile sector in

an effort to come up with sustainable solutions. Viu-Roig &Alvarez-Palau (2020) categorizes innova-

tions in LMD into three types– organizational, technology-enabled, and data technique enabled. Or-

ganizational innovations include urban consolidation centers, local fulfillment centers, crowdsourc-

ing, etc. Technology-enabled innovations consist of incorporating automated lockers, drones, and

droids in the last phase of the delivery. Data-enabled innovations use big data and analytics to make

the LMD process more sustainable and efficient.

The great news is that consumers are beginning to be flexible and prioritize sustainability over the

speed of order fulfillment and the cost of their orders. For example, customers are more willing to

sacrifice speed of delivery over cost (Caspersen & Navrud, 2021; Nogueira et al., 2021). Nogueira

et al. (2021) find the type of product also plays a role. They are more flexible in delivery speed for

fashion, accessories, sport, and leisure over products like health, cosmetics, and food and beverages.

However, population demographics play a role in consumer preferences.

Yurchisin & Jaeger (2021) states that the LMD ecosystem stands at a tipping point. While it has

the potential to be faster, greener, cheaper if all involved entities work together, it could also worsen

horribly if we are not careful. Kiba-Janiak et al. (2021) identify several stakeholders in the last mile–

receivers (e-customers), shippers (producers, online retailers and e-trade services), residents, govern-

ment (local and national authorities), transport companies, and others. Any solution that seeks to

curb the negative social and environmental impacts of LMDwill not be viable in the long term if it is

not economical at the same time. Thus, we need to develop solutions that are not only sustainable, but

also provide economic benefits to all the stakeholders in LMD. To this end, we present two studies in

this thesis. The first presents a solution whose goal is to reduce environmental emissions and conges-
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tion on roads caused by LMD vehicles. The second focuses on the social component by developing a

LMD strategy which address stability of working schedules of couriers or freighters.

In the second chapter of the thesis, we propose to use the spare capacities of public vehicles like

buses, trams, metros, and trains, particularly during off-peak hours, to deliver packages in the city in-

stead of dedicated delivery vehicles. The integration of public transportation systems and last-mile

deliveries is aimed at reducing the number of heavy combustion vehicles inside city premises, sub-

sequently alleviating traffic congestion, enhancing environmental conditions, and fostering a better

quality of life in urban regions. Moreover, the public transportation companies can be compensated

accordingly, resulting in an additional source of income, which can be utilized to improve the quality

of public service. Thus, the topic holds immense relevance and has significant social, economic, and

environmental benefits.

One of the benefits of such an approach for the last-mile is that no new vehicles are added on the

roads for delivery purposes. Our experiments showed that, on average, the length of trips using tradi-

tional large delivery trucks can be reduced by 86%. Moreover, the combined use of dedicated vehicles

and personnel (trucks and freighters) can be reduced by 51% on average. These numbers can be even

higher in large cities with an extensive public transit network because the majority of the delivery can

be performed on public vehicles.

In the third chapter, we shift our gears to a tactical-level LMDproblemofworkforce sizing and shift

scheduling. The decision maker wishes to hire couriers or freighters for a mid-term planning period

(a few months) depending on the city’s demand distribution. While a larger workforce can deal with

a variety of demand patterns, it incurs higher fixed costs. On the other hand, a smaller workforce size

leads to higher outsourcing costs. Thus, there needs to be a delicate balance between the two.

Another concept in our study is shift management. Shifts are consecutive units of time during
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which hired couriers would work. We study three kinds of shifts- completely fixed shifts with pre-

determined fixed start and end times, completely flexible shifts, and partially flexible shifts which lies

between the two. Our idea of shifts is motivated by the desire to provide stable working hours for the

freighters. Often, the freighters juggle multiple jobs, or they are students who look to work part-time

for delivery companies. Thus, having stable working hours is critical for them. Our results show that

having partially flexible shifts provides desired benefits without restricting the company’s bottom line

significantly.

The last part of this thesis deals with another critical topic in operations research– disaster man-

agement and planning. The United Nations Office for Disaster Risk Reduction (UNDRR) defines

a disaster as “a serious disruption of the functioning of a community or society involving widespread

human, material, economic or environmental losses and impacts, which exceeds the ability of the af-

fected community or society to cope using its own resources” (Aydin & Cetinkale, 2023). Whether

disasters are natural (earthquakes, floods, hurricanes, landslides, forest fires) or man-made (war, ter-

rorism, industrial or nuclear accidents), they result in an unparalleled loss of lives and property and

often cause a degradation in the environment.

Figure 1.1 shows the number of different types of natural disasters in the world between 1970 and

2023. On average, over the last few decades, disasters have claimed 40,000 to 50,000 lives per year

(Ritchie&Rosado, 2022). Sometimes, they destroy amajor part of a country, for example, theGorkha

earthquake of 2015 in Nepal. Disasters also displace thousands of people and cause severe economic

losses. Some emergencies are so unpredictable that they cripple the whole world for a while– the

COVID-19 pandemic. It took away millions of lives, affected more directly and indirectly, maimed

economies, and brought the world to a standstill. It forced us to step back and reconsider how we

prepare ourselves to face such adversaries.

Disastermanagement seeks to efficiently and systematically assess the risk associatedwith a disaster,
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Figure 1.1: Global reported natural disasters by type, 1970 to 2023, Source: EM‐DAT, CRED, Ritchie & Rosado (2022)

prepare an actionable plan for the community to fight back once a disaster strikes, and help rebuild

the community and infrastructures back to their former self in the post-disaster phase. There are four

primary phases in disaster management: mitigation, preparedness, response, and recovery (Altay &

Green III, 2006). Mitigation and preparedness fall into the pre-disaster phase, while response and re-

covery fall into the post-disaster phase. The mitigation phase involves steps taken to prevent disasters

or reduce their effect on the community, for example, constructing disaster-proof infrastructure by

enforcing building codes, risk analysis to study the likelihood and strength of emergencies, insurance

to reduce financial losses, etc. The preparedness phase builds the resilience of communities to combat

an emergency. For example, maintaining inventories if a disaster occurs, recruiting and training vol-

unteers, acquiring vehicles, and conducting disaster drills to train the community, among others. The

response phase of disaster management occurs once a disaster has struck, and the community fights

back. It includes putting into action the emergency operations plan, evacuation of people, opening

and maintaining of shelter sites and emergency medical centers, and search and rescue operations. Fi-

nally, the recovery phase refers to the long-term actions that are taken after the immediate effects of a

disaster have passed and to help the community rebuild and get back to their normal life. It includes,

for example, debris clearance, rebuilding of roads and infrastructures, financial assistance and care for

displaced people, and mental support to the community. The reader is referred to Altay & Green III
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(2006) for a comprehensive discussion on the different phases of a disaster management system.

We direct our attention to a disaster preparedness model for earthquakes and aftershocks in the

fourth chapter of this thesis. Aftershocks are earthquakes that follow the main earthquake and have

magnitudes comparable to or smaller than that of the first earthquake. For example, the Turkey-Syria

2023 earthquake, which had a magnitude of 7.8 on the Richter scale, was succeeded by another of

magnitude 7.5 about 9 hours later. Two more aftershocks of magnitude 6.4 and 5.6 hit the region a

few days later. Not only that, the region has been hit by thousands of aftershocks of smaller magni-

tudes in the days that followed. While the impact of smaller aftershocks may not have been so severe

earlier, they can trigger landslides and building collapses, in a region that is already vulnerable due to

the earthquake. Another example is the 2015 earthquake in the Gorkha district of Nepal, which ex-

perienced a 7.8 magnitude earthquake. It was followed by several major aftershocks, which triggered

landslides and avalanches further killing people.

Motivated by the above examples, we include aftershocks in our planning process. Our goal is to

select a set of locations to establish facilities for the prepositioning of relief materials like canned food,

bottled water, blankets and tents, medical supplies, and other non-perishable items that can be stored,

to prepare for such catastrophic events of earthquakes followed by several aftershocks. We make a

quick note here that though we explicitly consider aftershocks in the planning process, our model is

not limited to aftershocks only. In fact, it can be used as a decision-making tool in anticipation of any

simultaneous or compound hazards as well.

One of the most challenging tasks of dealing with disaster management is the intrinsic uncertainty

associated with it. Nobody knows when and where a disaster will strike and to what scale it will im-

pact social life, economies, and the environment. Incorporating uncertainty is crucial in the disaster

management and planning process. Uncertainties can arise either on the supply side, on the demand

side, or in the relief service network (Dönmez et al., 2021), or a combination of two or more of the
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above. Uncertainty in demand arises due to unknown time, scale, location, and time of a disaster.

It manifests in people requiring relief, shelter, and support following a disaster. Uncertainty on the

supply side may occur when facilities like warehouses with stocked relief items are damaged, either

partially or completely. It could also occur in situations where the supply of materials is dependent

on donations from various organizations. Finally, uncertainty in the relief network happens when the

network is disrupted, for example, by disasters like floods and earthquakes.

Lack of data poses another challenge in disaster preparedness. Lack of data also hinders collabora-

tion and coordination between organizations and stakeholders. Sometimes, the cost of poor-quality

data is paid in lives and cannot be recovered (Jayawardene et al., 2021). Thus, data and information

are pivotal for decision-makers (Starr & Van Wassenhove, 2014). In the preparedness phase, data on

population, infrastructure, and road networks is required to set up facilities, preposition inventories,

and making response plans. Access to reliable data in the response phase, including information on

location and number of affected people, damaged infrastructure and disrupted road networks, is even

more crucial to conduct search and rescue, providing relief to people, and timely treatment of the

injured.

Thus, a decision-maker needs to consider such uncertainties and lack of data to build resilient dis-

aster management plans. In the literature, robust optimization, stochastic optimization, fuzzy opti-

mzation, or any combination from the above has been used to deal with uncertainties. In our study,

we adapt a robust optimization approach, and hence this is where we focus our attention.

Robust optimization models seek to develop solutions that remain valid under a wide range of

scenarios. A key concept in robust optimization is uncertainty sets. Any parameter whose value is not

completely known is assumed to lie in an uncertainty set, which consists of a range of likely values for

the parameter. Often, robust optimization is used to find solutions that remain feasible in the worst-

case scenario (i.e., the parameters taking their worst possible in their uncertainty set), with the best
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possible objective function value. However, this might lead to solutions that are too conservative in

nature. Thus, comes in the idea of “degree of conservatism”, where a trade-off between robustness

and objective function value is considered.

Bertsimas & Sim (2004) proposed a Γ-robustness approach which is based on the idea that the

likelihood of all parameters taking their worst-case values at the same time is extremely low. In their

approach, the solution remains feasible even if Γi number of coefficients deviate to their worst-case

values for each constraint i. It is this idea that wewere inspired by. Not every single possible aftershock

would hit the affected region at the same time after an earthquake. We develop a solution that would

minimize the worst-case allocation cost of the demand nodes to the facilities when the region is hit by

at most Δ aftershocks.

We start by enumerating all possible combinations of an earthquakes and Δ aftershocks, and then

formulating a model that finds the combination that generates the worst allocation cost. However,

this becomes computationally challenging to solve, leading us to develop two solution approaches–

one that utilizes a branch-and-cut algorithm, and another employing an extended formulation for

the same. We also propose a two-stage approach to formulate the problem and use a branch-and-cut

algorithm to solve it. An extensive case studyon theTurkeybasedondata from theTurkey-Syria earth-

quake of 2023 shows the importance of incorporating earthquakes and aftershocks simultaneously in

the decision-making process.
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2.1 Introduction

The boom in e-commerce over the last decade poses several challenges for last mile deliveries,

particularly the need to make themmore efficient, less expensive, and more sustainable. The negative

impacts caused by delivery vehicles can be three-fold – economic, social, and environmental (Rai et al.,

2017a). A study by theWorld Economic Forum (Deloison et al., 2020) states that there will be a 36%

rise in the number of delivery vehicles on urban roads by 2030 due to the consistent and exponential

growth of demands for e-commerce deliveries, leading to an additional emission of 6 million tonnes

of CO2. It can potentially increase the average commute time of each passenger by 21% (amounting

to an additional 11 minutes) per day due to congestion. Thus, the need of the hour is solutions that

are sustainable, competent, and economically viable.

To keep up with the growing demands, companies are looking towards innovative approaches that

reduce the costs of social and environmental externalities. Several companies have tested the use of

drones for the final leg of the delivery, includingGoogle’s ProjectWing, Amazon’s Amazon PrimeAir,

DHL’s PaketKopter, and GeoPoste’s GeoDrone (Ranieri et al., 2018). Others propose using electric

and other green vehicles as a viable option for delivery as well (Mucowska, 2021). The utilization

of pickup points and lockers are effective, popular, and well-established alternatives (Cleophas et al.,

2019). Crowdshipping has gained popularity over the last few years, where parcels are matched with

couriers, see for example, (Rai et al., 2017b). Different shipping companies can also collaborate to

reduce overall delivery costs (Cleophas et al., 2019).

In this paper, we propose to use public transportation systems to transport packages in urban areas.

Over recent years, an increasing number of studies have identified and emphasized the opportunities

and benefits of freight-on-transit (FOT), see for example, Galkina et al. (2019). One of the most sig-
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nificant advantages of using public vehicles is that it does not add any new vehicles on the road solely

for package delivery, whichmeans no extra congestion and no extra emissions caused by traditional de-

livery trucks. The reduced congestion due to the removal of delivery vehicles on roads would further

ensure reliable running times of vehicles on the road. The transit companies would be compensated

accordingly, and the revenue generated can be used to increase the services for passengers (Taniguchi

et al., 2016). Thus, it could be a win-win solution for all parties involved. The idea is to use the spare

capacities of public vehicles like buses, trams, trains, subways, and other public vehicles, particularly

during off-peak hours, or to have dedicated spaces for freight in the vehicles.

Wewish to explore the operational implementation of the system and optimize the delivery of pack-

ages on the network in a cost and time-effective manner. We consider a delivery company that wants

to utilize the public transit network for its last mile deliveries. The problem can be divided into three

tiers. In the first tier (also referred to as T1), delivery trucks belonging to the company carry the pack-

ages from the Consolidation and Distribution Center (CDC) to nearby stops, called drop-in stops,

of the public transportation network. The second tier (T2) of the delivery is the one that occurs on

board public vehicles, which have pre-determined schedules, itineraries, and stops. The vehicles pick

up the packages from the drop-in stops and transport them to other stops on their route, which we

call drop-out stops. These stops are within the city and typically close to customer locations. Finally,

the city freighters pick up the packages from the drop-out stops and deliver them to the customers

using sustainable modes of transport, like electric vehicles, drones, bikes, or even freighters simply

walking for the delivery. These freighters could either belong to the company’s fleet or be comprised

of autonomous crowdsourced drivers. This constitutes the third and final tier (T3) of the system. We

wish to find a delivery plan such that the delivery costs of the first and third tiers, and thereby distance

traversed using dedicated delivery means, are minimized. We name this problem theThree-Tier Deliv-

ery Problem on Public Transportation (3T-DPPT hereafter). Figure 2.1 shows a small example of the
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3T-DPPT. It consists of a CDC and three public vehicle lines– A, B, and C, and 15 customers.

Figure 2.1: An example of the freight delivery structure

The effectiveness of such integrated delivery systems has already been demonstrated in several cities.

Marinov et al. (2013) discuss the case of the French supermarket chain Monoprix, which uses urban

trains and sustainable vehicles to transport non-perishable products in the city of Paris, resulting in

10,000 fewer trucks circulating in Paris (Onur, 2019). An article by Saito (2021) reports two com-

panies, Nishi Tokyo Bus Co. and Yamato Transport Co., using buses to deliver packages from the

city of Akiruno to the village of Hinohara in western Tokyo. This provided the bus company with

a new revenue source on the unprofitable route and reduced the round-trip traveling distances for

the delivery company by 50 kilometers a day. The village has also welcomed the collaboration and

acknowledged its benefits. GB Railfreight, a freight delivery service based in the UK, has explored

using old commuter trains to deliver parcels, using standard roll cages that can be easily loaded and of-

floaded (RailwayTechnology, 2020). Amazon is also looking to use public buses for its deliveries and

has received a patent that would transform buses into parcel carriers, see for example, Baron (2019)

andReul (2019). This is aimed at customerswho donot live near their pickup points orwhere carriers

13



are scarce. The report mentions that Amazon was looking to invest $1.5 million in the public trans-

portation system in Seattle. An article byHermes (Zeitler, 2019) discusses several implementations of

FOT in practice. For example, the TramFret project in the French city of Saint-Étienne used decom-

missioned trams to deliver goods inside the city. Moscow utilizes its metro network to deliver parcels

from one end of the city to another. Hermes and the Frankfurt transport authority have partnered

together to transport two boxes filled with packages from a hub outside the city to Europaviertel, a

housing and business district in Frankfurt (Zeitler, 2019). Then, they use e-bikes to deliver the pack-

ages to their destinations. The researchers identify that such delivery projects have great potential to

be impactful in the cities, particularly in pedestrian zones or areas around the transit stations. Galkina

et al. (2019) analyze the effectiveness of FOT by conducting a study in the city of Bratislava and find

that it has the potential to reduce overall transportation costs by 8-12 times. There has also been a

recent case study by Bacher et al. (2024) to implement an integrated system in New York City. They

provide estimates for reduced CO2 emissions for different types of trucks. They also find a total of

16089.87 grams of reduced pollutants per 14.7 miles when trucks are replaced by subway trains. All

these examples demonstrate the viability and advantages of shared transportation systems. Our prob-

lem ismotivated by these examples, particularly the type of delivery systems proposed byAmazon and

the one implemented by Hermes.

The FOT problem involves decision-making at several levels: strategic, tactical, and operational.

Strategic level decisions are long-term and involve setting up the system in practice. For example, the

public vehicle lines, drop-in stops, and drop-out stops of the system need to be selected based on the

distribution of customers. Tactical level decisions aremedium-termdecisions and deal with setting up

lockers and hiring personnel, among others. In this paper, we focus on the operational level decision-

making involving the day-to-day implementation of the system. The delivery system and the contracts

between parties like the government, the last-mile distributor, and the transportation companies need
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to be established beforehand. Necessary infrastructure like storage facilities for packages at the stops,

or modifying public vehicles to have dedicated spaces for packages (if required), and equipment for

transporting packages to and from the vehicles also need to be set up. These decisions vary by city

and, thus, should be made by considering the existing public transportation infrastructure and the

socio-economic factors of the city.

The contributions of the paper are the following. We introduce the 3T-DPPT and provide amixed-

integer linear programming formulation for it. Since the problem is extremely complex, involving

decision-making at several levels, and given the nature of the problem, decomposition seemed like a

natural choice to solve it. Based on the natural three tiers of the problem, and depending on which

tier we start solving the problem from, we provide three different matheuristic approaches for decom-

posing and integrating the model. For the second tier of delivery on public vehicles, we formulate

and analyze three objective functions that support the primary intent of the system, which is to min-

imize delivery distances using dedicated vehicles. We generate instances that mimic real-life public

transportation networks and package demands, and we implement our models on them. Finally, we

inspect our solutions and make recommendations for implementing such a delivery system.

The remainder of the paper is organized as follows. In Section 2.2, we provide a review of the

literaturewith regard toourproblem. Section2.3describes the settingof theproblemand introduces a

formulation for it. We dedicate Section 2.4 to describing different approaches for solving the problem.

Section 2.5 provides numerical studies, and we conclude in Section 2.6 with some suggestions for

future research avenues.

2.2 Literature review

In this section, we review the literature that studies deliveries using public transportation networks in

some capacity, either together with passengers in the same vehicle or in isolation: only making use of
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the infrastructure. Theworks can broadly be classified into two categories from the perspective of our

study. The first category is where the conceptual models of such a system are introduced, and the ef-

fectiveness of the integration is considered either theoretically or through small-scale implementations

in practice. The second is the group of papers that study similar systems and propose mathematical

models to optimize freight transport on public transit networks. We briefly discuss the first category

and focus our attention primarily on reviewing the works in the second category.

Trentini & Mahléné (2010) and Trentini & Malhene (2012) conducted one of the earliest studies

on the topic. Apart from providing a survey of existing examples of cities that have adapted strategies

for shared passenger and goods flows, they provide a conceptual model for the same, which they then

show how to implement using a case study in the French city of La Rochelle. Gatta et al. (2019a,b)

combine crowdshipping with public transport, where the packages are dropped off or picked up by

people traveling by these transit systems, specifically in or around public transit stations. On a survey

in the city of Rome, Gatta et al. (2019a) estimate a reduction of 239kg of particulate matter each year.

Villa &Monzón (2021) study the potential of using metro networks and their existing capacities and

lockers in metro stations for parcel delivery. They investigate two kinds of scenarios: making use of

the spare capacities of vehicles or utilizing dedicated runs of freight trains on the existing lines. They

study the system from the perspective of costs and impacts and also provide a case study on the city of

Madrid. They find that a shared system has 11.16% to 14.72% lower operating costs than current sys-

tems, and the average external delivery cost per parcel is 8.2 to 9.8 times lower. Cavallaro et al. (2023)

conduct a Delphi study with international stakeholders to gather information for setting up an inte-

grated system. They identify attributes like distance between stops, service frequency, availability of

information (inclusion of personnel onboard), punctuality, ticket prices, that need to be considered

when designing the service. They mention one of the greatest advantages to be cross-subsidization

from freight services to the transit system, resulting in higher service frequency or reduced fares. While
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several other studies analyze the system’s viability in real life, due to the scope of our study, we con-

centrate on works that employ mathematical programming models to optimize integrated delivery

systems.

Crainic et al. (2009) provided one of the first modeling frameworks for tactical and operational

strategies of two-tier city logistics systems, with the possibility of using public vehicles like trams in the

first tier and electric vehicles in the second tier. They propose generalized two-tier models where the

movement of urban vehicles and freight is integrated, and consider routing and scheduling decisions.

Cheng et al. (2018a,b) study the distribution of packages using Crowdsourced Public Transporta-

tion Systems. Cheng et al. (2018b) model the transport of packages using the idle capacities of public

transportation systems, where the packages can be loaded at a starting node, unloaded and reloaded

at intermediary nodes, and finally unloaded at their destination stop, using a multi-commodity flow

model. They also propose a heuristic to solve the problem. InCheng et al. (2018a), the authors explore

the problem further. They divide the study into two parts – the first being a Passenger Transit Model

that estimates the number of passengers at each station and, thereby, calculates the under-utilized ca-

pacity. In the second part, the decisions about the actual assignment and delivery of the packages

are made. They propose two approaches for the second part – the Minimum Limitation Delivery

Method, which uses only the minimum under-utilized capacity, and the Adaptive Limitation Deliv-

ery Method (ALD), which utilizes the entire under-utilized capacity at each trip. They find ALD to

perform better, with only slightly higher risks of affecting the quality of passenger experience. The

main focus of their study is on the transfer using public vehicles, which constitutes a part of the prob-

lem studied in our paper. Huang et al. (2020a,b) investigate the deliveries of parcels that use drones

interacting with existing public transit vehicles like trains, trams, etc. They propose algorithms and

simulations to demonstrate the performance of their models. Fatnassi et al. (2015) also explore the

idea of transporting goods and passengers in a shared system, where they propose to use personal
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rapid transit and freight rapid transit (FRT) alternatively in a shared transportation network. They

propose a dynamic or on-demandmodel thatminimizes the waiting time of the passengers and goods,

along with the movement of empty vehicles. These studies primarily deal with the delivery problems

focused on the second tier of our study.

Ghilas et al. (2016a,b,c, 2018) utilize scheduled public transportation lines for freight delivery.

They study the Pickup and Delivery Problem with Time Windows and Scheduled Lines (PDPTW-

SL), where freight requests are transported via public vehicle lines from one end to another. The

authors provide an arc-based mixed-integer programming formulation for the problem and perform

computational studies to demonstrate the benefits of using such a system (Ghilas et al., 2016b). In

this paper, we have considered one origin of packages – at the CDC, and the trucks deliver them to

the drop-in stations, instead of considering a pickup and delivery problem at both ends. Our moti-

vation is to use the scheduled lines to deliver packages from the outskirts of the city to the city center

to reduce the usage of trucks inside the city. We also include multiple drop-in and drop-out stops on

each line, which comprises another layer of decision-making while the authors consider end-to-end

transport of packages on the lines. In Ghilas et al. (2016a), the authors use an Adaptive Large Neigh-

borhood Search (ALNS) heuristic algorithm to solve the problem on several synthetic instances, and

on an instance generated based on the metro system in Amsterdam. The results on instances of sizes

up to 100 indicate significant benefits in terms of cost savings, which range from 0 to 30%, reduced

driving times ranging from 0 to 31%, and, proportionally, reduced CO2 emissions. The authors also

study a stochastic version of the same problem in Ghilas et al. (2016c), called the Pickup andDelivery

Problems with TimeWindows, Scheduled Lines and Stochastic Demands, where the demands of the

requests are considered uncertain. They solve the problem using ALNS embedded into a sample av-

erage approximation method. Their computational studies show up to 16% reduced costs compared

to a traditional PDPTW on instances of sizes up to 40 requests (each request being a pickup and de-
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livery destination pair). They also extend their study to propose an exact solution approach based on

the branch-and-price algorithm in Ghilas et al. (2018). They are able to solve small andmedium-sized

instances with up to 50 requests optimally within the time limit. They also study the Pickup and De-

livery Problem with Time Windows and Transfers (PDPTW-T) as a special case, which includes the

transfer of packages between the pickup and delivery vehicles at predetermined nodes.

Mourad et al. (2021) also study a version of the PDPTW-SL, where the scheduled lines consist of

shuttles that can transport passengers along with robots carrying packages. In their setting, robots

replace the pickup and delivery vehicles, and these robots perform the task of transporting packages

between the stations and their origins anddestinations. They study a stochastic versionof the problem

where the capacity of the shuttles is unknown and use an ALNS algorithm to solve it. Their method

solves instances with up to 60 requests and finds solutions within 0.6% of the optimal solutions. A

fundamental difference between the studies by Ghilas et al. (2016a,b,c, 2018); Mourad et al. (2021)

and ours is that they study pick-up and delivery problemswith symmetric deliverymodes and features

at the two ends of the public transportation lines. We study three distinct delivery modes in the three

tiers, and our focus is to utilize public transportation to bring packages into the city, thereby keeping

heavy delivery trucks completely outside the urban living area.

Behiri et al. (2018) discuss strategic, tactical, and operational issues of integrating freight trans-

port on the passenger rail network. Then, they study a problem called the Freight-Rail-Transport-

Scheduling Problem, provide a mixed integer formulation for the same, and propose two heuristic

methodologies for its solution that decompose the problem into single-train-related subproblems. Oz-

turk&Patrick (2018) study an operational level model for freight transport using urban rail networks

with known demand and due dates with penalties. They first propose an approximation algorithm

and a pseudo-polynomial dynamic programming algorithm for the case with one departure and one

arrival station. Then they extend it to several stations and present a heuristic method, twomixed inte-
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germodels– onewhichminimizes the total tardiness in the presence of a fixed schedule and the second

does the same alongwith determining a schedule for trains dedicated to freight, and then integrate the

second in an ε-constraint model. They find that while the first model is superior performance-wise,

the second is valuable at generating insights into the problem.

Masson et al. (2017) introduce theMixedUrbanTransportation Problem. They consider the trans-

portation of packages from the CDC to the city on a bus route and subsequent deliveries from the

bus stations by city freighters simultaneously. They categorized the problem into two specific classes

of Vehicle Routing Problems (VRP)– the Two-Echelon VRP (2E-VRP) and the Pickup andDelivery

Problem with Transfers. To solve the problem, they also use an ALNS methodology. They evaluate

their model in the city of La Rochelle. Our problem is an extension of the setting considered byMas-

son et al. (2017), as we consider amore generalized delivery systemwithmultiple public vehicle routes.

We also have the option of delivering packages by trucks to the drop-in stops, where they can be col-

lected, instead of a bus passing through the CDC and collecting them there. Their primary focus is

on the last leg of the delivery, where most of the decisions about package movement, particularly on

public transportation, are already made beforehand. Azcuy et al. (2021) study a two-tier system with

goods being moved on a public transit line to an intermediate transfer location, from where the pack-

ages can be delivered to the end customers. Their problem includes the location decision of the trans-

fer station, apart from the routing decisions of the last mile vehicles. They consider line network and

circular network configurations for the transit networks, and customers are assumed to be uniformly

distributed around them. The problem is solved using an ALNS heuristic using a Greedy Random-

ized Adaptive Search Procedure, and they find savings of up to 7.1% for line networks and 5.4% for

circular networks. Schmidt et al. (2022) introduce the last-mile delivery problemwith scheduled lines

(LMDPSL), which is a two-echelon problem with public lines in the first echelon and city freighters

in the second echelon. They use branch-price-and-cut algorithms for exact and heuristic solutions.
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They minimize hierarchically a combination of the following objective functions: minimizing the

number of city freighters, minimizing the routing costs, and minimizing the trips. They provide ex-

tensive computational experiments and several managerial insights, like instances with higher lines

and stops have the lowest routing costs and utilize fewer freighters. In contrast, lines operating in a

circle around the city center always lead to the highest routing costs and freighters. They also find that

limiting the capacity of the public lines results in a moderate increase in routing costs, and reducing

the time windows leads to a noticeable increase in the routing costs and the number of city freighters.

In Delle Donne et al. (2023a), the authors study the FOT problem at the strategic level. They

discuss decisions about the public vehicle lines and the drop-in and drop-out stops to be included

in the delivery system to maximize the demand covered. They propose several formulations for the

problem and employ column generation-based heuristic approaches to solve them. They find that

the topology of the public transportation network, along with the demand distribution and density,

play the most significant role in achieving their objective. Zhou et al. (2024) study collaborative route

planning for buses and delivery trucks in rural areas, where buses carry both passenger and freight.

They use hybrid heuristic algorithms to solve their problems. They also implement their study in

three townships in the Hanzhong City, and find that integrated models could generate an additional

revenue of 139,795 yuan per year for the bus routes of the three towns, and save fuel costs worth 8,161

yuan compared to the traditional setting.

Finally, a recent detailed survey has appeared on freight delivery on urban public transportation

systems (Elbert &Rentschler, 2021). We refer the reader to this exhaustive review for a complete view

of the literature on the topic. While there were several studies focusing on the operational aspect of

FOT, to the best of our knowledge, we failed to find one having a comprehensive three-tier delivery

problem, with three distinct delivery modes in the three stages. Our motivation was to keep heavy

delivery vehicles outside the urban living area, leading to less congestion on roads and reduced noise
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and air pollution. Such a setting poses its own problem, which we tackle in our study. In Table 2.1,

we summarize the setting of the problems in studies that are closely linked to ours, and the features

that differentiate this research.

Table 2.1: Comparison of literature closely linked to this study

Paper Pick-up (P) / Delivery (D) /
Pick-up and Delivery (PD)

Number of
tiers

Depots Lines Stops (End-to-End /
Multiple)

Azcuy et al. (2021) D 2 1 1 Multiple
Behiri et al. (2018) D 1 - 1 Multiple
Cheng et al. (2018a) D 1 - 1 Multiple
Cheng et al. (2018b) D 1 - Multiple Multiple
Ghilas et al. (2016a) PD 3 Multiple Multiple End-to-End
Ghilas et al. (2016b) PD 3 Multiple Multiple End-to-End
Ghilas et al. (2016c) PD 3 Multiple Multiple Multiple
Ghilas et al. (2013) PD 3 Multiple Multiple Multiple
Masson et al. (2017) D 2 1 1 Multiple
Mourad et al. (2021) PD 3 Multiple Multiple Multiple

Ozturk & Patrick (2018) PD 2 - Multiple Multiple
Schmidt et al. (2022) D 2 - Multiple Multiple

This paper D 3 1 Multiple Multiple

2.3 Problem setting

Let C be the set of all the customers where a package has to be delivered. Let o denote the CDC or the

parcel depot, and o′ denote a copy of the CDC. Let the set of dedicated delivery trucks at the CDCbe

denoted byD. Let P be the set of public vehicles that can be used for delivering packages. Let S be

the set of all the stops that have been equipped for the delivery system. For each vehicle p ∈ P , let Sp

denote the set of its stops. In our notation, each public vehicle has a unique representation, and it can

be identified by the route (or line) it serves and the time it starts from its depot. Furthermore, let Sin

and Sout denote the drop-in and the drop-out stops on the public vehicle network, respectively, so we

have S = Sin ∪ Sout. For each customer i, we pre-assign a set of drop-out stops that can potentially

serve the customers based on the distance from the stop to them. This is denoted by the setSout
i . These

drop-out stops lead to a set of drop-in stops fromwhere customer i’s package can be transported (the

drop-in stops that are on the line of the public vehicles that serve the drop-out stops in Sout
i ) and is
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denoted byS in
i . On the other hand, the set of customers that can be served from each drop-out stop v

and each drop-in stopu are denoted byCout
v andCin

u , respectively. LetPs be the set of all public vehicles

that visit stop s. LetK be the set of all city freighters, and for each stop, s ∈ S , letKs denote the set of

freighters that serve stop s. In our setting, each freighter serves exactly one drop-out stop. N denotes

the set of all nodes or locations in the delivery system– the customers, the stops, and theCDC. Finally,

we introduce a hypothetical node õ that represents the depot for all public vehicles. For simplicity of

modeling, we assume that all public vehicles start from the same imaginary depot õ before reaching

their first drop-in stop. This is becausewe are not concerned about the route of a public vehicle before

it reaches its first drop-in stop.

We consider a daily planning horizon here. Each customer i has to be delivered a package, which

consumes a capacity qi. The packages are delivered from the depot oby a delivery truckd, and dropped

off at a stopu ∈ Sin. The capacity of each delivery truck is givenbyQ1
d. Then a public vehicle p collects

the packages from the drop-in stop u and drops them off at the drop-out stop v ∈ Sout. LetQ2
p be the

capacity of each vehicle p. Let Tsp denote the time at which a public vehicle p visits a stop s ∈ Sp on

its line. Each drop-out stop s is served by a group of freighters allotted to that stop (∈ Ks), who pick

up the packages dropped off at the stop and deliver them to the respective customers. The capacities

of the freighters are given by Q3
k. Each customer imust be served within their time window

[
Ti,Ti

]
.

Additionally, we consider that there is some service time, denoted by T′
s , associated with the drop-in

and drop-out stops in the first and the third tier. At the drop-in stops, this service time corresponds

to the time it takes to unload the packages from the trucks, sort them according to the public vehicles

that would transport them, etc. At the drop-out stops, the service time includes the time it takes to

unload the packages from the public vehicles, hand themover to the assigned freighters, among others.

In the third tier, each customer i also has a service time T̂i, which refers to the time required to deliver

a package at the customer location. It includes the time taken by freighters to find a parking spot and
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locate the exact apartment or building once they reach the customer, among others.

Let Dij denote the distance between any two locations of the system, where i, j ∈ N . Let T1
uvd

denote the time taken by delivery truckd to traverse arc (u, v), where u ∈ Sin∪{o} and v ∈ Sin∪{o′},

and C1
uvd be the cost of using a delivery truck to traverse the arc. Similarly, let T3

ijk denote the travel

time for traversing arc (i, j), where, i, j ∈ C ∪ Sout, by freighter k, and C3
ijk be the corresponding cost.

We use the parameter αuvp to identify the public vehicle routes. It takes the value 1 if the vehicle p goes

from a stop u to a stop v ∈ Sp, and 0 otherwise.

We study a deterministic version of the problem here, so the orders for the day are known. The

residual capacities of public vehicles is assumed to have been estimated from observing previous occu-

pancy data of the vehicles at the stops. We assume that there are enough delivery trucks and freighters,

and enough capacity on the public vehicles to deliver all the packages. Finally, we assume that there is

no transfer of packages within the same tier.

Table 2.2: List of sets and parameters used

Sets Parameters

o the CDC or parcel depot C1
uvd cost of traversing arc (u, v) using a delivery truck

o′ dummy CDC (a copy of the CDC) C3
ijk cost of traversing arc (i, j) by a freighter

C set of customers Dij distance between locations i, j ∈ N
P set of public transportation vehicles Tsp time when public vehicle p is scheduled to reach stop s
S set of all stops for public transportation vehicles Q1

d capacity of delivery truck d
Sin the set of drop-in stops Q2

p capacity of public vehicle p
Sout the set of drop-out stops Q3

k capacity of freighter k
Sp set of stops traversed by public transportation vehicle p qi capacity consumed by the package of customer i
Ps set of public transportation vehicles that visit stop T1

uvd time taken by delivery truck d to traverse arc (u, v)
D set of delivery trucks at the CDC T3

ijk time taken by freighter k to traverse arc (i, j)
K set of all city freighters Ti earliest time that customer i can be served
Ks set of freighters that serve drop-out stop s Ti latest time that customer i can be served
Sout
i set of drop-out stops from where a customer i can be served T̂i service time (delivery time) required at customer i

S in
i set of drop-in stops where customer i’s package can be loaded onto a

public vehicle
T′
s service time required at stop s

Cin
s the set of customers that can be served via drop-in stop s αuvp equals 1 if public vehicle p goes from stop u to stop v, 0 other-

wise
Cout
s the set of customers that can be served from drop-out stop s

N the set of all nodes in the system, equals C ∪ S ∪ {o} ∪ {o′}
õ bus depot (dummy node)

Next, we describe the decision variables for the problem. risd denotes binary variables that take the

value 1 if delivery truckd transports the package i from theCDCto the drop-in stop s, and 0 otherwise.
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Table 2.3: List of decision variables for the problem

Decision Variables

Tier 1
risd equals 1 if the package for customer i is delivered by truck d to the drop-in stop s, 0 otherwise
wuvd equals 1 if a delivery truck d traverses arc (u, v), 0 otherwise
t1ud time when delivery truck d starts from (or leaves) node u ∈ Sin ∪ {o}

Tier 2
y1isp equals 1 if the package for customer i is picked up by public vehicle p from drop-in stop s, 0 otherwise
y2isp equals 1 if the package for customer i is dropped off by public vehicle p at drop-out stop s, 0 otherwise
l2up load of a public vehicle p as it leaves stop u ∈ Sp

Tier 3
zik equals 1 if freighter k ∈ Ks picks up customer i’s package, 0 otherwise
xijk equals 1 if freighter k traverses arc (i, j), 0 otherwise
t3ik time when freighter k starts from node i ∈ C ∪ Sout

Binary variables wuvd take the value 1 if delivery truck d traverses arc (u, v), where u ∈ Sin ∪ {o} and

v ∈ Sin ∪ {o′}, and 0 otherwise. t1ud is a continuous variable that notes the time as the truck d leaves

the CDC (if u = o) or visits each drop-in stop u ∈ Sin. These three sets of variables comprise the

decisions of the first tier of the problem. Then, we have binary variables y1isp that take value 1 if the

public vehicle ppicks package i from the drop-in stop s, and 0 otherwise. Similarly, binary variables y2isp

take value 1 if the public vehicle p drops package i at the drop-out stop s. Variables l2up are continuous

variables that update the load of the public vehicle p as it visits each of its stops. This load is computed

as the initial load of the vehicle pwhen visiting stop u, minus the volume of packages dropped off at u,

plus the volume of packages picked up from stop u. These are the decision variables associated with

the second tier of the problem. Finally, we have the variables that are related to the third tier. Binary

variables zik take the value 1 if package i is assigned to freighter k, and 0 otherwise. Variables xijk are

also binary and take the value 1 if freighter k traverses arc (i, j), where i, j ∈ Sout ∪ C. Finally, we have

continuous variables t3ik that update the time as each freighter k leaves a drop-out stop (if i ∈ Sout) or

visits the customers (if i ∈ C). However, we must note that the drop-in stops lie at the intersection of

Tiers 1 and 2, and the drop-out stops lie at the intersection of Tiers 2 and 3. Thus, whenever a variable

is associated with a drop-in or a drop-out stop, it affects decisions corresponding to both the tiers it

lies at the intersection of.
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Our problem is to find a path for each package from the CDC via a delivery truck, followed by

a public vehicle, and finally, a freighter to the customer, such that the total distance traveled by the

delivery trucks and the freighters is minimized. Figure 2.2 shows the problem pictorially. While there

are several other objective functions that pertain to the problem, we choose this because it aligns with

the environmental goals of our study, which is to minimize the use of dedicated delivery vehicles and,

thereby, additional emissions caused by them.

Figure 2.2: The path of a package

Tables 2.2 and 2.3 summarize the different notations and decision variables for the 3T-DPPTprob-

lem.

2.3.1 Model formulation

The formulation of the 3T-DPPV can be broken down into three parts based on the three tiers of the

approach. Tiers 1 and 3 primarily constitute routing problems, while Tier 2 is an assignment problem

with time restrictions. Along with these, we need to define constraints linking the three tiers.

The process starts with the delivery trucks transporting packages from the CDC to the drop-in

stops in tier 1. Each package is assigned to precisely one delivery truck which delivers it to a drop-in

stop. The assignment is done such that the truck’s capacity is not exceeded. We model this using the

following constraints:

∑
s∈Sin

∑
d∈D

risd = 1 ∀i ∈ C, (2.1)
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∑
i∈C

∑
s∈Sin

qirisd ≤ Q1
d ∀d ∈ D. (2.2)

The next set of constraints defines the route of the trucks. Each truck starts from the CDC, follows

a route to deliver the packages to different drop-in stops, and returns to the CDC.

∑
v∈Sin∪{o′}

wovd = 1 ∀d ∈ D, (2.3)

∑
v∈Sin∪{o}

wvo′d = 1 ∀d ∈ D, (2.4)

∑
v∈Sin∪{o′}

v ̸=u

wuvd =
∑

v∈Sin∪{o}
v ̸=u

wvud ∀u ∈ Sin, d ∈ D, (2.5)

∑
u∈Sin∪{o}

v ̸=u

wuvd ≥
1
M

∑
i∈C

rivd ∀v ∈ Sin, d ∈ D. (2.6)

Constraints (2.3) and (2.4) ensure that the delivery trucks start and end at the CDC. Constraints

(2.5) are the flow conservation constraints for the delivery trucks at each drop-in stop. Constraints

(2.6) ensure that if a package is assigned to a drop-in stop via a delivery truck, that truck must visit the

stop. M denotes a large number.

Then, weuse constraints to link tier 1 to tier 2, i.e., if a delivery truck drops off a package at a drop-in

stop, a public vehicle must pick it up from that stop, and the constraints are given by:

∑
d∈D

risd =
∑
p∈Ps

y1isp ∀i ∈ C, s ∈ Sin. (2.7)

Moreover, we have time constraints on when the packages can be dropped off and picked up at the
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drop-in stops.

t1vd ≥ t1ud + T1
uvd + T

′
v −M (1− wuvd) ∀u ∈ Sin ∪ {o}, v ∈ Sin, u ̸= v, d ∈ D, (2.8)

t1sd ≤
∑
p∈Ps

Tspy1isp +M (1− risd) ∀i ∈ C, s ∈ Sin, d ∈ D. (2.9)

Constraints (2.8) update the time for each delivery truck as it visits each drop-in stop, and constraints

(2.9) ensure that a truck visits the drop-in stops before the packages that it carries are scheduled to be

picked up by the public vehicles.

Next, we model the flow of the packages on the public vehicle network. We have the following

constraints:

∑
p∈P

∑
s∈Sp∩Sin

y1isp = 1 ∀i ∈ C, (2.10)

∑
p∈P

∑
s∈Sp∩Sout

i

y2isp = 1 ∀i ∈ C, (2.11)

y1isp + y2isp ≤ 1 ∀i ∈ C, s ∈ Sin ∩ Sout, p ∈ Ps, (2.12)∑
s∈Sp∩Sin

y1isp =
∑

s∈Sp∩Sout
i

y2isp ∀i ∈ C, p ∈ P, (2.13)

Tupy1iup ≤ Tvpy2ivp +M
(
1− y2ivp

)
∀i ∈ C, p ∈ P, u ∈ Sp ∩ Sin, v ∈ Sp ∩ Sout

i , (2.14)

y1iup ≤
∑

v∈Sp∩Sout
i

αuvpy2ivp ∀i ∈ C, p ∈ P, u ∈ Sp ∩ Sin,

l2õp = 0 ∀p ∈ P, (2.15)

l2vp = l2up +
∑
i∈Cin

v

qiy1ivp −
∑
i∈Cout

v

qiy2ivp ∀p ∈ P, u ∈ Sp ∪ {õ}, v ∈ Sp, u ̸= v, with αuvp = 1,

(2.16)

l2vp ≤ Q2
p ∀p ∈ P, v ∈ Sp. (2.17)
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Constraints (2.10) and (2.11) state that the package for each customer i is picked up by exactly one

public vehicle p from a drop-in stop and dropped off at a drop-out stop. Constraints (2.12) ensure

that the drop-in stop of a package is different from its drop-out stop. In practice, if there happens to

be packageswhose drop-in and drop-out stops are the same, then the customer can be directly serviced

by trucks from theCDC.Constraints (2.13)make certain that the vehicle p that picks up a package for

customer i from a drop-in stop is the same that drops off the package at a drop-out stop. Constraints

(2.14) ensure that a package is picked up by a public vehicle before it is dropped off at one of the drop-

out stops on its route. Constraints (2.15) set the load for each public vehicle to be zero initially, before

it visits any drop-in stop. Constraints (2.16) update the load of each public vehicle at each stop, and

(2.17) guarantee that the capacity of the public vehicles is respected.

Once the packages reach the drop-out stops, we have the third and final tier of the problem. We

have some constraints that link T2 and T3, similar to what we had for T1 and T2. Specifically, the

following constraints say that if a package is dropped off at a drop-out stop by a public vehicle, then a

freighter serving that stop must pick it up:

∑
k∈Ks

zik =
∑
p∈Ps

y2isp ∀i ∈ C, s ∈ Sout
i . (2.18)

Then, we have constraints that are exclusive to the third tier and that describe the routes of the

freighters:

∑
k∈K

∑
j∈C∪Sout

xijk = 1 ∀i ∈ C, (2.19)

∑
j∈C∪{s}

j̸=i

xjik = zik ∀i ∈ C, s ∈ Sout
i , k ∈ Ks, (2.20)

∑
i∈C

qizik ≤ Q3
k ∀k ∈ K, (2.21)
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∑
j∈C∪Sout

xsjk = 1 ∀s ∈ Sout, k ∈ Ks, (2.22)

∑
j∈C∪Sout

xjsk = 1 ∀s ∈ Sout, k ∈ Ks, (2.23)

∑
j∈C∪Sout

j̸=i

xijk =
∑

j∈C∪Sout
j̸=i

xjik ∀i ∈ C, k ∈ K. (2.24)

Constraints (2.19) ensure every customer is visited exactly once. Constraints (2.20) establish the link

between variables x and z. Constraints (2.21) make sure that each freighter’s capacity is respected.

Constraints (2.22)-(2.23) state that the freighters start and end at their own pre-specified drop-out

stop. Constraints (2.24) are flow conservation constraints for the freighters at each customer. The

freighters start from a drop-out stop, follow a route to visit the customers, and come back to the same

drop-out stop.

Finally, we have constraints that note the time that the freighters visit the customers and ensure

that the packages reach the customers within their time windows:

t3sk ≥
∑
p∈Ps

Tspy2isp + T
′
s −M (1− zik) ∀i ∈ C, s ∈ Sout

i , k ∈ Ks, (2.25)

t3jk ≥ t3ik + T3
ijk + T̂j −M

(
1− xijk

)
∀i ∈ C ∪ Sout, j ∈ C, i ̸= j, k ∈ K, (2.26)

t3ik ≥ Ti ∀i ∈ C, k ∈ K, (2.27)

t3ik ≤ Ti ∀i ∈ C, k ∈ K. (2.28)

Constraints (2.25)-(2.26) update the time of the freighters as each customer is visited, and constraints

(2.27) and (2.28) ensure that the time windows of the customers are satisfied. Constraints (2.8) and

(2.26) also help prevent subtours for the trucks and the freighters, respectively.
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Apart from the above constraints, we use the following standard symmetry-breaking constraints:

∑
v∈Sin

wovd ≥
∑
v∈Sin

wovd+1 ∀d ∈ |D| − 1, (2.29)

∑
u∈Sin∪{o}

∑
v∈Sin∪{o′}

u ̸=v

wuvd ≥
∑

u∈Sin∪{o}

∑
v∈Sin∪{o′}

u ̸=v

wuvd+1 ∀d ∈ |D| − 1, (2.30)

∑
j∈C

xsjk ≥
∑
j∈C

xsjk+1 ∀s ∈ Sout, k ∈ |Ks| − 1, (2.31)

∑
i∈C∪{s}

∑
j∈C

xijk ≥
∑

i∈C∪{s}

∑
j∈C

xijk+1 ∀s ∈ Sout, k ∈ |Ks| − 1. (2.32)

Constraints (2.29) say that delivery trucks with smaller indices have to be used first and (2.30) state

that trucks with smaller indices have to be assigned larger routes. Constraints (2.31) and (2.32) estab-

lish the same, respectively, for the freighters.

The objective of our problem is to minimize the cost of using delivery trucks and freighters in the

first and the third tier of the system, respectively, and is given by:

Minimize
∑
d∈D

∑
u∈Sin∪{o}

∑
v∈Sin∪{o′}

u ̸=v

C1
uvdwuvd +

∑
k∈K

∑
i∈Sout∪C

∑
j∈Sout∪C

i̸=j

C3
ijkxijk. (2.33)

We denote by FULL the complete mathematical formulation of the 3T-DPPT given by the objective

function (2.33) subject to constraints (2.1)-(2.32).

Variables risd,wuvd, y1isp, y2isp, zik, and xijk are binary,while t1sd, l
2
up, and t3sk arenon-negative continuous

variables.

The full model is huge and computationally challenging to solve. The commercial solver used in

the computational experiments struggles to find a feasible solution for instances with as few as 40

customers within the time limit. In order to solve larger-sized instances, we employ a matheuristic

31



methodology where the problem is decomposed into its natural three tiers and solved individually

and sequentially. We describe this solution approach in detail in the next section.

2.4 The decomposition matheuristic

In order to solve the 3T-DPPT by decomposition matheuristics, we break down the decisions in the

full formulation into the decisions for T1, T2, and T3. We obtain three decomposition approaches,

each ofwhichprioritizes one of the tiers–the one that is solvedfirst. The solutions obtained then guide

the solutions of the other tiers. We aim to analyze the three matheuristic approaches, and identify

when one performs better than the others. We could start by solving T1 first, then solve T2, and

finally T3; we call this approach D1 (the D stands for decomposition, and the number represents

which tier is solved first). Alternatively, we could do the reverse and solve T3 first, followed by T2 and

T1 (calledD3). Finally, we could start with T2 and then solve T1 and T3 simultaneously (calledD2).

Each of thesemethods has its own benefits and challenges, whichwe describe in detail in the following

subsections.

2.4.1 Decomposition startingwith Tier 2

We first discuss the case when the decomposition matheuristic solves T2 first. Since T2 is the tier that

links the deliveries inT1 andT3, andour focus is onoptimizing the use of public transport services, we

first solve the T2 problem here. We use constraints from FULL primarily concerning this tier, along

with some additional linking constraints. These additional constraints take into account the delivery

time windows of the customers, which are addressed directly only in T3 of the problem. The idea

is to assign a drop-in stop, a drop-out stop, and a public vehicle that traverses the two stops, to each

package, along with the pickup and drop-off time. Then we feed these decisions to the problems in

T1 and T3 to get the final complete solution.
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Tier 2 problem

The first step of this decomposition technique is to model the flow of packages on public vehicles.

For each package i ∈ C, we consider the task of sending it from a drop-in stop u to a drop-out stop v

via a public vehicle p. We use variables y1isp, y2isp, and l2up from the original formulation. The majority

of the constraints used for this tier are also the same as in the FULL formulation and are given by

(2.10)-(2.17).

Apart from the constraints mentioned above, we also need to make sure that the timing of the

assignment of the packages to the public vehicles is such that there are no time inconsistencies for

the deliveries in T1 and T3. In other words, firstly, the packages have to be assigned to the drop-in

stops and the public vehicles so that the delivery trucks have enough time to deliver them from the

CDC to the drop-in stop before a public vehicle is scheduled to pick them up. Secondly, wemust also

ensure that the freighters have enough time tomake the deliveries in T3 to satisfy the customers’ time

windows. We achieve these by using the following constraints:

Tspy1isp ≥
[
T1avg
os + T

′
s

]
y1isp ∀i ∈ C, s ∈ Sin, p ∈ Ps, (2.34)∑

p∈P

∑
s∈Sp∩Sout

i

[
Tsp + T3avg

si + T
′
s + T̂i

]
y2isp ≤ Ti ∀i ∈ C. (2.35)

T1avg
os denotes the average time taken by a delivery truck to go from theCDC to the drop-in stop s, and

T3avg
si denotes the average time that a freighter requires to travel from drop-out stop s to customer i.

T1avg
os and T3avg

si are calculated based on the geographical locations of the drop-in and drop-out stops

and the locations of the customers. The first set of constraints ensures that the time when the delivery

trucks deliver a package to a drop-in station does not exceed the scheduled time when it is supposed

to be picked up by a public vehicle. The second set of constraints ensures that the package can be

delivered to its customer before their time window ends.
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Next, we discuss the objective functions for the problem in T2. Recall that in the FULL formu-

lation, we only had objectives corresponding to minimizing the travel distances in T1 and T3, and

nothing specific to T2. We develop three objective functions for the T2 problem, keeping in mind

our objective of the original formulation- to minimize the routing costs. The three objectives we pro-

pose are: 1) to minimize the number of drop-in stops or drop-out stops or both used, 2) to minimize

the approximate routing distances in T1 and T3, and 3) to minimize the approximate number of

freighters used in T3. For the third objective function, we focus only on T3 because the third tier is

the most complicated one: the distance traveled for delivery in T3 is much higher than T1, firstly, due

to a significantly larger number of customers than drop-in stops, and secondly, due to lower capacities

of freighters. We describe the objectives in detail in the following paragraphs.

Minimizing the number of drop-in and drop-out stops (Obj1): The first objective is to min-

imize the number of drop-in and drop-out stops used. We develop this objective to encourage high

consolidation of packages on the delivery trucks and freighters, thereby using fewer vehicles. This

objective function is given by

Minimize
∑
s∈Sin

min
{∑

i∈C

∑
p∈P

y1isp, 1
}
+

∑
s∈Sout

min
{∑

i∈C

∑
p∈P

y2isp, 1
}
. (2.36)

This objective function is non-linear. To linearize it, we use binary variables φ1
s and φ

2
s , which repre-

sents if some package is picked up or dropped off at stop s, respectively. Then the objective function

can be written linearly as

Minimize
∑
s∈Sin

φ1
s +

∑
s∈Sout

φ2
s , (2.37)
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with two additional constraints:

φ1
s ≥

∑
i∈C

∑
p∈P y1isp

M
∀s ∈ Sin, (2.38)

φ2
s ≥

∑
i∈C

∑
p∈P y2isp

M
∀s ∈ Sout. (2.39)

A drawback of this objective is that it might lead to the selection of very few drop-in and drop-out

stations, and assign customers to drop-out stops that might not be the closest to them, resulting in an

increase in the routing distances.

Minimizing the approximate routing cost (distance traveled) in T1 and T3 (Obj2): We con-

struct the second objective function by taking into account the distances of the drop-in stops from

the CDC and the drop-out stops from the customers. Though these distances will not be precisely

equal to the routing distances obtained fromT1 and T3, they serve as a proxy for the objectives of T1

and T3. The second objective function is given by:

Minimize
∑
i∈C

∑
s∈Sin

Dos
∑
p∈P

y1isp +
∑
i∈C

∑
s∈Sout

Dis
∑
p∈P

y2isp. (2.40)

Minimizing the approximate number of freighters used inT3 (Obj3): Finally, we introduce the

objective of minimizing the number of freighters used in T3, taking into account the average capacity,

denoted byQF. This is aimed at reducing the overall routing cost of the third tier. The approximation

is made in the following way. First, we divide the entire day into time periods over which the public

vehicles operate, denoted by T = {τ0, τ1, . . . , τn}. LetP
τj
s denote the set of public vehicles that visit

drop-out station s during period τj.

To estimate the number of freighters required, we introduce new decision variables hτjs , which give

the number of freighters required during any period to deliver the parcels dropped off in that period.
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We determine the value of hτjs through the following constraints:

∑
i∈C

∑
p∈P s

τj

qiy2isp ≤ QFh
τj
s ∀s ∈ Sout, τj ∈ T , (2.41)

and the objective function is:

Minimize
∑
τj∈T

∑
s∈Sout

hτjs . (2.42)

We solve the tier 2 problem with each of the objectives discussed above. From the solution, we ob-

tain a drop-in stop, a drop-in time, a drop-out stop, and a drop-out time associated with each package.

Then, we use these as inputs for the T1 and T3 problems. In the following subsections, we describe

the formulations of the problems in T1 and T3.

Tier 1 problem

For the tier 1 problem, the task is to assign packages to the delivery trucks and determine the routes

of the delivery trucks from the CDC to the drop-in stops. Let Binis be a parameter that takes the value

1 if package i is picked up by a public vehicle from drop-in station s, and Tin
i be the corresponding

time. We obtain these values from the solution of T2. Let rid be a binary variable that takes the value

1 if package i is assigned to delivery truck d, and gdv be a binary variable that denotes if a truck d visits

drop-in stop v or not. Apart from these, we use the variables wuvd and t1vd, denoting the arc traversal

variables and the time variables, respectively, from the FULLmodel. The objective of the T1model is

Minimize
∑
d∈D

∑
u∈Sin∪{o}

∑
v∈Sin∪{o′}

C1
uvdwuvd, (2.43)
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and the constraints are:

∑
d∈D

rid = 1 ∀i ∈ C, (2.44)

∑
i∈C

qirid ≤ Q1
d ∀d ∈ D, (2.45)

gdv ≥ Biniv rid ∀i ∈ C, d ∈ D, v ∈ Sin, (2.46)

gdv =
∑

u∈Sin∪{o}
u ̸=v

wuvd ∀d ∈ D, v ∈ Sin, (2.47)

t1vd ≤ Tin
i +M(1− rid) ∀i ∈ C, v ∈ Sin, s.t. Biniv = 1, d ∈ D, (2.48)

plus constraints (2.3)-(2.5), (2.8), and (2.29)-(2.30) from the FULL model. Constraints (2.44) and

(2.45) are analogous to constraints (2.1) and (2.2), respectively. Constraints (2.46) say that if a delivery

truck is assigned to a package, the truck must visit the corresponding drop-in station for the package.

Constraints (2.47) link variables gdv to the arc variableswuvd. Finally, constraints (2.48) guarantee that

a package is delivered to its respective drop-in station before a public vehicle is scheduled to pick it up.

Tier 3 problem

For the tier 3 problem, we need to determine the route of the freighters from the drop-out stops to

their respective customers. Let Boutis denote a parameter that takes the value 1 if package i is dropped

off at station v by a public vehicle, and let Tout
i be the corresponding time. These parameters, once

again, are determined from the output of T2. For writing this formulation, we use variables zik, xijk,

and t3jk from the FULLmodel.

An interesting fact about the T3 problem for the decomposition approach is that it completely

separates into subproblems for each drop-out stop and can be solved individually. OnceBoutis is known,
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we know the customers that need to be delivered from a drop-out stop s precisely and can, thus, solve

the routing problem for each stop. LetCs be the set of customers scheduled to be served fromdrop-out

stop s. The tier 3 model, for each drop-out stop s, is given by:

Minimize
∑
k∈Ks

∑
i∈Cs∪{s}

∑
j∈Cs∪{s}

j ̸=i

C3
ijkxijk, (2.49)

subject to:
∑
k∈Ks

zik = 1 ∀i ∈ Cs, (2.50)

∑
j∈Cs
i̸=j

xjik = zik ∀i ∈ Cs ∪ {s}, ∀k ∈ Ks, (2.51)

∑
i∈Cs

qizik ≤ Q3
k ∀k ∈ Ks, (2.52)

∑
j∈Cs∪{s}

xsjk = 1 ∀k ∈ Ks, (2.53)

∑
j∈Cs∪{s}

xjsk = 1 ∀k ∈ Ks, (2.54)

∑
j∈Cs∪{s}

j̸=i

xijk =
∑

j∈Cs∪{s}
j ̸=i

xjik ∀i ∈ Cs, ∀k ∈ Ks, (2.55)

t3sk ≥ Boutis Tout
i zik + T

′
s , ∀k ∈ Ks ∀i ∈ Cs, (2.56)

t3jk ≥ t3ik + T3
ijk + T̂j −M(1− xijk) ∀i ∈ Cs ∪ {s}, j ∈ Cs, i ̸= j, ∀k ∈ Ks,

(2.57)

t3ik ≥ Ti −M(1− zik) ∀i ∈ Cs, ∀k ∈ Ks, (2.58)

t3ik ≤ Ti +M(1− zik) ∀i ∈ Cs, ∀k ∈ Ks, (2.59)∑
j∈Cs

xsjk ≥
∑
j∈Cs

xsjk+1 ∀k ∈ |Ks| − 1, (2.60)
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∑
i∈Cs∪{s}

∑
j∈Cs
j̸=i

xijk ≥
∑

i∈Cs∪{s}

∑
j∈Cs
j̸=i

xijk+1 ∀k ∈ |Ks| − 1. (2.61)

The above formulation is very similar to the constraints of FULL that pertain to T3, decomposed

stop-wise. Constraints (2.56) ensure that the freighters start their journey only after all the packages

to be delivered by them have been dropped off.

We denote byD2-Obj1 the decomposition approach that solves the T2 problem first, followed by

T1 and T3, and usesObj1 for the problem in T2. When the objective functions used in T2 isObj2 or

Obj3, we denote it byD2-Obj2 andD2-Obj3, respectively.

2.4.2 Decomposition startingwith Tier 1

Next,wediscuss the decompositionmatheuristicwhenwe solve the 3T-DPPTstarting fromT1. Since

wepropose to use environmentally and economically sustainable transportationmeans inT3,whereas

T1 uses dedicated delivery vehicles, most of the harmful emissions occur in the first tier. Thus, if our

objective is to minimize the emissions caused, it would be more beneficial to prioritize the solution of

T1. Here, we solve tier 1 first and make decisions about assigning the packages to drop-in stops and

delivery trucks, and the routes of the trucks. The T1 solution also guides us about the arrival of the

packages at the drop-in stops. We use this as an input to solve the T2 problem, where we assign the

packages to public vehicles and drop-out stops. Finally, we solve T3 using the solution of T2. Here,

we assign the packages to freighters, and develop their routes.

Tier 1 problem

For the tier 1 model, similar to FULL, we use variables pertaining to T1, viz. risd, wuvd, and t1sd. Vari-

ables y1isp from FULL are replaced by variables γ1is which take the value 1 if a customer i is assigned to
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drop-in stop s, and 0 otherwise. The model is given by:

Minimize
∑
d∈D

∑
u∈Sin∪{o}

∑
v∈Sin∪{o′}

u ̸=v

C1
uvdwuvd, (2.62)

subject to:
∑
s∈S in

i

∑
d∈D

risd = 1 ∀i ∈ C, (2.63)

∑
i∈C

∑
s∈S i

in

qirisd ≤ Q1
d ∀d ∈ D, (2.64)

∑
d∈D

risd = γ1is ∀i ∈ C, s ∈ S in
i , (2.65)

∑
s∈S in

i

γ1is = 1 ∀i ∈ C, (2.66)

plus constraints (2.3)-(2.6), (2.8), and (2.29)-(2.30) from the FULL model. Constraints (2.63) and

(2.64) are analogous to constraints (2.1), and (2.2), restricted to specific drop-in stops based on the

drop-out stops from where the customers can be served. Constraints (2.65) and (2.66) say that if a

package is delivered to a drop-in stop, it must be picked up by a unique public vehicle.

Additionally, we need to ensure that the freighters have enough time to deliver the packages to the

customers within their time windows. We do so by adding the following constraints:

t1sd ≤ Tavg
i − 1.3 ·Dis +M(1− risd) ∀i ∈ C, s ∈ S in

i , d ∈ D, (2.67)

where, Tavg
i =

Ti+Ti
2 . To approximate the time, the idea is to assume that we go directly from the

CDC to the customer and reach them in the middle of their delivery window. However, since, in

practice, the package would be transported first by a public vehicle and then by a freighter, and could

also potentially wait in between, the time taken would be greater. To account for the longer journey,

we multiply the time taken by a factor greater than 1. From preliminary experiments, we find 1.3 to
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be a suitable multiplicative factor.

Tier 2 problem

From the solution of T1, we get the drop-in stop for each package i, and the time when the package is

delivered to the drop-in stop s. Wedenote thembyBinis andTin
i , respectively. These parameters are used

as inputs for the T2 problem. Let si denote the drop-in stop that serves customer i. In T2, we make

decisions about allocating each package to a public vehicle and a drop-out stop, and consequently, the

time when the package reaches a drop-out stop. For the problem described here, we replace variables

y1isp from FULLwith γ1ip to denote the assignment of packages to public vehicles. We also use variables

y2isp and l2up from the original formulation. The constraints are:

∑
p∈Psi

γ1ip = 1 ∀i ∈ C, (2.68)

∑
P\Psi

γ1ip = 0 ∀i ∈ C, (2.69)

Binis γ1ip + y2isp ≤ 1 ∀i ∈ C, s ∈ Sin ∩ Sout, p ∈ Ps, (2.70)

γ1ip =
∑

v∈Sp∩Sout
i

y2ivp ∀i ∈ C, p ∈ P, (2.71)

TupBiniuγ1ip ≤ Tvpy2ivp +M(1− y2ivp) ∀i ∈ C, p ∈ P, u ∈ Sp ∩ Sin, v ∈ Sp ∩ Sout
i , (2.72)

l2vp = l2up +
∑
i∈Cin

v

Binivqiγ1ip −
∑
i∈Cout

v

qiy2ivp ∀p ∈ P, u ∈ Sp ∪ {õ}, v ∈ Sp, u ̸= v, with αuvp = 1,

(2.73)∑
p∈Ps

TspBinis γ1ip ≥ Tin
i Binis ∀i ∈ C, s ∈ S in

i , (2.74)

plus constraints (2.11), (2.15), and (2.17). Constraints (2.68)-(2.73) are similar to that of FULL, with

variables y1isp replaced by variables γ1ip. Constraints (2.74) ensure that the public vehicles pick up the
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packages only after the trucks have delivered them to the drop-in stops.

In addition, we need to ensure that there is enough time for the freighters to deliver the packages

once the public vehicles have dropped them off at the drop-out stops so that the customers receive the

packages before their closing time window. To do so, we add the following constraint:

∑
p∈P

∑
s∈Sp∩Sout

[
Tsp + T3avg

si + T
′
s + T̂i

]
y2isp ≤ Ti ∀i ∈ C. (2.75)

The objective functions for T2, as described in section 2.4.1, could be to minimize the number of

drop-out stops used in T3, or to minimize the approximate distance traveled by the freighters in T3,

or to minimize the approximate number of freighters used. Since we have already solved T1 here, the

objective functions only correspond to the decisions of tier 3.

Minimizing the number of drop-out stops (Obj1) : The objective function is:

Minimize
∑
s∈Sin

∑
s∈Sout

φ2
s , (2.76)

along with the additional constraint (2.39).

Minimizing the approximate routing cost of T3 (Obj2) : The objective function in this case is

given by:

Minimize
∑
i∈C

∑
s∈Sout

Dis
∑
p∈P

y2isp. (2.77)

Minimizing the approximate number of freighters used in T3 (Obj3) : Here, the objective

function is given by (2.42), along with constraints (2.41).

The tier 3 model takes as input Boutis and Tout
is , which denote the drop-out stop and the drop-out
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time and come from the output of T2. The T3model here is the same as in the approach described in

Section 2.4.1. As done previously, we denote byD1-Obj1,D1-Obj2, andD1-Obj3 the decomposition

approaches where the objectives used in T2 areObj1,Obj2, andObj3, respectively.

2.4.3 Decomposition startingwith Tier 3

The third and final decomposition technique first solves the T3 problem. Here, apart from making

decisions about assigning packages to freighters and their routes, we also decide the drop-out station

for each package. This guides the decisions of assigning the packages to the drop-in stops and public

vehicles in T2. Finally, the output of tier 2 can be used to make the decisions in T1. This sequence of

solving the problem is beneficial when most of the delivery distance (and hence delivery costs) arises

in T3 due to significantly larger number of customers.

Tier 3 problem

For T3, we introduce additional variables γ2is, which take the value 1 if package i is to be dropped off

at drop-out stop s by a public vehicle, analogous to variables y2isp. We also use variables xijk, zik and t3ik.

The T3 model is given by:

Minimize
∑
k∈K

∑
i∈Sout∪C

∑
j∈Sout∪C

i̸=j

C3
ijkxijk, (2.78)

subject to:
∑
s∈Sout

i

γ2is = 1 i ∈ C, (2.79)

∑
k∈Ks

zik = γ2is ∀i ∈ C, s ∈ Sout
i , (2.80)

t3sk ≥ Tfirst
s + T

′
s −M(1− xsik) ∀i ∈ C, s ∈ Sout

i , k ∈ Ks, (2.81)
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plus constraints (2.19)-(2.24), (2.26)-(2.28), and (2.31)-(2.32) from FULL. Constraints (2.79) assign

each customer to a drop-out station, constraints (2.80) ensure that if a package is dropped at a drop-

out stop, then it is assigned to a freighter. Finally, constraints (2.81) update the time as the freighters

leave the drop-out stops. Tfirst
s in constraint (2.81) is an estimated time when the freighters can start

making deliveries. We introduce this parameter to make sure that the trucks and the public vehicles

have enough time to deliver the packages before the freighters start their journey. We define Tfirst
s as

the time when the first public vehicle visits stop s.

We obtain the drop-out stops and the time by which the packages must be available there from the

solution of tier 3. These are then used as inputs for T2, which we describe below.

Tier 2 problem

For tier 2, we use as inputs the solutions from T3– Boutis and Tout
i . Boutis denotes the drop-out stop s for

each package i. Tout
i is the time when package i is supposed to leave the drop-out stop for its delivery,

or, in other words, the time by which the package must reach the drop-out stop. Let si denote the

drop-out stop for package i. The model is similar to tier 2 of FULL, with variables y1isp and l2up, along

with variables y2isp replaced by γ2ip. At this step, we decide the assignment of drop-in stops and public

vehicles for each package. Variable γ2ip is equal to 1 if vehicle p transports package i, and 0 otherwise.

The constraints of the problem are the following:

∑
p∈P∩Psi

γ2ip = 1 ∀i ∈ C, (2.82)

∑
p∈P\Psi

γ2ip = 0 ∀i ∈ C, (2.83)

y1isp + γ2ip ≤ 1 ∀i ∈ C, s ∈ Sin ∩ Sout, p ∈ Ps, if Boutis = 1, (2.84)
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∑
s∈Sp∩Sin

y1isp =

 ∑
s∈Sp∩Sout

Boutis

 γ2ip ∀i ∈ C, p ∈ P, (2.85)

Tupy1iup ≤ TvpBoutiv γ2ip +M(1− Boutiv γ2ip) ∀i ∈ C, p ∈ P, u ∈ Sp ∩ Sin, v ∈ Sp ∩ Sout
i ,

(2.86)

αuvp

l2vp = l2up +
∑
i∈Cin

v

qiy1iup −
∑
i∈Cout

v

qiBoutiv γ2ip

 ∀p ∈ P, u ∈ Sp ∪ {õ}, v ∈ Sp, (2.87)

TspBoutis γ2ip ≤ Tout
i ∀i ∈ C, s ∈ Sout, p ∈ Ps, (2.88)

Tspy1isp ≥
[
T1avg
os + T

′
s

]
y1isp ∀i ∈ C, s ∈ Sin, p ∈ Ps, (2.89)

plus constraints (2.10), (2.15), and (2.17). Constraints (2.82)-(2.88) are quite similar to the con-

straints of FULL. Finally, (2.89) ensure that the trucks have enough time to deliver the packages to

the drop-in stops before the public vehicles pick them up. T1avg
os denotes the average time that a truck

takes to travel from the origin to a drop-out stop s.

However, when we start the decomposition technique from T3, the freighters that deliver at least

one package start from their respective drop-out stop at time Tfirst
s . Thus the parameter Tout

i takes

the value Tfirst
s for each package. It is easy to see that this results in infeasibilities in T2 whenever the

capacity of the first public vehicle to visit that stop is lower than the sum of the capacities consumed

by all the packages to deliver. Merely changing the time Tfirst
s to a higher value is not sufficient to

resolve the issue. This is because the problem would persist whenever the sum of the volumes of all

the packages to be delivered from the stop exceeds the sum of the capacities of the public vehicles

visiting the stop before the time mentioned above. Because of how we formulated the tier 3 model,

the freighters always start their journey from the stop at whatever time we provide as Tfirst
s .

To find a way around this without complicating the problem further, we shift the starting time of

the freighters’ routes. The idea is to shift these routes as late as possible, keeping in mind the time
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window of the customers. This allows the public vehicles enough time to transport the packages to

the drop-out stops. The shifting is done in the following way. For each freighter k, we take the list

of customers it visits in order. Then, we start with the last customer visited by the freighter and set

the time of delivery to their closing time window. For the other customers, say i, we consider the

customer visited after i, say j, and denote the time when j is visited by t∗j . Then, the time when the

freighter kdelivers the package to customer i is given bymin{Ti, t∗j −T3
ijk}. Though this approximates

the delivery time, the routing cost remains the same because we keep the order of visits intact and only

play with the time.

Once again,we canhavemultiple objectives forT2 similar to thepreviousdecomposition approaches.

The first objective is to minimize the number of drop-in stops utilized in T1. The second is to mini-

mize the approximate distance traversed in T1.

Minimizing the number of drop-in stops (Obj1): The objective function is:

Minimize
∑
s∈Sin

φ1
s , (2.90)

along with constraints (2.38).

Minimizing the approximate routing cost of T1 (Obj2): Finally, in this case, the objective func-

tion is given by:

Minimize
∑
i∈C

∑
s∈Sin

Dos
∑
p∈P

y1isp. (2.91)

We do not need the third objective function, minimizing the approximate number of freighters

being used, here, like in the previous approaches, sinceObj3 corresponds exclusively to T3, which has

already been solved.
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The T1 problem here is the same as the T1 model in D2 as described in Section 2.4.1. It takes as

input the same parameters as described there and gives the same outputs: assigning the packages to

the delivery trucks and their routes. Depending on the objective used for T2, we refer to the decom-

position approaches asD3-Obj1 andD3-Obj2, respectively.

While all the subproblems solved in the decomposition method are NP-hard, their complexity is

much smaller than the full formulation as they consider a smaller set of variables and constraints. Fig-

ure 2.3 shows a visual representation of all the decomposition approaches. The order of solving the

tiers is shown by the arrows. For tier 2, we also list the objective functions. The text accompanying the

arrows give the output from the previous tier that is fed as input in the next tier. For D2, after solving

tier 2, tiers 1 and 3 can be solved simultaneously since T2 is the linking tier. For D1 and D3, we solve

the tiers sequentially.

(a) Decomposition starting with Tier
1 (D1)

(b) Decomposition starting with Tier
2 (D2)

(c) Decomposition starting with Tier
3 (D3)

Figure 2.3: The decomposition matheuristic

Let us also fix a quick notation here to easily refer to the models of a specific tier for the different

decomposition approaches. Wecall themasdecompositionapproachnumber-tier number. For example,

the T3 model fromD2would be referred to asD2-T3.

47



2.5 Numerical experiments

This section describes building a typical instance for the 3T-DPPT problem comprising the public ve-

hicle network, the customers, and theCDC.We then solve ourmodels on these instances, and provide

computational results and analysis. We implemented the models on the Spyder IDE of Python 3.8.5

and solved them using the CPLEX 22.1.0 standard solver. The tests were conducted on an Intel(R)

Xeon(R)W-2255 CPUwith a clock speed of 3.70 GHz and 128 GB RAM.

2.5.1 Instance generation

We test our models on artificial instances, generated to mimic real-life transportation networks. We

use networks similar to the ones described in the paper by Delle Donne et al. (2023a), with some

modifications to suit our setting. In their paper, the authors handle a strategic problem associated

with the one studied in this paper, so we adapt some of the features for the operational level problem.

Figure 2.4 shows a typical example of an instance. The red square denoted by O0 denotes the CDC.

The thick lines, along with the triangles, depict the public transit network. Each line refers to a single

bus ormetro line, which consists of several public vehicles throughout the day. We represent the stops

on the public vehicle network with triangles: upward triangles denote drop-in stops, while inverted

triangles represent drop-out stops. Finally, the circles represent the customers. The figure shows an

instancewith three public vehicle lines, five drop-in stops, nine drop-out stops, and twenty customers.

To generate the instances, we have set the ratio of the average distance between the CDC and the

customers and the average distance between theCDCand the drop-out stops inspired by the article by

Lopez (2017). The report mentions that the distance between customers and the distribution centers

lies between6 to 9miles on average. Since our idea is to utilize sustainable deliverymodes like freighters

walking or biking, we aim to keep the average distance from the drop-out stops to the customers to be

less than a mile, and we generate our instances accordingly. For each customer, we assign Sout
i to be
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Figure 2.4: An example of an instance

the three closest drop-out stops from the customer. We also conducted some preliminary experiments

with Sout
i comprising of the set of drop-out stops within a given radius of the customer and found

similar results.

We divide the day into 30 periods, each 30minutes long. Thus, the time horizon during which the

delivery system is active is 15 hours in our implementations. We assume that the first period starts with

the 0th hour of the delivery system. We reserve the first two and a half hours of the system exclusively

for the delivery trucks to start transporting packages from the CDC to the drop-in stops. Hence, we

do not include buses or metros during this period. The public vehicles that are supposed to carry

packages start operating from time point 150 (or after two and a half hours), and are assumed to run

every 30 minutes. We require the definition of periods primarily for Obj3, where we estimate the

number of freighters required per period.

We generate the customer time windows so that each window is at least 3 hours long and can po-

tentially be as long as the entire delivery horizon. This ensures we have enough time and resources to
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deliver each customer’s package. It is also realistic because, in practice, some customers have narrower

timewindowswhile others have wider timewindows. Here, we have not restricted the delivery period

to certain hours of the day. If we want to limit the delivery system to specific periods during the day,

like early hours of the morning or late at night, we need to consider solely the public vehicles during

those hours, without any change in the model. We have considered the service time at each stop to be

10 minutes. The service time at each of the customers is assumed to be 0. Adding a positive service

time does not change our analyses; it only adds a fixed value to the delivery times.

For the numerical experiments, we use a homogeneous fleet of delivery vehicles. We consider the

capacity of the delivery trucks to be 160 units and that of the freighter to be 20 units. The capacities of

the delivery trucks are significantly higher than that of the freighters because typically delivery trucks

are larger. We generate the capacity of public vehicles randomly between 70 and 150 units. We have

a wide range of values for public vehicle capacities because, firstly, public vehicles vary in size. For

example, metros and subways have a significantly higher capacity than buses. Moreover, some lines

are busier and would have lesser spare capacities. All the public vehicles that run on the same line are

assumed to have the same capacity. This is a very simplistic assumption, but it can be changed easily

by manipulating the capacities as a percentage of the total available capacity of the vehicles. These

numbers could be higher during the off-peak hours and very small or even zero during the busy hours.

These numbers could also come from a distribution that models passenger traffic on public vehicles.

The demands of the customers lie between 5 and 20 units. Thus, on average, a truck carries 12.8

packages, a freighter carries 1.6 packages, and a public vehicle carries between 5.6 and 12 packages.

While in realistic implementations of the system, the actual capacities, particularly of the trucks and

the public vehicles, might be higher, we chose such values of demands and capacities to help us study

the structure of the solutions and generate relevant insights about the system. This facilitates some

level of consolidation of the packages on the vehicles while preventing all the packages from being
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assigned to the same vehicle at any tier.

We measure the distance between any two nodes (the CDC and the drop-in stops, any two stops,

the drop-out stops and the customers, and any two customers) by the Euclidean distance between

them. For our tests, we assume that the speed of each vehicle in the system is the same, or in other

words, the time taken by any transportationmode is the same for traversing between any two locations.

Even though this is a crude assumption, we can modify it by simply changing the data without any

change in the formulations. The time taken for delivery and the corresponding cost is assumed to be

proportional to the distance. To convert the distance into the time taken for traversal between any two

points in the network, we multiply the distance by 0.2.

The cost of using the delivery trucks in tier 1 is assumed to be equal to the distance traversed, i.e.,

C1
uvd = Duv, u, v ∈ Sin ∪ {o}, d ∈ D. For the third tier, we assume that the cost of using freighters

is 50% of the costs of using trucks, i.e., C3
ijk = 0.5 ∗ Dij, i, j ∈ Sout ∪ C, k ∈ K. We use these values

because we intend to use vehicles of lower costs here, both economic and environmental.

We created 24 instances, each with a different number of customers, lines, drop-in stops, and drop-

out stops. The number of customers in the instances ranges from 10 to 80. We have three instances

per customer size, i.e., three instances with 10 customers each, three instances with 20 customers each,

and so on, up to three instances with 80 customers each. We did not go beyond 80 customers because

not all solutionmethods could solve the instances beyond this size. The number of public vehicle lines

ranges between 1 and 5. The number of drop-in stops varies between 2 and 14, and the number of

drop-out stops varies between 2 and 18. We do not define the size of an instance due to the different

elements in it. An instance with 20 customers, 4 lines, 10 drop-in stops, and 12 drop-out stops would

be verydifferent froman instancewith20 customers, 3 lines, 8 drop-in stops, and9drop-out stops. We

could consider the instance size to be the total number of nodes in the network. However, the number

and function of the individual elements in the instanceswould cause them to behave differently owing
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to the structure of the network and the problem itself. Hence, we refrain from formally defining an

instance size.

For solving the models, we provide a time limit to CPLEX. We set the time limit to 3 hours for

FULL. ForD1, the time limit for solving T1 was 2 hours, and 1 hour each for T2 and T3. Similarly,

for D3, the time limit for solving T3 was 2 hours and 1 hour for the consecutive tiers. For D2, we

had a time limit of 1 hour for solving each tier. Whenever T3 is not the first tier to be solved, since

the problem decomposes for each drop-out stop, the 1-hour time limit is for solving the problem for

each drop-out stop. Thus, the total time limit for solving the third tier is higher. However, we would

like to make a note here that, often, particularly for larger instances, the solution time taken is greater

than the time limit. This is because of the model building time taken by CPLEX before solving the

problem.

Finally, we use 1000 as the value ofM used to linearize our constraints, particularly those related

to time. We chose such a value because 1000 is an upper bound on the time– the highest value of the

customer time window does not exceed 1000. Moreover, the traveling time between any two nodes in

the system is also less than 1000.

2.5.2 Computational results

We solve our instances using the formulations described by FULL,D1-Obj1,D1-Obj2,D1-Obj3,D2-

Obj1,D2-Obj2,D2-Obj3,D3-Obj1, andD3-Obj2. An example of the solution of an instance is shown

in figure 2.5. It shows the routes obtained in T1 and T3. The dotted lines show the routes of the

delivery trucks, and the dashed lines show the routes of the freighters.

For each of the solution approaches, we report the best solution found. Table 2.4 provides the

solution of the FULL formulation for the problem on the instances with up to 30 customers.
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Figure 2.5: An example of the solution of an instance

FULL could not find a feasible solution for the other instances within a reasonable time. The total

time increases dramatically whenmoving from 10 to 20 customers and blows up for instances beyond

30 customers.

InTables 2.5 and 2.6, we provide a summary of the solutions obtained through each of the solution

approaches. Table 2.5 reports the number of best solutions found using each decompositionmethod.

Each row and column combination refers to a decompositionmethod. The numbers in the cells (out-

side brackets) give the number of instances for which the technique found the best solution, and the

number in brackets provides the number of instances the method could solve. ForD1, since tier 1 is

the first tier to be solved, we have a unique T1 routing cost. The same happens for the routing costs of

T3 forD3. For FULL, we have one value in each column reporting the routing costs of T1, T3, and

the total routing cost. D1 and D2 could find a feasible solution for all 24 instances within the time

limit, whileD3 could solve only up to instance 15. In Table 2.6, we report the average percentage de-
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Table 2.4: Solution using formulation FULL

Instance
number

Number of
customers

Routing cost
T1

Routing cost
T3

Total routing
cost

Running
time

1 10 358.72 1026.43 1385.15 13.02
2 10 706.24 826.11 1532.35 9.44
3 10 448.33 871.98 1320.31 22.18
4 20 660.79 1259.65 1920.43 431.46
5 20 559.32 1199.82 1759.14 6776.01
6 20 708.92 1347.03 2055.95 11410.44
7 30 938.09 1363.82 2301.91 13038.68
8 30 1536.38 1980.14 3516.52 14269.30
9 30 659.85 1630.71 2290.56 14105.17

viation of the solutions found by each decomposition method from the best solution found for that

instance, the average taken only over the instances that the approach could solve.

Table 2.5: Number of best solutions found by each solution method

Decomposition technique Routing cost T1 Routing cost T3 Total routing cost

with Objective function Obj1 Obj2 Obj3 Obj1 Obj2 Obj3 Obj1 Obj2 Obj3

FULL 5 (9) 5 (9) 9 (9)
D1 23 (24) 0 (24) 0 (24) 0 (24) 0 (24) 0 (24) 0 (24)
D2 2 (24) 1 (24) 2 (24) 0 (24) 10 (24) 0 (24) 0 (24) 10 (24) 0 (24)
D3 1 (15) 2 (15) – 15 (15) 1 (15) 6 (15) –

Table 2.6: Average percentage deviation of the solutions wrt the best solution found for each instance

Decomposition technique Routing cost T1 Routing cost T3 Total routing cost

with Objective function Obj1 Obj2 Obj3 Obj1 Obj2 Obj3 Obj1 Obj2 Obj3

FULL 14.35% 1.21% 0.00%
D1 1.20% 83.95% 46.90% 80.65% 52.38% 27.06% 49.89%
D2 121.42% 44.94% 113.54% 55.66% 18.63% 51.27% 60.56% 19.96% 55.73%
D3 74.31% 43.99% – 0.00% – 13.52% 6.29% –

The average running time using eachmethod is provided in Table 2.7, with the average, again, con-

sidered only over the instances for that the method could find a solution within the time limit. The

running time reported is the sum of the running times of all the tiers for any approach.

The performance of the approaches is depicted in figures 2.6, 2.7, and 2.8. Each column in the

graphs shows a solution approach– either the full formulation or a decomposition techniquewith one

of the three objectives for T2. The x-axis represents the number of customers. The y-axis gives the
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Table 2.7: Average computational time in seconds

Decomposition technique
with Objective function

Obj1 Obj2 Obj3

FULL 6675.08
D1 1928.98 2222.21 2495.69
D2 4272.69 1841.44 3065.04
D3 10464.83 10195.84 –

value of the solutions, i.e., the routing costs. For each customer size, we show the average of the three

instances with the said number of customers. When we solve D1, we have only one set of solutions

for tier 1, regardless of the objective function used in T2, since T1 is solved first. Similarly, forD3, we

have one set of solutions for the routing costs of tier 3, irrespective of whether Obj1 or Obj2 is used

later in T2. This is why we have only one line showing the routing costs of T1 (D1) and T3 (D3) in

figures 2.7 and 2.8, respectively. Below, we discuss the performance of the approaches in detail.

Among all the approaches, the best-performing objective function for T2 isObj2, i.e., to minimize

the approximate routing costs of T1 and T3. This is related to the fact that our true objective is to

minimize the routing costs. Obj1 and Obj3 are able to find the best solutions in only a handful of

cases. The approaches that useObj1, which is tominimize the number of drop-in and drop-out stops

used, generally perform theworst within each decompositionmethod, especially as the instances grow

larger. This is also reflected in Table 2.5, where we see that the average percentage deviations from the

best solution found are the highest forObj1.

The full formulation beats the decomposition approaches in terms of the total routing costs, but it

can only solve very small instances, and even then, CPLEX takes a long time to build the models. Be-

tween the three decomposition approaches,D3-Obj2 performs the best initially. However, compared

to the other decomposition techniques, it can solve relatively smaller instances– only instances with

up to 50 customers. Moreover, the running times ofD3 also escalate quickly after instances with 20

customers. For larger instances, almost all of the best total routing costs were found byD2-Obj2.
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For the routing costs of T1, D1 performs the best, however, D2-Obj2 provides competitive solu-

tions even as the size of the instances increases. For T3 routing costs, D3 finds the best solutions for

instances that it can solve. After that,D2-Obj2 obtains the best T3 routing costs as well. Thus, overall,

D2-Obj2 dominates the other decomposition techniques as the instance size increases.

These findings pertain partially to the particularity of our setting and implementations. We have

considered one CDC, up to 80 customers, equal delivery speeds for trucks and freighters, and the

majority of the distance covered comes from T3. Moreover, the cost of covering a certain distance in

T3 is assumed to be 50% of the cost in T1 using trucks. If we have multiple CDCs, and the cost of

using delivery trucks is even higher, or our objective is to minimize emissions in particular, and low-

cost green means are used in T3, it would be beneficial to use D1. If the cost of vehicles used in T3

is significantly higher and greatly depends on the individual trips performed, we might want to start

the decomposition technique from T3. Finally, if the setting is such that the routing costs of T1 and

T3 are comparable, we would be better off usingD2. For the objective functions, we can conclusively

say thatObj2 is the best performing one because our actual goal is to minimize routing costs. Overall,

we find the decomposition approachD2-Obj2 to perform the best, taking into account the objective

values, the size of instances solved, and the running times.

Figure 2.6: Comparison of the total routing cost obtained by each of the solution approaches

Figure 2.9 shows the average number of packages assigned to the delivery trucks and freighters for
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Figure 2.7: Comparison of the routing cost of T1 obtained by each of the solution approaches

Figure 2.8: Comparison of the routing cost of T3 obtained by each of the solution approaches

each instance for each solution approach. There does not seem to be a significant difference between

the different decomposition techniques in the utilization of delivery trucks (figure 2.9(a)). This is

because we have one CDC, and the number of trucks used is far fewer than the number of freighters

to demonstrate any significant difference.

Since D1 uses a higher number of freighters than any other solution method, there is little to no

consolidation of packages inD1, regardless of the objective function used inT2, with the ratio of pack-

ages to freighters rarely exceeding 1 (figure 2.9(b)). ThoughD1would be beneficial if our objective is

to minimize the emissions caused by large delivery vehicles, it would not be ideal if the routing costs

in T3 are also high. In that case, we would need to make more trips and recruit a higher number of
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(a) Average number of packages per truck (b) Average number of packages per freighter

Figure 2.9: Comparing the usage of delivery trucks and freighters by the different solution approaches

(a) Average number of packages per public vehicle (b) Number of public vehicles used

Figure 2.10: Comparing the usage of public vehicles by the different solution approaches

freighters. However, we can use it in some cases, for example, if we use drones to make deliveries to

the end customers, and our sole aim is to control the use of trucks.

Figure 2.10 shows the average number of customers per public vehicle and the number of pub-

lic vehicles used by each solution technique. On average, Obj2 utilizes the highest number of public

vehicles, and Obj3 the lowest. Thus, Obj3 has a higher percentage of packages per vehicle, as the con-

solidation of packages in T3 is encouraged here. We also find from our solutions that decomposition

approachesD3 followed byD2-Obj2 andD2-Obj3 consistently use a higher number of drop-out stops

and, thus, have a lower ratio of customers per drop-out stop. The highest usage of drop-in stops is

shown by D2-Obj3, since Obj3 focuses solely on minimizing the use of freighters in tier 3. D2-Obj1

utilizes the lowest number of drop-in and drop-out stops among all the approaches.
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(a) Average number of drop‐in stops utilized (b) Average number of drop‐out stops utilized

Figure 2.11: Comparing the usage of drop‐in and drop‐out stops used by the different solution approaches

2.5.3 Comparisonwith traditional methods

In order to compare the effectiveness of using public vehicles, we compare the systemwith a standard

delivery method, where trucks are sent directly from the CDC to the customer locations. This corre-

sponds to a Vehicle Routing ProblemwithTimeWindows (VRPTW, henceforth). We use a standard

2-index formulation of the VRPTW and present the model in appendix A.

Figures 2.12-2.14 shows the comparisonof the routing costs anddistances obtainedby theVRPTW

compared to the different approaches for the 3T-DPPT. Figure 2.12 gives the total routing costs of T1

and T3, and Figure 2.13 shows the costs (and equivalently, distances covered) of using delivery trucks;

thus, we consider only the cost associated with tier 1 for 3T-DPPT in this case. Finally, in Figure 2.14,

we show the total distances covered using dedicated delivery vehicles, i.e., trucks and freighters. It is

easy to see that for the VRPTW, the costs explode as the number of customers increases. In our ap-

proaches, since themajority of the distances are being covered on public vehicles or sustainable freight

systems, we keep a check on the use of delivery trucks. The difference is evenmore pronounced in Fig-

ure 2.13. The total delivery distances covered using dedicated delivery vehicles in T1 andT3, however,

remain comparable to the VRPTW, as illustrated in Figure 2.14. However, one must remember that

the differences in costs and distances covered depend highly on the instances. The difference is higher

when the longest part of the delivery occurs on board using public vehicles. If theCDC is located close

to the drop-in stops, and the drop-in stops are also very few, compared to the number of customers
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and the distances between them and the drop-out stops, it would also be highly beneficial to use the

public transportation system.

Figure 2.12: Total routing costs

Figure 2.13: Distances covered by delivery trucks

Our results show that using public vehicles could lead to a 85.91% reduction in the distances tra-

versed using heavy trucks on average, consequently reducing the emissions caused by these vehicles

proportionally. Sometimes, even though the service does not seem profitable for a small number of

customers, as the instance size increases, the cost reductions, particularly environmental costs, are sig-

nificantly high. We find a 50.8% reduction in total costs on average. The higher the distances covered

on the public transportation systems, the greater the benefits. Thus, in larger cities, we expect to see

higher cost savings in the day-to-day implementation of the service.
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Figure 2.14: Total distances covered using dedicated delivery vehicles (trucks and freighters)

2.5.4 Managerial insights

Impact of heterogeneity in delivery costs

In this section, we analyze the behavior of the solutions on small-sized instances–instances with up to

30 customers, for different proportions of costs in T3 compared to costs in T1. We consider C1
uvd =

Duv, u, v ∈ Sin∪{o}, d ∈ D, andC3
ijk = β·Dij, i, j ∈ Sout∪C, where β is a parameter that determines

the proportion of costs between T1 and T3. In our computations, we have β = 0.1, 0.25, 0.5, 0.75,

and 1. We have solved the formulations D1-Obj1, D1-Obj2, D1-Obj3, D2-Obj1, D2-Obj2, D2-Obj3,

D3-Obj1, andD3-Obj2 on instances with up to 30 customers to study how the solutions, particularly

the usage of delivery trucks, vary.

Figure 2.15: Comparison of T1 routing costs for different values of β

Figure 2.15 shows how the routing costs in T1 change when we use different values of β. ForD1,
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we have only one column representing the cost because: firstly, T1 is the first tier to be solved here,

and the routing costs obtained here do not depend on which objective function is used in T2; and

secondly, the value of β does not changeT1 routing costs inD1, they impact only the costs obtained in

T3. Apart fromD1, which is expected to performwell for tier 1,D2-Obj2 provides quite competitive

solutions.

In figures 2.16 and 2.17, we show how each decomposition method performs in terms of T3 rout-

ing costs and total routing costs, respectively, for different values of β. Once again, for T3 routing

costs, we have a single column, named D3, for each value of β. This is because when T3 is solved first,

we have not yet used the objective functions of T2, so we obtain the same solutions. For tier 3 routing

costs,D3 performs the best, andD2-Obj2 follows closely behind.

D3 also performs well in terms of the total routing costs of the instances. However, we know that

once the instance sizes increase further,D3 is unable to find feasible solutions. In its absence,D2-Obj2

performs the best and provides solutions comparable with the best solutions obtained, regardless of

the values ofβ. This is because tier 2 is the linking tier, whichbalances theobjectives ofT1 andT3, even

though we use approximations, thereby producing good-quality solutions. Other than the routing

costs, there is no significant difference in the features of the solutions obtained compared to section

2.5.2.

Figure 2.16: Comparison of T3 routing costs for different values of β
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Figure 2.17: Comparison of total routing costs for different values of β

Service costs related to Tier 2

So far in our experiments, we have assumed zero delivery costs related to the second tier. In this section,

we discuss the impact of adding service costs related to delivery using public transit lines and drop-in

and drop-out stops. These costs arise from the cost of personnel recruited at the stops for loading

and unloading packages, daily maintenance of the infrastructure, and the cost of space, among others.

To address them, we assume that these costs can be incorporated at the drop-in and drop-out stops,

i.e., every time a truck visits a drop-in stop or a freighter leaves a drop-out stop, we add a cost to our

objective function.

Minimize
∑
d∈D

∑
u∈Sin∪{o}

∑
v∈Sin
u ̸=v

(
C1
uvd + λ1

)
wuvd +

∑
d∈D

∑
u∈Sin

∑
v=o′

C1
uvdwuvd

+
∑
k∈K

∑
i∈Sout

∑
j∈C
i̸=j

(
C3
ijk + λ3

)
xijk +

∑
k∈K

∑
i∈C

∑
j∈Sout∪C

i ̸=j

C3
ijkxijk. (2.92)

λ1 and λ3 are parameters that represent the service costs at tier 1 and tier 3, respectively. This does not

imply that the costs are paid to the freighters or truck drivers exclusively; rather, it is a daily operating

cost of delivery on the transit line. All the costsmentioned are integrated directly at the stopswhenever

there is an exchange of packages.
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We made computational experiments with the value of λ1 = μ ∗ average routing cost of T1 and

λ3 = μ ∗ average routing cost of T3, with μ = 0, 0.5, 1.0, to see the impact of adding the service

costs on the structure of the solutions. We solved FULL on instances with ten customers since only

those instances could be solved up to optimality, to study if the solution structure changes on incor-

porating service costs. Over the instances described above, we did not find any significant change in

the solution structure because the value of parameters already facilitates significant consolidation (we

expected to see more consolidation as service costs increase). However, once the capacity of freighters

was increased from 20 to 30 and 50, we observed some increase in consolidation.

Next, we analyzed its impact on the decompositionmethods, with objective function 2, since it has

been established as the dominant objective function, on instances with up to 30 customers. In Figure

2.18, we show the utilization of trucks and freighters for different values of service costs. Interestingly,

we do not find a change in the number of trucks and freighters utilized forD1-Obj2. This is because

trucks are utilized completely when tier 1 is solved first, and, in most cases, each package is assigned to

one freighter. ForD2-Obj2 andD3-Obj2, we observe a higher consolidation of packages on the trucks

and freighters as the service cost increases. The total cost, or the objective value described in (2.92),

increases proportionally to the service cost parameter based on the number of trucks and freighters

used, which, in turn, depends on the number of packages that need to be delivered. If the service

costs associated with some lines or stops are relatively high, for example, for stops with extremely high

traffic, it is advisable to avoid them, even though the routing costs might increase. From preliminary

experiments, we also found that when a customer could potentially be served from a greater number

of stops, i.e., |Sout
i | is higher, there is a greater level of consolidation as the service costs increase, to the

extent that sometimes only one line is used to deliver the packages.
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(a) Average number of packages per truck (b) Average number of packages per freighter

Figure 2.18: Comparing the usage of trucks and freighters when service costs are introduced

Capacity of public vehicles

We also analyze the impact of changing the capacity of public vehicles for transporting packages. We

solve the instances with up to 30 customers by increasing the public vehicle capacities by 25% and by

decreasing their capacities by 25%, once again using objective function 2. In figure 2.19, we show the

routing costs of T1 and T3 as the capacity changes. 1 represents the original capacity, 0.75 represents

the capacity reduced by 25%, and 1.25 represents the capacity increased by 25%. We do not observe a

significant change in the structure of the solutions as the capacities are changed. This is likely related

to the fact that the capacities are not limiting in our case. In other words, the number and volume of

packages are small compared to the carrying capacity of all the public vehicles over the day.

We also notice that if the capacity of the public vehicles is increased to 1.5 (or more) times the

original capacities in our instances, the computational complexity of the model increases, and the

instances become harder to solve.
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(a) Packages per drop‐in stop (b) Packages per drop‐out stop

Figure 2.19: Impact of the change in capacities of public vehicles on the packages per stop

Public vehicle frequency

Next, we study the impact of changing the frequency of the public vehicles. For the base case, we had

vehicles that run every 30 minutes. Here, we analyze the solution structures when the vehicles run

every 15 minutes (increasing the frequency of service) and every hour (decreasing the frequency of

service).

In figure 2.20, we show the T1 and T3 routing costs as the frequencies or the time between two

public vehicles on the same line changes. We do not find a significant impact on the routing costs

for the third tier. For T1, the routing costs decrease usingD2-Obj2, as we both increase and decrease

the frequency. As the frequency increases, we have more flexibility in assigning the packages to the

trucks, and as it decreases, wehave greater consolidationon the trucks, both leading to lowered routing

costs. In Figure 2.21, we observe a higher number of packages per public vehicle as the frequency both

increases and decreases. For the number of packages per freighter, once again, there is no significant

change as the frequency of the public vehicles changes.

Thus, we can conclude that we do not need to use all public vehicles on a line for package deliveries,

as long as there is enough capacity on the vehicles to carry the packages. A selected number of vehicles,

for example, once every hour, could also be enough for the delivery system. Further analysing the
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schedules could lead us to select off-peak hours during which we can deliver the packages.

(a) Routing costs of Tier 1 (b) Routing costs of Tier 3

Figure 2.20: Impact of changing the frequency of public vehicles on the T1 and T3 routing costs

(a) Packages per public vehicle (b) Packages per freighter

Figure 2.21: Impact of changing the frequency of public vehicles on the packages per public vehicle and freighter

2.6 Conclusion and directions for future work

In this paper, we advocate using public transportation systems for package delivery in cities to reduce

emissions and traffic-related issues caused by large delivery vehicles, and show the feasibility and advan-

tages of utilizing such a delivery network. We build on the existing literature to introduce a three-tier

transportation problem using the public transit network, with three distinct modes of delivery in

the tiers. We provide a comprehensive mixed-integer programming formulation for the entire prob-

lem. Since the completemodel is computationally complex, we develop a decompositionmatheuristic
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methodology to solve it. We have three decomposition algorithms based on the sequence of solving

the tiers. For the delivery on public transit, or tier 2, we propose three objective functions aligning

with our goal of minimizing the use of dedicated delivery vehicles and, thus, emissions. Among all the

decomposition approaches, we find the performance ofD2-Obj2, the algorithm that starts solving the

problem from T2 and then solves T1 and T3, to be the best overall. The decomposition technique

D3 performs the best for instances with up to 50 customers but cannot find feasible solutions within

the time limit beyond that. We find Obj2, minimizing the approximate routing distances in T1 and

T3 to be the best-performing objective function among all. Extensive computational studies support

the effectiveness of such an integrated system. On average, we find a reduction of 85.91% in the use of

delivery trucks, and a reduction of 50.8% in the overall distances covered by dedicated vehicles (T1 and

T3). Thus, the system proves to bemore sustainable and provides economic opportunities for freight

shipping companies as well as public transportation agencies. Extensive sensitivity analysis shows the

robustness of the solution structure obtainedwith respect to service costs for using the transit network

and the capacity available on the public vehicles.

Though our solution method is limited to handling small-sized instances, they can be used heuris-

tically to design delivery plans. For example, cities are inherently divided into districts, and our ap-

proaches can be implemented in each district individually. The longest part of the delivery is intended

to be performed on the public transit network, and the delivery routes in each district can be designed

separately. Moreover, we might not have complete information about customers before the delivery

plan is formulated, and thus, the decisions can be subject to uncertainties. However, the deterministic

model studied here can still be beneficial. If we have dynamically arriving customer demands, or we

only have an estimate of the customer demands each day instead of the actual demands, fromprevious

implementations of our model, we would know the path that a package at a certain destination needs

to follow– in particular, the drop-in stop, the public vehicle line, and the drop-out stop. Thus, as
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packages arrive during the day, the delivery company already has an idea of what route a packagemust

follow depending on the hour and the customer’s location. Sometimes public vehicles are subject to

delays. Incorporating time intervals for package pick-up and drop-off times, instead of deterministic

points in time, can help alleviate the uncertainty arising from the public transit system. Thus, our

study can serve as a viable tool in guiding operational decisions even when uncertainty is involved.

While we achieved some promising results, a lot remains to be done on the 3T-DPPT for future

work. It would be interesting to explore the change in the structure of the solutions as the setting of

the problem evolves. Extensions to our problem include multiple CDCs, transshipment of packages

within the public transit networks, bi-directional package flows on each line, considering uncertain-

ties in the second tier that arise from travel time or capacities, incorporating storage facilities at the

stops, among others. It is also worth investigating other objective functions for the full model, like

minimizing the number of dedicated delivery vehicles in tiers 1 and 3, maximizing the distance cov-

ered on public vehicles, and minimizing emissions by quantifying them, among others. We have also

assumed an infinite number of vehicles in the first and third tiers. It would be interesting to study

the problem with a limited number of delivery vehicles that perform several trips per day. One of the

limitations of our study is that we study a deterministic case of the problem. Uncertainties due to

dynamic order arrival times, delays in the public transportation schedules, and unreliable capacities

on the transit system play a crucial role in the successful implementation of the system. While our

system is robust in terms of small delays in picking up the packages by the freighters or trucks, larger

delays need a closer and more detailed inspection. There is a need to develop more efficient solution

methodologies for the problem. Each of the tiers poses its own challenges, so they need to be studied

in themselves. Heuristic approaches based on route generation schemes or standard local search tech-

niques could provide competent solution methodologies, particularly for the first and the third tier

and are worth exploring. Finally, implementing the theoretical models on real-world public transit
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and customer dataset would help study the system, and bring to light unanticipated challenges that

would help in better implementation of the system across cities.

We have focused our study here on the operational level problem. The efficiency of our approach

depends on successful decision-making at the tactical and strategic levels. Thus, the system needs to

be set up after careful study and analysis. For example, establishing storage facilities at the stops, re-

cruiting personnel, selecting lines and stops, and determining the schedules of the public transit dur-

ing which the packages would be transported are all crucial decisions that would impact the system’s

efficiency. In particular, the strategic level decisions require a thorough cost-benefit analysis of the

system and cooperation and coordination among all involved stakeholders– the public transit agency,

the freight delivery company, and themunicipal corporation of the city. This would ensure that initial

investments and installation costs are minimized, all involved parties are satisfied, the delivery service

reaches its full potential, and the primary objective of reducing emissions and congestion on roads is

fulfilled.
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A.0.1 Two-index Formulation for SimpleVRPwithTimeWindows (VRPTW)

Weuse similar notations and variables to formulate a simpleVRPwith timewindows,with onlyminor

changes. The set of customers is denoted by C. o denotes the CDC, and o′ denotes a copy of theCDC.

Let variables xij, i ∈ C ∪{o}, j ∈ C ∪{o′} denote the routes of delivery trucks. Continuous variables

ti, i ∈ C∪{o}∪{o′}update the timeof the routes at each location i, and variableshi, i ∈ C∪{o}∪{o′}

update the corresponding capacities. Then, the two-index formulation for the VRPTW is given by:

Minimize
∑

i∈C∪{o}

∑
j∈C∪{o′}

i̸=j

C1
ijxij (A.1)

sub to:
∑

j∈C∪{o}
i̸=j

xji = 1, ∀i ∈ C (A.2)

∑
j∈C∪{o′}

xij = 1, ∀i ∈ C (A.3)

ti − tj + (T̂i + Tij)xij ≤ (Ti − Tj)(1− xij), ∀i ∈ C ∪ {o}, j ∈ C ∪ {o′} (A.4)

hi − hj + qj ≤ (Q− qj)(1− xij), ∀i ∈ C ∪ {o}, j ∈ C ∪ {o′} (A.5)

Ti ≤ ti ≤ Ti, ∀i ∈ C (A.6)

hi ≤ Q, ∀i ∈ C (A.7)

xij ∈ {0, 1}, ∀i ∈ C ∪ {o}, j ∈ C ∪ {o′} (A.8)

ti, hi ≥ 0, ∀i ∈ C (A.9)
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3
Tactical Workforce Sizing and Scheduling

Decisions for Last-Mile Delivery

joint work withClaudia Archetti andAlberto Santini
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3.1 Introduction

Last-mile delivery (LMD) is the final segment of the supply chain, starting at the last warehouse and

ending when the goods reach the customer. With the boom of e-commerce, especially during and

after the Covid-19 pandemic, LMD in large cities is dominated by home deliveries, i.e., by carriers

delivering many small parcels up to the customers’ doorsteps using a fleet of vehicles from legacy vans

tomore sustainable means such as cargo bikes (Alfonso et al., 2021). A fundamental tactical question

arises for logistic operators involved in LMD in the urban environment: how many couriers should

they employ? On the one hand, a more extensive workforce is associated with higher staffing costs; on

the other hand, using fewer couriers degrades the quality of service or forces the operator to resort to

expensive outsourcing options. Demand for homedelivery is highly seasonal (throughout the year and

at specific hours of the day), further complicating the challenge of choosing the correct workforce size.

This paper introduces a decision support system for tactical hiring decisions, incorporating realistic

constraints and demand uncertainty.

The importance of increasing the efficiency of LMD stems from its relevance in the global econ-

omy. For example, LMD is expected to grow at a compound annual rate of 6.12% from 2023 to 2030

(ContriveDatum Insights, 2023). Among the optimization problems linkedwith LMD, Boysen et al.

(2021) identified staffing and fleet sizing as needing attention from the operational research commu-

nity because of the “lack [of] scientific decision support”.

We fill this gap by considering the problemof a logistics operator whomust deliver parcels through-

out the day and faces the tactical problem of sizing its workforce. The operator can decide to fulfill

each delivery with either a fleet of owned vehicles driven by couriers or paying a fee to an outsourcing

(or crowdsourcing) provider. Maintaining a large workforce would allow the operator to avoid paying

such fees at the price of high fixed staffing costs. Conversely, hiring few couriers means the operator
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must extensively resort to outsourcing, leading to high variable costs. The logistic operator must then

balance the tactical workforce sizing and operational outsourcing decisions. From this point of view,

our work contributes to a recent research stream about workforce sizing in the logistics and service

industries (see, e.g., Section 3.2.2 and (Dai & Liu, 2020a; Turan et al., 2022; Pandey et al., 2021)).

A central concept in our setting is that of satellites (Crainic et al., 2021). These are locations within

the city where the couriers start and end their delivery trips. They are intermediate between large

distribution centers (usually on the city’s outskirts) and the customers. They are used for tranship-

ments and have little or no temporary storage capabilities. Examples of satellites are small warehouses,

parking lots,mobile vehicles (Gonzalez-Feliu, 2012),micro-consolidation centers (Arrieta-Prieto et al.,

2022), or even public transit stops (Delle Donne et al., 2023b, 2024).

Each satellite is associated with a given portion of the city, called an area. All deliveries within

a given area will occur with vehicles starting and ending their routes at the corresponding satellite.

Areas are further grouped into regions. We assume that hiring decisions must be taken at the tactical

and regional level, i.e., a courier is hired for a specific region and an extended period. Assignment of

couriers to satellites (and, therefore, to areas) happens on the operational level according to the needs

of the logistic operator. Figure 3.1 shows the example of a city in which three regions (delimited with

thicker black lines) are further divided into several areas (delimited with white lines). Blue squares

indicate the locations of the satellites.

The logistic operator must decide (i) howmany couriers to hire in the mid-to-long term in each re-

gion (workforce sizing) and (ii) which area to assign them in the short term tominimize the combined

labor costs and expected outsourcing costs (assignment and scheduling). To build a mathematical

model to address this problem, we will first present intermediate models with simplifying assump-

tions. We consider these models not only because they simplify our exposition but also because they

correspond to different levels of flexibility allowed to the decision-maker. For example, we will first
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Figure 3.1: Example of a city with three regions (delimited with thicker black lines) subdivided into smaller areas. Blue
squares indicate the position of the satellites.

assume that the logistics company can employ couriers to work shifts as short as desired. Potentially,

the company could hire ten couriers to work from 19:00 to 21:00 and assign them to a different area

every day. However, concerns about job quality and service level suggest that further conditions be

imposed. Wewill then consider situations in which couriers must be hired for fixed shifts (e.g., 08:00–

16:00 each day) or for flexible shifts (e.g., a period of 8 consecutive hours, but starting at any time

during the day) and that couriers can move between areas, but only within the same region. Indeed,

one of the contributions of our work is to initiate a discussion on the impact of shift flexibility on the

company’s bottom line, complementing research in the social sciences, which instead addresses the

effect of shift instability on workers’ wellbeing (see Section 3.2.3).

We emphasize that we are concerned with sizing and scheduling the workforce, assuming that the

company already owns a fleet of vehicles. Therefore, we do not study the problem of purchasing or

leasing vehicles and consider the corresponding costs sunk. For recent works in fleet sizing, we refer

the reader to, e.g., (Franceschetti et al., 2017; Banerjee et al., 2022; Shehadeh et al., 2021; Ertogral et al.,

2017; Kunz & VanWassenhove, 2019; Goulart et al., 2021; Rahimi-Vahed et al., 2015; Castillo et al.,

2022; Loxton & Lin, 2011). We review the contributions more closely related to the present paper in
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Section 3.2.2.

Finally, we highlight the stochastic nature of our problem. The decision-maker can estimate the

number of deliveries in each area but cannot know this number precisely on the timescale required to

make tactical decisions. Therefore, we will introduce a subproblem to estimate the number of parcels

delivered by the hired couriers in each area and the number of parcels thatmust instead be outsourced.

To this end, we will evaluate several demand scenarios and adapt approximation formulas from the

literature (Figliozzi, 2008).

The rest of the paper is organized as follows. In Section 3.2, we position our contribution in the

literature on LMD scheduling and review related topics such as fleet sizing and districting. We also re-

view current literature on the topic of stability inworkforce scheduling fromboth operations research

and the social sciences. In Section 3.3, we formalize our problem and introduce several mathemati-

cal formulations, which share the same base but differ in the amount of flexibility available to the

decision-maker. Because the formulations are extremely quick to solve using commercial software,

in Section 3.4, we present the results of an extensive computational campaign. We provide manage-

rial insights and highlight the roles of stability and flexibility on the costs and operations of an LMD

logistics company. Finally, we summarise the main findings and our recommendations in Section 3.5.

To the best of our knowledge, thiswork is the first to explore the impact of stability in the context of

workforce sizing and scheduling problems. In particular, we propose a newmathematical formulation

that estimates the hiring and outsourcing costs of a company performing parcel deliveries in an urban

environment. By extending this formulation, we can model different levels of shift stability and—

through a vast computational campaign—provide insights into how the company performs under

different exogenous conditions such as the demand volume, outsourcing costs, or demand patterns.

77



3.2 Literature Review

This section presents related contributions and positions the current work in the literature. We fo-

cus on three main areas. The first is tactical workforce scheduling, focusing exclusively on LMD.

Compared with classical scheduling, LMD presents additional challenges. Most notably, demand is

stochastic and seasonal; when some couriers are crowdsourced, supply is also stochastic. The second

research area is fleet sizing and districting. These decisions usually happen before workforce schedul-

ing and are better classified as strategic rather than tactical. Still, there are several points of contact

with our work, especially in the methodology used to approximate operational-level costs. Finally, we

add an ethical dimension to our research by considering the stability of employee shifts. Research in

social science associates stable work shifts with higher job satisfaction, better work-life balance, and

reduced turnover. We briefly review this literature, motivating the investigation into the impact of

shift stability vs. flexibility on the bottom line of logistic operators.

We remark that the above areas are by nomeans exhaustive. Indeed, recent literature on optimising

LMDoperations has focused on timely real-world problems at all decision-making levels. For example,

at the operational level, on determining which deliveries to outsource to crowd couriers (Fatehi &

Wagner, 2022); at the tactical level, on balancing driver workload over a week or a month (Wang et al.,

2022); at the strategic level, on partitioning urban areas into regions (Carlsson et al., 2024). While

these decisions are related to workforce sizing and scheduling, we include in the following review only

the contributions that share either methodological or motivating characteristics with our work.

3.2.1 Workforce scheduling for last-mile delivery

Workforce scheduling concerns the assignment of couriers to perform deliveries in given areas dur-

ing specific periods. It is a critical task in all parts of the supply chain, particularly in its most labor-

intensive segment: the lastmile. Yildiz&Savelsbergh (2019) have identified “the importance of having
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the right number of couriers at the right time” in last-milemeal delivery, and indeed, their observations

can be generalized to other types of LMD.

A few works in the literature tackle workforce scheduling in the LMD setting. Restrepo et al.

(2019) consider the combined problems of scheduling couriers (at the tactical level) and assigning

them specific orders (at the operational level). Unlike our approach, the authors assume staffing is al-

ready decided and the workforce size is fixed. On the other hand, similarities with our setting include

the possibility of outsourcing deliveries when over capacity and the fact that the territory is divided

into areas. The authors propose an exact two-stage stochastic approach. The first-stage tactical prob-

lem assigns couriers to shifts and areas, while the second-stage operational problem allocates orders to

couriers (or an outsourcing provider). Using an L-shaped method (Laporte & Louveaux, 1993), they

achieve solutions with average gaps of 1.07% from the optimum in realistic instances with up to 150

orders, 42 couriers, 23 scenarios and a capacity of at most two orders for each courier in a given period.

Another stream of work deals with courier scheduling under supply uncertainty. Some delivery

companies use a mixed workforce of scheduled couriers and occasional ones, e.g., because they partly

rely on crowdsourcing (Santini et al., 2022). Depending on the number of occasional couriers avail-

able, they face the double challenge of uncertain customer demand and supply capacity. Behrendt

et al. (2023) and Ulmer & Savelsbergh (2020) tackle the problem of a company relying on a mix of

scheduled and crowdsourced couriers. This problem differs from ours because even scheduled couri-

ers are hired and dismissed per shift. The company, in fact, can use the crowdsourcing platform to

offer both shifts and single deliveries. If a person accepts a shift, they become available for the cor-

responding period, during which they can be assigned multiple deliveries. Otherwise, a person can

accept to perform a single delivery without committing to be available for an extended period. The

objective of the problem is to determine the ideal number of scheduled couriers to hire at each period

to minimize labor costs and late-delivery penalties and thus decide the start time and duration of the
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shifts offered on the crowdsourcing platform. In (Behrendt et al., 2023), the authors use continu-

ous approximations and value function approximation methods to estimate the number of couriers

required to meet a given service level, assuming a homogeneous order arrival rate. To the same end,

Ulmer & Savelsbergh (2020) use a neural network trained on an off-line dataset generated via sample

average approximation (Kleywegt et al., 2002).

Finally, wemention thework ofDai&Liu (2020b), who tackle the problemof determining the cor-

rect workforce size and parcel allocation for a combined staff of in-house couriers and crowdsourced

drivers. They remark that an over-reliance on crowdsourcing can provide short-term benefits but sac-

rifices long-term objectives such as workforce retention and system robustness to fluctuation.

3.2.2 Fleet sizing and districting for last-mile delivery

Theproblemof deciding the size and composition of a fleet of vehicles is known as fleet sizing. Because

purchasing or leasing vehicles involves high capital costs or long-term contracts, fleet sizing often hap-

pens at the strategic level. Similar to our staff scheduling problem, operational decisions are usually

approximated when performing fleet sizing.

Fleet sizing happens before staff scheduling because the number of available vehicles determines

howmany couriers can work simultaneously. It can also happen before, after or simultaneously with

districting, i.e., the problem of partitioning a given geographical region into fixed areas and distribut-

ing the vehicles among the areas. While, inprinciple, anoperator could skipdistricting and solve a large

routing problem each day, real-life practice has shown that geographical partitions drastically simplify

operations and increase service quality (see, e.g., Boysen et al., 2021; Liu et al., 2021; Monteiro Ferraz

et al., 2022). In the following, we review two contributions closest to our approach.

Franceschetti et al. (2017) consider the problem of partitioning a rectangular city into rectangular

areas. There are several differences between their approach and the problem we tackle in this paper.
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(a) In Franceschetti et al. (2017)’s settings, there is only one central depot from where all vehicles are

deployed. From this point of view, their work is tailored more towards classical delivery vans than

zero-emission vehicles. (b) The authors also consider the problem of designing the areas. However,

one vehicle operates in each area; therefore, the operational problem is a Travelling Salesman Problem,

compared to a Vehicle Routing Problem (VRP) in our case. (c) The couriers fulfill all requests with

no possibility of outsourcing. (d) Because they focus on classical delivery vehicles, the authors also

consider the cost of owning or leasing such vehicles and the transportation costs. Similar to our work,

they use continuous approximation formulas to estimate operational routing decisions. The authors

consider the case of a heterogeneous fleet with some vehicle types subject to access restrictions (i.e.,

they cannot enter certain areas during some parts of the day). After analyzing optimal solutions ob-

tained via Dynamic Programming and a Mixed-Integer model, they conclude that access restrictions

can sometimes be counterproductive, increasing the total number of vehicles on the road. Their com-

putational results also show that the advantage of having a heterogeneous fleet is minor compared

with the corresponding increase in operational complexity.

Banerjee et al. (2022) tackle a similar problem of designing distribution areas and determining the

correct fleet size to deploy in a same-day-delivery system. Similar to Franceschetti et al. (2017), all ve-

hicles start and end their routes from the depot, each area is allocated one vehicle, and no outsourcing

is possible. However, the city and its areas are not limited to being rectangular. The problem char-

acteristics hint at a strong correspondence between minimizing the fleet size and maximizing the area

covered by each vehicle. The authors exploit this link to develop area-maximizing policies and apply

a fleet-size minimization algorithm.
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3.2.3 Geographical and temporal stability in workforce scheduling

While, onpaper, extremely flexible andvolatile schedulesmight appear themost suited tomeet a highly

dynamic demand, real-world practice reveals the importance of stability and planning at the tactical

level.

Regarding geographical stability, a stable assignment of couriers to areas or even to customers leads

to shorter routing and service times. In classical supply chainswhere drivers visit a few large customers,

consistency leads to quicker operations and increased customer satisfaction. In a seminal work, Groër

et al. (2009) introduced the Consistent Vehicle Routing Problem (ConVRP), a multi-period routing

problem rewarding stability in assigning drivers to customers and visiting the same customer at similar

times. This problem has garnered considerable attention: we refer the reader to a survey by Kovacs

et al. (2014) and to the work of Smilowitz et al. (2013) for links between the ConVRP and workforce

management. Regarding recent contributions published after the survey, see, e.g., (Rodríguez-Martín

et al., 2019; Schneider, 2016; Goeke et al., 2019). Stable assignment of drivers to areas is also benefi-

cial in modern last-mile settings. For example, in a recent keynote presentation at the 12th DIMACS

implementation challenge, Werneck (2022) has emphasized the importance of consistency and driver

familiarity for last-mile delivery at Amazon.

The topic of temporal stability falls in the broader literature of workforce scheduling with workers’

preferences (see, e.g., (Ruiz-Torres et al., 2015; Mohan, 2008; Yura, 1994) and the survey of Van den

Bergh et al. (2013)).

The issues of shift instability and lowwages have been identified among themost critical aspects of

the modern logistics industry, especially in the last mile.

From the couriers’ point of view, unstable or unreliable shifts cause a sensible decrease in happi-

ness and worsen the work-life balance. In a survey of workers in Illinois, United States, Dickson et al.
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(2018) showed that, in 2018, 35%knew their schedule at least oneweekbefore and10%only knew it 24

hours in advance. Furthermore, the average gap between the minimum and maximum weekly hours

during the six months before the survey was 14 hours, suggesting large fluctuations from one week to

another. Part-time workers, who are largely represented in LMD, are particularly affected: Dickson

et al. (2018) report that “the incidence of unpredictable or varying shift times […] falls disproportion-

ately on part-time workers—12 percent of part-timers experience irregular shift times”. Furthermore,

the downsides of erratic shifts affect some categories, such as single parents, more than others (Ananat

& Gassman-Pines, 2021; Harknett et al., 2022). Carrillo et al. (2017) highlights that: “as dual-earner

couples, single parent families, and irregular work schedules have risen in prevalence, the logistics of

arranging child care to match work shifts have grown increasingly complex”. This complexity comes

at a significant cost for children; quoting again Carrillo et al. (2017): “Instability and unpredictability

at work were reproduced in […] child-care arrangements at home. This scramble led to inconsistency

in children’s care and also imposed a heavy psychological burden on parents as they reconciled the

difficulty of finding care for their children with the imperative to keep an open availability for work

and catch the shifts that became available to them.”

Fromthepoint of viewof logistic operators, excessive shift instability causes higher employee turnover

and lower performance, producing a net detrimental effect for the firm. Chung (2022) studies the im-

pact of variable work schedules (VWS) on quick-service restaurant chains and concludes that “despite

the common assumption that their [VWS] use helps firms achieve higher performance by matching

the supply of labor to demand fluctuations […] this study demonstrates otherwise”, and that “scholars

and practitioners should reconsider the general assumption that staffing flexibility helps organisations

adapt to uncertain environments”. Although the role of schedule volatility on employee turnover has

been studied before (see, e.g., Henly & Lambert, 2014; Henly et al., 2006), its impact has increased

after the Covid-19 pandemic (see Choper et al., 2022; Bergman et al., 2023; Rhee et al., 2020).
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The above considerations clarify that shift flexibility in workforce scheduling in LMD is worth

researching and that the literature on this topic can be enriched considering an ethical dimension

(LeMenestrel & VanWassenhove, 2009; Ormerod &Werner, 2013; Bellenguez et al., 2023).

3.3 Problem setting and formulation

In this section, we formalise the problemwe are studying and provide several mathematical models to

make workforce sizing and scheduling decisions. Section 3.3.1 provides a mathematical description

of the considered problem. We present a base mathematical model in Section 3.3.3 and extend it in

Section 3.3.4.

3.3.1 Problem description

We consider a logistic operator working in the last mile of the supply chain in an urban environment.

The city is divided into a set A of areas, usually corresponding to districts or neighbourhoods, with

exactly one satellite in each area. Areas are grouped into regionsR, such thatR forms a partition of

A.

The daily planning horizon is discretised into a set Θ of periods. The planner chooses the length

of the periods in a way that (a) is long enough to ensure that couriers complete their tours and (b) is

suitable for accurately estimating the demand based on historical data. In our main application set-

ting, couriers employ sustainable vehicles with limited capacities, such as cargo bikes. Because vehicle

capacities limit tour durations, the duration of a period is usually limited to a few hours.

Couriers start their tours at the beginning of each period and return to the starting satellite before

the end of the period. If a courier changes his/her assigned satellite between two consecutive periods,

we assume the transfer time to be negligible. This assumption is justified because transfers are only

possible between satellites in the same region.
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Each area has an associated demand distribution, which determines how many deliveries are re-

quired during each period. We adopt a scenario-based approach and consider a set S of scenarios.

Each scenario s ∈ S determines, for each area a ∈ A and period θ ∈ Θ, the demand nsaθ ∈ N, i.e., the

number of deliveries to perform.

The decision variable is the number of couriers assigned to each area during each period and is

denoted with xaθ ∈ N (a ∈ A, θ ∈ Θ). This decision is taken at the tactical level; therefore, the

assignment persists across all scenarios. Eventually, we will introduce constraints on this assignment,

which guarantee, e.g., that couriers work for a minimum number of consecutive periods (a shift). For

themoment, we only note that the number of couriers assigned to an areamust not necessarily ensure

they can deliver all parcels under all scenarios. Indeed, the cost incurred by the planner is the sum of

the couriers’ labour cost and the expected outsourcing cost. We denote with caθ > 0 the unit cost of

employing a courier in area a for period θ. The labour cost associated with a and θ is thus caθxaθ. We

denotewithωaθ(xaθ) ≥ 0 the randomvariable representing the outsourcing cost for area a and period

θwhen employing xaθ couriers. In our approach, we estimate the expected value of ωaθ by computing

the average outsourcing cost over all scenarios:

E
[
ωaθ(xaθ)

]
≃ 1

|S|
∑
s∈S

ωsaθ(xaθ),

where ωsaθ(xaθ) is the deterministic outsourcing cost incurred under scenario s. With the above nota-

tion, the objective function of our problem is

min
xaθ∈N

∑
a∈A

∑
θ∈Θ

(
caθxaθ +

1
|S|

∑
s∈S

ωsaθ(xaθ)
)
. (3.1)

Determining the value of ωsaθ(xaθ) is not straightforward. To know how many deliveries can be per-

formed by xaθ couriers (and, thus, howmanymust be outsourced), wewould have to solve an instance
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of the NP -complete Capacitated Vehicle Routing Problem (CVRP) for each area, period and sce-

nario. However, knowing the exact value ofωsaθ is unnecessary at the tactical planning level. Therefore,

in Section 3.3.2, we devise amethod to approximate this value. In the rest of this section, we introduce

constraints which, together with the objective function (3.1), will model realistic staff sizing problems

faced by LMD operators.

3.3.2 Approximation of the outsourcing costs

We assume that the outsourcing cost depends linearly on the number of outsourced deliveries. Specif-

ically, let Cout > 0 be the cost to outsource one delivery andms
aθ ∈ N the number of couriers needed

to fulfil all deliveries in area a ∈ A during period θ ∈ Θ according to scenario s ∈ S.

Under the assumption that all couriers deliver roughly the same number of parcels, we can write

the outsourcing cost function as

ωsaθ(xaθ) =


0 if xaθ ≥ ms

aθ,

(ms
aθ − xaθ)

nsaθ
ms

aθ
Cout otherwise.

(3.2)

Equation (3.2) states that the planner does not incur outsourcing costs if a sufficient number of couri-

ers is hired. Otherwise, a fraction of 1 − xaθ/ms
aθ of the deliveries must be outsourced at unit cost

Cout.

The problemof calculatingωsaθ(xaθ) then reduces to the computation ofms
aθ. Asmentioned above,

its exact value is given by the solution of a CVRP. In the following, we propose to compute an approx-

imation m̂s
aθ. To this end, denote with αa > 0 the surface of area a, with r̄a > 0 the average distance

between a point in a and the satellite, with Q > 0 and v > 0 respectively the capacity and the speed

of the courier vehicles, with τ > 0 the service time at the customer’s, and with T > 0 the duration of
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a period. We note that capacityQ is expressed in the number of deliveries (thus assuming that parcels

are not too dissimilar in size) and that the unit of measure of v is derived from those of r̄a and T (i.e.,

units of space over units of time).

Figliozzi (2008) proposed a closed-form approximation of the cost of the optimal solution of a

VRP with nsaθ customers andm vehicles:

ka ·
nsaθ −m

nsaθ

√
αa · nsaθ + 2r̄a ·m, (3.3)

where ka is a coefficient that depends on the shape of area a and must be learned, e.g., via regression.

We extend this formula to use it as an approximation of the average time a courier needs to complete

a route, including the service time at the customers:

route time =
1
m
ka
nsaθ −m
v · nsaθ

√
αa · nsaθ + 2

r̄a
v
+

nsaθ
m

· τ. (3.4)

The first term approximates the travel time between customers, the second approximates the round

trip from the satellite, and the third term accounts for the service time at the customers. Because each

courier must respect both the capacity and the route duration constraint, we look for the smallest

integerm such that

m ≥
nsaθ
Q

, and

1
m
ka
nsaθ −m
v · nsaθ

√
αa · nsaθ + 2

r̄a
v
+

nsaθ
m

· τ ≤ T.

Simple algebraic manipulations yield

m̂s
aθ =

⌈
max

{
nsaθ
Q

,
ka
v
√

αansaθ + nsaθ · τ
T+ ka

v·nsaθ

√
αansaθ −

2̄ra
v

}⌉
. (3.5)
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3.3.3 Base model

We introduce a base optimisation model which uses objective function (3.1) and the framework de-

scribed in Section 3.3.2 to solve a loosely constrained version of our problem. Indeed, the only basic

constraints we introduce are: (a) a global upper bound u ∈ N on the number of couriers that the

logistic operator can employ during any given period and (b) a regional-level upper bound uR ∈ N on

the number of couriers that can work in region R ∈ R during any given period. These bounds can

derive from real-life considerations, such as a staffing budget (for bound u) or the number of available

vehicles (for bounds uR). The model, denotedMBase, reads as follows.

min
∑
a∈A

∑
θ∈Θ

(
caθxaθ +

1
|S|

∑
s∈S

ω̂saθ(xaθ)
)

(3.6a)

s.t.
∑
a∈R

xaθ ≤ uR ∀R ∈ R, ∀θ ∈ Θ (3.6b)

∑
a∈A

xaθ ≤ u ∀θ ∈ Θ (3.6c)

xaθ ∈ N ∀a ∈ A, ∀θ ∈ Θ. (3.6d)

In (3.6b) and (3.6c), the bounds are enforced for all periods θ ∈ Θ to ensure that the maximum

workforce size is not exceeded at any period of the planning horizon. Function ω̂saθ denotes the ap-

proximate outsourcing cost ωsaθ in which ms
aθ is replaced by m̂s

aθ in eq. (3.2). Indeed, directly using
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(3.2), we obtain the following formulation for MBase.

min
∑
a∈A

∑
θ∈Θ

(
caθxaθ +

1
|S|

∑
s∈S

Ωs
aθ

)
(3.7a)

s.t.
∑
a∈R

xaθ ≤ uR ∀R ∈ R, ∀θ ∈ Θ (3.7b)

∑
a∈A

xaθ ≤ u ∀θ ∈ Θ (3.7c)

Ωs
aθ ≥ (m̂s

aθ − xaθ)
nsaθ
m̂s

aθ
Cout ∀a ∈ A, ∀θ ∈ Θ, ∀s ∈ S (3.7d)

xaθ ∈ N ∀a ∈ A (3.7e)

Ωs
aθ ≥ 0 ∀a ∈ A, ∀s ∈ S. (3.7f )

In model (3.7a)–(3.7f), we introduced new variables Ωs
aθ to hold the value of ω̂saθ(xaθ). We remark

that the above formulation is decomposable by period θ; however, whenwe add further constraints in

Section 3.3.4, this will no longer be the case.

The complete solution of model MBase requires two steps. First, we compute the approximate

values m̂s
aθ using (3.5), for each s, a and θ. Then, we use these values to solve model MBase and to

find the optimal values of xaθ and their corresponding cost.

3.3.4 Shift linking constraints

Model MBase potentially allows employing couriers for just one period or intermittent periods dur-

ing the day. However, job quality and service level considerations forbid suchpractices inmost real-life

situations. To this end, we introduce the concept of shifts: a set of consecutive periods such that if a

courier works during one of them, they must work during all of them.

While the concept of a work shift is almost universally employed, its implementation changes from
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company to company. In the following, we propose three types of shifts with different levels of flexi-

bility. Each will correspond to new variables and constraints extending model MBase; their impact

will be evaluated in Section 3.4.

The first type is fixed shifts: partitioning the set of periods Θ into contiguous non-overlapping

sets. For example, if the working day is from 9 AM to 9 PM and each period spans two hours, we

would have Θ = {1, . . . , 6}. Two fixed shifts could be 9 AM to 3 PM (periods 1 to 3) and 3 PM to

9 PM (periods 4 to 6). The start period and the duration of each shift are given in advance by labor

regulations or local uses and are not decision variables. Each courier is assigned to one of these preset

shifts.

The second type is flexible shifts. Each courier has an associated shift, i.e., a set of contiguous peri-

ods of fixed total duration. However, the start time of each courier’s shift is not given in advance and

is a decision variable: different couriers can have shifts starting at different times. Unlike fixed shifts,

flexible shifts do not need to partition the set of periods and can overlap.

The third type is partially flexible shifts, which provide intermediate flexibility between fixed and

flexible shifts. Although they are still decision variables, we limit the number of possible distinct shift

start times. For example, we might aim to create four possible shifts (i.e., selecting four possible start

times) and then assign one shift to each courier. If the number of possible start times equals the num-

ber of periods, thenwe are in the special case of flexible shifts. On the other hand, limiting the number

of shift start times to only a few possibilities decreases the system’s flexibility and allows the creation

of stable rosters for the couriers.

Figure 3.2 shows three examples of shifts which can be devised for the same demand pattern dis-

played at the bottom. The blue shifts at the top are fixed with 9 AM and 3 PM start times. The red

shifts in the middle are flexible, and the yellow ones at the bottom are partially flexible.
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Figure 3.2: Example of fixed (blue), flexible (red), and partially flexible (yellow) shifts for a 12‐hour working day. The
demand distribution at the bottom shows that the afternoon is busier than the morning.

91



In the remainder of this section, we introduce the necessary notation, shift-type-specific variables,

and constraints that we add to model MBase.

Fixed shifts

LetP be the set of shifts, i.e., a partition of Θ such that each shiftP ∈ P is a contiguous set of periods.

We denote with θsP and θeP the first and last periods of shift P.

We introduce new variables ya1a2θ ∈ N denoting the number of couriers moving from area a1 to

area a2 between periods θ − 1 and θ (a1 ̸= a2, a1 and a2 belong to the same region, θ is not the first

period of the day).

We add the following constraints to formulation (3.7a)–(3.7f) to model fixed shifts:

∑
a2∈R

ya1a2θ ≤ xa1θ ∀R ∈ R, ∀a1 ∈ R, ∀θ ∈ Θ (3.8a)

∑
a∈R

xaθ =
∑
a∈R

xaθsP ∀R ∈ R, ∀P ∈ P, ∀θ ∈ P \ {θsP} (3.8b)

xa1θ = xa1,θ−1 +
∑

a2∈R\{a1}

ya2a1θ −
∑

a2∈R\{a1}

ya1a2θ

∀R ∈ R, ∀a1 ∈ R, ∀P ∈ P, ∀θ ∈ P \ {θsP}. (3.8c)

Constraint (3.8a) ensures that no more couriers move away from each area a1 than there are working

in a1. Constraint (3.8b) ensures that the number of employed couriers stays constant within each

region for the duration of each shift, thus forbidding hiring or dismissing couriers in the middle of a

shift. Constraint (3.8c) states that the number of couriers working in area a1 during period θ is given

by the number of couriers working in a1 during the previous period, plus couriers who move into a1,

minus couriers whomove out of a1. We denote with Fixed the model obtained adding (3.8b)–(3.8c)

to MBase.
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Flexible shifts

Tomodel flexible shift, we add to the already introduced x and y new variables z−aθ ∈ N, denoting the

number of couriers starting their shift in area a at the beginning of period θ, and z+aθ ∈ N, denoting

the number of couriers ending their shift in area a at the end of period θ.

Denoting with ℓ ∈ N the shift length, we observe that variables z−aθ must be set to zero for all areas

a ∈ A and for periods θ ∈ Θ such that θ > |Θ| − ℓ. Indeed, a shift has to start before |Θ| − ℓ in

order to satisfy shift duration ℓ. Analogously, variables z+aθ are set to zero for all areas a ∈ A and for

periods θ ∈ Θ such that θ < ℓ.

To obtain a model for the flexible shifts, we add constraint (3.8a) and the following constraints to

formulation (3.7a)–(3.7f):

∑
a∈R

z−aθ =
∑
a∈R

z+a,θ+ℓ−1 ∀R ∈ R, ∀θ ∈ Θ, θ ≤ |Θ| − ℓ+ 1 (3.9a)

xa1θ = xa1,θ−1

+
∑

a2∈R\{a1}

ya2a1θ

−
∑

a2∈R\{a1}

ya1a2θ

+ z−a1θ − z+a1,θ−1

∀R ∈ R, ∀a1 ∈ R, ∀θ ∈ Θ, θ > 1 (3.9b)

xa1 = z−a1 ∀a ∈ A. (3.9c)

Constraint (3.9a) makes sure that all couriers starting a shift at the beginning of period θ complete

it at the end of period θ+ ℓ− 1. Constraint (3.9b) extends (3.8c) by considering couriers who start or

end their shift. Because (3.9b) is defined for θ > 1, constraint (3.9c) addresses the special case of the
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beginning of the planning horizon, stating that all workers who start a shift during the first period are

working in the respective areas. We denote with Flex the model obtained by adding (3.9a)–(3.9c) to

MBase.

Partially flexible shifts

Tomodel partially flexible shifts, we introduce variableswθ ∈ {0, 1} (θ ∈ Θ, θ ≤ |Θ| − ℓ+ 1) taking

value 1 iff a shift starts at the beginning of period θ. Let μ ∈ N+ be the maximum number of shifts to

create. A model for partially flexible shift uses constraints (3.9a)–(3.9c) together with the following

inequalities:

∑
a∈R

z−aθ ≤ uR · wθ ∀R ∈ R, ∀θ ∈ Θ, θ ≤ |Θ| − ℓ+ 1 (3.10a)

|Θ|−ℓ+1∑
θ=1

wθ ≤ μ. (3.10b)

Constraint (3.10a) links the z and w variables, allowing couriers to start their shift only when such a

shift is created (value uR acts as a “big-M” constant). Constraint (3.10b) limits the number of created

shifts. We denote with PartFlex the model obtained by adding (3.9a)–(3.9c) and (3.10a)–(3.10b)

to MBase.

Dealingwith symmetry

Models using variables ya1a2θ suffer from symmetry. For example, increasing by one the value of both

ya1a2θ and ya2a1θ yields a new solution with the same cost and corresponding to an unrealistic scenario

(two couriers swapping areas without reason). To break this symmetry, we add to the objective func-
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tion (3.7a) the following term:

ε ·
∑
R∈R

∑
a1∈R

∑
a2∈R\{a1}

∑
θ∈Θ

ya1a2θ, (3.11)

where ε > 0 is a small constant. The term (3.11) penalizes unnecessarily large values of variables ya1a2θ

and prevents situations such as the one described above. In the above example, increasing by one the

value of ya1a2θ and ya2a1θwould cause the objective function to increase by 2ε > 0making the resulting

solution sub-optimal.

3.4 Results

In this section, we present the results of our computational experiments. First, we describe how we

generated our instances based on realistic data from four large European cities. Second, we show that

the optimizationproblemspresented in Section 3.3 are fast to solve on commonly available computers,

making them particularly suitable as decision support tools. Third, exploiting this computational effi-

ciency, we perform a large experimental campaign aimed at deriving managerial insights and assessing

the role of shift flexibility on the company’s bottom line.

3.4.1 Instances

Wegenerate instances based on Paris, Lyon (France), Berlin and Frankfurt (Germany). There are three

main components to instance generation: the geographical subdivision of each city into regions and

areas, the demand distribution, and the parameters related to couriers (costs, bounds on workforce

size, shift lengths, etc). All parameters are summarised in Table 3.1.
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Notation Value(s) Description

— Berlin, Frankfurt,
Lyon, Paris

City.

DB 0.5, 1, 2, 4 Number of parcels per 1000 inhabitants and day.
DT Uniform, Peak,

DoublePeak,
AtEnd

Demand type.

OC 1.2, 1.5, 1.8, 2 Per-delivery outsourcing cost multiplier.
RM 0.75, 1, 1.5, 3, 5 Multiplier to determine the regional courier upper

bound uR.
GM 0.6, 0.7, 0.8, 0.9, 1 Multiplier to determine the global courier upper bound

u.
μ 2, 3, 4 Maximum number of shifts for PartFlex.

— 16 Daily planning horizon in hours.
— 2 Period duration in hours.
ka 0.77 Regression coefficient for VRP cost estimation.
Q 5 Courier capacity in number of parcels.
v 21 Courier speed in km/h.
τ 5 Courier service time in min.
caθ 1 Courier labour cost per period.

Table 3.1: Instance generation parameters.
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City geography

Each area in the cities corresponds to a postcode. Weobtained the corresponding data under theOpen

Database License from OpenStreetMap (2023). Cities were subdivided into four regions, grouping

areas to form compact groups of roughly equal population. We obtained population data from the

EU’s Global Human Settlement dataset (Schiavina et al., 2023). Figure 3.3 depicts the four cities and

how they are divided into areas and regions. Paris has 20 areas, Lyon has 16, Berlin 59 and Frankfurt

32. Satellites are located around the centroids of the areas, ensuring that each satellite falls inside the

area. The regression coefficient ka of the cost approximation used in (3.5) is set to 0.77 ∀a ∈ A, as

suggested by Figliozzi (2008) for areas with a central depot.

Demand distribution

Demand is proportional to area population via a Demand Baseline (DB) parameter expressed in the

number of parcels per thousand inhabitants and day. When we generate an instance, the daily de-

mand of each area is chosen uniformly at random in the interval [0.75DB, 1.25DB]. Once the total

daily demand is determined, we distribute it among the periods making up the time horizon. Our

instances use eight periods of two hours each for a daily planning horizon of 16 hours (6 AM to 10

PM). We consider four ways of assigning demand to each period based on a demand type parameter

(DT). We describe them below and visualize them in Figure 3.4.

• For Uniform demand, we distribute the total number of parcels uniformly throughout the

planning horizon. Although home deliveries rarely occur steadily throughout the day, we use

this demand type as a baseline.

• Peak demand resembles the histogram of a truncated normal distribution with mean |Θ|/2,

standard deviation |Θ|/6, left extreme 0 and right extreme |Θ|. It corresponds to a peak in
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Figure 3.3: The four considered cities and their subdivision into areas (white boundaries) and regions (colored). The
numbers indicate the number of people living in each region. Top left: Paris, top right: Lyon, bottom right: Frankfurt,

bottom left: Berlin.
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Figure 3.4: Example of hourly parcel demand according to each of the four demand types (DT) used in instance
generation. The daily demand in the given area is 1000.

deliveries in the central hours of the day.

• DoublePeak demand follows the histogram of a mixture of two truncated normal distribu-

tions. They are similar to the distribution used for Peak demand, but theirmeans are at |Θ|/3

and 2|Θ|/3, and their standard deviation is |Θ|/10. It simulates two peak hours: a morning

one (around 11 AM) for workplace deliveries and an evening one (around 5 PM) for home

deliveries.

• AtEnd is similar to Peak demand, but the mean of the truncated normal distribution is at

2|Θ|/3. This corresponds to a situation where most deliveries are made at people’s homes at

the end of the workday (around 5 PM).
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Courier parameters

We consider a uniform fleet of bike couriers with capacity Q = 5 parcels and speed v = 21 km/h

(Romanillos & Gutiérrez, 2020). We normalise the labour costs to caθ = 1 ∀a ∈ A, ∀θ ∈ Θ. If

couriers travel at full capacity, i.e., carrying five parcels, the courier per-delivery cost is then 0.2. We

obtain the per-delivery outsourcing costCout bymultiplying this figure by amultiplier OC. For example,

when OC = 1.2, we set Cout = 0.2 · 1.2 = 0.24.

Recall that m̂s
aθ, defined in Section 3.3.2, is the approximate number of couriers required to deliver

all parcels in area a during period θ according to scenario s. Then, the average number of couriers

required to deliver all parcels in a during θ across all scenarios is 1
|S|

∑
s∈S m̂s

aθ. Averaging over all

periods, we obtain values m̂a = 1
|Θ|

∑
θ∈Θ m̂s

aθ and m̂R =
∑

a∈R m̂a (for R ∈ R). This is a rough

approximationof thenumber of couriers per period required in each region to serve the entire demand.

Especially for non-Uniform demand types, this average will not be a good approximation, andmore

couriers will be required during peak periods and fewer during valley periods. Indeed, we only use

m̂R as a baseline to choose parameters uR and u, i.e., the per-region and global upper bounds on the

number of couriers we can employ. We set the regional upper bounds as uR = RM · m̂R and the global

upper bound u = GM ·
∑

R∈R uR, where RM and GM are parameters. When GM takes value 1, global

bound u is moot, and only the regional bounds can be tight.

Instance availability

Varying the parameters introduced in this Section (city, DB, DT, OC, RM, GM), the model (MBase, Flex,

PartFlex, Fixed) and, for model PartFlex, the value of μ, we obtain a large set of 8000 instances

and 48 000 experiments. We generate 90 scenarios per instance by repeatedly drawing from the rele-

vant random distributions. Preliminary experiments, however, determined that reducing the number

of scenarios to 30 does not significantly affect the quality of the cost approximation and, perhapsmore
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Figure 3.5: Cost per parcel vs. model. The left box plot summarises the cost distribution over all instances. The bar plot
on the right shows the average over all instances and splits the cost into its hiring and outsourcing components.

importantly, the overall solution. We provide in repository (Mandal et al., 2024) the instances that we

use in this study. The repository also includes the scripts used to generate the instances, the solver,

and the scripts used to produce tables and figures.

3.4.2 Insights

We implemented themodels in Python usingGurobi 9 as theMIP solver. Gurobi solves each instance

in a fraction of a second, ranging from an average of 0.06s for model MBase to 0.13s for PartFlex

with μ = 2. This allowed us to run an extensive computational campaign on our large instance set

and to draw the managerial insights described in the rest of this section. The main research question

is to understand the impact of shift stability on the logistic provider in terms of costs and operational

complexity.

High-level impact of flexibility on costs

Themainhigh-level result about costs is depicted inFigure 3.5. The left figure shows the cost per parcel

when using the different models. This cost is defined as the objective value of the optimal solution

101



divided by the total number of parcels to deliver over all areas and periods. Each box represents the

cost distribution over all the instances and, therefore, refers to 8000 observations. The central line in

the box is themedian; its value is alsowritten inside the box. The top and bottomborders are the third

and first quartiles, respectively. Whiskers extend to the rest of the distribution except for outliers, i.e.,

observationsmore extreme than twice the interquartile range. Because our hiring costs are normalized

and both hiring and outsourcing costs can vary considerably in different markets, the reader should

consider their relative differences rather than their absolute values.

The figure shows two important effects. On the one hand, using fixed shifts results in noticeably

higher costs, justifying the assumption that somedegree of flexibility is required in an industrywithun-

steady demand. On the other hand, the difference between the base model (workers can be hired and

dismissed at each period), the flexible model (shifts can start at any period), and the partially flexible

model (shifts can only start in μ different periods) is small. In particular, moving away fromMBase

causes a marginal increase in the median cost per parcel (from 0.65 to 0.66, i.e., +1.54%) and the

difference between the flexible and the partially flexible models is so small that the costs are identical

up to the second decimal digit. Indeed, in the vast majority of the instances, the solutions obtained

by Flex are identical to those obtained, e.g., by PartFlex (μ = 3). This observation supports the

conclusion that limiting shift instability is a viable strategy that can reconcile the company’s bottom

line with the workers’ well-being.

The right plot in Figure 3.5 also refers to the costs per parcel. The height of each bar corresponds

to the average cost over all instances, which we split into its hiring and outsourcing components. As

we will see in the following, the ratio of each component in the total costs depends on many factors,

the main one being the unit outsourcing cost. This is an exogenous market characteristic, and, in our

instances, we only assume that outsourcing a delivery is more expensive than performing it in-house.

We control the unit outsourcing cost more precisely through parameter OC. Because, in this plot, each
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Figure 3.6: Impact of the RM parameter on the cost per parcel.

bar shows the average over all instances, we cannot appreciate the impact of OC. Still, this figure shows

that—even in aggregate—using fixed shifts results in sensibly higher hiring costs compared with the

othermodels. When scheduling flexibility is very limited, optimal solutions use a larger workforce and

incur higher hiring costs but do not significantly differ in terms of outsourcing costs.

Detailed cost analysis

In the following, we evaluate the effect of the instance parameters that most impact the cost structure

of the logistic provider.

Figure 3.6 shows how the costs change with the regional bound parameter RM. Recall that this

bound limits theworkforce size at a regional level andmodels external constraints, such as the fleet size,

that prevent a decision-maker from hiring toomany couriers. As expected, relaxing this bound results

in lower costs, and the cost decrease is significant. Therefore, decision-makers who find themselves

bound by fleet capacity should look into mid or long-term fleet expansion rather than consistently

relying on outsourcing.
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Figure 3.7: Impact of the DB parameter on the number of outsourced parcels and costs.

We also remark that the cost structure also changes when RM changes. When the bound is lax (high

RM), Fixed gives relatively larger costs compared to the other models. When the bound is tight (low

RM), on the contrary, the cost per parcel is high but similar for all the models. A tight bound means

that the operator is subject to structural constraints such as a small fleet or a workforce shortage (i.e.,

it is understaffed) that are commonly associated with tight or even negative profit margins. Contrary

to common intuition, such an operator would not get a large advantage by moving to more flexible

schedules; instead, it would compound burnout from understaffing and overwork with decreased job

quality due to shift instability. The relationship between overwork, instability, burnout, and mental

health has been studied in the medical and social science literature, especially in relation to nurses,

doctors, and healthcare workers. These categories have been historically known to be subject to long

and intensework hours, demanding both on the physical and emotional levels. Still, the results shown

in Figure 3.6 suggest that future studies should not neglect LMD workers and, indeed, some recent

research has started to focus on these categories (see, e.g., Pyo et al., 2023;Wei et al., 2023; Couve et al.,

2023).
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Figure 3.7 shows the impact of the baseline demand parameter DB. The left figure reports the per-

centage of outsourced parcels, and the right one gives a breakdown of the costs. When demand is low,

optimal solutions tend to use outsourcingmore (left figure). In this scenario, in fact, a large workforce

would be idle for a considerable portion of the time, and outsourcing becomes a more attractive op-

tion. This consideration holds for all models, including MBase. When demand grows, the logistic

operator outsources fewer deliveries, up to the point when the capacity of the in-house delivery sys-

tem is reached and the curves in the left figure start flattening. The Fixedmodel tends to keep a large

workforce and, therefore, requires less outsourcing compared to the other models.

The rightfigure supports threemainpoints. First, as inmost otherbusinesses, LMDshows economies

of scale, and the cost per parcel decreases when the volume increases. Second, these efficiency gains

incur diminishing returns; e.g., doubling DB from 0.5 from 1 produces a larger cost decrease than dou-

bling from2 to 4. Third, the difference in costs is usually larger between instanceswith different values

of DB than it is between models for a given value of DB. Model Fixed displays higher costs per parcel

even for larger volumes (for example, Fixed’s costs when DB= 4 are higher thanMBase’s costs when

DB= 2), but this is the exception rather than the norm. The other models tend to have more simi-

lar costs, hinting at the fact that increasing flexibility can only partially mitigate underlying problems

such as low demand.

The impact of the outsourcing costs, controlled by parameter OC, is reported in Figure 3.8. The

higher the costs, the lower the number of outsourcedparcels; the left plot in the figure, however, shows

that the relation is not linear. Although the effect is less pronounced than in Figure 3.7, we see that

the curves representing the percentage of outsourced parcels tend to flattenwhen reaching the limit of

parcels that in-house couriers can deliver. The right figure shows that increasing the outsourcing costs

causes a slight increase in the hiring costs (because it is convenient to employ more in-house couriers)

and a large increase in the outsourcing costs.
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Finally, in Figure 3.9, we focus on the impact of the demand type (parameter DT) on the costs. When

the demand isUniform, costs are low, no flexibility is required, and all models yield roughly the same

costs. Furthermore, in a uniform demand scenario, the optimal number of couriers to hire does not

change with the period. Therefore, the problem reduces to find the best workforce size. This scenario

is similar to the classical newsvendor problem: the workforce size is analogous to the order quantity,

the number of couriers required to deliver all parcels is the stochastic demand, and the cost difference

between outsourcing and in-house delivery is the opportunity cost. Indeed, the cost structure shown

in Figure 3.9 also shows a remarkable similarity with the optimal newsvendor solution: optimal solu-

tions are characterised by equal outsourcing and staffing costs, i.e., the solid and the hatched bars have

the same height.

Themore challenging demand type is Peak, i.e., when the highest parcel volume occurs in themid-

dle of the day. Model Fixed uses two shifts dividing the daily planning horizon into two halves and,

as a result, is the least suitable to deal with this demand pattern. Still, we remark that the cost differ-

ence between the three types, AtEnd, DoublePeak, and Peak, is small and that the cost structure

is similar. These facts suggest that the conclusions that we draw in this analysis are valid for a diverse

range of demand types and could be generalized beyond the patterns that we study in this paper.

Impact of flexibility on operations

In this section, we study the impact that the instance generation parameters and the different models

have on key indicators of the company’s operational practices. The first indicator, which we already

presented in Figures 3.7 and 3.8, is the percentage of outsourced parcels. The second is the number of

couriers hired as a percentage of the global limit u. The third is the percentage of couriers who change

area at the end of each period. This last indicator is used as a proxy of the operational complexity and

is related to the geographical stability concept discussed in Section 3.2.3.
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Figure 3.10: Impact of the DT parameter on three company operations metrics.

Figure 3.10 shows the impact of the demand type on the three metrics mentioned above. When

the demand is Uniform, as we have seen for the costs, all models show similar characteristics. For the

other demand types, however, there are considerable differences. When using Fixed shifts, the per-

centage of employed couriers increases with non-Uniform demand types. The Flex and PartFlex

models, on the other hand, can take advantage of the fact that demand concentrates during some peri-

ods of the day (and is much lower during the other periods) and require hiring overall fewer couriers.

In particular, the Flex model keeps the number of hired couriers significantly lower compared with

the PartFlex models.

In general, all models only require a modest amount of area changes; in this respect, demand type

DoublePeak is the most demanding. Still, this metric should be considered with care because, in

our instance generation procedure, the number of parcels to deliver in each area is only proportional

to its population. Logistic operators might have access to more detailed data, which could exacerbate

the demand difference between areas. For example, residential areas might require more deliveries in

the late afternoon, while commercial areas could have a higher demand during the mornings.

This figure also shows that the Fixed model is an outlier that not only yields higher costs but
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Figure 3.11: Impact of the GM and RM parameters on the number of outsourced parcels.

also requires significantly different operational choices. On the other hand, the Flex and PartFlex

models are not too dissimilar, especially when considering the number of parcels outsourced and the

area movements required.

Figure 3.11 reports the percentage of outsourced parcels as a function of the global (left) and re-

gional (right) multipliers of the workforce size upper bounds. First, we note that the two multipliers

impact this metric differently. The parameter GM decreases the number of outsourced parcels almost

linearly, while the relationship between parameter RM and the number of outsourced parcels is non-

linear. Furthermore, even when the bounds are large, the optimal amount of outsourcing is strictly

positive (around 20% for the highest value of GM and around 7% for the highest value of RM). Indeed,

we repeated our computational experiments by completely removing constraints (3.7b) and (3.7c),

and we found that the average percentage of outsourced parcels ranged between 4.48% for Fixed and

6.18% for PartFlex (μ = 2). This shows that outsourcing can be economically convenient to bal-
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ance fixed and variable costs, even when there is no tight bound on the workforce size.

Finally, Figure 3.12 shows how the model and the outsourcing costs affect the couriers’ mobility

between areas at each period. We do not report results relative to model MBase because it does not

include the y variables, which are necessary to keep track of courier movements between areas. The

distribution of this indicator is skewed and shows large right tails: whereas the medians are all low

and similar to each other, the left figure shows that a part of the distribution reaches values of over

25%. The right figure, which is on a different scale compared to the left one, further shows that the

means exhibit a larger variation, with model Fixed requiring more courier movement compared to

the other models, outlining a trade-off between temporal and geographical stability. Furthermore,

when outsourcing is more expensive, in the majority of cases, the company responds by increasing

the geographical mobility to better adapt to the demand and outsource less. The Fixed model is an

exception in this respect because when OC is high, this model uses a larger workforce that is sometimes

idle and requires less repositioning. On the other hand, models that use the courier workforce more

also need more movement between areas.
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3.4.3 Robustness to changes in demand types

At the operational level, the demand distribution (identified by the parameter DT in our instances) can

change on specific days. For example, different patterns can be observed during weekdays and week-

ends, or during the holiday season. If these differences are predictable, a decision-maker can solve an

instance of our problem per each expected demand pattern. Operational decisions, such as rostering,

can help reconcile the different solutions. For example, if the weekday problem requires 20 couri-

ers and the weekend one only requires 10, the couriers’ roster can exploit this difference to schedule

appropriate weekly rest days.

If the variations in demand patterns are more unpredictable, the logistic operator will sometimes

have to use a strategic solution devised for a given demand type with a different realized demand type.

In this section, we investigate how robust solutions are to changes of the DT parameter. More precisely,

wewant to estimate howmuch efficiency a decision-makerwould lose if they sized and scheduled their

workforce for a given value of DT, but then a different demand type was realized.

To answer this question, we ran the following experiment. For each combination of parameters, we

fix the corresponding solution, and we evaluate its cost on instances with the same parameters—city,

DB, OC, RM and GM—but different demand type DT.We do so by fixing variables xat to the value they take

in the optimal solution of an instance with a given demand type DT1, and, keeping these variables fixed,

we re-solve the models on instances with different demand types DT2 ̸= DT1.

Figure 3.13 reports the results of this experiment. The figure shows a heatmap for each of the six

models. The value DT1 used to fix variables xat is on the x-axis, and the value DT2 used to evaluate

the solution cost is on the y-axis. The values reported in the heatmap are the average percent cost in-

creases over all instances sharing the same values for parameters city, DB, OC, RM, and GM. For example,

the value corresponding to Peak on the x-axis and AtEnd on the y-axis reports the average cost in-
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crease incurred when using a solution devised for the Peak demand type, when the actual demand

distribution follows the AtEnd pattern and all other instance generation parameters are the same.

Figure 3.13 prompts the following observations. On the one hand, when the realized demand is

Uniform, solutions obtained according to other demand types are particularly ineffective (first row

of each heatmap). Indeed, for a given area, any solution deploying couriers in a pattern that deviates

from a constant value throughout the day is inefficient because demand is constant throughout the

day. On the other hand, Peak and DoublePeak cause the smallest cost increases when the realised

demand is one of these DTs and the solution was obtained using the other. Furthermore, and most

important for our analysis, we remark that the average percent cost increases for the Fixed model

are generally the lowest. (The only exception is when using a solution for Peak on a DoublePeak

realised demand, in which case the BaseModel shows a smaller cost increase.) In other words, using

completely fixed shifts is more expensive butmore resilient to changes in demand patterns. The excess

courier capacity that is usually present in the solutions of the Fixed model (see the central plot in

Figure 3.10) acts as a buffer that helps deal with demand changes.

The above analysis relies on the assumption that the solution devised for a given value of DTmust be

used without modifications when the realized DT is different. In practical circumstances, the decision-

maker might deviate, on the operational level, from the strategic problem solution. For example, by

using overtime, theymight increase the number of couriers working during some periods. In this case,

couriers might be subject to sudden roster variation, a practice that negatively affects their work-life

balance. While the impact of deviating from the schedule on workers’ well-being is clear, it is less

clear whether these deviations help reduce costs. To answer this question, we conducted a small case

study based on the demand pattern variation that seems most challenging for all models, i.e., using a

solution devised for DT Peak when the realized DT is Uniform. In the case study, we allow the value

of variables xat to deviate by at most δ ∈ {0, . . . , 3} from the value taken in the optimal solution
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for DT = Peak. When δ = 0, the decision maker is not allowed to deviate from the solution, and

we recover the case studied in Figure 3.13. For δ > 0, we allow the decision maker to deploy more

or fewer couriers in each area and period, up to a difference of ±δ. Figure 3.14 shows the results of

this experiment. Whereas allowing more deviations reduces costs, the Fixedmodel remains the most

competitive in terms of resiliency. Furthermore, the most flexible models (BaseModel and Flex)

with an allowed deviation of δ = 3 produce cost increases barely smaller than the Fixed model with

δ = 0. And when δ = 2, all other models increase the costs more than the Fixed model with δ = 0.

3.5 Conclusions

In this paper, we have tackled the problem of tactical hiring and scheduling decisions for a company

performing parcel deliveries in the last-mile segment of the supply chain. In particular, we have de-

veloped mathematical models to determine the correct number of couriers to hire to balance salary

costs and outsourcing costs. These latter are paid when the company does not hire enough couriers to
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deliver all parcels. We have placed particular emphasis on shift stability, i.e., devising shifts with a pre-

dictable start time and duration. In doing so, we wanted to explore if flexible shifts, which decrease

job satisfaction and disrupt the couriers’ work-life balance, are justified by large savings. Our main

conclusions are the following:

• Using completely fixed shifts that start at two predetermined times during the day results in sig-

nificantly higher costs. Overall instances, the average per-parcel cost obtained using fixed shifts

is 9.36% higher than the one obtained using extremely flexible schedules, in which couriers can

be called into (and out of) at each two-hour period.

• A partially flexible model (PartFlex) that uses two shifts—but allows their start times to be a

decision variable—incurs costs that are only 1.89% higher than those obtained with extremely

flexible schedules.

• The advantage of flexible schedules compared to fixed ones is more significant when the com-

pany can hire a large workforce and has a large fleet. When the company cannot hire many

couriers (because it does not have enough vehicles to operate or because market conditions

make labor scarce), flexible and fixed schedules yield almost the same costs. The conclusion is

that stable shifts are a viable strategy for a company that has trouble finding couriers. Stable

shifts do not significantly increase costs, and they provide better working conditions that help

attract potential employees.

• As in many industries, we observed economies of scale. When the volume increases, the cost

per parcel decreases, although with diminishing returns.

• Predictable demand patterns, such as having one or two daily peak times, do not have a large

impact on the total costs, but they significantly change some aspects of the company’s oper-

ations. For example, instances with two daily peaks require more couriers and more courier
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movements between geographical areas, compared with instances with a single peak (either in

the central or the later part of the day).

• When demand patterns are less predictable, the logistic operator will have to use a schedule

optimized for a given pattern in days when the realized pattern is different. Solutions featuring

stable shifts are particularly suitable in this case and provide the smallest cost increases. In

other words, stable shifts are generallymore expensive to implement but are alsomore resilient

to sudden changes in demand patterns.

We conclude by remarking that our work relies on a number of assumptions and that our conclusions

are based on computational results over synthetic instances. At the same time, we tested our approach

on a variety of instance generation parameters, and we observed significant results consistently over a

large number of instances. This suggests that a compromise approach that features limited schedule

flexibility deserves further analysis, especially from larger logistic providers using scientific manage-

ment approaches to optimize their tactical and operational planning decisions.
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Robust Facility Location in Disaster

Preparation for Earthquakes with

Aftershocks

joint work with Laurent Alfandari and Ivana Ljubić

117



4.1 Introduction

During the early hours of February 6, 2023, regions of Turkey and Syria were struck by a devastat-

ing earthquake. The earthquake had a magnitude of 7.8 on the Richter scale, and its epicenter lay

near the Turkish region of Kahramanmaras. About 9 hours later, at 13:24 local time, another deadly

earthquake of magnitude 7.5 hit the region, around 95 kilometers northeast of the initial earthquake.

Moreover, an earthquake of magnitude of 6.4 occurred on February 20 and resulted in the death of 3

people and injured 213. Another 5.6magnitude earthquake on February 27th caused further destruc-

tion when damaged buildings collapsed (CDP, 2024). The series of earthquakes killed over 56,000

people and injured over 100,000 (Ahmed et al., 2023). CDP (2024) also reports damage tomore than

230,000 buildings and resulted in economic losses of over $34.2 billion. Not only that, according to

the United Nations (UN), Syria was already undergoing a humanitarian crisis, and the earthquakes

exacerbated the condition.

The Turkish government and the United Nations (UN), along with its agencies, have provided

massive emergency relief support for the affected people (Reliefweb, 2024). The UN deployed disas-

ter assessment experts, coordinated search and rescue, and provided relief materials like food, medi-

cal supplies, and blankets, among others (UN, 2023). The World Health Organization (WHO) and

World Food Programme (WFP) also extended the support by providing health supplies and food assis-

tance (UN, 2023). An article by Thippa et al. (2023) mentions that several buildings in Turkey were

constructed to withstand a single earthquake, but not multiple of them, resulting in losses to human

lives and infrastructure. Thus, poor infrastructure and a lack of preparedness aggravated the situation.

The earthquakes in Turkey and the devastation that followed highlight the need for improved disaster

preparedness, not just in Turkey and Syria but also in other earthquake-prone countries.

A crucial factor to consider in the earthquake preparedness phase is aftershocks. Aftershocks are
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smaller earthquakes that occur after a larger earthquake and can continue for days, weeks, and some-

times even months after the larger earthquake. They may vary in magnitude as well as frequency.

Though they are typically of a smaller scale, aftershocks can cause additional damage to already weak-

ened buildings and infrastructure. They could also trigger tsunamis, avalanches, floods, landslides,

fires, and disasters in chemical, industrial, or nuclear firms. Sometimes, the aftershocks themselves are

as severe as the main earthquake.

One of the most notable examples of the impact of aftershocks was the 2011 Tohoku earthquake

in Japan. The initial earthquake, with a magnitude of 9.0, also triggered a massive tsunami. Follow-

ing the earthquake, there were over several aftershocks, including a magnitude 7.1 aftershock. The

tsunami resulted in a meltdown of three nuclear reactors in the Fukushima Daiichi Nuclear Power

Plant, displacing thousands due to the release of radioactive materials (Ishigaki et al., 2013). Nepal

was also struck by a devastating earthquake in 2015, with a magnitude of 7.8, and the epicenter lay in

the Gorkha district of Nepal. The earthquake was followed by two large aftershocks of magnitudes

6.6 and 6.7 within 24 hours of the main earthquake and was succeeded by several other aftershocks of

smallermagnitudes. Another aftershock ofmagnitude 7.3 hit the country onMay 12, causing further

damage. The earthquakes also triggered landslides and avalanches (Rafferty, 2023). The earthquakes

caused the deaths of approximately 9000 people, injured over 22,000, and about 8million peoplewere

affected (Rafferty, 2023;Reid, 2018). Over 600,000 homeswere destroyed and over 288,000 damaged

(Reid, 2018). Thus, it is critical to take aftershocks into consideration in the preparedness phase for

earthquakes.

In our study, we focus on the preparedness phase of a disaster management system and primarily

focus on earthquakes. We consider a robust facility location problem for pre-positioning relief mate-

rials near a region prone to earthquakes. Robust optimization is key to studying problems in disaster

management because of the lack of availability of data, the unpredictability of the disasters, and the
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importance of solutions to remain valid in a variety of scenarios (Starr & VanWassenhove, 2014). In

this paper, we study a two-stage problem. In the first stage, the area is affected by the first earthquake

whose location is naturally unknown. Most earthquakes are followed by several aftershocks, which

we consider the second stage of the problem. The aftershocks can either be earthquakes of magnitude

comparable to the first earthquake or earthquakes of smaller magnitudes. This results in deaths, in-

juries, and thousands of displaced people, who have limited to no access to basic human amenities like

food, water, medicines, blankets, etc., for several days. The decision-maker wants to set up facilities to

store relief materials that can be used to help these people in need and serve the entire demand caused

by such emergencies. Our objective is to determine the location for these facilities so that the worst-

case allocation cost for the major earthquake and the aftershocks (proportional to the travel time and

demand) is minimized in the event of such a disaster.

The contributions of the paper are the following.

• We propose a robust facility location model for relief material prepositioning for earthquakes

and aftershocks. To this end, we propose a novel uncertainty set where the locations of the af-

tershocks are unknown, with atmost Δ aftershocks. This gives rise to a discrete uncertainty set,

where Δ aftershocks are selected (from a larger discrete set of possible aftershock realizations),

which gives rise to the worst-case demand realization.

• We use mixed-integer programming (MIP) to model the problem. Since the complete model

is computationally challenging, we provide three different exact approaches to solve them, two

of which are based on branch-and-cut.

• We implement our models on simulated instances and provide a case study on the eastern re-

gion of Turkey that was affected by the earthquakes in 2023.

• We find that including aftershocks in our study indeed has an impact on the location decisions
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with reduced travel times between the facilities and the demand nodes. We also identify four

districts in Turkey to set up relief warehouses in the event of such disasters.

The rest of the paper is structured as follows. In the following section, we briefly review the litera-

ture pertaining to our study. Section 4.3 describes the problem in detail, and Sections 4.4, 4.5, and 4.6

provide different formulations and solution methods for the same. In Section 4.7, we implement our

models on synthetically generated instances as well as provide a case study on the country of Turkey

focusing on the 2023 earthquakes. Finally, we conclude our paper in Section 4.9 and provide some

directions for future research work.

4.2 Literature review

In this section, we briefly review the literature related to facility location for disaster management and

robust optimization. While the literature is quite extensive, we restrict ourselves for the sake of con-

ciseness and scope. Nevertheless, we point the readers to several extensive literature reviews on the

topic. For example, see Dönmez et al. (2021) for a review on humanitarian facility location under

uncertainty, Amideo et al. (2019) for the location of shelters and evacuation planning, Kaveh et al.

(2020) for emergency management systems for earthquakes using optimization methods, Alturki &

Lee (2023) for multicriteria models in humanitarian logistics, Adsanver et al. (2023) for approaches

for improving coordination, cooperation, and collaboration for humanitarian supply chains using

conceptual, empirical, and analytical methods, Gabrel et al. (2014) for a review on robust optimiza-

tion.

4.2.1 Facility location and disaster management

A quick survey of the literature shows locating various kinds of facilities, both in the pre- and post-

disaster phases. Examples include warehouses (Chen et al., 2016; Stienen et al., 2021), distribution
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centers (DCs) (Paul &MacDonald, 2016; Paul &Wang, 2019;Haghi et al., 2017; Zokaee et al., 2016),

shelter sites or evacuation points (EPs) (Chang et al., 2024b; Aghaie & Karimi, 2022), casualty col-

lection points (CCPs) (Alizadeh et al., 2019), mobile facilities like hospitals (Acar & Kaya, 2019) or

medical relief centers (Gu et al., 2018; Haghi et al., 2017) or temporary care centers (Sheikholeslami

& Zarrinpoor, 2023; Aydin & Cetinkale, 2023), among others. Several works consider more than

one kind of facility to be located. For example, Haghi et al. (2017) consider locating DCs and health

centers simultaneously to increase the quality of service. Some studies also look at multi-level facility

location. For example, Tofighi et al. (2016) study a two-echelon network design model with central

warehouses in the first echelon and local DCs (LDCs) in the second. Vahdani et al. (2018) also look

at multi-level facility locationwith warehouses andDCs. Chang et al. (2024a) also consider two levels

of facilities, viz., DCs and local relief centers. Khalili-Fard et al. (2024) incorporate a core warehouse

(CW) along with local warehouses (LWs) and provisional warehouses. Prepositioned inventory is

transported from the CW to the affected areas via LWs, while relief from non-governmental organiza-

tions (NGOs) is transported to the affected areas via PWs.

Location decisions are often accompanied by capacity decisions of the facilities, for example, see

Paul&MacDonald (2016). Balcik&Beamon (2008) study facility location alongwith prepositioning

of relief materials. Since location and allocation decisions go hand in hand, most papers incorporate

allocation decisions along with location decisions (Paul & MacDonald, 2016; Dönmez et al., 2021;

Ghasemi & Khalili-Damghani, 2021; Chang et al., 2024b). Ghasemi & Khalili-Damghani (2021)

study optimal inventory levels in the warehouses along with location-allocation decisions of suppli-

ers and DCs. Some studies also study routing along with location decisions. Aghaie & Karimi (2022)

study the location of temporary shelters, allocating people to them, and routing people from the af-

fected areas to the shelters. Vahdani et al. (2018) study location, inventory stocking, and routing deci-

sions in a two-stage problem. In the first stage, strategic decisions like warehouses and DC locations,
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their capacities, and inventory levels are made. The second stage incorporates operational decision-

making with routing and distribution of critical items to the affected areas, taking into account time

windows. Rezaei-Malek et al. (2016) design relief network with optimal location-allocation and dis-

tribution decisions as well as inventory stocking and renewing decisions related to perishable com-

modities. The authors consider aspects like pre-positioning amount, purchase and sale costs, and

removal and movement costs for the perishable commodities. Chang et al. (2024a) study a two-stage

model with the location ofDCs and allocation of vehicles to theDCs for relief distribution in the first

stage and vehicle and inventory routing decisions in the second stage. Monroy & Díaz (2021) study

multi-level facility locations, including regional rescue centers (RRC) and local rescue centers (LRC),

with inventories in the RRC, along with routing decisions between RRCs and LRCs, and between

LRCs and affected areas. Khalili-Fard et al. (2024) provide a comprehensive model incorporating de-

cisions like location-allocation, inventory prepositioning and procurement (they consider perishable,

non-perishable, and shelf-stable commodities simultaneously), supplier selection, fleet-sizing, supply

contract, distribution, and transportation. Their study collaboration between non-governmental or-

ganizations and governmental organizations for their relief network. Additionally, their model in-

corporates contracts with backup suppliers to prevent a potential shortage of relief items in the post-

disaster phase. Stienen et al. (2021) study not only the optimal location and number of facilities (or

depots) but also potential locations if the number of facilities is expanded. Finally, several studies also

incorporate repositioning decisions coupledwith location. For example, Acar&Kaya (2019) study lo-

catingmobile hospitals, where there is a provision for relocating the abovehospitals in the post-disaster

phase.

More often than not, social objectives exceed financial objectives in humanitarian logistic prob-

lems because the cost of saving lives far outweighs the financial cost minimization. Paul & MacDon-

ald (2016) use an objective function incorporating fatality costs, supply costs, and DC location costs.
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Zokaee et al. (2016)’s objective function includes the cost of locating DCs, the cost of transferring

relief materials from the supplier to the DCs, and from the DCs to the affected areas, along with the

cost of shortages. Ghasemi & Khalili-Damghani (2021) also uses a similar objective function, which

minimizes the cost of establishing suppliers and DCs, the cost of storing inventory, and the cost of

shortage in the distribution centers.

Due to the multi-faceted goal of designing humanitarian logistics networks, several studies incor-

porate multi-objective models. For example, Chang et al. (2024b) consider four different kinds of

costs in their objective function: the cost of opening shelters, a deprivation cost component, the cost

of trapped evacuees, and the cost of exceeding shelter capacities. Haghi et al. (2017) study a multi-

objective model that maximizes the response level for the medical needs of the casualties while mini-

mizing the total cost of the preparedness and response phases. Tofighi et al. (2016) study a two-stage

model where the operating costs and inventory costs of the warehouses and the LDCs are minimized

in the first stage, whereas the second stage is a multi-objective model minimizing the total distribu-

tion times, the maximum weighted travel time between the warehouses and LDCs, the total cost of

unused inventories, and the weighted shortage cost of unmet demands. The multi-objective model

presented in Vahdani et al. (2018) is also similar in the sense that they minimize the cost of establish-

ing the warehouses and DCs and the cost of storing inventory in them in the first stage, while the

second stage objective function incorporates minimizing travel costs between facilities and affected

areas and between affected areas, minimizing vehicle travel times, and maximizing the reliability of

routes traveled by the vehicles. Sheikholeslami & Zarrinpoor (2023) propose a bi-objective model

where the primary objective is targeted towards reducing total network cost (facility location, pro-

curement, holding, transportation, andpenalty for storing of surplus commodities and their shortages

and penalty cost allocated for the sum of injuries that are not placed in care centers) and the second

objective maximizes the total coverage of the network. Rezaei-Malek et al. (2016) also formulate a
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bi-objective model that minimizes average weighted response times, along with the total operational

cost (for the handling of perishable commodities) in the pre-disaster phase and the penalty costs of

unmet demand and unused commodities at a post-disaster phase. Khalili-Fard et al. (2024)’s model

seeks to minimize the total operational costs and the maximum response time.

Several works also incorporate disruption of either facilities, for example, (Paul & MacDonald,

2016), the relief network, or both, which gives rise to uncertainty. For example, Paul &Wang (2019);

Vahdani et al. (2018) consider disruptions in both facilities and the relief networks. Tofighi et al.

(2016) also include both facility disruption and relief network disruptions, where facility disruptions

are manifested as different levels of usable inventory in the storage facilities, and relief network dis-

ruptions are incorporated as different transportation times. In our work, we do not consider facility

disruptions because the potential locations for the prepositioning warehouses are chosen in relatively

safer areas, or in other words, regions with a lower risk of damage from earthquakes. Moreover, we

assume that newer facilities will be built incorporating earthquake-resistant building codes and thus

have a lower probability of getting damaged.

A review of the literature on humanitarian facility location under uncertainty by Dönmez et al.

(2021) states that uncertainty in humanitarian logistics that has been studied arises either from the de-

mand side, or from the supply side, or related to network connectivity. Stienen et al. (2021) consider

uncertainty on the demand side where the number of people affected is modeled using an uncertainty

set. Haghi et al. (2017) and Zokaee et al. (2016) consider uncertainties in both the demand and the

supply side, along with uncertainty in the cost parameters. In Zokaee et al. (2016), the authors study

uncertainty in the demand and supply of relief commodities, where they can lie within an uncertainty

set with a particular nominal value. Chang et al. (2024a) considers uncertainties in the relief network

arising due to unknownparameters for earthquakes. Vahdani et al. (2018) consider uncertainty on the

supply side and the relief networks. Tofighi et al. (2016) includes uncertainty in the demand side, sup-
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ply side, and relief networks together. We handle uncertainty related to the location and magnitudes

of earthquakes and aftershocks, which, in turn, is manifested as the uncertainty in demand based on

the demand nodes that are affected.

4.2.2 Dealingwith uncertainty

The uncertainties in facility location and disaster management is usually handled using either robust

optimization (Paul & Wang, 2019; Haghi et al., 2017; Stienen et al., 2021; Zokaee et al., 2016; Vah-

dani et al., 2018), or stochastic programming (Paul &MacDonald, 2016; Acar & Kaya, 2019; Chang

et al., 2024b,a), or a combination of both (Alizadeh et al., 2019; Rezaei-Malek et al., 2016). However,

other avenues have been explored as well. For example, Tofighi et al. (2016) incorporates a credibility-

measure based possibilistic programming into a scenario-based stochastic programming framework.

Sheikholeslami & Zarrinpoor (2023) handles uncertainty using a fuzzy chance-constrained program-

ming method originated in Me measure, which prevents extreme attitudes of the decision-makers.

Ghasemi&Khalili-Damghani (2021) incorporates a robust simulation-optimization approachwhere

they use simulation to investigate the damage of urban infrastructures and their impact on the de-

mand for relief commodities. Then, they use robust optimization to consider the location decisions

of suppliers and DCs, their inventory levels, and finally, the flow of relief commodities between DCs.

Rezaei-Malek et al. (2016) utilizes a scenario-based robust stochastic approach for designing the relief

networkwith perishable commodities. Khalili-Fard et al. (2024) tackle uncertainty using both stochas-

tic and fuzzy programming. Stochastic parameters are those that can be estimated from available data,

while probabilistic programming is employed for parameters that lack data and information. Taoukt-

sis & Zikopoulos (2024) develop a decision-making tool for installing DCs using a combination of a

heuristic algorithm and predictive models based on a binary classification problem with the support

of a supervised deep neural network.
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We use robust optimization in this work, motivated by the fact that the locations of epicenter and

aftershocks are uncertain in nature. Moreover, as stated by Starr & Van Wassenhove (2014), robust

solutions are key in humanitarian logistics and disaster preparedness.

Soyster (1973) was the first to study a robust linear programming problem, where the solution re-

mains feasible for all realizations of parameters within a given convex set. However, the solutions

obtained are too conservative in nature (Bertsimas & Sim, 2004), because they take into account

the worst-case values of the parameters, possibly all of them varying simultaneously. Ben-Tal & Ne-

mirovski (1998, 2000) introduced a less conservative way to model the uncertainty set where, based

on statistical estimates, the values taken by the uncertain parameters are considered based on their

probability (Gregory et al., 2011). This class of uncertainty sets is ellipsoidal in nature, and the robust

counterparts of the linear programming problems give rise to conic quadratic problems (Bertsimas

& Sim, 2004). A similar kind of study was also undertaken independently by El Ghaoui & Lebret

(1997) and El Ghaoui et al. (1998) around the same period. However, these models, being non-linear,

are computationally more challenging than the linear models defined by Soyster (1973) (Bertsimas &

Sim, 2004). Bertsimas & Sim (2004) proposed a robust linear programming model based on the idea

that not all parameters would take their worst-case values at the same time. They used a parameter ‘Γi’,

for each constraint i, to represent the number of parameters in the constraint that can actually deviate

to their worst-case value, and thus the solution remains feasible if less than Γi of the uncertain param-

eters change for each constraint. This provides more flexibility to the user who has control over the

“degree of conservatism”. Ourwork draws inspiration fromBertsimas& Sim’s Γ-robustness approach

to generate our uncertainty set for the locations of the earthquakes.

The literature combining facility location and robust optimization is as rich as it is vast, so in the

following subsection, we focus on papers specifically dealing with preparedness for multiple disasters,

which is the case of our work.
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4.2.3 Compound disasters

Most of the studies mentioned above deal with one kind of disaster. However, in reality, different

types of humanitarian emergencies may occur together, or one emergency often leads to another. Si-

multaneous disasters result when more than one kind of humanitarian emergency occurs together.

Compound disasters, on the other hand, are those where one disaster leads to another either by di-

rectly causing it, or by hindering the resilience and response for the second emergency (Liu &Huang,

2014).

Aydin & Cetinkale (2023) study multiple disasters simultaneously, viz. large-scale earthquakes

along with pandemics. They study the location and number of temporary medical facilities for large-

scale disasters occurring in a region that has already been hit by a pandemic. In the first stage, they con-

sider locating emergency healthcare facilities to increase the effectiveness of response operations to the

disaster, accommodating rotation of medical teams between facilities, and incorporating uncertainty

based on demand stochasticity and road network disruptions. In the second stage, they forecast the

number of infected individuals alongwith the severity of infection in the aftermath of the earthquake.

Additionally, the authors provide a mathematical model to find the optimal number and location of

COVID-19 hospitals and isolation centers. Ozbay et al. (2019) study shelter site location problem

for the multi-hazard phenomenon, i.e., a primary disaster followed by a secondary disaster, and they

focus their study on earthquakes followed by an aftershock using a multi-stage stochasticMIPmodel.

The shelter sites are located after an earthquake happens and before the aftershock. The location de-

cisions are finalized (along with new locations) after the demands from the first earthquake, and the

aftershock is observed in the second and third stages, respectively. The third stage also includes utiliza-

tion of the shelter sites and employing the conditional value-at-risk (cVaR) riskmeasure tomanage the

risk of a shelter site exceeding its capacities. The allocation decisions are based on the nearest assign-

ment to model the real-life behavior of people. The shelter sites have weights on them based on their
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performance, and they wish to minimize the expected weighted number of established shelter sites

while aiming to open shelter sites with higher weights. Mohammadi et al. (2020) design a humanitar-

ian relief network with several decisions– facility location-allocation, fair distribution of relief items,

assignment of victims, and routing decisions, including aftershock concerns. They adopt a combina-

tion of robust optimization and neutrosophic fuzzy-based approach to handle uncertainty. Bera et al.

(2023) also investigates shelter location-allocation planning for multiple disasters, specifically floods

and landslides. First, they develop susceptibilitymaps for floods and landslides using theRandomFor-

est algorithmandGoogle Earth engine. Second, the shelter location (particularly schools as evacuation

centers) and allocation decisions aremade using a p-median problem and amaximal covering location

problem. They implemented their study in a mountainous village in the Western Ghats region of In-

dia in the context of a rainstorm disaster that occurred in 2005 and found that existing shelters were

not enough to provide services to everyone within 30 minutes and 60 minutes. Greer et al. (2024)

explore dual hazards in Texas and Louisiana, specifically Hurricane Laura, which occurred in August

2020 amidst the COVID-19 crisis. The authors perform a qualitative analysis with emergency man-

agement stakeholders and find evidence of improvisation for the response- evacuation and sheltering-

to hurricanes. To the best of our knowledge, there exists no paper in the literature that provides a

comprehensive model focusing on the case of multiple aftershocks following a main earthquake for

relief facility location.

4.3 Problem setting

Let S be the set of first-stage scenarios for the main earthquake. Each scenario s ∈ S is defined by the

location of the major earthquake epicenter that can be affected in the first stage, and we assume we

have only one earthquake in the first stage.

Amajor earthquake is usually followed by a series of aftershocks. LetK denote the set of all possible
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aftershock locations. The aftershocks that follow depend on the location of the epicenter of the first

earthquake, typically lying on and around the fault lines triggered by the main earthquake. Let Ks

denote the second-stage scenario set that can follow the first-stage scenario s.

We consider that in any scenario s ∈ S , there can be atmost Δ aftershocks. In other words, wewish

to prepare for the demand arising from one major earthquake followed by Δ aftershocks. We define

byKΔ
s the uncertainty set that denotes the possible subset of aftershocks in each scenario s, given by

KΔ
s = {K ⊂ Ks : |K| ≤ Δ} , s ∈ S. (4.1)

In our setting, we assume that the decision-maker aims to prepare for earthquakes of fixed mag-

nitude, both in the first stage and the second stage. For example, they might want to prepare for

scenarios of a major earthquake of a maximummagnitude 8, followed by Δ= 5 earthquakes of a maxi-

mummagnitude 6.5 in the second stage. Thesemagnitudes are estimated beforehand, in a sufficiently

conservative way such that the demand of the entire affected area can be satisfied.

LetD be the set of demand nodes that can potentially be affected by the earthquake or aftershocks.

LetF be the set of all locations where a facility (warehouse with relief material) can be set up. Let tij

be the distance (or equivalently time and cost) of traveling between demand node i ∈ D and facility

node j ∈ F . In the following subsection, we describe how we estimate the demands at each demand

node.

Demand estimation

Each demand node can have demands from the main earthquake, or any of the following aftershocks,

or both. We note the demand in terms of the number of people requiring support and relief materials.

The demand depends on several factors. It increases with the population of a node and decreases in
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the distance from the epicenter of the earthquakes. The closer a demand node is to the epicenter, the

more damage it incurs. The demand also depends on the magnitude of the earthquakes– the higher

the magnitude, the stronger the impact and the more damaging it is.

Some works in the literature have proposed methods for casualty or damage estimation in earth-

quakes. For example, Urrutia et al. (2014) employ regression analysis usingmatriceswhere earthquake

parameters likemagnitude, intensity, depth of focus, location of the epicenter, and duration are taken

into account to estimate damages in terms of the number of deaths, injured, families that are affected,

and the cost of damage. Another study by Aleskerov et al. (2005) proposes a cluster-based model to

estimate human losses and injuries during earthquakes and, as a result, the shelter needs for people.

Clusters could be a single building, a small group of buildings, schools, etc, in a sub-district area. The

buildings’ characteristics, like construction type, number of stories, year of construction, etc., and the

intensity of earthquakes are used to estimate losses and capacities for shelters in each location. Xing

et al. (2015) proposes a robust wavelet ν-SVMmodel for casualty prediction in earthquakes. They use

predictors like earthquake magnitude, epicentral intensity, fortification intensity, population density,

pre-warning level, in-building probability, location of occurrence, emergency supply support, and

building collapse ratio to predict the death rate and injury rate. Gul & Guneri (2016) utilize artificial

neural networks (ANN) for casualty estimation based on historical data of various earthquake param-

eters like occurrence time (day or night), magnitude, and population density to predict the number

of injured people.

Since our work focuses more on facility location models than casualty prediction models, we draw

inspiration from the literature and use a regression technique for our casualty estimation model, re-

stricted to a smaller set of relevant features for which we had available data. Since no detailed data

was available on the specific impact of individual earthquakes on the surrounding areas, we only use

magnitude, population, and distance from the epicenter to estimate the demand.

131



The demand d1si at each demand node i in the first stage for scenario s is calculated as:

d1si = Φ1 (Pi,Dsi,M1)

where Φ1 is a function of the population Pi at node i, the distanceDsi of the demand node from the

earthquake epicenter that is affected in scenario s, and the magnitudeM1 of the first earthquake.

Similarly, in the second stage, the demand at each node i due to an aftershock at node k ∈ Ks is

given by

d2ik = Φ2 (Pi2,Dik,M2)

where,Dik is the distance between the demand node i, and the aftershock location k,Pi2 is the residual

population of node iwhere people affected by the main earthquake and rescued at the first stage have

been subtracted, andM2 is the typical magnitude of aftershocks.

In the second stage, if a demand node is affected by more than one aftershock, then the demand

at that node is taken to be the maximum of the demands caused by each aftershock that affects the

demand node, maxk∈Ks d2ik, i.e., the demand induced by the closest aftershock in the subset Ks of

aftershocks.

In Appendix B.2, we use the 2023 Turkey earthquake and immediately available data on building

damage and affected lives to calibrate a regression model for estimating our demands.

Problem definition

Wewish to select a subset F ofF with at mostN facilities such that, in any major earthquake scenario

s ∈ S and a corresponding aftershock scenarioKΔ
s , we are able to satisfy the entire demand bymaking

the closest allocationof the demandnodes to the facilities. This is equivalent to preparing for theworst

possible demand over all possible epicenter scenarios s ∈ S for the first stage, and all possible subsets
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of aftershocks K ⊂ KΔ
s for the second stage. The goal is to find a subset F of facilities to open and

to allocate the demand nodes in the first and the second stage, so that the worst-case allocation cost is

minimized. Our problem is then given by:

min
F⊂F
|F|≤N

{
max
s∈S

{
T1
s (F) + max

K∈KΔ
s

T2
s (F,K)

}}
, (P)

whereT1
s (F) denotes the cost of allocating the affected demand nodes in scenario s to the set F of open

facilities in the first stage, each allocation (i, j) incurring a cost of d1istij. Similarly, T2
s (F,K) denotes

the allocation cost of assigning the demand nodes to the open facilities in the aftershock scenario

K ∈ KΔ
s . In the second stage, each assignment (i, j) incurs a cost of tijmaxk∈K d2ik for a given subset

K of aftershocks since the demand in the second stage is the maximum demand (associated with the

closest aftershock, see above). A summary of notations is provided in Appendix B.3. We will see in

Section 4.4 that due to the uncapacitated version of the problem, for a given set F of selected facilities,

the optimal assignments of customers to a facility in F will be the same at stage 1 and stage 2, i.e., they

will be assigned to the closest facility in F in both stages.

In the following sections, we present different formulations and solution approaches for the prob-

lem.

4.4 Formulationwith full enumeration of scenarios (Fxy)

Let yj be a binary variable equal 1 if a facility is constructed at location j ∈ F , and 0 otherwise. We

also define binary assignment variables xij equal to 1 if demand node i is assigned to facility j, and 0

otherwise.

Towrite themodel, we aggregate the first and the second stage scenarios, or, in otherwords, we fully

enumerate all the earthquake-aftershocks scenarios. Each aggregated scenario ω ≡ (s,K) consists of a
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major earthquake s in the first stage, followed by a setK ⊆ KΔ
s of aftershocks in the second stage. Each

aggregated scenario ω can also be equivalently written as (s,K), where s ∈ S and K ⊂ KΔ
s . Let Ω

be the set of all aggregated scenarios described above. We assume that at most one scenario will occur,

and we want to make location and allocation decisions in the worst case.

Let d1ωi and d2ωi be the demands at node i in scenario ω in stages 1 and 2, respectively. While d1ωi is

simply given by the demand at node i in earthquake scenario s, d2ωi is themaximumpossible demand at

node i in the second stage given that scenario s has occurred in the first stage, and aftershock scenario

K ∈ KΔ
s has occurred in the second stage, i.e.,

d2ωi = max
k∈K

d2ik.

The model with the full enumeration of scenarios is written as

Fxy : min θ (4.2a)

subject to θ ≥
∑
i∈D

∑
j∈F

tij(d1ωi + d2ωi)xij ω ∈ Ω (4.2b)

∑
j∈F

xij = 1 i ∈ D (4.2c)

yj ≥ xij i ∈ D, j ∈ F (4.2d)

1 ≤
∑
j∈F

yj ≤ N (4.2e)

θ ≥ 0 (4.2f)

xij, yj ∈ {0, 1} i ∈ D, j ∈ F . (4.2g)
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Constraints (4.2b) are used to minimize the allocation costs of stage 1 and stage 2 in the worst-case

aggregated scenario. Constraints (4.2c) says that each demand node is allocated to at least one facility

node in stage 1, and constraints (4.2d) ensures that if a demandnode is allocated to a facility node, then

the facility is opened. Finally, constraints (4.2e) ensure that at least one facility is opened and nomore

thanN facilities are opened. We denote by Fxy, the formulation of the facility location problemwhere

each aggregated scenario (with amain earthquake followed by Δ aftershocks) is explicitly enumerated,

and the objective is to find the location of the warehouses such that the total allocation cost of the

demand nodes to the facilities is minimized.

Note that since we study an uncapacitated facility location problem, the variables xij have the 0-1

property. In other words, each demand node is always allocated to the closest open facility that serves

its entire demand.

Proposition 1. The formulation (4.2) is a valid formulation of (P).

Proof. Problem (P) is a two-stage problem. In stage 1, after the first earthquake, we make the first-

stage allocation decisions. Let us refer to them by x1ij, which denotes if demand node i is assigned

to facility node j. The second-stage decisions also include allocation decisions that are made after

the aftershocks are realized. Let them be denoted by x2ij, which indicates the assignment of demand

node i to facility j in stage 2. These (allocation) subproblems are denoted by T1 and T2, respectively.

Since we do not have capacities on facilities, once they have been established by pre-disaster variables

yj, each potential demand node is assigned to the closest open facility regardless of the location of the

earthquake and aftershocks, and the demands at the nodes. Hence, variables x1ij and x2ij can be replaced

equivalently by a unique assignment variable xij.

Fxy hasO(|D| · |F|) variables and an exponential number of constraints. We refer to the solution

approach, where we directly use this formulation, as Pfullxy . However, it cannot be solved easily if the
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aftershocks are too many in number, as shown in Section 4.7. When |Ω| is too large, we use cutting

planes to separate constraints (4.2b). This method is explained in the following subsection.

4.4.1 Solution approachwith separation of scenarios (Psep
xy )

In this subsection, we explain the solution approach where we separate constraints (4.2b) using lazy

cuts. We start with the RelaxedMaster Problem (RMP), which at the first iteration is written as:

min θ (4.3a)

subject to
∑
j∈F

xij = 1 i ∈ D (4.3b)

yj ≥ xij i ∈ D, j ∈ F (4.3c)

1 ≤
∑
j∈F

yj ≤ N (4.3d)

θ ≥ 0 (4.3e)

xij, yj ∈ {0, 1} i ∈ D, j ∈ F . (4.3f )

Themodel (4.3) is a simple location-allocation problem. The general idea is the following. For any

solution (x∗, y∗, θ∗) of (4.3), we check if

θ∗ ≥ max
ω∈Ω

∑
i∈D

∑
j∈F

tij(d1ωi + d2ωi)x∗ij,

i.e., if θ∗ is greater than the largest possible allocation cost over all possible demand vectors. If not, and

there exists an aggregated scenario with a worse allocation cost, we add it to the RMP and resolve it.

In each scenario ω, the allocation cost in the first stage τ1s is induced by the demand generated by
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the main earthquake, i.e.,

τ1s (x∗) =
∑
i∈D

∑
j∈F

tijd1six∗ij (4.4)

where, s denotes the main earthquake in the aggregated scenario ω, with d1ωi = d1si. The allocation

cost in the second stage is the maximum cost over all possible demand profiles generated by the Δ

aftershocks in scenario ω. This demand can be computed using the following subproblem and can be

written as:

τ2s (x∗) = max
∑
i∈D

∑
j∈F

tijx∗ij

 max
k∈Ks

{
d2ikuk

}
(4.5a)

∑
k∈Ks

uk ≤ Δ (4.5b)

uk ∈ {0, 1} k ∈ Ks. (4.5c)

where binary variables uk define the subsetK ⊆ KΔ
s of aftershocks.

The subproblem τ2s cannot be solved in the above non-linear form. To solve it, we linearize it using

variables zik for i ∈ D and k ∈ Ks, which determines the aftershock k that causes the highest demand

for node i. We obtain the followingMixed-Integer Linear Program:
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τ2s (x∗) = max
∑
i∈D

∑
k∈Ks

Cikzik (4.6a)

∑
k∈Ks

zik = 1 i ∈ D (4.6b)

zik ≤ uk i ∈ D, k ∈ Ks (4.6c)∑
k∈Ks

uk ≤ Δ (4.6d)

uk ∈ {0, 1} k ∈ Ks (4.6e)

zik ≥ 0 i ∈ D, k ∈ Ks (4.6f )

where Cik =
(∑

j∈F tijx∗ij
)
d2ik.

Proposition 2. Formulation (4.6) is valid for subproblem τ2s .

Proof. The non-linear subproblem (4.5) can be reformulated as:

τ2s (x∗) = max
∑
i∈D

Vi

Vi = max
k∈Ks

Cikuk i ∈ D∑
k∈Ks

uk ≤ Δ

uk ∈ {0, 1} k ∈ Ks.

The above variableVi can be defined as the following minimization linear program:

minVi s.t.Vi ≥ Cikuk, k ∈ Ks
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Its dual (with dual variable zik associated with constraint k) is:

max
∑
k∈Ks

Cikukzik

∑
k∈Ks

zik ≤ 1

zik ≥ 0

where the inequality constraint can be replaced by an equality
∑

k∈Ks
zik = 1 by maximization of the

objective. The above dual is quadratic in z and u variables, but since variables uk are binary it can be

equivalently reformulated as:

max
∑
k∈Ks

Cikzik

∑
k∈Ks

zik = 1

zik ≤ uk k ∈ Ks

zik ≥ 0

Replacing Vi by the above linear program with variables zik in the first formulation of the proof, we

exactly get formulation (4.6).

For any solution (x∗, y∗, θ∗) of the RMP, we must have

θ∗ ≥ τ1s (x∗) + τ2s (x∗) (4.10)
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for each aggregated scenario ω = (s,K) ∈ Ω. If ∃ s̄ ∈ S , such that

θ∗ < τ1s̄ (x∗) + τ2s̄ (x∗),

then we find an aggregated scenario ω̄ = (̄s, K̄) that does not satisfy (4.10), and we add the corre-

sponding cut to the RMP for ω̄ in the following way

θ ≥
∑
i∈D

∑
j∈F

tij(d1iω̄ + d2iω̄)xij (4.11)

and resolve the RMP. d2iω̄ is given by max{d2iku∗k , k ∈ Ks}, where u∗ is the optimal solution of (4.6)

and represents themaximumdemand at node i following scenario ω. We denote the whole separation

algorithm by Psepxy . Note that the subproblem (4.6) is equivalent to its linear relaxation where binary

variables uk are just set to be continuous. This enables to fasten its solving time.

4.5 Extended formulation (Fextxy )

In this subsection, we discuss a reformulation of Fxy. We provide an extended formulation of (4.2).

The extended model is similar to Fxy, except for constraints (4.2b). Using the value function τ2s , we

can reformulate the model as:

min θ (4.12a)

subject to θ ≥
∑
i∈D

∑
j∈F

tijd1sixij + τ2s (x) s ∈ S (4.12b)

∑
j∈F

xij = 1 i ∈ D (4.12c)

yj ≥ xij i ∈ D, j ∈ F (4.12d)
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1 ≤
∑
j∈F

yj ≤ N (4.12e)

θ ≥ 0 (4.12f)

xij, yj ∈ {0, 1} i ∈ D, j ∈ F (4.12g)

where, for each scenario s ∈ S , τ2s is given by the reformulated subproblem (4.6).

Inmodel (4.12), constraints (4.12b) are brokendown into twoparts. In theRHSof the constraints,

thefirst part gives the allocation cost in stage 1 in scenario s, and the secondpart gives the corresponding

second stage allocation cost. The remaining constraints of (4.12) are the same as Fxy.

We replace τ2s by its linear relaxation, so that it may be dualized. While the linear programs are not

equivalent, the problem has the property that, in almost all cases, the solution of the relaxed problem

is the same as the one with binary constraints. Thus it is a heuristic solution approach.

We replace constraints (4.6e) by

0 ≤ uk ≤ 1 k ∈ Ks (4.13)

in problem (4.6). Similar to the approach of Bertsimas & Sim (2004), we dualize (4.6) to obtain a

minimization problem and substitute it into the original problem to derive the extended version of

problem (4.12).

Let psi, qsik, φs, and rsk be the dual variables corresponding to constraints (4.6b), (4.6c), (4.6d), and

(4.13), respectively, for each scenario s. Then, the dual problem is given by:

τ2s (x∗) = min
∑
i∈D

psi + Δφs +
∑
k∈Ks

rsk (4.14a)
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psi + qsik ≥
∑
j∈F

tijd2ikx
∗
ij i ∈ D, k ∈ Ks (4.14b)

−
∑
i∈D

qsik + φs + rsk ≥ 0 k ∈ Ks (4.14c)

qsik, rsk, φs ≥ 0, psi ∈ R i ∈ D, k ∈ Ks, s ∈ S. (4.14d)

Substituting τ2s by its above dual program in the initialmodel (4.12a)-(4.12g), we obtain the following

extended formulation:

Fextxy : min θ (4.15a)

subject to θ ≥
∑
i∈D

∑
j∈F

tijd1sixij +
∑
i∈D

psi + Δφs +
∑
k∈Ks

rsk s ∈ S (4.15b)

psi + qsik ≥
∑
j∈F

tijd2ikxij i ∈ D, k ∈ Ks (4.15c)

−
∑
i∈D

qsik + φs + rsk ≥ 0 k ∈ Ks (4.15d)

∑
j∈F

xij ≥ 1 i ∈ D (4.15e)

yj ≥ xij i ∈ D, j ∈ F (4.15f)

1 ≤
∑
j∈F

yj ≤ N (4.15g)

θ ≥ 0 (4.15h)

xij, yj ∈ {0, 1} i ∈ D, j ∈ F (4.15i)

qsik, rsk, φs ≥ 0, psi ∈ R i ∈ D, j ∈ F , k ∈ Ks, s ∈ S. (4.15j)

Model Fextxy hasO(|D| · |S| · |K|+ |D| · |F|) variables, andO(|S|+ |D| · |K|+ |D| · |F|) constraints.

It is a compact formulation, so it can be directly solved by aMILP solver. To solve this model, we use

142



the automatic Benders decomposition of CPLEX and refer to this solution approach as Pextxy .

4.6 Formulation in the space of location variables (Fy)

In this subsection, we provide a formulation of problem (P), driven by the location variables y, by

explicitly writing the subproblems T1
s and T2

s in function of location variables y. We will refer to this

formulation as Fy.

4.6.1 Subproblem T1
s

For each scenario s ∈ S and a given location vector y∗, the subproblem T1
s is defined as

T1
s (y∗) = min

x

∑
i∈D

d1si
∑
j∈F

tij xij (4.16a)

∑
j∈F

xij = 1 i ∈ D (4.16b)

0 ≤ xij ≤ y∗j i ∈ D, j ∈ F (4.16c)

where the allocation variables xij denote the proportion of the demand of node i that is allocated to

facility j. We wish tominimize the overall transportation time of the demand or the allocation cost, as

also explained earlier. Constraints (4.16b) state that the entire demand of each node i is fulfilled, and

(4.16c) ensure that if a demand node is assigned to a site, then a facility is opened there. Even though

variables xij are continuous, we always have an optimal solution where the variables take binary values

due to the uncapacitated nature of our problem.

We proceed by writing the dual of T1
s first. To do so, we write constraint (4.16c) as

−xij ≥ −y∗j i ∈ D, j ∈ F (4.17)
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Let λi and μij be the dual variables corresponding to constraints (4.16b) and (4.17), respectively.

Then the dual of the (4.16a)-(4.16b), and (4.17), is given by

max
λ,μ

∑
i∈D

λi −
∑
i∈D

∑
j∈F

y∗j μij (4.18a)

λi − μij ≤ tij d1si i ∈ D, j ∈ F (4.18b)

λi ∈ R, μij ≥ 0 i ∈ D, j ∈ F . (4.18c)

Proposition 3. The optimal primal and dual solutions of problem T1
s (y∗) are given by

xij =



y∗j , j < pi

1−
pi−1∑
j=1

y∗j , j = pi

0, j > pi

, j ∈ F (4.19a)

λi = tipid1si (4.19b)

μij =


(tipi − tij)d1si, j < pi

0, j ≥ pi
, i ∈ D, j ∈ F (4.19c)

where, for each i ∈ D, the coefficients tij are sorted in non-decreasing order as ti1 ≤ . . . ≤ tim, and

pi = p(i, y∗) denotes the index of the critical facility for i such that:

pi−1∑
j=1

y∗j < 1 ≤
pi∑
j=1

y∗j .

Proof. Proof is similar to Fischetti et al. (2016) and is given in Appendix B.1.
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4.6.2 Subproblem T2
s

Wedefine subproblemT2
s similarly. For each s ∈ S , for a given y∗ and an aftershock scenariou∗s ∈ KΔ

s ,

we formulate it in the following way:

T2
s (y∗, u∗s ) = min

zs

∑
i∈D

∑
j∈F

tij zsij (4.20a)

∑
j∈F

zsij ≥ u∗sk d
2
ik i ∈ D, k ∈ Ks (4.20b)

zsij ≤ D̂iy∗j i ∈ D, j ∈ F (4.20c)

zsij ≥ 0 i ∈ D, j ∈ F . (4.20d)

This formulation uses variables zsij which represent the exact demand of node i allocated to facility

j, the entirety of which will be allocated to the closest open facility. Constraints (4.20b) ensure that

the maximum possible demand of each node i, due to a set of aftershocks described by usk, is satisfied.

Constraints (4.20c) make sure that the allocations are done only to the open facilities. D̂i is an upper

bound on the demand, and we define D̂i = max
k∈K

d2ik.

For the dual of the second subproblem, we reformulate constraints (4.20c) as

−zsij ≥ −D̂iy∗j i ∈ D, j ∈ F . (4.21)

Let αsik and βsij, be the dual variables corresponding to constraints (4.20b) and (4.21), respectively.
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Then the dual of T2
s (y∗, u∗s ) is written as:

max
αs,βs

∑
i∈D

∑
k∈Ks

u∗skd
2
ik αsik −

∑
i∈D

∑
j∈F

D̂iy∗j βsij (4.22a)

∑
k∈Ks

αsik − βsij ≤ tij i ∈ D, j ∈ F (4.22b)

αsik, βsij ≥ 0 i ∈ D, j ∈ F , k ∈ Ks. (4.22c)

The objective function contains the product term uskαsik. However, note that uskαsik = αsik, when

usk = 1 and 0 when uks = 0. Thus, we can reformulate it in the following way:

max
us∈KΔ

s

T2
s (y∗, us) = max

αs,βs,us

∑
i∈D

∑
k∈Ks

d2ik αsik −
∑
i∈D

∑
j∈F

D̂iy∗j βsij (4.23a)

subject to:
∑
k∈Ks

αsik − βsij ≤ tij, i ∈ D, j ∈ F (4.23b)

∑
k∈Ks

usk ≤ Δ (4.23c)

αsik ≤ Musk, i ∈ D, k ∈ Ks (4.23d)

αsik, βsij, ≥ 0, usk ∈ {0, 1}, i ∈ D, j ∈ F , k ∈ Ks, (4.23e)

whereM is an upper bound on αsik. Hence, the problem (P) can be stated as:

min
y∈Y

1≤
∑
j∈F

yj≤N

max
s∈S

 max
(λ,μ)∈L1

s
(α,β,u)∈L2

s

∑
i∈D

λi −
∑
i∈D

∑
j∈F

y∗j μij +
∑
i∈D

∑
k∈Ks

d2ik αsik −
∑
i∈D

∑
j∈F

D̂i y∗j βsij


 ,

(4.24)

where L1
s and L2

s are the sets of extreme points of the problems (4.18) and (4.23), respectively. We
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have the following result.

Proposition 4. The valid model in the space of y variables is given as

Fy : min θ (4.25a)

θ ≥
∑
i∈D

d1si

tipi −∑
j∈F

(tipi − tij)+yj

+
∑
i∈D

∑
k∈Ks

d2ik α
∗
sik −

∑
i∈D

∑
j∈F

D̂iyjβ∗sij, (4.25b)

(p1, . . . , p|D|) ∈ F |D|, (α∗, β∗, u∗) ∈ L2
s , s ∈ S

1 ≤
∑
j∈F

yj ≤ N, j ∈ F (4.25c)

θ ≥ 0, yj ∈ {0, 1} j ∈ F . (4.25d)

Proof. Proof is given in Appendix B.1

4.6.3 Solution approach Py

To solve the above formulation Fy, we separate constraints (4.25b) using lazy cuts. The Master Prob-

lem is given by the objective function (4.25a) and constraints (4.25c) and (4.25d).

For any solution, (ȳ, θ̄) of the master problem, for each i ∈ D we determine p̄i as its closest open

facility. We also find an optimal solution (α∗, β∗, u∗) of the subproblem T2
s (ȳ). If we have

θ̄ <
∑
i∈D

d1ĩs

tīpi −∑
j∈F

(tīpi − tij)+ȳj

+
∑
i∈D

∑
k∈K̃s

d2ik α
∗
ĩsk −

∑
i∈D

∑
j∈F

D̂iȳjβ∗ij̃s,

for some scenario s̃ ∈ S , then wemust add the cut (4.25b), corresponding to scenario s̃, to the master

problem, and resolve the master problem. We refer to this branch-and-cut solution approach as Py.
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4.7 Computational study

In this section, we analyze the tractability of the variousmodels and solvingmethods on a large dataset

of simulated instances inspired by real-life earthquake situations, before the real case study of the

Turkey 2023 earthquake in Section 4.8. We solve our models on these instances, and provide com-

putational results and analyses. We implemented the models on the Spyder IDE of Python 3.9 and

solved them using the CPLEX 22.1.1.0 standard solver. The tests were conducted on an Intel(R)

Xeon(R)W-2255 CPUwith a clock speed of 3.70 GHz and 96 GB RAM.

4.7.1 Instance generation

The outermost layer of the earth is comprised of tectonic plates, which are rocky and brittle (NOAA,

2023). Several major and minor plates fit together to make up the layer. These plates are in constant

motion, and can move together, collide, slide past one another, or move away from each other. The

boundarieswhere the platesmeet are fault lines. Additionally, fault linesmaybe formedon the interior

of the plates by built-up stress occurring due to the movement of plates against one another. When

the pressure on the fault line surpasses the strength of the rocks, the rocks abruptly break and shift,

causing an earthquake. This suddenmovement generates seismicwaves that travel through the Earth’s

surface, causing the ground to shake and resulting in an earthquake.

In order to simulate our instances, we mimic fault line behaviour. We generate a set of four fault

lines for our instances. The main earthquake and aftershock epicenters are then generated randomly

on or around these lines. We assume that any of the aftershocks on a fault line may be triggered in the

second stage if one of the primary earthquakes occurs on same fault line in the first stage.

We generate population centers that represent demand nodes within the region. These demand

nodes are affected if they are in the vicinity of the main earthquake or aftershock epicenters. We also
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generate several potential locations for setting up the facilities. The locations are generated such that

they are sufficiently far away from the fault lines and, hence, haveminimal chances of getting damaged

in the event of an earthquake.

The number of main earthquake locations (first-stage scenarios) ranges from 10 to 100 in our in-

stances. The number of aftershocks is fixed to twice the number of scenarios, so they range from 20

to 200. The instances were generated so that the larger instances were inclusive of the smaller ones. In

other words, we startedwith an instance having 10 scenarios and 20 aftershocks. For the instancewith

20 scenarios and 40 aftershocks, we generated 10 additional scenarios and 20 additional aftershocks

to the first instance. We continued this till we had 100 scenarios and 200 aftershocks.

We classify our instances into Small (S), Medium (M), and Large (L), based on the number of

demand nodes. The Small instances consist of 100 demand nodes, theMedium instances contains

200 demand nodes, and we have 400 demand nodes in the Largeinstances. The demand nodes are

also generated in an inclusive manner. The number of potential facility locations is kept fixed at 10

for all the instances.

In Figure 4.1, we present an example to illustrate our simulated instances. The figure displays the

major earthquake and aftershock epicenters represented by the red and blue circles, respectively. If

any of the main earthquake epicenters are affected, we assume Δ of the blue points lying near the red

points, i.e., on the same fault line as the major earthquake, may also be affected. The number of main

earthquakes, the total number of aftershocks, and the average number of aftershocks per scenario in

each of the instances are given in Table 4.1. In all tables, the character # means “number of”. The

potential locations for the facilities is denoted by pink crosses, and the demand nodes are represented

by the green squares.

As discussed in Section 4.3, the demand caused at any of the nodes due to an earthquake depends
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Figure 4.1: An example of an instance with |S|=60, |K|=120, |D|=200, # possible locations for facilities=10

Table 4.1: Summary of instances

Instance Number 1 2 3 4 5 6 7 8 9 10
# possible main earthquakes 10 20 30 40 50 60 70 80 90 100
Total # possible aftershocks 20 40 60 80 100 120 140 160 180 200

Average # aftershocks per scenario 5.5 9.7 14.43 18.7 23.66 29.4 34.34 39.73 44.58 49.74

on three factors– it is increases with the population at the node and the magnitude of the earthquake,

and decreases with the distance between the demand node and the earthquake location. With this in

mind, we use the following demand function:

Demand = k · Population ·Magnitudeα

Distanceβ
(4.26)

where k, α, and β are constants.

Additionally, we introduce a parameter called the Radius of Impact (RoI) that indicates if any de-

mand is generated on a node due to an earthquake. If a demand node lies outside the RoI, we set the
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demand to be zero, otherwise, if it lies inside, the demand is given by the equation (4.26). While there

is no fixed radius beyond which an earthquake is not felt, after a certain distance, the severity of the

damage is less, and hence, people there do not need additional support. The idea of RoI was inspired

by earthquake hazardmaps, where areas around fault lines that are at risk of severe, moderate, and low

impact are shown by concentric regions. Similar figures are also often observed in maps released after

earthquakes. For example, Figure 4.2 shows the earthquake of Gaziantep that occurred on February

6, followed by the aftershock that occurred 9 hours later (source: (Robles et al., 2023)). It shows con-

centric regions around the earthquake epicenters, representing their intensity. We try to mimic this

phenomenon using concentric circles around the earthquakes and aftershocks.

Figure 4.2: The Turkey earthquake of February 2023 and one of its major aftershocks, Source: The New York Times

The values of k, α, and β used in our experiments are 0.25, 0.75, and 0.5, respectively. These val-

ues were calibrated based on data from the Turkey-Syria earthquake. For more details, refer to the
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Appendix B.2. We also chose the values of RoI as 200 for the main earthquake and 100 for the after-

shocks. The magnitudes of the main earthquakes were generated between 7.5 and 8.5, while that of

the aftershocks lay between 6 and 7.5.

The population at each demand node was randomly generated between 10 and 100 (in thousands

of people), and the demand was calculated using (4.26). For the numerical experiments, the values of

Δ used are 3, 5, 7, and 10. The number of facilities to be located (N) are 3, 5, and 8.

We allotted a time limit of one hour to CPLEX for solving the models.

4.7.2 Numerical results

We tested our four solution approaches presented in the earlier sections, namely, Pfullxy , Psepxy , Pextxy , and

Py on the above instances. Figure 4.3 shows a solution of an instance. The pink crosses represent the

locations selected for establishing the facilities.

Figure 4.3: An example of the solution of an instance showing the selected facilities, with |S|=60, |K|=120, |D|=200,
Δ=3,N=3
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InTable 4.2,Pfullxy , which fully enumerates all scenarios, is shown tobe largely intractable fromsome

instance sizes. We were able to solve instances of small size only with this model– up to 30 scenarios

and 60 aftershocks with a Δ value of 5, and 40 scenarios and 80 aftershocks with a Δ value of 3. We

have a large combinatorial problem, where we enumerate |S| ×
(|KS|

Δ
)
, S ∈ S scenarios and build the

model. However, we found that once the model was built, it ran fairly quickly. For example, for an

instance with 30 scenarios and Δ=5, it took 6520 seconds to build the model, whereas 212 seconds

to solve it. For each instance, we report the objective function value, the CPLEX time taken to solve

the instance, and the total solution time. We are able to solve for all combinations of Δ and N for

instances with only up to 20 epicenters and 40 aftershocks. For instance 3, as soon as Δ exceeds 3, the

time taken blows up, as mentioned earlier, andwe are unable to find feasible solutions within the time

limit. For larger instances, e.g., instance 4 with Δ=5 andN=8, we run into memory errors due to the

extensive enumeration of the scenarios and aftershocks. Thus, we refrained from using Pfullxy for the

rest of our analyses.

In Figure 4.4, we solved our three remaining models on Small instances first. The solution ap-

proach Psepxy is a separation problem. It performs quite well on the Small instances. It solved all the

instances up to optimality. Pextxy solves the extended formulation of the problem. We used CPLEX

autobenders along with our formulation. While this formulation of our problem performs the fastest

and solves all the Small instances to optimality, CPLEX takes a long time to build the instances, par-

ticularly for instances with a higher number of scenarios. For example, for the Small instances, the

model building time reaches almost 5000 seconds as the number of scenarios goes up to 100. For

theMedium instances (200 demand nodes), the model building time goes up to 30000 seconds. In

approach Py, we solve the two stages of the problem separately. Py took the highest CPLEX time to

solve the instances.

While the CPLEX solution time and the total time taken to solve the models are not the same for
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Table 4.2: Numerical results using Pfull
xy (NS = No Solution)

Instance
Number

# main
earthquakes

|S|

#
aftershocks

|K|

Max #
warehouses

(N)

Delta (Δ) Objective
Function
Value

Solve
Time
CPLEX

Total
Solution
Time

3 20446 0.218 0.971
3 5 21172 0.125 0.476

7 21172 0.204 0.355
10 21172 0.094 0.249

3 20446 0.797 1.504
1 10 20 5 5 21172 0.359 0.652

7 21172 0.031 0.162
10 21172 0.047 0.176

3 20446 0.25 0.809
8 5 21172 0.125 0.346

7 21172 0.047 0.147
10 21172 0.031 0.164

3 26914 10.594 21.802
3 5 29713 12.656 67.535

7 29961 20.812 93.442
10 29961 8.078 17.477

3 24787 5.235 17.243
2 20 40 5 5 25157 8.797 61.725

7 25405 7.734 76.019
10 25405 3.156 11.349

3 24787 1.015 8.935
8 5 25157 3.687 39.406

7 25405 4.359 51.192
10 25405 0.718 6.211

3 28611 16.188 119.325
3 5 29713 211.797 6519.589

7 NS NS NS
10 NS NS NS

3 24787 8.375 88.505
3 30 60 5 5 25619 126.766 6365.179

7 NS NS NS
10 NS NS NS

3 24787 7.047 115.555
8 5 25157 87.453 6231.710

7 NS NS NS
10 NS NS NS

3 28611 89.203 527.525
3 5 NS NS NS

7 NS NS NS
10 NS NS NS

3 24787 15.797 386.497
4 40 80 5 5 NS NS NS

7 NS NS NS
10 NS NS NS

3 24787 12.469 359.266
8 5 NS NS NS

7 NS NS NS
10 NS NS NS
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Pfullxy andPextxy , due to the time taken byCPLEX to build the problem, they are almost the same for the

other two models, Psepxy and Py as they are branch-and-cut formulations. Figure 4.4 shows the time

taken to solve the models on the Small instances. It clearly shows the difference in the solution time

and the total time taken by Pextxy .

(a) Total Time taken to solve the Small instances (b) Time taken by CPLEX to solve the Small instances

Figure 4.4: Comparison of the different solution approaches w.r.t computational time

In Figures 4.5, 4.6, and 4.7, we compare only the two approaches Pextxy and Py, and report the

CPLEX solution times as the number of scenarios, Δ, and N increases. We observe an exponential

increase in theCPLEX solution time as the number of scenarios, and correspondingly the aftershocks,

increase for bothmodels, as demonstrated in Figure 4.5. The exponential increase in time is evenmore

prominent for the total time takenbyCPLEXforPy. InFigure 4.6,we report the computational times

for different values of Δ. As Δ increases, we observe the solution times to be consistently decreasing

for Pextxy , with the median remaining approximately the same, as can be seen from the figure. For Py,

As Δ increases, the median solving time remains the same, particularly for Δ = 5, 7, 10. As we increase

the value ofN, we notice the computational times to be decreasing for both the approaches Pextxy and

Py. We predict that this change would bemore pronounced as the instance size increases (particularly,

the number of demand nodes), but we refrain from doing further experiments with the above two

models because of the fact that Psepxy clearly outperforms the other two computationally. Thus, we
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focus further analyses on the separation model Psepxy .

(a) Pext
xy (b) Py

Figure 4.5: Comparison of CPLEX solution time for the solution approaches Pext
xy and Py

to solve the Small instances as the number of scenarios increases

(a) Pext
xy (b) Py

Figure 4.6: Comparison of CPLEX solution time for the solution approaches Pext
xy and Py to solve the Small instances for

different values of Δ
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(a) Pext
xy (b) Py

Figure 4.7: Comparison of CPLEX solution times for the solution approaches Pext
xy and Py to solve the Small instances for

different values ofN

We foundmodelPsepxy to be the best performing one, both in terms of computational time and find-

ing optimal solutions. Thus, we implement this on theMedium and the Large instances to generate

additional insights on the performance of the robust model. Further in the paper, when we refer to

the robust model, we refer to the separation model Psepxy unless otherwise mentioned.

Out of the 360 instances, we were able to find the optimal solution for 356 of them. The four

instances for which time ran out before we found the optimal solution each had 100 scenarios, 200

aftershocks, and 400 demand nodes.

Figure 4.8 shows the variation in the objective value and the solving time for Psepxy as the number of

scenarios increases for the Small,Medium, and Large instances. First of all, it is easy to see that the

time increases exponentially once again as the number of demand nodes increases. As the number of

scenarios increases, we observe the objective values to increase initially, and thereafter, there is only a

slight increase in the objective for a higher number of scenarios. The variations in the objective value

for instances with the same number of scenarios are also consistent. Thus, for practical applications,

it would be enough to consider a small number of scenarios, for example, 50. This would also result

in a low solving time of the models.
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(a)Objective Value (b) Total solution time

Figure 4.8: Comparison of the objective value and the total time as the number of scenarios increases for the solution
approach Psep

xy

Next, in Figure 4.9, we evaluate the robust model as Δ increases. The objective value increases

slightly as Δ increases for each set of sizes. We also show in Figure 4.10 how the locations of selected

facilities change as Δ changes. We observe from our experiments that, for higher values of Δ, with

everything else remaining constant, the locations of selected facilities stabilize. This can also be seen

in Figure 4.10.

We also notice that as Δ increases, the CPLEX computational time decreases. This was counter-

intuitive to us, as we expected the time to first increase with an increase in Δ. This expectation is

based on the fact that the number of combinations of second-stage scenarios is the highest when Δ is

around half the average number of aftershocks per scenario. This fact consistently explained that the

computation time of the method Pfullxy (where all combinations of aftershocks are enumerated) goes

up first and then possibly down when Δ increases, see Table 4.2, for example, instance 2. However,

for Psepxy , we observe that this was not the case since, as mentioned, the computation time decreases

with Δ, which is rather good news for realistic applications with many aftershocks.

Finally, we study the impact of themaximumnumber of facilities to be established,N, on the objec-

tive value and the total time. As expected, the objective value, and the variation in the objective value,
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(a)Objective Value as Δ increases (b) Total time as Δ increases

Figure 4.9: Comparison of the objective value and the total computational time as Δ increases

both decrease as the number of facilities to be established increases. We do not observe a significant

impact on the running time asN varies.

In Figures 4.12 and 4.13 we show the worst-case realizations of an earthquake and aftershocks on

two small instances. Figure 4.12 shows the variation in aftershock realizations as Δ increases. The

value ofNwas set to 3. We see that even though the worst-case changes, the locations of the facilities

remain the same.

Figure 4.13 shows two different worst-cases for the same instance with the same parameter values.

This leads us to conclude that we can have multiple worst-case realizations. We hypothesize that this

would be more evident for larger instances. However, we could only visualize the worst case for Pfullxy ,

and since we could not solve the larger instances for Pfullxy , we are unable to report them.
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(a)Δ= 3 (b)Δ= 5

(c)Δ= 7 (d)Δ= 10

Figure 4.10: The change in solutions as Δ changes
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(a)Objective Value asN increases (b) Total time asN increases

Figure 4.11: Comparison of the objective value and the total time asN increases

(a)Δ= 3 (b)Δ= 5 (c)Δ= 7

Figure 4.12: The worst‐case realizations of the aftershocks as Δ increases

(a) (b)

Figure 4.13: Two different worst‐case realizations of an instance with the same parameter values
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4.8 Case study on Turkey-Syria 2023 earthquake

In this section, we provide a case study on Turkey, based on data from the Turkey-Syria earthquake

of 2023. We focus our analyses only on Turkey, firstly, because we found detailed earthquake dam-

age data corresponding to Turkey, and secondly, our models are designed for decision-makers at the

regional or national level.

Turkey lies at the intersection of three tectonic plates: the Anatolian, the Arabian, and the African,

andhas been affectedby several earthquakes due to the interactionbetween these plates. Between1900

and 2023, Turkey has experienced 269 earthquakes that caused loss of lives and property, including

20 earthquakes ofmagnitude over 7 (Government of Türkiye, 2023). Thus, earthquake preparedness

is crucial in Turkey as effective and efficient planning and response to earthquakes is key to saving lives

and combatting economic losses.

In February of 2023, Turkey was affected by a series of devastating earthquakes. The first earth-

quake of magnitude 7.7 hit on February 6 in the Pazarcık district in the Kahramanmaraş province at

4:17 local time. It was followed by another earthquake of magnitude 7.6 approximately nine hours

later in the Elbistan district of the same province. Several aftershocks of varyingmagnitudes followed,

including at least 14more earthquakes ofmagnitudes 5.4 and abovewithin twodays of themain earth-

quake (Kawoosa, 2023). On February 20, a major aftershock of magnitude 6.3 occurred in the Yay-

ladaği district of the Hatay province. Another aftershock of magnitude 5.6 hit the Malatya province

on February 27th. According to Turkey’s Disaster and EmergencyManagement Authority (AFAD),

more than 11,000 aftershocks had occurred byMarch 1st. 11 provinces in Turkey were were majorly

affected– Adana, Adıyaman, Diyarbakır, Gaziantep, Hatay, Elazig, Kahramanmaraş, Kilis, Malatya,

Osmaniye, Sanliurfa (Government of Türkiye, 2023). Later, six other provinces were also identified

as affected because of damages observed (OCHA, 2023a). The list of earthquakes and aftershocks
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over magnitude 5.4 (inclusive) is provided in the Table B.5.

Not only that, the region continued to face dire circumstances in the months that followed. The

provinces of Adıyaman and Şanlıurfa were affected by heavy rainfall in March that caused floods, re-

sulting in casualties and damages to buildings, bridges, and highways (ECHO, 2023). Heavy rain

also affected the provinces of Adıyaman, Kahramanmaraş, Malatya, Şanlıurfa, and Hatay on 10 and

11 April and caused floods in tents in the earthquake-hit areas (OCHA, 2023b). A major storm oc-

curred in Pazarcık, affecting 300 households, injuring around 45 people, and damaging the already

devastated region (OCHA, 2023c). These additional disasters have made the response and recovery

more difficult.

Over 50,000 people lost their lives, 3.3 million people were displaced, almost 2 million people

were sheltered in tent camps and container settlements, and buildings and villages were ruined across

110,000 square km (Government of Türkiye, 2023). Table 4.3 provides the data of damages to life in

terms of deaths and injured (Göçümlü, 2023), and the number of buildings that were damaged (Hür-

riyet, 2023). The damages to life were reported as of February 10, 2023, while the damages to property

were reported as of February 16, 2023. Heavily damaged buildings are defined as those that have been

demolished or need to be demolished urgently as they pose a threat of collapse injuring more people.

Table 4.3: Report of Damages to Life and Property

Damage to Life Damages to Independent Units and Buildings (As of February 16, 2023)

Province (As of February 10, 2023) Heavy Damages Moderate Damages Slight Damages Undamaged

Deaths Injured Independent Units Buildings Independent Units Buildings Independent Units Buildings Independent Units Buildings

Adana 408 7,450 1,274 59 7,270 304 38,261 1,688 78,040 5,313
Adıyaman 3,105 11,778 29,703 6,990 11,179 2,613 38,823 11,694 21,365 9,310
Diyarbakır 212 899 6,932 643 10,095 718 86,925 6,725 178,216 18,039
Gaziantep 2,141 11,563 31,522 12,964 17,050 4,361 179,149 29,471 309,389 89,092
Hatay 5,111 15,613 71,735 15,248 18,146 2,827 62,034 17,212 74,851 29,188
Elazig 5 379 4,043 664 801 138 15,532 1,460 9,503 723
Kahramanmaraş 4,879 9,243 60,051 12,980 7,671 1,058 99,481 20,556 61,932 25,420
Kilis 74 754 1,224 812 1,033 137 16,296 2,208 12,228 2,849
Malatya 289 7,300 44,996 8,365 6,617 945 59,825 8,960 31,894 7,463
Osmaniye 878 2,224 9,595 2,531 2,104 266 40,929 8,034 51,409 22,041
Sanliurfa 304 4,663 2,725 466 4,707 550 112,399 13,507 86,896 19,585

The earthquake of February 2023 is just one of many that have continued to hit the country in the
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past century. Lying in a region prone to earthquakes makes it extremely essential to be prepared for

such calamitous events. In this section, we study the abovementioned earthquake to generate insights

on the location of facilities in the region for storing relief materials. We first discuss the generation of

instances in the following subsection.

4.8.1 Instance generation for Turkey

We generate the Turkish instances based on the publicly available damage data reported in Table 4.3

following the earthquake of February 2023, and the seismic hazardmap provided byAFAD, shown in

Figure 4.14. Themap shows the regions ofTurkey and a visual representation of their risk of being hit

by an earthquake. The regions in red are the ones that are at the greatest risk, as they lie along the fault

lines, and historically, the majority of the earthquakes have been recorded here. As we move toward

the orange and yellow regions, the risk of earthquakes decreases.

We focus our study on the eastern region ofTurkey. We include the following provinces in our anal-

yses: Adana, Adiyaman, Agri, Amasya, Ardahan, Artvin, Batman, Bayburt, Bingol, Bitlis, Diyarbakir,

Elazig, Erzincan, Erzurum,Gaziantep, Giresun, Gumushane,Hakkari, Hatay, Igdir, Kahramanmaras,

Kars, Kayseri, Kilis, Malatya, Mardin, Mus, Ordu, Osmaniye, Rize, Samsun, Sanliurfa, Siirt, Sirnak,

Sivas, Tokat, Trabzon, Tunceli, Van, and Yozgat. The demand nodes are considered to be the centers

of each district in each of the provinces. We have a total of 420 districts in the provinces in our study,

and correspondingly 420 demand nodes.

Guided by the seismic hazard map and the geographical data of Turkey, we construct the map

shown in Figure 4.15 for our study. We classify each district of each province in the eastern part of the

country intoHigh-Risk,Moderate-Risk, and Low-Risk zones, based on the hazard map. The districts

in red are the ones that are at the highest risk of experiencing an earthquake, while the orange districts

are the ones withmoderate risks of earthquakes. The districts in the yellow region are considered low-
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Figure 4.14: The Earthquake Hazard Map of Turkey, Source: AFAD
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risk zones, and hence, these are the districts chosen for establishing the facilities. Tables B.1, B.2, and

B.3 in theAppendix B.2 gives the list of districts in each category. We consider 70% of the earthquakes

(including aftershocks) to occur in the red region and 30% in the orange region in our instances.

Figure 4.15: Earthquake hazard map used in the paper, classified into High, Moderate, and Low risk areas

We do the following to determine the aftershocks that can follow a major earthquake. We divide

the area under study into three regions or risk zones, each region consisting of a collection of Turkish

provinces. Amajor earthquake in one of the risk zonesmay trigger any Δ number of aftershocks in the

same risk zone in the second stage. Table 4.4 lists the provinces in each risk zone. This classification is

also based on the idea of fault lines.

Table 4.4: Classification of Turkish provinces into Risk Zones

Risk Zone Provinces
Zone 1 Adana, Adiyaman, Batman, Diyarbakir, Elazig, Gaziantep, Hatay, Kahramanmaras, Kilis, Malatya, Osmaniye
Zone 2 Agri, Ardahan, Bayburt, Bingol, Bitlis, Erzurum, Hakkari, Igdir, Mus, Rize, Siirt, Sirnak, Van
Zone 3 Amasya,Erzincan, Giresun, Gumushane, Ordu, Samsun, Sivas, Tokat, Tunceli

For Turkey, we generate the number of main earthquakes (or scenarios) ranging from 10 to 100

and aftershocks ranging from 20 to 200. Once again, the number of aftershocks in each instance is

twice the number of major earthquakes, and the earthquake locations are generated in an inclusive
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manner. For the locations of the facilities, we randomly choose 30 of the 69 districts in the low-risk

zone. We assume that these facilities will be unaffected by the earthquakes, either because they are in

the low-risk zones, and so they will be far off from the epicenters, or they will be earthquake proof

buildings. We set the value of Δ to 3, 5, 7, and 10, and themaximumnumber of facilities to be located

to 2, 4, 6, and 8. In total, we had 160 instances for Turkey. The calibration of parameters k, α, β in

demand functions is the same as for Section 4.7, which was already based on the Turkish earthquake

data (see Appendix B.2 for more details).

4.8.2 Computational results

We use formulation Psepxy to implement our robust model on Turkey. Wewere able to solve 145 out of

the 160 instances to optimality within an hour. Figure 4.16 shows the solution of an instance. Once

again, the red and the blue circles represent the scenarios and the aftershocks, respectively. The pink

crosses show the locations selected for establishing the facilities. The green squares show the district

centers. Figure 4.17 shows the objective function value with respect to the values of Δ andN.

Figure 4.16: The solution of an instance of Turkey showing four locations for the facilities

As expected, the objective value increases with an increase in Δ. From Figure 4.17(b), we infer that
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it is enough for us to consider locating four facilities in the eastern region. When going from2 facilities

to 4, we see a significant drop in the objective value, whereas, thereafter, the decrease in the objective

value as the number of facilities increases is lower.

(a)Objective value vs Δ (b)Objective value vsN

Figure 4.17: The value of the objective function wrt Δ andN as the number of scenarios and aftershocks increases

As we implemented our robust model on the instances, we noticed that some of the locations were

selected more often than others, even as the distribution of the main earthquakes and the aftershocks

changed. Figure 4.18 shows thepercentage of times each locationwas selected for establishing facilities.

For example, district Halfeti was selected 98% of the times, followed by district Mazidagi, which was

selected in 91% of the instances. Districts Yesilhisar and Sarikaya were both selected over 60% of the

time. Thus, this gives an insight for the decision makers regarding the preferable areas or districts to

set up the facilities.

While we estimated our demand using publicly available data from the Turkey 2023 earthquake,

we do not use it here to make recommendations about the capacities of the facilities to be built. This

is because the data was reported in the early days following the earthquake. As time passed by, the

number of affected people was revealed to be much larger. Moreover, there were other local emergen-

cies in the region as well. However, our results related to the locations of the facilities remain valid, as

the demand distribution remained similar, with an increase in the proportion of demand.
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Figure 4.18: Graph showing the percentage of times the location in each district was selected for setting up the facilities

4.8.3 Comparisonwith a “first-stage only” model without aftershocks

To study the importance of including aftershocks in locating facilities, we remove the aftershocks. We

compare our two-stage robustmodelwith amodel that uses only the first stage or themain earthquake

to select facilities. The first-stage model without aftershocks is given as:

PStageIxy : min θ (4.27a)

subject to θ ≥
∑
i∈D

∑
j∈F

tijd1sixij s ∈ S (4.27b)

∑
j∈F

xij = 1 i ∈ D (4.27c)

yj ≥ xij i ∈ D, j ∈ F (4.27d)

1 ≤
∑
j∈F

yj ≤ N (4.27e)
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θ ≥ 0, xij, yj ∈ {0, 1} i ∈ D, j ∈ F (4.27f)

This is the same as model 4.2, with constraint (4.2b) replaced by (4.27b), where the second-stage

demand due to the aftershocks have been omitted.

We evaluate the two-stage robust model and PStageIxy on the instances. Once we have the solution

(the locations of the facilities to be established) from PStageIxy , we fix them and evaluate this solution

in the second stage, i.e., in the presence of aftershocks. This is done to study the gap between the

two-stage robust solution and the first-stage solution when aftershocks occur. In other words, what

if we established the facilities without taking aftershocks into account, and later, the region was hit

by an earthquake followed by a series aftershocks. Firstly, we notice that the location of the facilities

obtained from the robust solution and the stage 1 solution never completely match.

In Figure 4.19, we show the gapbetween the two-stage robust solution and the stage 1 solutionwith

respect to the number of scenarios, the number of demand nodes, Δ, andN. The gap is calculated via

the following formula

Gap =
ROV1 − ROV2

ROV2
(4.28)

where, ROV1 is the stage 1 solution evaluated when the second stage or the aftershocks occur, and

ROV2 is the two-stage robust solution.

For the instances with 100 scenarios, we see slight negative gaps in the solution. This is because we

were not able to solve the instances to optimality using the robust model. The gap between the two

solutions goes over 12.5%. On average, up to 90 scenarios, we observe a gap of 4.43%.

As we expected, we observe an increase in the percentage gap as Δ increases, and it becomes more

important to consider aftershocks into the decision-making process. AsN increases, there is a decrease
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in the gap. This is because with a higher number of facilities, most of the locations selected overlap.

Varying the number of scenarios does not have a significant impact on the median gap.

(a) Percentage Gap vs Number of Scenarios (b) Percentage Gap vs Δ

(c) Percentage Gap vsN

Figure 4.19: The percentage gap between the robust solution and the stage 1 solution in the presence of aftershocks

4.9 Conclusion

In this study, we study an uncapacitated facility location problem for earthquake management taking

into account aftershocks. We wish to prepare for a situation where a region is hit by a major earth-

quake followed by atmost Δ aftershocks. We adapt a robust modeling approachwith our uncertainty

set defined as a combination of aftershocks that can potentially follow a major earthquake. To this

end, we propose four robust mixed-integer linear programming models. The first is where we fully
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enumerate all combinations of earthquakes and aftershocks (Pfullxy ). While it is a simple formulation,

the number of combinations of scenarios and aftershocks increases exponentially, and we are unable

to solve it beyond a few scenarios. We then propose a branch-and-cut solution approach for the above

formulation (Psepxy ) by separating the constraints related to the demand allocation. Thirdly, we pro-

pose an extended formulation for the above problem (Pextxy ). Finally, we formulate the problem in

two stages (Py)– the first determining the worst-case demand following the major earthquake, and

the second related to the worst-case demand because of Δ aftershocks.

Out of the four models, we find Psepxy to be the one that performs the best computationally. Pextxy ,

although is solved the fastest once the model is built, CPLEX takes a prohibitive time to build the

MILP initially, so it does not competewithPsepxy at all for the total computation time. Py’s performance

lies in between the two. We observe that the models become more challenging to solve as the number

of major earthquakes and aftershocks increase. Counterintuitively, we observe that as Δ increases for

the best methodPextxy , it results in a decrease in the computational time, contrary to thePfullxy approach.

We also provide a case-study on the eastern region of Turkey with recommendations for locations

where facilities can be set up. We use publicly available demand data following the Turkey-Syria earth-

quakes of February 2023 to calibrate our demands. We find four locations in the districts of Halfeti,

Mazidagi, Yesilhisar, and Sarikaya, where the facilities can be set up. We also observe gaps of up to

12.5% in the solution if aftershocks are not taken into account. These insights can guide the facility

location decisions not just in Turkey, but in other regions as well.

Though our models are based on earthquakes and aftershocks, they are not limited to aftershocks

only. They can also be applied to any kind of simultaneous or compound disasters. The aftershocks in

the second stage can be replaced by other disasters like floods, tsunamis, landslides, fires, which occur

around the same time in a neighboring region of the primary disaster or the earthquake, either as a

result of the earthquake or independently. As long as we are able to estimate or forecast the demands
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due to any of the emergencies, our model can serve as a viable decision support tool.

While we provide an initial study taking into account the impact of aftershocks, there are several

avenues for future research. Firstly, it would be interesting to study themodels and the solution struc-

tures under capacity constraints and consider inventory prepositioning. We have also assumed that

the facilities would not be damaged by the earthquakes. However, there might be facility disruptions

or network disruptions between the facilities and the demand nodes, which would be worth looking

further into. Another interesting direction would be to study multi-level facility location, with relief-

storing warehouses at the higher level and local distribution centers at the city level, which can serve

as both shelter sites for evacuees and relief distribution points.
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B.1 Proof of Propositions

Proof of Proposition 3

First, we check the primal and dual feasibility of the proposed solution.

For a given i ∈ D, the first constraint of the primal subproblem is:

∑
j∈F

xij =
pi−1∑
j=1

y∗j + 1−
pi−1∑
j=1

y∗j + 0 = 1

For the second primal constraint, we have xij ≥ 0 from its definition. For each i ∈ D

xij =



y∗j , j < pi

1−
pi−1∑
j=1

y∗j , j = pi

0, j > pi

≤ y∗j .

The first and the third cases are trivial. For j = pi, we have 1 −
∑pi−1

j=1 y∗j − y∗pi = 1 −
∑pi

j=1 y∗j ≤ 0,

which follows from the choice of pi. Thus, xij is a feasible solution of the primal subproblem (4.16).

For verifying the dual feasibility, for each i ∈ D and j ∈ F , when j < pi,

λi − μij = tipid1si − tipid1si + tijd1si = tijd1si,

and when j ≥ pi,

λi − μij = tipid1si ≤ tijd1si

follows from the choice of pi. Since pi is the closest open facility to i, tipi ≤ tij, ∀j ∈ F .
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Next, we evaluate the objective functions of the primal and the dual. The objective of the primal

is: ∑
i∈D

d1si
∑
j∈F

tijxij =
∑
i∈D

pi−1∑
j=1

d1sitijy∗j + d1sitipi −
pi−1∑
j=1

d1sitipiy∗j

 .

The value of the dual objective is:

∑
i∈D

λi −
∑
i∈D

∑
j∈F

y∗j μij =
∑
i∈D

tipid1si −
∑
i∈D

pi−1∑
j=1

tipid1siy∗j +
∑
i∈D

pi−1∑
j=1

tijd1siy∗j .

Since the solution described in Proposition 3 is feasible for the primal subproblem (4.16) and the

dual subproblem (4.18), and give the same objective values for both, it is also an optimal solution for

the subproblems.

Proof of Proposition 4

The formulation in the space of the y variables, denoted by Fy is

min
y∈Y

1≤
∑
j∈F

yj≤N

max
s∈S

 max
(λ,μ)∈L1

s
(α,β,u)∈L2

s

∑
i∈D

λi −
∑
i∈D

∑
j∈F

y∗j μij +
∑
i∈D

∑
k∈Ks

d2ik αsik −
∑
i∈D

∑
j∈F

D̂i y∗j βsij


 .

(B.1)
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Writing the above model in the extended form, we have,

min θ (B.2a)

θ ≥
∑
i∈D

λ∗i −
∑
i∈D

∑
j∈F

μ∗ijyj +
∑
i∈D

∑
k∈Ks

d2ik α
∗
sik −

∑
i∈D

∑
j∈F

D̂iyjβ∗sij (B.2b)

(λ, μ) ∈ L1
s , (α, β, u) ∈ L2

s s ∈ S

1 ≤
∑
j∈F

yj ≤ N j ∈ F (B.2c)

yj ∈ {0, 1} j ∈ F . (B.2d)

Using Proposition 3, for any choice of y∗, we have a closed-loop formula that gives us an extreme

point of the dual of the problemT1
s,i(y∗). We notice that different values of y∗ correspond to different

“critical items”. Since each critical item corresponds to a different facility, there are |F| of them, one

for each p ∈ F , and so

T1
s,i(y∗) = max

λ∈R|F|,μ≥0
{λi −

∑
j∈F

y∗j μij : λi − μij ≤ tijd1si, j ∈ F}

= max
pi∈F

{tipi −
∑
j∈F

(tipi − tij)+y∗j }.

Hence, since T1
s (y∗) =

∑
i∈D T1

s,i(y∗)we have

T1
s (y∗) = max

(p1,...,p|D|)∈F |D|

∑
i∈D

d1si

tipi −∑
j∈F

(tipi − tij)+y∗j

 .
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Therefore, the equation (B.2b) can be restated as:

θ ≥
∑
i∈D

d1si

tipi −∑
j∈F

(tipi − tij)+yj

+
∑
i∈D

∑
k∈Ks

d2ik α
∗
sik −

∑
i∈D

∑
j∈F

D̂iyjβ∗sij, (B.3)

(α∗, β∗, u∗) ∈ L2
s , s ∈ S, (p1, . . . , p|D|) ∈ F |D|.

Replacing (B.2b) by (B.3), we get the formulation Fy.

B.2 Turkey Earthquake

Table B.1: Eastern Turkish districts that lie in the Severe Risk category for Turkish instances

Provinces and Districts

Severe-Risk

Adiyaman: Celikhan, Gerger, Golbasi, Adiyaman, Sincik, Tut
Agri: Diyadin, Eleskirt
Amasya: Gumushacikoy, Hamamozu, Amasya, Merzifon, Suluova, Tasova
Batman: Sason
Bingol: Adakli, Genc, Karliova, Kigi, Bingol, Solhan, Yayladere, Yedisu
Bitlis: Hizan, Mutki
Diyarbakir: Cungus, Dicle, Hani, Kulp, Lice
Elazig: Alacakaya, Aricak, Karakocan, Kovancilar, Maden, Elazig, Palu, Sivrice
Erzincan: Cayirli, Kemaliye, Erzincan, Otlukbeli, Refahiye, Tercan, Uzumlu
Erzurum: Askale, Cat, Hinis, Horasan, Karacoban, Karayazi, Koprukoy, Palandoken, Pasinler,
Tekman, Yakutiye
Gaziantep: Islahiye, Nurdagi
Giresun: Alucra, Camoluk, Sebinkarahisar
Gumushane: Kelkit, Kose, Siran
Hakkari: Derecik, Hakkari, Semdinli, Yuksekova
Hatay: Altinozu, Antakya, Belen, Defne, Dortyol, Hassa, Iskenderun, Kirikhan, Kumlu, Payas,
Reyhanli, Samandag, Yayladagi
Kahramanmaras: Caglayancerit, Dulkadiroglu, Ekinozu, Goksun, Nurhak, Pazarcik, Turkoglu
Malatya: Akcadag, Arapgir, Arguvan, Battalgazi, Dogansehir, Doganyol, Kale, Puturge, Yazihan, Yesilyurt
Mus: Bulanik, Haskoy, Korkut, Malazgirt, Mus, Varto
Ordu: Akkus, Aybasti, Golkoy, Kabatas, Korgan, Kumru, Mesudiye
Osmaniye: Bahce, Duzici, Hasanbeyli, Osmaniye, Toprakkale
Samsun: Asarcik, Ayvacik, Havza, Kavak, Ladik, Vezirkopru
Siirt: Baykan, Pervari
Sirnak: Beytussebap
Sivas: Akincilar, Dogansar, Golova, Koyulhisar, Susehri
TokatAlmus, Basciftlik, Erbaa, Niksar, Resadiye
Tunceli: Mazgirt, Tunceli, Nazimiye, Ovacik, Pulumur
Van: Bahcesaray, Caldiran, Catak, Ozalp, Saray, Tusba
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Table B.2: Eastern Turkish districts that lie in the Moderate Risk category for Turkish instances

Provinces and Districts

Moderate-Risk

Adana: Ceyhan, Imamoglu, Karatas, Kozan, Pozanti, Saimbeyli, Saricam, Yumurtalik, Yuregir
Adiyaman: Besni, Kahta, Samsat
Agri: Dogubayazit, Hamur, Agri, Patnos, Taslicay, Tutak
Amasya: Goynucek
Ardahan: Cildir, Damal, Gole, Hanak, Ardahan, Posof
Batman: Kozluk
Bayburt: Aydintepe, Demirozu, Bayburt
Bitlis: Adilcevaz, Ahlat, Guroymak, Bitlis, Tatvan
Diyarbakir: Cermik, Egil, Ergani, Hazro, Kayapinar, Kocakoy, Silvan, Sur, Yenisehir
Elazig: Agin, Baskil, Keban
Erzincan: Ilic, Kemah
Erzurum: Ispir, Narman, Oltu, Pazaryolu, Senkaya
Gaziantep: Araban, Sehitkamil, Yavuzeli
Hakkari: Cukurca
Hatay: Arsuz, Erzin
Igdir: Aralik, Igdir, Karakoyunlu, Tuzluca
Kahramanmaras: Afsin, Andirin, Elbistan, Onikisubat
Kilis: Kilis, Musabeyli, Polateli
Malatya: Darende, Hekimhan
Ordu: Camas, Gurgentepe, Kabaduz
Osmaniye: Kadirli, Sumbas
Rize: Ardesen, Camlihemsin, Cayeli, Derepazari, Findikli, Guneysu, Hemsin, Ikizdere, Iyidere,
Kalkandere, Rize, Pazar
Samsun: Atakum, Canik, Carsamba, Ilkadim, Salipazari, Tekkekoy
Siirt: Eruh, Kurtalan, Siirt, Sirvan, Tillo
Sirnak: Cizre, Sirnak, Silopi, Uludere
Sivas: Altinyayla, Divrigi, Hafik, Imranli, Ulas, Zara
Tokat: Artova, Tokat, Pazar, Turhal, Zile
Tunceli: Cemisgezek, Hozat, Pertek
Van: Baskale, Edremit, Ercis, Gevas, Gurpinar, Ipekyolu, Muradiye

Calibration of the demand function

To estimate the values of k, α, and β in formula (4.26) with a regression technique, we proceed in the

following way. Table 4.3 gives the damages to human life (deaths and injuries) and property (indepen-

dent units (IU) and buildings). Using this data, for each province, we calculate the demand using the
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Table B.3: Eastern Turkish districts that lie in the Low Risk category for Turkish instances

Provinces and Districts

Low-Risk

Artvin: Ardanuc, Arhavi, Borcka, Hopa, Kemalpasa, Artvin, Murgul, Savsat, Yusufeli
Kars: Akyaka, Arpacay, Digor, Kagizman, Kars, Sarikamis, Selim, Susuz
Kayseri: Akkisla, Bunyan, Hacilar, Melikgazi, Pinarbasi, Talas, Yesilhisar
Mardin: Artuklu, Dargecit, Derik, Kiziltepe, Mazidagi, Midyat, Nusaybin, Omerli, Savur, Yesilli
Sanliurfa: Akcakale, Birecik, Ceylanpinar, Eyyubiye, Halfeti, Haliliye, Harran, Suruc, Viransehir
Trabzon: Akcaabat, Arakli, Arsin, Besikduzu, Carsibasi, Caykara, Dernekpazari, Duzkoy, Hayrat, Koprubasi,
Macka, Of, Ortahisar, Salpazari, Surmene, Tonya, Vakfikebir, Yomra
Yozgat: Bogazliyan, Candir, Yozgat, Sarikaya, Sefaatli, Sorgun, Yenifakili, Yerkoy

following formula:

Observed Demand Data = (Heavily Damaged IU+ 0.3 ∗Moderately Damaged IU)

∗ Percentage Residential Units ∗ Unit Size. (B.4)

All the people living in units that have been completely damaged would need shelter and basic

amenities. Among the moderately damaged buildings, we assume that 30% of the people would need

relief materials, and finally, the people whose houses have been moderately damaged are assumed to

not require any external support. We also have some other parameters in the equation. ThePercentage

Residential Units refers to the percentage of residential buildings among all possible buildings. We

take the value to be 0.6, excluding buildings like shopping areas, offices, schools, and other public

places. Unit Size refers to the average number of people living in each unit or average family size, and

we use the value 3.17 according to available public data (TSI, 2023). Thus, using the above formula,

we estimate the demands in each of the affected province.

Next, we proceed toward calibrating the values of parameters k, α, and β in the demand equation

(4.26). For each of the provinces and each earthquake, we create a distance matrix (created using

the Haversine formula), which is shown in Table B.4. Then, for each province, we select the “most

damaging earthquake”, based on the distance between the province and the earthquake epicenter, and
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Table B.4: Distance (in kilometers) between the provinces and the earthquake epicenters

Earthquake Index S0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14
Magnitude 7.8 5.7 6.7 5.6 7.5 6.0 5.4 5.8 5.7 6.0 5.4 5.4 5.5 5.4 5.5

Province
Adana 152.08 148.32 140.52 120.20 201.35 270.80 199.99 246.91 270.02 158.53 234.49 284.35 229.21 316.98 231.41

Adıyaman 126.47 129.67 137.89 164.97 98.15 32.92 97.77 50.82 42.15 158.38 49.40 48.22 48.07 48.79 57.49
Diyarbakır 294.08 297.69 305.74 330.12 266.26 187.65 266.41 214.07 192.92 327.17 219.87 183.42 220.93 141.74 226.25
Gaziantep 36.00 39.67 44.98 62.05 106.66 124.62 104.57 113.07 129.28 134.11 95.78 143.47 83.71 159.84 100.05
Hatay 136.50 134.75 127.64 99.42 221.89 266.00 219.86 249.41 269.13 208.87 232.83 283.93 222.58 304.18 234.23
Elazig 251.03 253.70 261.76 290.12 189.74 120.32 190.78 142.49 119.66 245.37 156.25 105.04 164.09 80.87 158.18

Kahramanmaraş 41.11 40.11 43.96 69.37 53.68 114.07 51.68 90.77 113.62 64.51 77.75 128.20 73.01 160.37 75.05
Kilis 56.63 57.81 56.19 49.25 144.64 169.79 142.48 157.58 174.37 158.47 140.31 188.61 128.52 204.10 143.95

Malatya 167.76 170.01 177.79 206.51 101.62 39.03 102.62 55.57 34.54 158.64 71.09 19.98 81.12 41.23 71.37
Osmaniye 70.03 66.35 58.39 39.54 134.29 194.72 132.51 172.86 195.26 111.73 158.59 210.05 151.56 239.28 157.06
Sanliurfa 157.18 161.09 168.26 187.96 169.16 113.94 168.14 129.94 123.18 224.40 122.93 126.88 115.32 105.24 132.04

themagnitude of the earthquake. This is a heuristic assignment becausemultiple earthquakes were in

the vicinity of a demand node with different distances and magnitudes, but no available public data

ever reported the damages caused by each individual earthquake and aftershock in each province. For

each province, the distance that is reported in bold corresponds to the most impactful earthquake for

that province.

Thus, once we have the estimated demand at each province using the distance from and themagni-

tude of themost damaging earthquake, and the population of the province from equation (4.26), and

the actual demand using the formula (B.4), we calibrate the values of k, α, and β using least square es-

timation from the scipy package in python. The values we obtain are 0.25, 0.75, and 0.5, respectively.

Now. once we have generated our instances by randomly locating the earthquakes and aftershocks,

we can use equation (4.26) to calculate the demand at each of the district centers due to each earth-

quake. Next, we implement our models on the Turkey instances.
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Table B.5: Summary of Earthquakes and Aftershocks in Turkey of magnitude 5.4 or more between 6th and 10th February,
2023, (Source: USGS)

Earthquake Index Date Time Latitude Longitude Magnitude Place
S0 6th Feb 01:17:34 37.2199 37.0189 7.8 Pazarcik, Kahramanmaras
A1 6th Feb 01:26:50 37.2241 36.9749 5.7 22 km ENE of Nurdagi
A2 6th Feb 01:28:15 37.1893 36.8929 6.7 14 km E of Nurdagi
A3 6th Feb 01:36:27 36.9921 36.6832 5.6 Turkey-Syria border region
A4 6th Feb 10:24:50 38.0155 37.2056 7.5 Elbistan, Kahramanmaras
A5 6th Feb 10:26:46 38.0264 38.1044 6 11 kmW of Çelikhan, Turkey
A6 6th Feb 10:32:08 37.9962 37.2033 5.4 7 km S of Ekinözü, Turkey
A7 6th Feb 10:35:58 38.0249 37.8023 5.8 9 km SW of Dogansehir, Turkey
A8 6th Feb 10:51:30 38.0981 38.0511 5.7 15 km E of Dogansehir, Turkey
A9 6th Feb 12:02:11 38.0582 36.5114 6 4 kmNNE of Göksun, Turkey
A10 6th Feb 15:14:34 37.8789 37.7345 5.4 13 kmNE of Gölbasi, Turkey
A11 6th Feb 15:33:32 38.19 38.1756 5.4 13 km SSW of Yesilyurt, Turkey
A12 7th Feb 03:13:12 37.7639 37.7309 5.5 Central Turkey
A13 7th Feb 07:11:15 38.0971 38.6398 5.4 7 kmNNE of Sincik, Turkey
A14 8th Feb 11:11:52 37.9368 37.6607 5.4 Central Turkey

B.3 Summary of Notations

Table B.6: List of sets and indices for the problem

Notations

S set of all first-stage scenarios of the major earthquake (indexed by s)
K set of all aftershock nodes (indexed by k)
Ks set of all aftershocks in scenario s (indexed by k)
D set of all demand nodes (indexed by i)
F set of all facility nodes (indexed by j)

Table B.7: List of parameters

Parameters

d1si The demand at node i in stage 1 in scenario s
d2ik The demand at node i due to an aftershock at node k in stage 2 in scenario s
tij The travel time between demand node i and facility node j
Δ The number of aftershocks to be protected against in the second stage
N The maximum number of warehouses that can be constructed
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5
Conclusion
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In this thesis, we study two essays on lastmile logistics. The first focuses on using public transporta-

tion systems for last mile deliveries. The second essay deals with workforce sizing and scheduling their

shifts. Finally, in the third essay, we study a novel facility location problem in preparing for earth-

quakes, considering aftershocks and other emergencies that may follow.

In Chapter 2, we study an innovative last-mile logistics strategy that employs public transit net-

works to transport packages into urban areas. This restricts traditional delivery trucks inside the living

area, reducing emissions and congestion on roads. To this end, we define the 3T-DPPT, and propose

a comprehensive MILP formulation. We use a decomposition matheuristic solution approach, the

decomposition based on the natural three tiers of the problem and the order of solving them. We

provide numerical experiments to demonstrate the efficiency and effectiveness of the system using

instances that are generated to mimic real cities. Our approach successfully handles instances with

up to 80 customers. We find that the decomposition technique focused on solving the second tier

of the problem first performs the best, striking a good balance between the objective values and solu-

tion time. We also investigate the impact of service costs related to the public transportation network,

the frequency of public vehicles, and their available capacities, on the solutions obtained. Our results

demonstrate that this system can reduce the length of trips performed by traditional delivery trucks

(86 %) and dedicated delivery vehicles (51% for the trucks and freighters). Our concluding hypothesis

is that the reduction in emissions and congestion would be significantly higher when we implement

the system in large cities with an extensive public transportation network.

The above delivery strategy provides ample avenues for future research. First, the inherent uncer-

tainties in the system require further investigation. On the one hand, customer orders may be un-

known or dynamically arriving, while on the other hand, public vehicles may be subject to delays or

have unreliable capacities. Thus, there are uncertainties in the demand aswell as in the service network,

and they can be handled using stochastic or robust optimization. The problem needs to be studied
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at a strategic level to include decisions like using one or multiple CDCs in the city, selecting lines and

stops, and collaboration between multiple service providers and stakeholders (for example, different

last mile logistics companies, public transit providers, and the administrative board of the city). One

could also look into the problem at the tactical level and investigate fleet-sizing decisions for the trucks,

freighters, and personnel, decisions related to the schedule of the public vehicles for transporting the

packages, and decisions related to whether or not it would be beneficial to set up locker services at the

stops, among others. Owing to the computational complexity of the problem, we need to develop

efficient solution strategies that can solve large instances.

In Chapter 3, we continue with our study on last-mile logistics but focus on the tactical planning

problem of workforce hiring and shift scheduling decisions. We developmodels that seek to balance a

delivery company’s hiring and outsourcing costs. We study three different kinds of shift schedules for

the freighters hired– fixed schedules (two determined starting times during the day), flexible schedules

(having the possibility of starting the shifts at any time of the day), partially flexible schedules (two

fixed shifts whose starting time is a decision variable). We tested our models on instances generated

based on four European cities– Paris, Lyon, Berlin, and Frankfurtwith a variety of instance generation

parameters. We find the average per-parcel cost using fixed shifts is 9% higher than that of completely

flexible shifts. On the other hand, partially flexible shifts incur only 2% higher costs than the flexible

shift schedule model. Thus, it is an economical solution for the delivery company and a sustainable

solution for the freighters, providing them with better working conditions.

One of the most interesting extensions to this study would be to investigate districting decisions

coupled with workforce sizing, instead of considering the existing districts of the city. Determining

a heterogeneous fleet for transport, like drones, robots, and outsourced deliveries, along with hiring

decisionsmay also prove beneficial to the delivery company. Finally, studying rostering decisions from

the worker’s point of view, taking into account their preferences and familiarity, would help improve
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their working conditions further.

In Chapter 4, we shift our attention to disaster preparedness and study an uncapacitated facility

location problem for earthquakes and aftershocks. We develop a two-stage robust model, where a re-

gion can be hit by amajor earthquake in the first stage, followed by atmost Δ aftershocks in the second

stage. We first propose a MILP formulation that fully enumerates all possible earthquake and after-

shock combinations. This becomes computationally challenging, leading us to employ two branch-

and-cut formulations and an extended formulation approach to redesign the problem. We implement

our models on synthetic instances designed to mimic fault line behaviors. Of all the models, we find

ModelPsepxy to perform the best computationally. We also use our approach to study the Turkey-Syria

earthquake of 2023, with a focus on setting up facilities in the eastern region of Turkey. We find that

including aftershocks can improve the location-allocation decisions by up to 12.5%.

Disastermanagement is an extensive processwith anunlimited scope for improvement. Ourmodel

can be extended to include capacity limitations and inventory prepositioning decisions. Moreover, un-

certainties in all facets of the problem– the demand side (uncertain volume of demands), the supply

side (facility disruptions), and the servicenetwork (networkdisruptions and travel timeuncertainties)–

need to be carefully investigated. Our goal should be working toward a detailed disaster mitigation,

preparedness, response, and recovery plan, to minimize the lives affected by humanitarian emergen-

cies.

There are a plethora of problems that we, as a society, need to look into, and find sustainable solu-

tions that balance social, environmental, and economic costs successfully.
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