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“Imagination is more important than knowledge. For knowledge is limited, whereas imag-

ination embraces the entire world, stimulating progress, giving birth to evolution. It is,

strictly speaking, a real factor in scientific research.”

Albert Einstein
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Abstract

This thesis investigates the emergence of chaos in classical and quantum many-

body dynamics through three interconnected studies, yielding several novel results.

The research initially explores correlations in dual-symplectic circuits, providing a

thorough analysis of Hamiltonian flows and symplectic systems. A significant con-

tribution is introducing the Ising-Swap model within dual-symplectic classical cir-

cuits, which reveals dynamical correlations using symplectic and dual-symplectic

gates. A general method is proposed, which enables the exact computation of two-

point dynamical correlation functions, which are shown to be non-vanishing only

along the edges of light cones. These findings are validated through Monte Carlo

simulations, displaying excellent agreement with theoretical predictions for various

observables.

The subsequent study addresses chaos and unitary designs, starting with an ex-

amination of unitary designs, k-designs, and the Haar measure, progressing to the

Porter-Thomas distribution. This research advances the understanding of universal

distributions of overlaps from unitary dynamics by employing models like brick-

wall circuits and the Random Phase Model. Notably, the study achieves the di-

agonalization of generalized Toeplitz matrices and analyses their spectrum, which

provides an exact calculation of the Frame Potential, which is essential for under-

standing the universality of our theory.

The final segment of the thesis focuses on universal out-of-equilibrium dynam-

ics of critical quantum systems, utilizing conformal field theory (CFT) to investi-

gate fields and correlation functions. The study addresses the out-of-equilibrium

dynamics of quantum systems perturbed by noise coupled to energy. Key results

include detailed analyses of two-point correlations, entanglement entropy distribu-

tions, and energy density fluctuations, which are shown to be directly related to

a set of stochastic differential equations (SDEs). It is shown, that one can study

these SDEs, and analytically prove the existence of non-trivial stationary distribu-

tions with −3/2 tails. Benchmarking these findings with a free fermion model un-

derscores the universality and robustness of the presented theoretical framework.

Overall, this thesis integrates theoretical models and mathematical frameworks

to enhance the understanding of chaos in both classical and quantum systems. By
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linking results from symplectic circuits, unitary designs, and out-of-equilibrium dy-

namics, it offers a comprehensive narrative that underscores the universal charac-

teristics of chaotic behaviour in many-body dynamics.

Résumé

Cette thèse explore l’émergence du chaos dans la dynamique à plusieurs corps, à

la fois classique et quantique, à travers trois études interconnectées, aboutissant à

plusieurs résultats novateurs. La recherche commence par une exploration des cor-

rélations dans les circuits symplectiques-duaux, offrant une analyse approfondie des

flux hamiltoniens et des systèmes symplectiques. Une contribution significative est

l’introduction du modèle Ising-Swap au sein des circuits classiques symplectiques-

duaux, qui révèle des corrélations dynamiques à l’aide de portes symplectiques et

duaux-symplectiques. Une méthode générale est proposée, permettant le calcul

exact des fonctions de corrélation dynamique à deux points, qui se révèlent non

nulles uniquement le long des bords des cônes de lumière. Ces résultats sont validés

par des simulations Monte Carlo, montrant un excellent accord avec les prédictions

théoriques pour diverses observables.

L’étude suivante aborde le chaos et les conceptions unitaires, en commençant par

un examen des conceptions unitaires, des k-conceptions, et de la mesure de Haar,

avant de progresser vers la distribution de Porter-Thomas. Cette recherche fait pro-

gresser la compréhension des distributions universelles des recouvrements issus des

dynamiques unitaires en utilisant des modèles comme les circuits en briques et le

Modèle à Phase Aléatoire. Notamment, l’étude réussit à diagonaliser des matrices

de Toeplitz généralisées et à analyser leur spectre, ce qui permet un calcul exact du

Potentiel de Frame, essentiel pour comprendre l’universalité de notre théorie.

La dernière partie de la thèse se concentre sur les dynamiques universelles hors

d’équilibre des systèmes quantiques critiques, en utilisant la théorie des champs con-

formes (CFT) pour étudier les champs et les fonctions de corrélation. L’étude aborde

les dynamiques hors d’équilibre des systèmes quantiques perturbés par un bruit

couplé à l’énergie. Les résultats clés incluent des analyses détaillées des corréla-

tions à deux points, des distributions d’entropie d’intrication, et des fluctuations de
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densité d’énergie, qui sont démontrées comme étant directement liées à un ensem-

ble d’équations différentielles stochastiques (SDEs). Il est montré qu’il est possible

d’étudier ces SDEs et de prouver analytiquement l’existence de distributions sta-

tionnaires non triviales avec des queues en −3/2. Le benchmarking de ces résultats

avec un modèle de fermions libres souligne l’universalité et la robustesse du cadre

théorique présenté.

Dans l’ensemble, cette thèse intègre des modèles théoriques et des cadres mathé-

matiques pour améliorer la compréhension du chaos dans les systèmes classiques et

quantiques. En reliant les résultats des circuits symplectiques, des conceptions uni-

taires, et des dynamiques hors d’équilibre, elle offre un récit complet qui souligne

les caractéristiques universelles du comportement chaotique dans la dynamique à

plusieurs corps.
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Chapter 1

Introduction

Chaos is a critical concept that bridges classical and quantum physics, reflecting

the complex and often unpredictable nature of dynamics in systems. In classical

physics, chaos theory explores how deterministic systems, governed by precise dy-

namical laws, can exhibit behaviour that is highly sensitive to initial conditions, a

phenomenon often illustrated by the “butterfly effect” [1]. This sensitivity leads to

complex, seemingly random behaviour even in systems where the underlying rules

are straightforward. Such chaotic behaviour has been observed in diverse contexts,

from weather systems to planetary orbits, highlighting the inherent unpredictability

of the natural world [2].

In contrast, quantum chaos extends this concept into the quantum realm, where

systems are governed by the principles of quantum mechanics. Unlike classical

systems, quantum systems do not exhibit sensitivity to the initial quantum state,

making the study of chaos in this context historically challenging. Quantum chaos

focuses on understanding how classical chaotic behaviour emerges in quantum sys-

tems, especially in the semi-classical limit, where quantum effects are still signifi-

cant. This field explores the relationship between classical trajectories and quantum

states, often using statistical methods to study the distribution of energy levels and

the behaviour of wave functions in chaotic quantum systems [3].

This thesis aims to focus on the nature of chaos in both classical and quantum

physics by the study of many body systems in three different frameworks: dual-

symplectic circuits, k-designs in random unitary circuits and out-of-equilibrium dy-

namics in critical quantum systems. So let us start from the classical physics part of

my thesis.
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Dual-symplectic Circuits

Symplectic dynamics is central to the study of Hamiltonian systems, a subject deeply

rooted in the work of Henri Poincaré, who established the foundations of dynam-

ical systems and symplectic geometry [4]. At the heart of symplectic dynamics is

the concept of symplectic form—a geometric structure that encodes the essential dy-

namical information of a system and is preserved under time evolution. A result

of this is phase space volume conservation, known as Liouville’s Theorem. If one

imagines a “balloon”, representing a volume in the phase space of a symplectic sys-

tem, then the time evolution expands this balloon in certain directions and shrinks

it into others, such that the total volume of the “balloon” is invariant.

This type of dynamics appears in many natural systems from celestial mechanics

to fluid dynamics and thus a deeper understanding of such type of time evolutions is

directly related to our understanding of nature. Symplectic systems can demonstrate

a wide spectrum of behaviours, ranging from regular ones to chaotic ones. Regular

dynamics involve periodicity or quasi-periodicity, meaning that the trajectories of

the system in phase space either repeat after a certain period or cover a toroidal

surface densely without filling the entire space. However, chaotic dynamics include

mixing, meaning that any small volume of initial conditions will eventually spread

out and fill a larger region of the phase space, leading to complex and irregular

patterns. An indicator of mixing is sensitivity to initial conditions, which usually

appears as an exponential divergence of trajectories and thus positive Lyapunov

exponents [5]. In addition, it is possible that a system can demonstrate both regular

and chaotic time evolution, with the phase space being a mixture of regular and

chaotic regions. A well-known example of that is the Chirikov standard map [6].

However, the focus of this part is mostly on chaotic systems, especially classical spin

chains.

What is the motivation behind the study of correlations in my thesis? In classical sys-

tems, the connection between chaos and correlations is a fundamental concept in

understanding complex dynamical behaviour. The sensitive dependence on initial

conditions in chaotic systems makes long-term prediction impossible, despite the

system being deterministic, indicating that this type of time evolution leads to loss

of information about the initial state. Correlations in chaotic systems describe how

the state of one part of the system is related to the state of another part, in time. Since

chaotic systems “forget” over time, it is expected that their correlations typically
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decay over time. Consequently, correlations can be a significant tool for exploring

chaos.

What is the motivation behind studying classical spin chains? The study of simple

systems can be quite rich in physics since they can offer intuition and knowledge

on the more fundamental mechanisms in nature. The aforementioned Chirikov map

is a very good example of how much one can study and understand about chaos,

especially for the transition between regular and chaotic behaviour, from a simple

law for time evolution. Another example is classical spin chains. In recent years,

classical spin chains have become a focal point in the study of symplectic dynam-

ics. Integrability, ergodicity, and their breakdown in one-dimensional (1D) classical

spin chain models, particularly in the classical Heisenberg spin chain (CHSC) [7, 8],

have been extensively explored. The framework of fluctuating hydrodynamics [9],

initially developed for classical anharmonic chains, has proven effective in studying

correlations in these systems [10, 11, 12, 13], revealing universal scaling behaviours

akin to those predicted by the Kardar-Parisi-Zhang (KPZ) equation. These stud-

ies have demonstrated that classical systems, under certain conditions, can exhibit

behaviours closely resembling those of quantum systems, especially when investi-

gating correlations and transport phenomena [14].

The concept of dual-symplectic dynamics represents an advancement in this

field, and it would be one of the major subjects of discussion in this thesis. How-

ever, what, do dual-symplectic dynamics contribute specifically in the study of chaos?

Results and methods: Unlike traditional symplectic systems, where symplecticity

governs only time evolution, dual-symplecticity extends this property to spatial di-

rection. This idea has been observed in SO(3) invariant dynamics of classical spins

[15], where correlation functions exhibit KPZ universality with a dynamical expo-

nent of 3/2. This thesis provides a comprehensive exploration of dual-symplectic

dynamics and introduces an exact method for calculating dynamical correlation

functions in dual-symplectic brick-wall 1D circuits.

In more detail, I consider a discrete in-space system consisting of N sites and a

Floquet time evolution. The Floquet operator is constructed by a local symplectic

gate Φ that couples two sites, e.g. i, i + 1, in a brick-wall 1D geometry. The cor-

relations of interest are of local observables on the points, (y, 0) and (y + x, t) of

space-time, but the two-site invariance of the model, implies dependence only on x

and the even, odd parity of y. The initial condition is considered to be the stationary
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state of the system, which for chaotic systems (in the absence of conserved quan-

tities) is the uniform measure over the phase space. The methodology begins by

establishing a general diagrammatic formalism for symplectic dynamics on a finite

measure phase space. Analytical expressions such as correlations are expressed via

diagrams, mapping the mathematical framework, that would be needed otherwise,

to transformations of these diagrams. This diagrammatic approach leads to a more

practical and intuitive way to manage the analytics. The brick-wall geometry of the

circuit leads to a coupling of the sites with a speed of vc = 2, and thus no infor-

mation can travel faster than that. It is an analogue to the speed of light in special

relativity and, in the same way, one can define light cones in our discrete space-time

circuit with a maximal velocity of vc. Spacelike points are not causally connected,

and correlations trivially vanish. However, this is not true for timelike points and in

this case, an exact behaviour is not usually known for a generic symplectic circuit.

The diagrammatic formalism is then extended to dual-symplectic systems where

Φ is dual-symplectic, where one derives exact expressions for the correlations of

arbitrary local observables. A key finding of this thesis is that, in dual-symplectic

circuits, the dynamical correlation functions vanish everywhere except along the

light rays, x = ±vct. Moreover, the behaviour of these functions along the light rays

can be expressed in terms of a transfer operator F±. The ± sign represents the two

different parities of y.

The thesis introduces a class of dual-symplectic systems called the Ising-Swap

model [16], which is employed to validate the results via analytics and Monte Carlo

simulations, and where the local gate Φ is a composition of rotations acting on clas-

sical spins. Specifically, I prove that, despite the infinite dimensionality of the lo-

cal phase space, the transfer operator involved in the calculation of the correlation

functions splits into finite-dimensional blocks, owing to the conservation of the total

angular momentum. A significant advantage of this is that correlations depend on a

finite number of angular momentum subspaces, and thus truncation is not required.

The scientific importance of a piece of research is not apparent, only on the spe-

cific subject it deals with but also on its influence on other subjects. Therefore, it is

equally important for this thesis to answer the following question: What other ques-

tions can the results of the thesis on dual-symplectic systems help answer? My answer is

the following.
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The method introduced in the thesis is valid not only for dual-symplectic sys-

tems, as any local gate Φ which is volume-preserving and which also has a volume-

preserving dual map Φ̃ and satisfies Eq. (2.42), exhibits the same diagrammatic be-

haviour. Every symplectic map is volume and orientation-preserving, but the group

of symplectic maps is significantly smaller than that of the volume-preserving ones

(Non-squeezing theorem [17]). Consequently, there is a larger set of dynamical er-

godic systems, which exhibit our diagrammatic representation, having correlations,

which vanish everywhere except the edges of the light-cone.

The exploration of dual-symplectic dynamics in this thesis is deeply connected

to works in both classical and quantum mechanics. The “surviving” of correlations

only on the edges of the light cones, mirrors the phenomena observed in dual-

unitary quantum circuits, where unitarity over space and time leads to simplifica-

tions in calculating dynamical quantities [18, 19, 20, 21]. The link between dual-

symplecticity and dual unitarity implies feedback between the two, and discovery in

one can help discover something original in the other. Especially, it can help answer

questions such as: Is it possible to find a more general characterization or complete

parametrization of the dual-symplectic circuits which may help in also, finding a

parametrization of dual-unitary gates to larger than qubits [22] local spaces? Could

one find exact results for different initial conditions, as has already been demon-

strated in the dual unitary case [18]? The formalism showcased in this thesis can be

a stepping stone to studying these types of questions.

We conclude this part by mentioning that classical circuits and correlations have

been the main tools that were used in this thesis for studying chaos in many body

classical systems. In the case of quantum many-body systems, quantum many-

body circuits and especially random unitary circuits (RUCs) and their formation of

k−designs can be fundamental for the study of quantum chaos. This is going to be

another subject of discussion in this thesis, and it will be presented in more detail in

the following parts.

Universal Distributions of overlaps in generic quantum many-body systems

The study of quantum many-body systems is at the forefront of contemporary

physics, offering deep insights into complex phenomena that govern both theoretical

and practical aspects of quantum mechanics [23, 24]. Among the myriad of topics

within this field, quantum chaos and the scrambling of information stand out, due
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to their profound implications for understanding the thermalization processes in

quantum systems [25], the behaviour of quantum information [26], and even the

nature of black holes [27]. An additional subject of exploration in this thesis is the

intricate relationship between quantum chaos, random unitary circuits (RUCs), and

unitary designs and how these concepts can lead to universal behaviours, when it

comes to quantum states prepared by RUCs.

Quantum chaos, unlike its classical counterpart, does not arise from sensitivity to

initial conditions. Classical chaos is characterized by the exponential divergence of

trajectories in phase space, a phenomenon directly linked to the Lyapunov exponent.

In contrast, quantum systems, governed by linear unitary evolution, do not exhibit

such divergence. This can be understood by considering an initial condition |Ψ0⟩

and its small perturbation δ |Ψ0⟩. If U(t) is the unitary time evolution operator, then

∥U(t)δ |Ψ0⟩∥ = ∥δ |Ψ0⟩∥, implying that the distances of nearby trajectories in Hilbert

space do not diverge in time. Instead, quantum chaos is often identified by the sta-

tistical properties of energy levels and the distribution of eigenstate overlaps, which

resemble those of random matrices [28]. If En are the ordered energy levels of the

system, then in the study of energy spectra, classically integrable and ergodic Hamil-

tonian systems belong to two distinct universality classes. The energy spectrum of a

classically integrable system is characterized by uncorrelated levels, with the energy

gaps S = En+1 − En following Poissonian statistics, known as Berry-Tabor conjec-

ture (1977) [29]. Conversely, for ergodic systems, it has been conjectured by Bohigas

et al. (1984) [30] that the statistical properties of S align with those predicted by Ran-

dom Matrix Theory (RMT), particularly the Gaussian Orthogonal Ensemble (GOE)

for systems with time-reversal symmetry, or the Gaussian Unitary Ensemble (GUE)

without such symmetry.

A critical aspect of quantum chaos is the process of quantum scrambling, where

initially localized quantum information becomes distributed across the entire sys-

tem, rendering it inaccessible to local measurements. Mathematically, this can be un-

derstood through out-of-time-order correlators (OTOCs), which measure how two

initially local and commuting operators A and B evolve under the system’s dynam-

ics. An OTOC is defined as:

OTOC(t) = ⟨[A(t), B(0)]†[A(t), B(0)]⟩ (1.1)
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Here, A(t) = U†(t)AU(t) represents the time-evolved operator under the uni-

tary evolution U(t). If the OTOC grows large, it indicates that the operators A(t), B

no longer commute, signalling that correlations and thus information from the re-

gion of B has spread (or scrambled) across the system.

Random quantum circuits (RQCs) have emerged as a powerful tool for study-

ing these processes. RQCs consist of sequences of randomly chosen unitary gates

applied to a quantum system, typically modelled as a chain of qubits or qudits.

Why should we study RUCs? One of the key applications of RQCs is their ability to

efficiently approximate unitary t designs (also named unitary k design) [31], which

can be useful for simulating random quantum states and operations. In principle, if

one is interested in the application of random unitaries drawn from the Haar mea-

sure (which is practically a uniform distribution over the unitary group), then he

is limited by the fact that they require exponential resources [32], in the sense that

they require exponential many gates. Hence, it is more practical to consider less

complex probability distributions over the unitary group that are sufficiently close

to the Haar measure. The criterion for how closely the RUC reproduces the Haar

ensemble is the unitary k-design [33]. When an RQC approaches a k−design, then

the average of polynomials of degree k over RQCs is indistinguishable from the one

coming from the Haar measure. This is similar to approaching the first k moments

of a probability distribution. The approach to higher k−designs implies that, for

all practical purposes, the RUC simulates more effectively the uniform ensemble of

unitary matrices. Furthermore, RUCs have often been used to approximate chaotic

dynamics, as discussed above in the context of RMT.

Scrambling is a by-product of strongly coupled chaotic dynamics [33], and con-

sequently there should be a strong quantitative connection between quantum chaos

and pseudorandomness. Pseudorandomness here refers to the capability of the

chaotic unitary dynamics to effectively reproduce a distribution of random unitary

matrices since in principle the unitary dynamics of a chaotic system create a de-

terministic flow over the unitary group. At large times the unitary evolution of a

quantum chaotic system is expected to perform a “random walk” (time evolution is

deterministic so it is a pseudorandom walk), over the unitary group and since there

are no conserved charges, that implies that there is no preferred choice of basis and

consequently one can effectively replace U(t) in Eq. (1.1) with a unitary operator

drawn from the Haar measure. Therefore, at large enough times, the pseudorandom
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behaviour of the chaotic system leads to an ensemble of unitary gates, which ap-

proximates the Haar one and the k-design is a criterion of how close we are to Haar

and thus how close the pseudorandom behaviour of the system, to being random.

What is the motivation for studying unitary k-designs and the overlaps of quantum

states produced by RUCs ? Similarly to the case just described, if one constructs a

RUC with some local Haar operators, then as the depth of a quantum circuit in-

creases, the unitary operation it performs becomes increasingly more scrambling,

eventually resembling those generated by a global Haar operator. The unitary k-

designs significance lies in the fact that they act as a measure of convergence to

the Haar measure of the whole system, likewise the moments of a distribution.

Convergence of higher k-designs of the RUC to the Haar value is an indicator of

a closer convergence to the Haar measure. Unitary designs are crucial for estab-

lishing lower bounds on the complexity of quantum circuits [34], in the sense of

the minimum number of basic elementary gates necessary to generate the quan-

tum state from a reference one. Another application is randomizing benchmarking

[35], which involves applying sequences of randomly chosen quantum gates and

is useful in ensuring that errors remain below the thresholds required for fault-

tolerant quantum computing. An additional role of unitary designs has been the

study of the distribution of overlaps between quantum states that were produced

from RUCs. One can assume some two identical but statistically independent states,

|Ψ(t)⟩ = U(t) |Ψ0⟩ , |Ψ′(t′)⟩ = U′(t′) |Ψ0⟩ with the RUCs U(t), U′(t′) acting on some

initial state |Ψ0⟩. The overlap w = | ⟨Ψ′(t′)|Ψ(t)⟩ |2 between the two quantum states

provides a measure of their similarity and is directly related to the statistics and

complexity of the RUCs. Previous studies have shown that for random states drawn

from the Haar measure, the distribution of overlaps follows the Porter-Thomas (PT)

distribution [36], which describes the probability distribution of the overlap when

U(t), U′(t′) are operations drawn from the Haar measure. PT distribution is a key

indicator of Haar statistics and characterizes the behaviour of quantum systems un-

der chaotic dynamics. The overlaps of quantum states are crucial for understanding

how quantum circuits outperform classical simulations. By sampling random quan-

tum circuits and measuring the overlaps between the generated quantum states,

researchers can quantify the difference between quantum and classical computa-

tions via a quantity that is called cross-entropy [36], thereby checking for quantum

supremacy. Furthermore, the theory produced on the distributions of the overlaps
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can be used as a tool for verifying how close a real-life RUC, performs as expected

via the comparison of the moments of w, with the theoretical results. Based on all

the above, new research on the distributions of w can lead to significant discoveries

due to their multi-faceted applications, and that is the main motivation behind the

study of those distributions in this thesis.

Results and Methods: In this thesis, we present a detailed study of the statistical

properties of quantum states evolved under RUCs with local Haar gates, with a par-

ticular focus on the distribution of overlaps between these states. The local Haar

gates are chosen independently over space and time. We consider a scenario where

the circuit acts on d = 1 dimensions, with L sites of local dimension q and evolves

over a time t, resulting in a state that approximates a k-design, over time. Our re-

search introduces a novel generalization of the PT distribution [37], extending it to a

family of distributions which depend on a specific scaling limit (to be defined later).

The PT distribution appears in the limit of t → ∞, with, t ≫ L, when the RUC has

already approached the Haar measure up to large k−designs.

The methodology employed in this study involves several key steps, each con-

tributing to a comprehensive understanding of the overlap distribution in chaotic

quantum systems. I present them briefly here and the reader will find more details

in the later sections of the thesis:

1. Overlap Distribution in the Scaling Limit: The core of our study focuses on the

distribution of rescaled overlaps w′ = Nw, N = qL where both time t and

the number of qudits L are large, for different types of periodic boundary con-

ditions. We, specifically, target the regime, characterized by a single scaling

parameter, x = L/LTh(t), where LTh(t) represents the volume scale at which

complete scrambling occurs [38]. Our results demonstrate that the w′ distribu-

tion converges to a family of universal distributions that depend on this scaling

parameter, and we should mention that this is proven via analytical results for

the moments of w′.

2. Mapping to Statistical Models: To derive the moments of w′, we map the problem

to a statistical model of dilute domain walls, via a transfer matrix method. This

mapping allows us to express the moments as a partition function, which we

solve using techniques from statistical mechanics. The average over the local
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Haar gates of our RUC leads to local “spin” degrees of freedom of permuta-

tions and thus the resulting partition function corresponds to an effective one-

dimensional model with ferromagnetic interactions over those “spins”. The

leading contributions to the partition function come from the ferromagnetic

ground state and the excitations with fewer domain walls. Based on that, one

can understand that the universality of the overlap distribution emerges from

the density of dilute domain wall excitations.

3. Random Phase Model and Toeplitz Matrices: To further validate our results, we

employ the Random Phase Model (RPM) [39] and analyse the transfer matrix

associated with the overlap distribution in the limit of large local Hilbert space

dimensions. This transfer matrix is shown to be a generalization of the Toeplitz

matrix [40] and we provide an exact diagonalization technique of this matrix,

demonstrating that the overlap distribution can be understood in terms of the

eigenvalues of this matrix.

Can one use our results and methodology for different frameworks?. This part of the

thesis contributes to the field by providing a comprehensive framework for under-

standing the universal properties of overlaps in chaotic quantum systems. Firstly, an

interesting extension is Floquet circuits [41, 39], where the same random gates are

being chosen over time, but not necessarily, over space. In this case, the local ran-

dom Haar gates act like a strong spatial disorder that can lead to many-body local-

ization (MBL) [42], where thermalization and scrambling are hindered [43], making

our theory not valid (numerical proofs of that are presented in App. B.4). How-

ever, at weak disorder, the coupling of the degrees of freedom can be strong enough,

to induce enough scrambling and one can still be in a thermalising phase and be

able to apply our methodology but taking into account that now the average over

the local Haar gates lead to local “spin” degrees of freedom which are permuta-

tions over the same Haar gates in time as well. Secondly, instead of considering

the overlap between two different realizations of the circuit, we can consider the

expansion of the state evolved by the circuit in the strings of the computational ba-

sis w = | ⟨a = a1, . . . , aL|Ψ⟩ |2, ai = 0, 1, which corresponds to taking t′ = 0 and

|Ψ0⟩ = |a = a1, . . . , aL⟩. In this case, the distribution of w′ on the various strings a

will still be described by the universal distributions of our results. This result is im-

portant because of its relevance in concrete experiments. For example, in [44, 45], the



Chapter 1. Introduction 11

statistical distribution of the a-strings of a state evolved from a random circuit was

used in an attempt to demonstrate quantum supremacy: a measure of the fidelity of

the experiment was obtained precisely by assuming that w follows the PT distribu-

tion and in principle, one can do the same in the scaling regime by using our results.

Finally, the analysis applied to the RPM suggests that the theory can be extended to

d > 1, where the ferromagnetic statistical model is defined with the permutations

being the local “spins” over a d-dimensional lattice. This will be better understood

later when we present the details of our study.

Universal out of equilibrium dynamics

At this point, I present the third and last main subject of my thesis, which is related

to out-of-equilibrium dynamics of critical quantum systems.

The study of quantum systems far from equilibrium has emerged as a vital area

in modern physics, particularly in understanding the dynamics of critical systems

subjected to external perturbations. This subject of the thesis dives into the universal

out-of-equilibrium dynamics of one-dimensional critical quantum systems, focusing

on how these systems respond to noise coupled to their energy density [46]. Our

study uses Conformal Field Theory (CFT) as a foundational tool to explore these

dynamics, providing universal results into the behaviour of quantum systems under

such perturbations.

Critical phenomena in quantum systems, especially at second-order phase tran-

sitions, play a central role in condensed matter physics and statistical mechanics.

From the renormalisation group theory, it is known that the 2nd-order critical point

is associated with a fixed point where certain thermodynamic functions become sin-

gular [47]. A. Polyakov hypothesised [48] that the field theory at the critical point

is invariant under the more general group of conformal transformations and not

just scale changes. Such a theory is known as conformal field theory (CFT). These

transformations stretch the lengths of vectors locally while preserving their relative

angles, and are known as Conformal transformations. Consequently, the d = 1 + 1

CFT can be applied to the study of 1-D critical quantum systems (e.g., spin chains

[49, 50]) and the classification of the fixed points of the renormalization group corre-

sponds to identifying all possible quantum field theories with conformal symmetry.

CFT has been instrumental in understanding the universal behaviour of critical sys-

tems in one dimension [46, 51, 52], such as the universality of finite-size correction in
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the Free energy. The renormalization group theory complements this by explaining

the universality observed in critical phenomena, where different physical systems

can exhibit identical behaviour at large scales when they correspond to the same

fixed point under the renormalization group flow.

What is the connection with the many body chaotic systems ? In order to understand

this, we mention briefly the general intuition around thermalization for chaotic and

integrable systems.

In chaotic quantum systems, the concept of thermalization is tightly linked to

the Eigenstate Thermalization Hypothesis (ETH) [53]. Intuitively, thermalization in

an isolated quantum system, where we consider the representation over the energy

eigenstates |Eα⟩, implies that starting from a given initial physical state |Ψ(0)⟩ =

∑α
√

pα |Eα⟩, the system’s observables eventually reach values described by the mi-

crocanonical (and Gibbs) ensembles after a sufficiently long time. The infinite-time

average of a physical observable represented by the operator Ô (which typically con-

sists of a linear combination of few-body operators) can be derived from :

⟨Ô⟩∞ = lim
T→∞

1
T

∫ T

0
⟨ψ(t)|Ô|ψ(t)⟩dt = ∑

α

pα⟨Eα|Ô|Eα⟩

Thus, ⟨Ô⟩∞ depends on the probabilities pα along with the expectation values of

the observable ⟨Eα|Ô|Eα⟩, because the terms involving off-diagonal matrix elements

of Ô oscillate at different frequencies and thus average out. Since pα are determined

by the initial state, the natural mechanism ensuring that an observable Ô reaches its

thermal expectation value at long times for generic initial conditions is the assump-

tion that the expectation values in individual eigenstates ⟨Eα|Ô|Eα⟩ align with those

of the microcanonical ensemble Omc(Eα) defined by the probabilities pα.

More specifically, the ETH proposes that in chaotic systems the fluctuations of

matrix elements of local operators Ô in the energy eigenstate basis behave according

to the ansatz:

⟨α|Ô|β⟩ = Omc(Ē)δαβ + g(ω, Ē)Rαβ,

where Ē =
(
Eα + Eβ

)
/2 denotes the average eigenenergy, and ω = Eα − Eβ is the

energy difference. Here, Rαβ is a normally distributed random variable and g(ω, Ē)
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is a smooth function of ω and Ē. The equation above suggests that individual many-

body energy eigenstates have thermal local observables that are similar to the mi-

crocanonical ensemble values at the energy E = Eα, so that ⟨Eα|Ô|Eα⟩ ≈ Omc(E).

Therefore, even if the entire system is initialized in an energy eigenstate, its subsys-

tems perceive the rest of the system as an effective heat bath performing dynamics

that are restricted only by the energy and implying that the reduced density matrix

of the subsystem is thermal. Thus, the dependence on the initial condition is effec-

tively lost from the point of view of time averages of local observables, indicating

the loss of information and the intense scrambling of quantum chaotic dynamics.

On the contrary, in integrable systems, the dynamics of subsystems are restricted

by the many conserved charges of the system. Instead,
〈
Ô
〉

∞ of local observables re-

lax to a different value, described by a reduced density matrix known as Generalized

Gibbs Ensemble (GGE):

ρGGE =
1

ZGGE
exp

(
−∑

i
λi Ii

)
,

where Ii are the conserved quantities and λi are Lagrange multipliers. By defini-

tion, Tr{(ρ0 Ii)} = Tr{(ρGGE Ii)}, where ρ0 is the initial state of the system. Thus, the

coefficients λi depend on the initial condition, indicating that the dynamics retain

information about the initial state, in contrast to chaotic systems.

Essentially, at large times the system equilibrates, and it can be a thermal equi-

librium described by the Gibbs ensemble ρGibbs = exp{−βH}/ZGibbs for isolated

quantum many-body chaotic systems, or a different type given by the GGE in the

case of integrable systems. However, for the dynamics towards equilibrium, the sit-

uation is much less clear, making the study of this type of dynamics very intriguing.

What is the motivation behind the study of out-of-equilibrium dynamics under the in-

fluence of noise ? Understanding out-of-equilibrium dynamics is crucial for several

reasons. It sheds light on how quantum systems thermalize or fail to do so. The

failing of thermalization can lead to more exotic phases described by phenomena,

such as many-body localization (MBL) [54], equilibration toward generalized Gibbs

ensembles due to integrability [55], quantum scars [56], and Hilbert space fragmen-

tation [57]. Furthermore, understanding the non-equilibrium physics of interacting

systems is not only fundamentally important but could contribute to future tech-

nological advancements. For example, quantum computers require the ability to
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manipulate interacting quantum systems in real-time and the knowledge we can ac-

quire on coherent dynamics from out-of-equilibrium ones, is a key area of focus for

various experimental systems.

There are many ways to take a system out of equilibrium, such as applying a

driving field pumping energy or particles in the system through external reservoirs,

or a change in one of the system parameters, known as quantum quench. A partic-

ularly intriguing protocol is a noisy quench, especially when the noise is coupled to

the system’s energy density. That is, the subject of discussion of the third and last

part of my thesis and the motivation behind it is encoded into its applications. Noise

can induce complex dynamics such as heating, decoherence [58], and entanglement

generation, all of which are critical for understanding the robustness of quantum

systems in real-world conditions. The behaviour of quantum systems under noise

has been investigated in various contexts, including the impact of 1/f noise [59, 60],

which is common in physical systems, and the role of stochastic unitary dynam-

ics, where it is possible of realizing it in concrete experiments, including cold-atom

platforms [61] and trapped ions [62].

Results and Methods: The study performed in this part of my thesis aims to offer

insights into answering two questions:

• Is there a universal feature in the dynamics of a system following a noisy quan-

tum quench?

• What are the characteristics of the asymptotic, steady state reached after a

quench?

In this part of the thesis, we explore the universal out-of-equilibrium dynamics

of one-dimensional critical quantum systems perturbed by temporally white noise

η(x, t) coupled to their energy density. If Ĥ0 =
∫

dxĥ(x), is the unperturbed Hamil-

tonian then the total Hamiltonian is of the form:

Ĥ = Ĥ0 + Ĥ1 =
∫

dx[1 + η(x, t)]ĥ(x),

where ĥ(x) is the Hamiltonian density, and the noise η(x, t) is delta correlated

in time with space correlations characterized by a smooth, function f (x), which de-

creases fast enough at x ≫ 1. The addition of the noise induces stochasticity over

the unitary dynamics and thus the physical quantities of the system. This becomes

clear, if we assume an initial condition |Ψ(0)⟩ and evolve it under Ĥ up to time t for
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example. At every time moment τ ≤ t there is a temporal-spatial profile of the noise

η(x, τ) which generates a specific trajectory in Hilbert space for |Ψ(0)⟩. Then, if we

repeat the process, one gets other spatial profiles of η(x, τ) and thus another trajec-

tory for |Ψ(0)⟩. In this manner, one collects samples of these trajectories as well as of

the physical quantities, since they depend on the state of the system. This example

gives a qualitative explanation of how the state and the physical quantities acquire

a stochastic nature due to the noise.

The system is initially prepared in its critical ground state under a homogeneous

and gapless Hamiltonian, ensuring scale invariance. The perturbation is introduced

at t > 0, driving the system out of equilibrium. The main objective is to understand

how this class of systems evolved over time and the nature of the stationary states

they reach. The key result of this study is the demonstration that the system reaches

a non-trivial and universal stationary distribution of states characterized by broad

tails in the distributions of physical quantities. This finding is crucial because it indi-

cates that the typical behaviour of the system cannot be fully captured by averaging

over noise realizations; instead, one must consider the entire distribution of physical

quantities.

Using CFT, we derive a universal description of the out-of-equilibrium dynam-

ics. Specifically, we show that any two-point correlation is a function of a stochastic

variable, which we denote κ± and as we will see in detail this stochastic variable is

actually dependent on another variable named r. Thus, finding exactly the statis-

tics over time boils down to solving the two coupled ordinary stochastic differential

equations (SDEs) for κ± and r. These SDEs govern the evolution of two stochastic

variables κ± and r. Solving these SDEs reveals that the system reaches a stationary

state at long times, with the distribution of κ± taking a universal form with fat tails

of −3/2 . These fat tails result in the divergence of all the moments of the physi-

cal quantities of interest, such as the entanglement entropy and
〈

ĥ(x, t)
〉

, where ⟨.⟩

indicates the expectation value over the initial state and ĥ(x, t) is the time evolved

energy density. The fat tails of
〈

ĥ(x, t)
〉

suggests that at large times the system

demonstrates, locally intense fluctuations of the energy and on average it heats up

to infinity but reaches a non-trivial steady state. These results are validated through

a specific model—a chain of non-interacting spinless fermions with noisy hopping.

This model provides a concrete example where the CFT predictions can be tested

against numerical simulations.
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Furthermore, the study examines the impact of the noise correlation length on

the system’s dynamics. By considering the scaling limit where the noise correlation

length diverges, it is shown that the CFT predictions are precisely recovered, un-

derscoring the universality of the results. Additionally, the timescales at which the

CFT framework breaks down are estimated, offering a clear picture of the regime of

validity of the approach.

The research also extends these results to systems initially prepared at finite tem-

peratures. Notably, the initial temperature affects only the transient dynamics, while

the stationary distribution remains unchanged. This robustness implies that the

−3/2 tail observed in the energy density distribution is a universal feature of the

system, independent of the initial conditions.

What further applications can our theory have? Several intriguing questions and

future research directions remain open.

Firstly, it would be particularly exciting to observe the predictions of our the-

oretical framework in a specific experimental setup. The study of the statistics of

quantum trajectories has recently gained significant attention, especially in the con-

text of measurement-induced phase transitions [63, 64, 65]. Unlike other studies that

require post-selection, our approach is free from this limitation, since stochasticity is

induced by noise and not a measurement, making it a promising candidate for ex-

perimental verification. To enhance the feasibility of experimental observation, it is

crucial to assess the robustness of the observed phenomena, such as by investigating

the impact of thermal fluctuations. The study, in [46], indicates that a small initial

temperature does not alter the fat tail behaviour of the energy density distribution.

Secondly, our theory dealt with two-point correlation functions, however extend-

ing our methods to compute higher-order quantum correlation functions, such as

four-point correlators, remains an important goal, as it would help provide insight

into other physical aspects of the system. For example, the mutual information be-

tween two intervals is related to a four-point correlator of twist fields [66]. Lastly,

the surprising emergence of a stationary distribution in our model raises fundamen-

tal questions about the conditions necessary to observe similar behaviour in other

quantum stochastic systems. The stationary state identified in our continuous the-

ory may correspond to a long-lived prethermal state in lattice systems, analogous to

observations in many-body quantum scars [67].

In conclusion, this introduction exhibits the three main subjects of discussion in
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this thesis and offers a brief overview of each field, the methods and results, and ref-

erences to relevant literature. The thesis is organized into three chapters as follows:

• In Ch. 2, I present in detail the novel class of systems, of dual-symplectic clas-

sical circuits.

• In Ch. 3, I demonstrate in detail the theory and the novel results on the distri-

bution of the overlaps w from RUCs.

• In Ch. 4, I showcase in detail the analytical approach and the results for uni-

versal out-of-equilibrium dynamics of critical quantum systems.

The reader will find a more detailed description of the structure of each part at the

beginning of each chapter.
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Chapter 2

Correlations in Dual-Symplectic

Circuits

In this chapter we present the novel idea of dual-symplectic dynamics [16] according

to which, symplecticity characterizes both time and space propagation. In this chap-

ter, we demonstrate in detail the diagrammatic method that was utilised for repre-

senting the correlation functions and how dual-symplecticity, helps us simplify the

diagrams. Furthermore, we introduce a family of dual-symplectic systems, called

the Ising Swap Model, which is used to test our theory via numerical results.

This chapter is organised as follows:

• In Sec.2.1, we present some introduction to Hamiltonian flows.

• Sec. 2.2 we briefly introduce Symplectic systems.

I would like to let the reader know that the theory presented in these first two

sections can be found in different textbooks about dynamical systems, such as

[3]. Those who already have a solid understanding of Hamiltonian flows and

Symplectic dynamics may wish to continue directly to the next section.

• In Sec. 2.3, we showcase our novel results in dual-symplectic circuits and

benchmark them with numerical results from the Ising Swap Model.

2.1 Hamiltonian flows

A stepping stone to understanding symplectic systems is Hamiltonian flows, and

thus I chose to begin the theoretical inquiry with that. A Hamiltonian system is

defined on a phase space MN as the set of all the states X = (p, q) and its flow de-

scribed by a function H(p, q, t), the Hamiltonian, and a set of differential equations,
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FIGURE 2.1: The conservation of volume in a phase space of N = 1 of
a Hamiltonian system.

Hamilton’s equations:

q̇i =
∂H
∂pi , ṗi = −∂H

∂qi → Ẋ = Ω∇X H (2.1)

Here the qi are the generalised coordinates and pi the generalised momenta, with

i = 1, 2, . . . , N for a system with N degrees of freedom. The Poisson matrix Ω is the

antisymmetric 2N × 2N matrix:

Ω =

 0N 1N

−1N 0N

 (2.2)

A typical example of a Hamiltonian is H(p, q) = p2/2 + V(q), which represents the

energy of a system of N particles interacting with a potential V, that depends only

on their generalised coordinates. In the special case that the Hamiltonian has no

explicit time dependence, H = H(p, q), we can use Hamilton’s equations to show

that, as p and q vary with time, the value of H(p(t), q(t)) remains a constant:

dH
dt

=
dq
dt

· ∂H
∂q

+
dp
dt

· ∂H
∂p

=
∂H
∂p

· ∂H
∂q

− ∂H
∂q

· ∂H
∂p

= 0.

One of the basic properties of Hamilton’s equations is that they preserve 2N dimen-

sional volumes in the phase space MN . This follows by taking the divergence of Ẋ ,

which gives

∇X · Ẋ =
∂

∂p
·
(
−∂H

∂q

)
+

∂

∂q
·
(

∂H
∂p

)
= 0.
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FIGURE 2.2: The differential symplectic area in the case of N = 1. In a
two-dimensional phase space, it is equivalent to the area of the paral-
lelogram formed by δX, δX ′, but this is not true in higher dimensions.

where we used Eq. (2.1). Thus, if we consider an initial closed surface s0 in

the 2N dimensional phase space and evolve each point on the surface forward in

time, we obtain at each instant of time t a new closed surface st (see Fig. 2.1) which

contains within precisely the same 2N dimensional volume as does s0. This follows

from
d
dt

∫
Vt

d2NX =
∮

st

dX
dt

· ds =
∮

st

Ẋ · ds =
∫

Vt

∇X · Ẋd2NX = 0,

where
∫

Vt
· · · denotes integration over the volume enclosed by st,

∮
st
· · · denotes a

surface integral over the closed surface st, and the third equality is from the diver-

gence theorem. As a consequence of this result, Hamiltonian systems do not have

attractors in the usual sense, since the volume in phase space of initial conditions

does not decrease. This incompressibility of phase space volumes for Hamiltonian

systems is called Liouville’s theorem.

One of the most fundamental structural properties of Hamilton’s equations is

their symplectic nature. In order to understand this better, let us consider three in-

finitesimally separated orbits, X(t) = (p(t), q(t)), X(t)+ δX = (p(t)+ δp(t), q(t)+

δq(t)), and X(t) + δX ′ = (p(t) + δp′(t), q(t) + δq′(t)), where δp, δq, δp′, and δq′

are infinitesimal vectors of dimension N. Then the quantity known as differential

symplectic area is defined as:

δp · δq′ − δq · δp′, (2.3)

An example of it is shown in Fig. 2.2 . Furthermore, the differential symplectic area
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can be expressed as

ω(δX, δX ′) = δp · δq′ − δq · δp′ = δXT · Ω · δX ′, (2.4)

where T denotes transpose and the Hamiltonian flow has the characteristic of pre-

serving ω:
d
dt

ω(δX, δX ′) = 0. (2.5)

Actually, the symplectic area is known in differential geometry as symplectic form

[68] and its invariance is a property of a more general class of dynamical systems

which I am going to discuss later. We are now deriving Eq. (2.5). The time evolution

of the differential symplectic area in Hamiltonian dynamics is given by:

d
dt

ω(δX, δX ′) =
dδXT

dt
· ΩδX ′ + δXT · Ω

dδX ′

dt
,

=

(
∂Ẋ
∂X

· δX
)T

· ΩδX ′ + δXTΩ
(

∂Ẋ
∂X

δX ′
)

,

δXT

[(
∂Ẋ
∂X

)T

Ω + Ω
∂Ẋ
∂X

]
δX ′,

Now we are using Hamilton’s equation:

= δXT

[(
Ω

∂2H
∂X2

)T

Ω + ΩΩ
∂2H
∂X2

]
δX ′,

= δXT

[(
∂2H
∂X2

)T

ΩTΩ + ΩΩ
∂2H
∂X2

]
δX ′ = 0,

where ΩΩ = −12N , ΩT = −Ω, and the matrix ∂2 H
∂X2 is symmetric. For systems with

a single degree of freedom (N = 1), Eq. (2.5) establishes that infinitesimal areas,

such as those defined by two infinitesimal vectors forming a parallelogram with

area δp′δq − δq′δp (see Fig. 2.2), are conserved under Hamiltonian flow, and thus by

extension, finite areas are also preserved. Consequently, for N = 1, both Liouville’s

theorem and the symplectic condition articulate the same principle. However, for

N > 1, the preservation of volume suggested by the symplectic condition extends

beyond what is covered by Liouville’s theorem alone. This underscores the sym-

plectic condition as a more essential requirement in Hamiltonian mechanics, and as

we will see later indeed, the preservation of the volume in MN is a consequence of
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FIGURE 2.3: The conservation of the loop action under Hamiltonian
dynamics.

the flow preserving ω.

The expression, δp · δq′ − δq · δp′, represents the differential form of Poincaré’s

integral invariant [69]. This invariant is a fundamental concept in symplectic geom-

etry and classical mechanics, capturing essential features of conservative dynamical

systems. The invariant is defined as:

Sγ =
∮

γ
p · dq =

N

∑
i=1

∮
γ

pidqi, (2.6)

where this integral is taken around a closed loop γ in the phase space spanned

by coordinates (p, q). We also refer to the integral, Sγ, as the symplectic area or the

loop action. The invariance of this integral under time evolution, which is a corner-

stone of Hamiltonian mechanics, implies that if γ evolves following the flow deter-

mined by Hamilton’s equations, then γ(t), the path at time t, is derived by evolving

all points on γ(0) forward in time. This property elucidates the conservation laws

inherent in Hamiltonian systems and highlights the non-dissipative nature of such

systems.

The previous results are related to energy-preserving flows. However, in the case

of explicit dependence of the Hamiltonian in time H(X, t) we need to generalise Eq.

(2.6). Under dynamic flow, the loop action is described by the Poincaré-Cartan in-

tegral theorem [69]. The Poincaré-Cartan integral theorem extends the concept of

conservation from classical Hamiltonian systems to more complex systems involv-

ing time as an explicit variable. In particular, consider the extended phase space of

dimension (2N + 1), characterized by coordinates (X, t). Within this framework,
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assume γ0 is a closed curve in this space, and the dynamics deform γ0, as depicted

in Fig. 2.3. According to the Poincaré-Cartan integral theorem, the generalised loop

action Iγ0 :

Iγ0 ≡
∮

γ0

(p · dq − Hdt), (2.7)

in the extended phase space remains invariant in time Iγ0 = Iγt This theorem broad-

ens the classical notion of conservation in Hamiltonian mechanics by incorporating

the dimension of time into the phase space, thereby enhancing the scope of the in-

variants under consideration. Furthermore, in scenarios where the Hamiltonian H

does not explicitly depend on time, we end up back at the invariance of Eq. (2.6).

This is true since the integrals of Hdt over the paths γ0 and γt reside entirely on the

2N dimensional surface defined by the constant H(X) and thus they vanish.

Hamiltonian Maps: The Hamiltonian flows already discussed are continuous in

time, but in scenarios like Floquet dynamics that come from periodic in t Hamiltoni-

ans, or like for simplifying the analysis of the system, we need to deal with discrete

flows. This raises the question: What happens in the case of discrete-time evolu-

tion? A simpler approach for exploring dynamics uses discrete maps that represent

the Poincaré first-return map, also known as the Poincaré section and in our case as

Hamiltonian maps at every time step τ. Consider a Hamiltonian system and define

the ’time τ map’ Fτ for this system as follows:

Fτ(X(t), t) = X(t + τ). (2.8)

(Here, the second argument of Fτ does not explicitly depend on t if the Hamilto-

nian is time-independent.) This map evolves the system by a time interval of τ.

Hamiltonian maps Fτ suggest another way of studying flows, where one ignores

the continuous trajectory of the system in phase space and studies only the discrete

points of the trajectory every time interval τ. The symplectic condition Eq. (2.5) for

the discrete evolution becomes,

ω(δX, δX ′)(t + τ) = ω(δX, δX ′)(t) (2.9)

δXT(t + τ) · Ω · δX ′(t + T) = δX(t)T · Ω · δX ′(t), (2.10)
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at this point upon differentiating Eq. (2.8) with respect to X, we obtain:

JFτ
δX(t) = δX(t + T). (2.11)

where JFτ
= ∂Fτ

∂X is the Jacobian matrix of the map. We input this relation back to

Eq. (2.10)

(JFτ
· δX(t))T · Ω ·

(
JFτ

· δX ′(t)
)
= δXT(t) · Ω · δX ′(t), (2.12)

implying (since δX(t) and δX ′(t) are arbitrary) that the matrix JFτ
satisfies:

Ω = (JFτ )
T · Ω · (JFτ ) . (2.13)

Hamiltonian maps inherently satisfy this condition and as we will see later this is

a property of the larger class of symplectic maps. Eq. (2.13) is the differential ex-

pression of the preservation of ω and is related to the local behaviour of the map

Fτ.

2.2 Symplectic systems

We have already seen that the Hamiltonian flows preserve the symplectic form Eq.

(2.4) and consequently the Jacobian of the flow satisfies the symplectic condition

Eq. (2.13). These properties have more consequences, than just the conservation of

the volume in phase space and are characteristic of a larger class of systems, called

symplectic systems.

By definition a symplectic system is a dynamical system, where the flow in MN

is generated by a symplectic map F . In analogy to Hamiltonian systems, F : MN →

MN is a symplectic map if it preserves the symplectic form:

F ∗ ω = ω → ω(δF (X), δF (X ′)) = ω(δX, δX ′) (2.14)

where δX, δX ′ are tangent vectors to MN . Locally this condition becomes a restric-

tion for the Jacobian of F :

Ω = (JF )
T · Ω · (JF ) (2.15)

Any map whose Jacobian satisfies Eq. (2.15) everywhere is called locally symplectic.
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If the phase space is not simply connected, then the conservation of ω for curves that

cannot be deformed to a point is an additional requirement. Maps that are symplec-

tic in this second sense are called exactly symplectic. The composition of symplectic

maps is also symplectic. To see this, suppose that F and G are two symplectic maps.

Then

(F ◦G) ∗ω → ω(δF (G(X)), δF (G(X ′))) = ω(δ(G(X)), δ(G(X ′))) = ω(δX, δX ′) → ω

where we used Eq. (2.14) for each map. So F ◦ G is symplectic. In the case of linear

maps, we obtain that the symplecticity is a property closed under matrix multiplica-

tion and that the maps form a Lie Group, called the symplectic group Sp(2N) [70].

Its Lie Algebra is the set of Hamiltonian matrices [70]. Thus, every near identity

symplectic matrix can be obtained as the exponential of a Hamiltonian matrix and

corresponds to the time τ-map of a linear Hamiltonian flow. There are symplectic

matrices, however, that are not the exponentials of Hamiltonian matrices, for exam-

ple,

 −1 1

0 −1

.

A straightforward deduction from Eq. (2.15) is obtained by calculating its deter-

minant for a symplectic map F :

Det(J T
F ΩJF ) = Det(Ω) =⇒ (DetJF )

2 = 1,

given that Det(Ω) = 1. This result constrains Det(JF ) to be either ±1. Symplec-

ticity is even more restrictive for the spectrum of the Jacobian matrix and it will be

demonstrated that Det(JF ) = +1, indicating that any symplectic map conserves

both volume and orientation. This conservation is crucial for maintaining the fun-

damental properties of physical systems, such as invariance under symplectic trans-

formations, which are essential in classical and quantum mechanics and are a con-

sequence of the preservation of the symplectic form. Additionally, this inquiry into

the determinant will also reveal a significant aspect of the eigenvalues of symplectic

matrices, which are central to understanding stability and behaviour under dynamic

transformations.
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Let us examine the eigenvalue problem for JF . The characteristic polynomial,

which is a 2N-order polynomial, is formulated as:

Det(JF − λ12N) = 0. (2.16)

This equation aids in determining the eigenvalues λ, which in turn describe the

system’s response to perturbations, pivotal in theoretical physics and applied math-

ematics. Given that the mapping is real, the characteristic polynomial associated

with the matrix JF is also real. Therefore, if λ is an eigenvalue of M, then λ∗, its

complex conjugate, must also be an eigenvalue of JF .

Intriguingly, by applying Eq. (2.15), we can reformulate Eq. (2.16) as follows:

0 = Det(Ω)Det(JF − λ12N) = Det(ΩJF − λΩ)

= Det(
(
(JF )

T
)−1

Ω − λΩ) = Det(
(
(JF )

T
)−1

− λ12N)Det(Ω)

= Det((JF )
−1 − λ12N).

(2.17)

This deduction confirms that if λ is an eigenvalue of JF , then it must also be an

eigenvalue of its inverse, or λ−1 is an eigenvalue as well of JF . This property in-

dicates that the characteristic polynomial is reflexive and can be expressed in the

form:
λN + C1λN−1 + C2λN−2 + · · ·+ C2λ2−N

+ C1λ1−N + λ−N = 0.

This automatically restricts the determinant to Det(JF ) = 1, since it is the product

of the eigenvalues λ. Thus, we have proven that the Jacobian matrix of a symplectic

map F satisfies :

Det(JF ) = 1. (2.18)

and thus it conserves the phase space volume. This result is significant because it

means two-dimensional symplectic maps preserve the oriented area element dp1 ∧

dq1. As we mentioned this is also the volume in M1 and this implies that the argu-

ment works both ways. Any two-dimensional map that conserves area and orienta-

tion is necessarily locally symplectic, but this is not in general true for N > 1.

According to Eq. (2.17) the eigenvalues of symplectic matrices occur in pairs or

quadruplets. If λ is real, it pairs with λ−1. If λ is complex, with only one partner

under these equations, then λ∗ = λ−1 → |λ| = 1, positioning it on the unit circle.
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Moreover, if λ = 1 is an eigenvalue, it must have even multiplicity, aligning with

the even dimensionality of the phase space. Lastly, if λ is neither real nor of unit

modulus, a quadruplet of eigenvalues forms:

λ, λ−1, λ∗, λ−1∗. (2.19)

Symplecticity imposes a strong restriction on the spectrum of JF and thus on the

linear stability of the orbits as well. Symplectic maps inherently lack asymptotic

stability due to their nature and in general, the dynamics of a symplectic map consist

of a complicated mixture of regular and chaotic motion [71]. Numerical studies [72]

indicate that the chaotic orbits have positive Lyapunov exponents and fill sets of

positive measure that are fractal in nature .Generally, symplectic systems exhibit

four primary stability types based on eigenvalue pairs (λ, λ−1):

• Hyperbolic: Here, λ is a real number greater than one, indicating exponential

divergence or convergence in the map’s trajectory.

• Hyperbolic with reflection: This type occurs when λ is real and less than mi-

nus one, reflecting a trajectory inversion alongside exponential changes.

• Elliptic: Characterized by λ = e2πiϕ with a magnitude of one, this type indi-

cates a stable, rotational motion around fixed points, typically seen in conser-

vative systems.

• Krein quartet: Involves complex λ not on the unit circle, leading to a quar-

tet of eigenvalues (λ, λ−1, λ∗, λ∗−1), often signalling instability due to mixed

magnitude and oscillatory components.

Hyperbolic stability type [73] is characterized by exponential behaviours—either di-

vergence or convergence—depending on whether the eigenvalue is greater than one

or less than minus one, respectively. Hyperbolic stability indicates sensitive depen-

dence on initial conditions, a hallmark of chaotic systems where nearby trajectories

diverge exponentially from each other over time. This makes predicting long-term

behaviour challenging due to the rapid growth or decay of perturbations. The el-

liptic stability type [73], implies a periodic or quasi-periodic motion around fixed

points, akin to rotational dynamics. This condition is associated with conservative

systems where no energy is gained or lost over time, resulting in bounded and regu-

lar trajectories. The elliptic stability type is crucial for understanding the behaviour
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of systems in which long-term behaviour tends to be predictable and non-chaotic,

such as in many classical mechanics problems and celestial mechanics scenarios.

Krein quartet stability [73] typically indicates mixed behaviours in the system’s dy-

namics, potentially leading to instability. This is because the presence of complex

eigenvalues of the unit circle can result in motions that combine rotation and ex-

ponential growth or decay, complicating the system’s predictability and potentially

leading to chaotic dynamics. After this discussion, one can observe that for a pe-

riodic orbit to maintain linear stability, all eigenvalues must be elliptic, resulting in

rotational dynamics specified by the rotation numbers ϕ. This stability implies a pre-

dictable, non-expanding motion, crucial for applications in physics and engineering

where steady-state behaviours are desired.

It is important to mention that, while symplectic maps on MN maintain certain

conservation properties, the set comprised by volume-preserving transformations

(with only the restriction Det(JF ) = 1) is bigger. This distinction was famously

highlighted by Gromov through his “Symplectic camel” theorem [74]. He demon-

strated that, while it is straightforward to design a volume-preserving map that em-

beds a closed ball with radius r in R2n into a cylindrical space C1(R) = {(q, p) :

q2
1 + p2

1 ≤ R2} regardless of their sizes, doing so symplectically is impossible if

r > R. This foundational result has spurred the development of symplectic capacity

and advanced the field of symplectic topology [75].

The restriction on the Jacobian matrix of the dynamics restricts the Lyapunov

exponents [76] as well, and in particular the Lyapunov exponents h of a symplectic

system come in pairs of (h,−h). To understand this, we present a brief proof.

Lyapunov exponents are instrumental in understanding the chaotic and regular

motion of a system. Suppose that initially, the system starts at X(0) ∈ MN and we

perturb X(0) slightly by the tangent vector δX(0). The change of the tangent vector

under the action of the dynamics of the map F the evolution is governed by the

Jacobian matrix. Upon a single application, we can write that:

δF (X(0)) = JF (X(0)) · δX(0). (2.20)

Consequently after t applications of the map we obtain :

δX(t) = δF t(X(0)) = JF t(X(0)) δX(0). (2.21)
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where F t ≡ F ◦ · · · ◦ F
t−times

. Actually, Eq. (2.21) tracks the evolution of the small devia-

tion δX(0) from the trajectory {X(0), X(1), X(t) = F t(X(0))}. It is straightforward

to observe that by using the chain rule we can decompose the Jacobian matrix of F

along the trajectory as follows:

JF t(X(0)) = JF (X(t − 1)) JF (X(t − 2)) . . .JF (X(0)) (2.22)

The Lyapunov exponent for the initial condition X(0) is defined as :

h(X(0)) = lim
t→∞

1
t

ln
∥δX(t)∥
∥δX(0)∥ . (2.23)

By definition we know that ∥δX(t)∥2 = δX(t)TδX(t) and by using Eq. (2.21) we can

also write :

h(X(0)) = lim
t→∞

1
2t

ln
∥δX(t)∥2

∥δX(0)∥2 = lim
t→∞

1
2t

ln
[
uT

0 At(X(0))u0

]
(2.24)

where At(X(0)) = (JF t(X(0)))T JF t(X(0)) and u0 = δX(0)/∥δX(0)∥. At large

times, we approximate the Lyapunov exponent h(X(0)) as:

h(X(0)) ≈ 1
2t

ln
[
uT

0 At(X(0))u0

]
(2.25)

The matrix At(X(0)) is a real non-negative Hermitian 2N × 2N matrix and thus pos-

sesses real, non-negative eigenvalues and real eigenvectors. When u0 aligns with

one of its eigenvectors, it defines specific approximate values for the Lyapunov ex-

ponent. These values, hj(X(0)) = 1
2t ln λj(t), where λj(t) is an eigenvalue, are sorted

such that h1(X(0)) ≥ h2(X(0)) ≥ . . . ≥ h2N(X(0)). Here, h1 is the greatest, and h2N ,

potentially the smallest or most negative. As t increases towards infinity, these ap-

proximate values hj(X(0)) tend towards the true Lyapunov exponents:

h1(X(0)) ≥ h2(X(0)) ≥ · · · ≥ h2N(X(0)). (2.26)

As we already mentioned, the composition of symplectic maps such as F t is also

a symplectic map and thus its Jacobian matrix is a symplectic matrix satisfying Eq.

(2.13). It is straightforward that the transpose of a symplectic matrix is also sym-

plectic meaning that At(X(0)) satisfies as well Eq. (2.13) at any time moment and
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consequently, its eigenvalues come in pairs λj(t), λ−1
j (t). Then the Lyapunov expo-

nents should come in pairs ±hj(X(0)) = 1
2t ln λ±1

j (t).

Importantly, the value of the Lyapunov exponent is not dependent on a specific

trajectory of the system but rather on the general behaviour of trajectories in the

vicinity of the initial conditions over time. This independence from specific trajec-

tories arises because the Lyapunov exponent is defined as a limit to an infinite time,

averaging the divergence rates of trajectories starting from infinitesimally close ini-

tial states. Thus, it reflects a global property of the dynamical system rather than

the particulars of individual trajectories. Even if specific trajectories might exhibit

unique or erratic behaviours due to specific local dynamics, the Lyapunov exponent

captures the average exponential rate of divergence or convergence. We can then

omit the initial condition X(0) in Eq. (2.26):

h1 ≥ h2 ≥ · · · ≥ h2N . (2.27)

The set of all the Lyapunov exponents is also called as Lyapunov spectrum. The

Lyapunov exponent is crucial for analysing chaotic behaviour in systems. Generally,

a positive Lyapunov exponent is associated with chaos [76], indicating that even mi-

nor differences in initial conditions can exponentially increase, resulting in vastly

different outcomes as time progresses. In contrast, a negative exponent points to

diminishing differences over time, which is characteristic of stable or periodic sys-

tems [76]. Therefore, by examining the collective behaviour of trajectories that start

from closely situated initial points, rather than focusing on individual paths, the Lya-

punov exponent acts as a powerful statistical tool for assessing whether a system is

likely to exhibit stable or chaotic behaviour.

2.3 Dual-Symplectic Classical Circuits

Firstly, I would like to mention that this part presents the theory that was demon-

strated in [16]. This section extends our discussion on symplectic models by intro-

ducing a new class called dual-symplectic systems. Here, we present a methodology

for computing exactly, their dynamical correlation functions using symplecticity. We

begin with introducing the model of our study in Sec. , then in Sec. 2.3.2 we intro-

duce the diagrammatic approach in the density space and derive our analytic results,
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and finally, in Sec. 2.3.3 we introduce the Ising Swap Model and use it to benchmark

our results.

2.3.1 The Model

Consider a classical system with N variables {X⃗i}, indexed by i = 0, . . . , N − 1. For

simplicity, we assume N is even. These variables inhabit a finite measure space M,

with the phase space formed by the Cartesian product of N instances of M, denoted

MN . Time is discrete, indexed by t ∈ Z, with local interactions modelled by a sym-

plectic map Φ : M× M → M× M affecting pairs of adjacent sites. This forms part of

a brick-wall circuit protocol under periodic boundary conditions, X⃗i+N ≡ X⃗i (refer

to Fig. 2.4).

Define Φij : MN → MN as a local gate applying Φ to variables X⃗i and X⃗j, and

acting idly on others. The operators Teven = Φ0,1Φ2,3 . . . ΦN−2,N−1 and Todd = Σ−1 ◦

Teven ◦ Σ are introduced, where Σ is a shift operation. The Floquet Operator T , which

advances the system by one-time step, is defined as:

T = Todd ◦ Teven, (2.28)

and is symplectic, composed of local symplectic maps. The two-site translational

symmetry of the system is captured by Σ−2T Σ2 = T . A point in MN is represented

by bold capital letters, e.g., X, and a point in M by a vector, e.g., X⃗.

The local gate is graphically depicted as a blue rectangle with two inputs and

outputs, each representing an instance of M:

Φ = (2.29)

and based on this one can construct the diagrammatic representation of T as illus-

trated in Fig. 2.4.

2.3.2 Dynamical Correlations

2.3.2.1 Symplectic Gate

In this section, we explore 2-point correlation functions, and demonstrate how the

property of symplecticity simplifies their calculation. Another way of studying a
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0 1 . . . . . . N-1 N
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FIGURE 2.4: Graphical depiction of the symplectic brick-wall circuit’s
time evolution for one step. Figure taken from [16].

dynamical system is by its action on a density of initial conditions. The evolution of

single trajectories defines the evolution of a density of “sprinkled” initial points on

the phase space. To understand this better let us begin by defining the space of real

functions over the phase space MN :

D(MN) = {ρ|ρ : MN → R} (2.30)

Phase-space distributions that fulfil the following conditions play a pivotal role:

ρ(X) ∈ R+ ,
∫

dXρ(X) = 1 . (2.31)

It is advantageous for detailed analyses to consider the L2 norm:

∥ρ∥ =

[∫
dX|ρ(X)|2

]1/2

(2.32)

Additionally, we introduce a Hermitian product:

⟨ρ1|ρ2⟩ =
∫

dX ρ∗1(X)ρ2(X) , ρ1, ρ2 ∈ L2(MN), (2.33)

utilizing the braket notation ⟨X|ρ|X|ρ⟩ = ρ(X). Typically, any dynamical system

defined by a map F : MN → MN results in a dynamical transfer operator PF :

D(MN) → D(MN) known as the Frobenius-Perron operator with a Dirac delta ker-

nel:

Ph(X, Y) = δ
(
X − h(Y)

)
, X, Y ∈ MN , (2.34)

which governs the dynamics based on initial conditions.
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For the symplectic gate, which is reversible, the operator specifically acts on the

phase-space distribution ρ as follows:

(PΦ ◦ ρ)(X) =
∫

M2

dY δ
(
X − Φ(Y)

)
ρ(Y) = ρ

(
Φ−1(X)

)
, X ∈ M2 (2.35)

This action is facilitated by the Jacobian of Φ, which is one since as explained in

Sec.2.2 the symplectic property of Φ makes it a volume-preserving map, allow-

ing PΦ to be modelled as an infinite-dimensional unitary matrix. The unitarity

⟨ρ1|P†
ΦPΦ|ρ2⟩ = ⟨ρ1|ρ2⟩ reflects the volume preservation in the phase space.

From Eq. (2.35), we can directly observe that a constant density ρ over M2 is

invariant under the action of PΦ. An essential aspect of symplectic dynamics is

the invariance of the uniform measure on the Hilbert space L2(M × M) under the

influence of the operator PΦ. If we denote the measure of M as, |M| then the local

uniform measure is defined as u = 1/|M| → |u⟩. The uniform measure of two sites

is then, |u⟩ ⊗ |u⟩ and one can construct the multi-site uniform measure in the same

way. This operator’s action preserves the existing structure and properties of the

phase space, ensuring the constancy of the uniform measure:

PΦ|u⟩ ⊗ |u⟩ = |u⟩ ⊗ |u⟩; , ⟨u| ⊗ ⟨u|PΦ = ⟨u| ⊗ ⟨u|, (2.36)

In this setup, PΦ acts as a unitary operation in L2(M × M), ensuring that left

and right eigenvectors remain aligned. We typically use the normalized state |◦⟩ =

∥u∥−1
2 |u⟩ for simplicity and clarity in our graphical representations, representing the

state as: Eq. (2.36) is depicted as follows:

= =, (2.37)

It is readily apparent that this characteristic ensures the Floquet transfer operator

T maintains a stationary density represented by the uniform measure on MN , sym-

bolized as |uN⟩ = |u⟩ ⊗ . . . ⊗ |u⟩. We also detail the L2-normalized version |◦N⟩ =

∥uN∥−1
2 |uN⟩.
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a

b

⟨◦N |b̂j T t âi|◦N⟩ =

FIGURE 2.5: Graphical representations of the 2-point correlation func-
tion. The shaded grey areas and the black arrows delineate the causal
cones attached to each local observable, with the “curly” edges denot-
ing the periodic boundary conditions. The symplecticity of Φ sim-
plifies this circuit to just the intersecting areas of the causal cones

(double-shaded). Figure taken from [16].

Regarding any function defined on the phase space a ∈ D(MN) that represents

a physical observable, its average across the phase-space density ρ is calculated by:

∫
dX a(X)ρ(X) = ⟨1N |â|ρ⟩ (2.38)

The operation of â is specifically defined through ⟨X|â|ρ⟩ = a(X)ρ(X), employing

the unit scalar |1N⟩ → 1N(X) = 1, ∀X ∈ MN . The unit scalar |1⟩ is equivalent to√
|M||◦⟩.

In general, for an ergodic symplectic system |◦N⟩ is the unique invariant mea-

sure and thus at long times, any initial state will always converge to that. In our

setting, we consider correlations of observables at long times and thus we focus on

the invariant uniform measure. The connected dynamical correlation functions for

the one-site observables are defined as:

Cab(i, j; t) ≡ ⟨1N |b̂jT t âi|uN⟩ − ⟨bj⟩⟨ai⟩ = ⟨◦N |b̂jT t âi|◦N⟩ − ⟨◦N |b̂j|◦N⟩⟨◦N |âi|◦N⟩

(2.39)

where i, j range from 0 to N − 1. Each local operator âi acts exclusively on its cor-

responding site, formulated as âi =
site i

1 ⊗ · · · ⊗ â ⊗ · · · ⊗ 1. The second component

represents the averages taken across the uniform measure, and for local observables,

it is expressed as ⟨ai⟩ = ⟨1N |âi|uN⟩ = ⟨◦|â|◦⟩.

Our primary focus is on the significant first term ⟨1N |b̂jT t âi|uN⟩ within the cor-

relation analysis, depicted in Fig. 2.5. Here, operations on single sites such as â|◦⟩ or
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b̂|◦⟩ are marked with a bullet. The circuit’s invariance under two-site shifts allows

us to map the correlations from any index i to 0 or 1, depending on its even or odd

status. This adjustment results in the correlations splitting into two distinct types:

Cab(i, j; t) =


C+

ab(j − i; t) i = even

C−
ab(j − i; t) i = odd.

(2.40)

As illustrated in Fig. 2.5, by applying Eq. (2.37), all gates outside the light cone are

removed. This light-cone spreads at a velocity of vc = 2 from the operator’s position

â at the base. A similar logic is applied from the top, starting at the position j of the

operator b̂. This suggests that gates must only reside within the intersecting region of

the forward and backward light-cones. Specifically, when |i − j| > 2t, these cones do

not meet, resulting in trivially uncorrelated observables. Conversely, when |i − j| ≤

2t, the overlapping cones may produce non-vanishing correlations. Beyond t >

N/4, light cones reach the boundary, introducing finite-size effects and complicating

analytical predictions. Hence, we focus on times t ≤ N/4 where the behaviour

mimics that observed in the thermodynamic limit N → ∞. The symplecticity of the

gate PΦ, as outlined in Eq. (2.37), helps eliminate any gates outside the intersection

of these two cones. This leads to the following visual representation:

⟨◦N |b̂j T t âi|◦N⟩ =

a

b

(2.41)

The diagram is rotated by 45◦ and we do not consider the case with the local ob-

servables on the same edge of the light-cone. The rectangle can be decomposed into

rows or columns, which are represented as two different types of contracting transfer

operators. This idea appears in the same manner in the folded picture of unitary cir-

cuits [77], and although it represents an important simplification, the calculation of

2-point correlation functions, remains challenging particularly, when |i − j| does not

scale with t, because the size of the involved transfer operators grows with time. We



2.3. Dual-Symplectic Classical Circuits 37

X⃗m X⃗m+1

X⃗′
m X⃗′

m+1

Φ

Φ̃
FIGURE 2.6: The local map Φ acting on two adjacent spins orches-
trates their temporal dynamics. The innovative diagonal leg swap-
ping transforms Φ into its dual map Φ̃, which then governs spatial
dynamics. This switch effectively transposes the time and space di-
mensions, propagating temporal changes spatially. Figure taken from

[16]

will see in the following section that for dual symplectic gates additional simplifica-

tions are possible which allows one to calculate the correlation functions explicitly.

The discussion in this section established a diagrammatic method of dealing with

classical symplectic circuits and as we shall see in the next section, this approach

simplifies more in the case of dual-symplectic dynamics.

2.3.2.2 Dual-Symplectic Gates

To extract exact calculations, we introduce a specialized condition in the dynamics:

the requirement for the gate Φ to be dual-symplectic. This means that the system’s

evolution remains symplectic when the roles of space and time are interchanged.

To this end, we define a dual map Φ̃, in the same way as in dual-unitary circuits

[78]. Specifically, this map is defined by swapping the diagonal legs as illustrated in

Fig. 2.6, resulting in the exchange of the axes of time and space. This leg swapping

moves us from the dynamics in time direction to the ones in space, which is called

the dual picture.

From Fig. 2.6, one can observe that in the dual picture, knowing the time evo-

lution of a single site is enough to define the time evolution of its neighbour. This

allows us to infer the entire system’s time evolution from that of a single site. Dia-

grams like those shown in Fig 2.5 can be reinterpreted in the spatial direction, from

left to right, by replacing Φ with Φ̃. Such diagrams are more than visual aids; they

represent integrals over the phase space MN . Moving to the dual picture demands a

change of integration variables, which is represented by the swapping of the afore-

mentioned diagonal legs of Φ. However, there is an extra factor appearing, due to
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the Jacobian of this transformation.

For the diagrammatic interpretations in both space and time directions, to remain

consistent under this change of variables, the Jacobian must equal 1. This holds

when the local gate Φ satisfies the following conditions:

∣∣∣det
(∂Φ1(X⃗1, X⃗2)

∂X⃗2

)∣∣∣ = ∣∣∣det
(∂Φ2(X⃗1, X⃗2)

∂X⃗1

)∣∣∣ = 1 , ∀X⃗1, X⃗2 ∈ M × M, (2.42)

where Φ1,2 are the single-site outputs of the local gate defined as
(
Φ1(X⃗1, X⃗2), Φ2(X⃗1, X⃗2)

)
=

Φ(X⃗1, X⃗2). One can move to the dual picture, by swapping the legs on either of the

two diagonals of Φ, and that is why we get two conditions in Eq. (2.42). We present

a detailed proof of Eq. (2.42) in Appendix A.1. Moreover, the dual map is an invo-

lution by definition, implying that the dual of the dual picture corresponds to the

original one under Φ. Thus, our approach is consistent when Φ̃ satisfies Eq. (2.42) as

well. This condition is established in Appendix A.1. In the broader context, while an

arbitrary symplectic map often possesses a non-unique or undefined dual one over

M × M, our focus is on a local gate Φ with a uniquely determined Φ̃, satisfying Eq.

(2.42).

Furthermore, with the additional property of dual-symplecticity, the set of graph-

ical contraction rules specified by Eq. (2.37) expands to:

=

=

=

=

,

,
(2.43)

where a dual-symplectic gate is highlighted in green. This property ensures the

preservation of the uniform measure in the spatial direction. Analogous to quan-

tum systems, termed dual unitarity, this characteristic has led to the derivation of

exact results in various systems. Similar results are anticipated for dual-symplectic

dynamics. Indeed, herein, we demonstrate the utility of dual-symplecticity in pre-

cisely determining dynamical correlation functions. Notably, these correlations sur-

vive only along the edges of causal cones, with Eq. (2.40) assuming the form:
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Cab(i, j; t) =


δj−i,2t C+

ab(2t; t) i = even

δj−i,−2t C−
ab(−2t; t) i = odd.

(2.44)

We aim to demonstrate this using the established diagrammatic representation.

To simplify the correlations outlined in Eq. (2.41), we utilize Eq. (2.43) at the corners

of the rectangular area in Eq. (2.41), where the two adjacent |◦⟩, allow for further

contraction of the diagram.

Repeating this procedure, we find that the diagram simplifies to the second term

of Eq. (2.39), leading to the disappearance of connected correlations. As long as

corners with two adjacent |◦⟩ exist, correlations vanish except in the cases where

the surface area of the cross-section is zero and the parities of the local observables’

sites match. This scenario implies that one side of the rectangle has a length of zero,

reducing it to a line segment of length 2t with observables positioned at the edges.

From Fig. 2.5, it’s apparent that depending on the parity of site i, one can have

two different line segments:

a b

b a

i = even

i = odd

C+
a,b(vct, t) =

C−
a,b(−vct, t) =

(2.45)

For even i, correlations survive along the right-moving light edge, while for odd i,

the same holds for the left-moving edge. Notably, analysing correlations of a single

parity suffices, as correlations with opposite parity can be derived via a reflection of

the circuit. In particular, if one performs a reflection across the axis passing between

points (N/2 − 1, N/2) in Fig. 2.5, then every site i = 0, . . . , N − 1 is mapped to

N − 1 − i and the two edges of the causal cone are being exchanged. Additionally,

this reflection alters not only the parity of sites but also the spatial order of input and

output states, transforming the local gate as PΦ → P ◦ PΦ ◦ P, where P represents

the Swap operation.

Expressing the correlations in terms of two distinct one-site transfer operators,
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F+ F−

FIGURE 2.7: Graphical representation of two different types of trans-
fer operators F±. The left (right) operator corresponds to the right

(left) moving light edge in Eq. (2.45). Figure taken from [16].

denoted by F±, we define the linear maps F± : L2(M) → L2(M), where ± corre-

sponds to even/odd parity, respectively. Graphically, these operators are depicted

in Fig. 2.7.

Additionally, we observe the reflection property mentioned earlier, which maps

the transfer operator of one parity to the other. Consequently, we’ll omit the ± label,

focusing solely on F+ ≡ F . As a result, according to Eq. (2.45), the correlations

along the edges of the light cone take the form:

Ca,b(2t; t) = ⟨◦|b̂ F 2t â|◦⟩ − ⟨◦|b̂|◦⟩⟨◦|â|◦⟩ (2.46)

This is an important exact result, revealing that in dual-symplectic circuits, correla-

tions are explicitly determined by transfer operators acting on a single site. Although

the operator F is not generally Hermitian, as demonstrated in Appendix A.2, it is

positive and a weak contraction. Assuming a pure point spectrum, as typically ob-

served in the spin chain examples examined later, its spectral decomposition reads:

F =
∞

∑
i=0

µi

∣∣∣µR
i

〉 〈
µL

i

∣∣∣ , (2.47)

where we indicated the left and right eigenvectors as |µR
i ⟩, ⟨µL

i |, and ordered the

eigenvalues as |µ0| ≥ |µ1| ≥ . . .. As it’s a weak contraction, its spectrum lies within

the unit disk, implying |µi| ≤ 1. Additionally, it is established in [79] that eigen-

values with |µi| = 1 have equal algebraic and geometric multiplicities, resulting in

trivial Jordan blocks. A direct implication of the dual-symplectic nature of PΦ is the

invariance of the uniform measure under F , guaranteeing the existence of the trivial

eigenvalue µ0 = 1 with
∣∣µR

0
〉
= |◦⟩ and

〈
µL

0

∣∣ = ⟨◦|.

Substituting the spectral decomposition Eq. (2.47) into Eq. (2.46), we obtain:

Cab(vct; t) =
∞

∑
i=1

〈
◦
∣∣∣b̂∣∣∣µR

i

〉 〈
µL

i

∣∣∣â∣∣∣◦〉 µ2t
i , (2.48)
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where the i = 0 term in the sum cancels with the second term in Eq. (2.46).

It is worth noting that the spectrum of F can be used to analyse the level of er-

godicity of our dual-symplectic system. Depending on the number of non-trivial

eigenvalues equal to 1 or having a unit modulus, dual-symplectic circuits can ex-

hibit various levels of ergodicity, as summarized in Table 2.8. For instance, in the

non-interacting scenario, all eigenvalues are unimodular (|µi| = 1), leading to cor-

relations that either remain constant or oscillate around zero. Conversely, in the

non-ergodic case, where more than one but not all eigenvalues are equal to 1, the

correlations decay to a non-thermal value. When the system is ergodic and non-

mixing, all non-trivial µi are not equal to 1, with at least one having a unit modulus,

resulting in correlations oscillating around zero and their time averages vanishing at

long times. Finally, for an ergodic and mixing system, all µi are within the unit disk,

leading to correlations that decay to zero. A simple example of a non-interacting

scenario is the dual-symplectic local gate PΦ = P ◦ (Pϕ1 ⊗Pϕ2), where P represents

the Swap gate and ϕ1, ϕ2 are single-site symplectic maps.

2.3.3 The Ising-Swap Model

Earlier, we investigated an abstract dual-symplectic circuit. To validate our general

analytical findings, we now turn our attention to a 1D classical spin chain, where

the local phase space is the unit sphere M ≡ S2. Here, we denote the coordinates

by X⃗i ≡ S⃗i with the constraint |S⃗i| = 1. We introduce the 3-parameter family of

dual-symplectic local gates, given by:

Φ(α,β,γ) :=
(

Rx(β)⊗ Rx(γ)
)
◦ Iα ◦

(
Rx(γ)⊗ Rx(β)

)
. (2.49)

Here, Rn(θ), θ ∈ [0, 2π) represents a single spin rotation (SO(3) rotation matrix) with

respect to the axis n ∈ {x, y, z} by an angle θ. Iα denotes the Ising Swap gate, defined

FIGURE 2.8: The table with all the different levels of ergodicity, con-
cerning the non-trivial eigenvalues. Figure taken from [16].
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as:

Iα(S⃗1, S⃗2) =
(

Rz(αSz
1)S⃗2, Rz(αSz

2)S⃗1
)

(2.50)

where α is the coupling constant of the interactions, Rz(θ) is a rotation around the

z-axis, and Sz
i is the z-component of S⃗i.

Assuming the SO(3) Poisson bracket on the unit sphere :

{Sa
i , Sb

j } = δijϵabcSc
i (2.51)

with ϵabc being the Levi–Civita symbol, Eq. (2.50) is easily recognized as the sym-

plectic evolution of two sites under the Hamiltonian H12 = αSz
1Sz

2 for a time step

δt = 1, followed by a Swap operation (Sn
1 , Sn

2 ) → (Sn
2 , Sn

1 ).

The spin variables, as implied by Eq. (2.51), are not the pairs (q, p) of conju-

gate variables, as typically expected in symplectic dynamics. However, a symplectic

transformation can map from one set of conjugate variables to another. Here, we

select the pairs φi, zi with zi being the Cartesian coordinate along the z-axis and φi

representing the azimuthal angle of the i-th site. They satisfy :

{φi, zj} = δij , {φi, φj} = {zi, zj} = 0 (2.52)

The spin variables correspond to unit vectors on the sphere, expressed in terms of φi

and zi as:

Sx
i =

√
1 − z2

i cos(φi) , Sy
i =

√
1 − z2

i sin(φi) , Sz
i = zi, (2.53)

and it’s easy to confirm that Eq. (2.53) satisfies the SO(3) Poisson bracket Eq. (2.51).

In Appendix A.3, we explicitly demonstrate that Φ(α, β, γ) satisfies Eq. (2.42),

enabling equivalent interpretations of the diagrams in both temporal and spatial

directions. Employing the same method as in Appendix A.1, we derive the space-

time dual of our model, defined as :

Φ̃(α,β,γ) ≡ (1 ⊗ (−1)) ◦ Φ(α,−β,γ) ◦ ((−1)⊗ 1), (2.54)

where 1 represents the identity map and −1 indicates a change of sign for all com-

ponents Sa
i → −Sa

i . Thus, the dual dynamics differs from the temporal one by a
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simple sign transformation. As outlined in [15], our map Φ(α,β,γ) is space-time self-

dual because flipping the spins in a checkerboard pattern is enough to move us to

the dual picture. Dual-symplectic circuits with local gates Eq. (2.49) accommodate

both ergodic and integrable cases depending on parameter choices. For instance,

when α = 0, the model becomes trivially non-interacting, signifying integrability.

Another integrable scenario arises when both β and γ are either 0 or π, preserving

the z-components of spins along their respective light rays and yielding conserved

extensive quantities along lattice parity bipartitions. These local conserved quanti-

ties, termed gliders, have been examined in prior studies on dual-unitary quantum

circuits [22]. Later, in Eq. (2.60), we provide analytical results for auto-correlation

of z-components at integrable points where they do not decay to zero. Such mod-

els are also labelled super-integrable as they support an exponentially large num-

ber of extensive conserved quantities, obtainable by summing arbitrary products of

z-components along the mentioned bipartitions, e.g., Q = ∑i zizi+2zi+4. At inte-

grable points within the parameter space, phase space trajectories are confined to

invariant tori, and the Lyapunov spectrum diminishes [80]. Conversely, away from

these points, chaotic behaviour is anticipated. In Fig. 2.9, we depict examples of the

Lyapunov spectrum at chaotic points in our Ising Swap model, where it exhibits a

positive maximal Lyapunov exponent, indicating sensitivity to initial conditions, a

characteristic feature of chaotic systems.

Having selected our family of local gates, we proceed with the computation of

correlations. In Appendix A.4, we provide an analytical calculation of the transfer

operator, both in phase space and density space:

f = Rx(γ)Q(α)Rx(γ) , F ≡ P f , (2.55)

where Q(α) = 1
2

∫ 1
−1 dz′Rz(αz′) and f : M → M. The transfer operator serves as

the Frobenius-Perron operator of f , and its kernel is given in the same manner as

in Eq. (2.34), for single-site phase space. Rotations maintain the total angular mo-

mentum, and since F , per Eq. (2.55), is a composition of rotations, it shares this

property. More precisely, denoting Ji, i = x, y, z as the generators of single-site rota-

tions, and J2 = ∑i J2
i as the angular momentum squared, it follows that F commutes

with the total angular momentum operator and thus exhibits a block-diagonal form
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FIGURE 2.9: Lyapunov spectrum λi of the Ising Swap model, for two
different coupling constants α = 0.4, 1, angles β =

√
2π, γ =

√
3π/2,

and system size N = 200. The figures were obtained for t = 800 and
a sample size of Nsample = 104 initial states drawn from the uniform
measure. The black circles represent the Lyapunov spectrum at every
10 exponents at time t = 700, showing excellent time convergence for
λi. The spectrum is symmetric concerning the horizontal axis, as ex-
pected for a symplectic system, and has a positive maximal Lyapunov

exponent indicating chaoticity for Φα,β,γ. Figure taken from [16].

in its eigenvalues. However, this characteristic doesn’t stem from an underlying ro-

tational symmetry but rather from the specific form of the local gate PΦα,β,γ . Indeed,

the Ising swap gate in PΦα,β,γ involves a non-linear rotation, i.e., a rotation whose an-

gle depends on the z component of the neighbouring spin. Due to this nonlinearity,

it doesn’t exhibit a block-diagonal structure concerning the eigenvalues of J2. Thus,

the dynamics do not preserve J2 and they do not demonstrate a rotational symmetry.

It’s noteworthy that Eq. (2.55) is entirely independent of β. The correlation with

the opposite parity is simply retrieved from the midpoint reflection P ◦ PΦα,β,γ ◦ P =

PΦα,γ,β , which is equivalent to changing β, γ → γ, β.

The Ising Swap model is defined via rotations, and that indicates the use of

spherical harmonics as a convenient basis for the L2(S2) density space. In Appen-

dices A.4 and A.5, we derive analytical expressions for the representations of F and

PΦα,γ,β in this basis for, which we parametrize S2 with z, φ. The spherical harmonics

|ℓ, m⟩ correspond to Yℓ,m(z, φ) for ℓ = 0, 1, . . . , and |m| ≤ ℓ, forming a convenient

orthonormal basis for L2(S2) functions.

Our strategy focuses on finding the representation of the transfer operator on

this basis. Given that F preserves the total angular momentum, it assumes a block-

diagonal form in ℓ, with each block of dimension 2ℓ + 1. Hence, the eigenvectors

and eigenvalues in Eq. (2.47) can be indexed by a block index ℓ and an index m̃
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within each block. Consequently, Eq. (2.48) takes the form:

Ca,b(2t, t) =
∞

∑
ℓ=1

ℓ

∑
m̃=−ℓ

〈
◦
∣∣∣b̂∣∣∣µR

ℓ,m̃

〉 〈
µL
ℓ,m̃

∣∣∣â∣∣∣◦〉 µ2t
ℓ,m̃. (2.56)

Considering the expression, we observe that if the local observables |ax⟩, |by⟩ are

confined within a finite number of total angular momentum subspaces, then the

sum in Eq. (2.56) becomes finite. Specifically, only the shared values of ℓ between

the two observables are relevant.

For instance, the observable a(z, ϕ) = z2 has non-zero overlaps only for ℓ = 0, 2.

Likewise, any polynomial in the variable z affects a finite number of blocks. This fea-

ture, as established in Appendix A.6, suggests that a limited set of exponentials in t

suffices to capture the dynamics of the 2-point correlations when one of the observ-

ables a, b involves a finite number of ℓ blocks. In practical terms, one can determine

the exact dynamical correlations by diagonalizing the common ℓ finite-dimensional

blocks of F . Additionally, observables lacking such overlapping subspaces yield

vanishing correlations at all time steps.

Now, let’s delve into some analytical findings for the selection of a(z, ϕ) = zn and

b(z, ϕ) = z, where n ∈ Z+. In this scenario, a expands over ℓ = 0, 2, . . . n when n is

even, and ℓ = 1, 3, . . . n when n is odd. Meanwhile, b expands only over ℓ = 1. We

can observe that when n is even, there are no overlapping subspaces shared between

the two observables, resulting in correlations vanishing for all t. However, for odd

n, the correlations solely depend on the ℓ = 1 block of F . Utilizing Eq. (2.55), we

can explicitly derive the eigenvalues of this block:

µ1,0 =
sin(α)

α

µ1,−1 =
(α + sin(α)) cos(2γ)− ∆(α, γ)

2α

µ1,1 =
(α + sin(α)) cos(2γ) + ∆(α, γ)

2α
,

(2.57)

where ∆(α, γ) =
√
(α + sin α)2 cos2(2γ)− 4α sin(α). As only the ℓ = 1 subspace

contributes, we solely need to know the overlaps of the observables with this sub-

space:

⟨1m|zn⟩ = 2
√

3π

n + 2
δm,0. (2.58)
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The observable zn is independent of the angle φ of S2, thus relying only on the spher-

ical harmonics |ℓm⟩ with m = 0. By diagonalizing the block of F corresponding to

ℓ = 1 and utilizing Eq. (2.57) and Eq. (2.58), we derive the exact expression for the

correlations:

Ca,b (2t, t) =
1

22t+1(n + 2)
(
E+(t) + E−(t)

)
E±(t) =

(
1 ± α − sin α

∆

)(
(α + sin α) cos(2γ)± ∆

α

)2t

,
(2.59)

where the opposite parity is obtained by substituting γ → β. In the special inte-

grable cases, we find:

lim
α→0

Ca,b (2t, t) =
cos(4γt)

2 + n
, lim

γ→0
Ca,b (2t, t) =

1
2 + n

. (2.60)

In Fig. 2.10, we present the results of the numerics, indicating that the correlations

vanish everywhere except along the edges of the causal cone, thus confirming Eq.

(2.59) for n = 1. It should be noted that we take advantage of the symmetries of

our circuit for the numerical evaluation of the correlations. Specifically, in addition

to the 2-site translation invariance, there exists a 1 time step translation invariance

due to the correlations being evaluated over the invariant measure. Both of these

symmetries allow us to average over a larger sample size, enhancing the accuracy of

the numerical data.
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FIGURE 2.10: Normalized auto-correlations for the Sz spin compo-
nent are presented, using the maximum value Ca,b(0, 0) for systems
containing N = 128, 1024 spins. We use the parameters α = 0.3,
β =

√
2

4 π, and γ =
√

2
2 π, and the initial conditions are sampled

Nsample = 5 × 104 times. (A): The space-time correlation function
|Ca,b(x, t)/Ca,b(0, 0)| for N = 128 shows that it diminishes outside the
boundary (x = vct) of the causal cone. (B): This graph also contrasts
the theoretical predictions for Ca,b(x, t)/Ca,b(0, 0) at the causal cone’s
right boundary, derived from Eq. (2.59), with results from exact diag-
onalization within the ℓ = 1 subspace. A dashed line marks the time
t = N/4 for N = 128, indicating the point beyond which the theory,
suited to the thermodynamic limit, breaks apart. Post this time mo-
ment, the N = 128 system’s results diverge from exact predictions,
whereas the larger system size, N = 1024, continues to show robust

agreement with theoretical expectations. Figure taken from [16].





49

Chapter 3

Chaos and Unitary designs

Although unitary designs are a well-studied subject, in this chapter we will study the

overlaps between quantum states evolved under generic RUCs and demonstrate our

novel results of a universal distribution that generalizes the PT distribution. These

results contribute to the advancement of the field by providing, a comprehensive

framework for understanding the statistical properties of overlaps in chaotic quan-

tum systems and their implications for quantum state preparation and complexity.

The chapter is structured as follows:

• In Sec. 3.1 we provide an introduction to unitary designs, containing their

definition and an introduction to Haar measure and Weingarten function. The

reader may skip this section if he is already familiar with the subject.

• In Sec. 3.2, we present in detail the methodology we followed to recover the

novel results on the distribution of the overlaps, as well as the theoretical and

numerical benchmarking of our theory with the Random Phase Model [39].

We finally obtain the universal probability distribution of the overlaps from

the moments, for the case of open boundary conditions(obc). In contrast, in

the case of periodic boundary conditions(pbc), we obtain an in-law relation to

another random variable, which is related to the exponentiation of a matrix

drawn from the Gaussian Unitary Ensemble (GUE).

3.1 Unitary designs

3.1.1 k-designs

The interrelation between pseudorandomness and chaotic dynamics becomes ev-

ident when considering operator evolution. For example, let A be a local opera-

tor, acting on a single spin. Under a chaotic Hamiltonian H, the evolved operator



50 Chapter 3. Chaos and Unitary designs

A(t) = eiHt Ae−iHt is in general non-local operator due to the coupling terms in H

and can be described by an expansion in terms of multiple local operators, each as-

sociated with a pseudorandom coefficient, written as follows:

A(t) =
∞

∑
j=0

(it)j

j!
[H, . . . [H︸ ︷︷ ︸

j

, A ] . . .]︸︷︷︸
j

. (3.1)

which is a special application of the Baker-Campbell-Hausdorff (BCH) formula. If

H encompasses l-local interactions and is sufficiently “generic,” the j-th term in this

series consists of roughly ∼ (n/l)l j terms, each with weights ranging from 1 to ∼

j(l − 1), assuming a system of n spins with a Hilbert space dimension d = 2n:

• At j ∼ n/(l − 1), numerous terms of maximum weight n suggest delocaliza-

tion across the system, indicative of fast-scrambling behaviour.

• When j approaches 2n/l log(n/l), the sum of terms escalates to 22n, indicating

complete engagement of the system because 22n is the total number of orthog-

onal linear operators acting on the Hilbert space.

These dynamics underscore the swift expansion and complexity typical of chaotic

quantum systems, with the timescale for complete system coverage given by t ∼

O(log n).

Over time, A(t) is expected to span the entire unitary group. At sufficiently large

times t, A(t) might for many purposes resemble a random operator Ã ≡ U† A(0)U,

where U is randomly selected from the unitary group. If this approximation holds,

A(t) would exhibit pseudorandom behaviour.

The expansion and complexity of A(t) can be probed using a second local opera-

tor V. Specifically, the group commutator A(t)†V† A(t)V serves as a measure of the

butterfly effect and the strength of chaos in the system:

• If A(t) remains of low weight with few terms, then A(t) and V approximately

commute, i.e., [A(t), V] ≈ 0, making the operator W(t)†V† A(t)V close to the

identity.

• Conversely, if the dynamics are highly chaotic, A(t) will eventually have sig-

nificant commutators with virtually all other local operators in the system, ren-

dering A(t)†V† A(t)V nearly random and with a minimal expectation value in

most states.
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This leads to the decay of out-of-time-order correlator (OTOC), expressed as:

〈
A(t)†V† A(t)V

〉
=
〈

U(t)† A†U(t)V†U(t)† AU(t)V
〉

(3.2)

where U(t) = e−iHt is the unitary time evolution operator. This correlator, typically

evaluated in a thermal state, acts as a straightforward diagnostic for quantum chaos

[81], illustrating how quantum information becomes delocalized over time due to

chaotic dynamics. The expectation value above is taken over the thermal state with

density matrix ρ = e−βH/ Tr
{

e−βH}.

For chaotic systems and at sufficiently long timescales, the correlators described

by Eq. (3.2) tend to minimise to a value, effectively represented by the transforma-

tion A(t) → U† AU, with U being a randomly chosen unitary operator, drawn from

the Haar measure. This behaviour aligns with the information-theoretic concept of

scrambling, initially explored in [27].

However, the adequacy of OTOCs, as outlined in Eq. (3.2), as a definitive di-

agnostic for chaos remains an open question. The original analysis in [27] did not

strictly require the dynamics to be represented by a uniformly random unitary of the

Haar distribution, but a less complex ensemble, capable of replicating only certain

moments of the Haar distribution, would suffice for many practical purposes. There

may be other finer-grained properties of a system that are hidden at higher moments

and would require a larger ensemble to replicate the statistics of the Haar random

dynamics.

The extent to which a set of operators mimics the uniform distribution is effec-

tively quantified by the concept of unitary k-designs, referenced in [82]. A unitary

k-design is a probability distribution over a finite set of unitary matrices which can-

not be distinguished from the uniform distribution over the entire unitary group

(the Haar measure [83]), with respect to any test involving at most k copies of a uni-

tary matrix from this distribution. This condition can be expressed in several ways,

which we will explore in more detail later in this chapter.

If U(d) is the d dimensional unitary group, then the set E = {(pi, Ui)}i=1,...,N , 0 ≥

pi ≤ 1, Ui ∈ U(d) is what we call an ensemble/distribution of unitary operators for

the discrete case. The distribution should be normalised, thus ∑i=1,N pi = 1 In the

case of continuous distribution, the definition becomes E = {(dU, U)}i=1,...,N , U ∈

U(d) for some measure dU over U(d).
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Let f be a polynomial in 2d2 variables, considered as a function of an arbitrary

U ∈ U(d). Specifically, f is evaluated on the matrix elements of U and their complex

conjugates f (U) := f (U, U∗). We now provide a precise definition of the unitary

k-design, keeping in mind that
∫

Haar refers to the integration over U(d) with Haar

measure:

Definition 1 A probability distribution E = {(pi, Ui)}i=1,...,N over unitary matrices on

H = Cd is a unitary k-design if for any polynomial f in 2d2 variables, which is homogeneous

of degree k in each variable:

∫
Haar

f (U)dU = ∑
Ui∈E

pi f (Ui)

Definition 2 A probability distribution E = {(pi, Ui)}i=1,...,N over unitary matrices on

H = Cd is a unitary k-design if for all ρ ∈ B
(
H⊗k) :

∫
Haar

U†⊗kρ U⊗kdU = ∑
Ui∈E

piU†⊗k
i ρ U⊗k

i

(both of the definitions are straightforward to be extended to a continuous E as well.)

where B(H⊗k) is the set of all linear operations on H⊗k. Much of the research on

unitary k-designs has been formulated according to Definition 2. The operation de-

scribed in this definition is known as Twirl operation and plays an important role in

many schemes for entanglement purification [84].

In both definitions, we observe that the left side of the equation, which deals with

an infinite object and is challenging to compute, equals the expression on the right

side which works with a finite object and is substantially easier to compute. The

previously stated definitions of unitary k-designs are equivalent. To see this , rather

than considering a general polynomial f , it is sufficient to focus on f as a monomial:

xb0
0 xb1

1 . . . x
bd2−1
d2−1 yc0

0 yc1
1 . . . y

cd2−1
d2−1 (3.3)

where xi, yi are matrix elements of U, U∗ respectively. If Definition 1 holds for all

such monomials f , it will similarly apply to all polynomials f . By taking a specific

element of the tensor in Definition 2, which is an operator in, H⊗k we end up with:

∫
U(d)

dUρα, β(U†⊗k)m,α(U⊗k)β,n = ∑
Ui∈E ,α,β

pi ρα β(U†⊗k
i )m,α(U⊗k

i )β,n (3.4)
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where the bold indexes are defined like α = (α1, α2, . . . , αk), with αi = 1, 2, . . . , d.

And (U⊗k)m,α = Um1,α1Um2,α2 . . . Umk ,αk are monomials in the form of Eq. (3.3). This

is just a compact way of indexing elements of an operator on H⊗k. Consequently,

Eq. (3.4) is a linear combination of such monomials f and the validity of Definition

1 is an adequate condition for Definition 2 to be satisfied. On the other way around,

for the right choice of ρ (ρα ,β = δα,m,β,n) the summation in, Eq. (3.4) reduces to

just a single monomial and according to the same logic, any polynomial f satisfies

Definition 1, showing that one can prove the one definition from the other in both

ways.

Usually in literature, definition 2 is expressed through the k-fold channel Φ(k)
E

for a distribution E . In particular, the action of the k-fold channel defined by the

ensemble E is defined as:

Φ(k)
E (ρ) := ∑

i
piU†

i
⊗k

ρU⊗k
i (3.5)

and for continuous distributions:

Φ(k)
E (ρ) :=

∫
E

dU U†
i
⊗k

ρU⊗k (3.6)

Thus one can rewrite Definition 2 as

Definition 3 An ensemble E is considered a unitary k-design if

Φ(k)
E (ρ) = Φ(k)

Haar(ρ)

for any operator ρ.

Conceptually, a unitary k-design is as statistically random as the Haar ensemble up

to the kth moment. This implies that a unitary k-design meets the criteria established

by Definition 1, particularly when f (U) includes terms up to the kth powers of U

and U∗ (including monomials of maximum degree k). Thus, if an ensemble is k-

design, it also consists a k − 1-design, although the reverse is not true in general.

Moreover, it is straightforward to see that Φ(k)
E is linear operation since it satisfies

Φ(k)
E (λρ + λ′ρ′) = λΦ(k)

E (ρ) + λ′Φ(k)
E (ρ′) for any operators ρ, ρ′ and λ, λ′ ∈ C.
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3.1.2 Haar measure and Weingarten function

In this section, I present more details on the Haar measure and the calculation of

integrals over Haar random unitary operators.

The focus is on the finite-dimensional Hilbert space Hk = H⊗k, which is practi-

cally k copies of H. If I denote the basis of Hk as {|α1, α2, . . . , αk⟩}, αi = 1, 2, . . . , d

then the permutation operator Pσ, is defined by the action on the basis:

Pσ |α1, α2, . . . , αk⟩ =
∣∣∣ασ(1), ασ(2), . . . , ασ(k)

〉
or equivalently

⟨β1, β2, . . . , βk|Pσ|α1, α2, . . . , αk⟩ = δβ,σ(α)

(3.7)

where I compacted the index notation as α = (α1, α2, . . . , αk) and the permutation

over the indices as σ(α) = (ασ(1), ασ(2), . . . , ασk).

This operation, essentially permutes the k-copies by the permutation σ ∈ Sk and

thus it implies that if ρi is an operation on a single copy H then

P−1
σ (ρ1 ⊗ · · · ⊗ ρk)Pσ = ρσ(1) ⊗ · · · ⊗ ρσ(k) (3.8)

Using the definition Eq. (3.7) one can easily prove some properties of the permuta-

tion operator. Specifically,

• Pσ is a unitary operation

Proof: ⟨α|P†
σ Pσ|β⟩ = ∑γ ⟨α|P†

σ |γ⟩ ⟨γ|Pσ|β⟩ = ∑γ ⟨γ|Pσ|α⟩ ⟨γ|Pσ|β⟩ =

= ∑γ δγ,σ(α)δγ,σ(β) = δσ(α),σ(β) = δα,β → P†
σ Pσ = 1. In the same way, one can

also prove that PσP†
σ = 1

• PσPσ′ = Pσσ′ making Pσ a representation of the permutation Sk group of order

k, over Hk

Proof: ⟨α|PσPσ′ |β⟩ == ∑γ ⟨α|Pσ|γ⟩ ⟨γ|Pσ′ |β⟩ = ∑γ δα,σ(γ)δγ,σ′(β) = δα,σσ′(β) =

⟨α|Pσσ′ |β⟩

• From the two properties above, it is straightforward that P−1
σ = Pσ−1

Theorem 1 Consider the algebra L
(
H⊗k) comprising all operators on the tensor space

H⊗k. Let U(d) represent the unitary group on the Hilbert space H. An operator ρ belongs

to L
(
H⊗k) and commutes with every operator of the form V⊗k, where V is any element of
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U(d), if and only if A can be expressed as a linear combination of permutation operators Pσ:

[
ρ, V⊗k

]
= 0, ∀V ⇔ ρ = ∑

σ∈Sk

cσPσ. (3.9)

From Eq. (3.8) is straightforward to see that the permutation of the copies of the

same operator (ρi = V) does not make a difference and thus Pσ commits with V⊗k.

Thus, when ρ is constructed as a linear combination of permutation operators, it

naturally commutes with V⊗k. For more details on this theorem, you can refer to

[85].

According to Eq. 3.6 if ρ being an operator in the tensor product space H⊗k, then

the k-fold channel of ρ with respect to the unitary group is:

Φ(k)
Haar(ρ) :=

∫
Haar

U†⊗kρU⊗k dU, (3.10)

where the integration is over the unitary group with respect to the Haar measure

[83], which is the unique, both left and right-invariant probability measure on the

unitary group, satisfying: ∫
Haar

dU = 1, (3.11)

∫
Haar

f (VU) dU =
∫

Haar
f (UV) dU =

∫
Haar

f (U) dU, (3.12)

for any V ∈ U(H) and for any function f . At this part, I am going to use the

Haar measure properties to extract some properties of Φ(k)
Haar. Assuming f (U) =

U†⊗kρU⊗k, it follows that:

V†⊗k
Φ(k)

Haar(ρ)V
⊗k = Φ(k)

HaarV
†⊗kρV⊗k =

∫
Haar

(V†U†)⊗kρ(UV)⊗k =

=
∫

Haar
f (UV) dU = Φ(k)

Haar(ρ),

demonstrating that the k-fold channel is invariant under k-fold unitary conjugation

of itself or its argument operator ρ:

Φ(k)
Haar(V

†⊗kρV⊗k) = V†⊗kΦ(k)
Haar(ρ)V

⊗k = Φ(k)
Haar(ρ), (3.13)

where the properties Eq. (3.12) of right and left invariance of the Haar measure are

used.
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Eq. (3.13) asserts that Φ(k)
Haar(ρ) commutes with all operators of the type V⊗k.

Thus, we can apply Theorem 1 to express this as

Φ(k)
Haar(ρ) = ∑

σ∈Sk

Pσ · vσ(ρ), (3.14)

By taking advantage of the linearity of the k−fold channel, one can deduce that

vσ(λρ + λ′ρ′) = λvσ(ρ) + λ′vσ(ρ′) for any ρ, ρ′ and λ, λ′ ∈ C , and thus vσ(ρ) is a

linear function of ρ. The function vσ(ρ) can be represented as

vσ(ρ) = Tr {Dσρ} (3.15)

for some operators Dσ. The k-fold conjugation invariance Eq. (3.13) suggests that:

Φ(k)
Haar(V

†⊗kρV⊗k) = Φ(k)
Haar(ρ) (3.16)

∑
σ∈Sk

Pσvσ(V†⊗kρV⊗k) = ∑
σ∈Sk

Pσvσ(ρ) =⇒ vσ(V†⊗kρV⊗k) = vσ(ρ) =⇒ (3.17)

Tr
{

DσV†⊗kρV⊗k
}
= Tr{Dσρ} (3.18)

Since this is true for any ρ, one can choose ρ = |α⟩⟨α′|, for any α, α′ and finally obtain

that:

V⊗kDσV†⊗kDσ = Dσ (3.19)

So Dσ commutes with all operators V⊗k and by reapplying Theorem 1, one can ob-

tain:

Φ(k)
Haar(ρ) = ∑

σ,λ∈Sk

Wσ,λPσ Tr {Pλρ} . (3.20)

where the coefficients Wσ,λ form a matrix over Sk, known as the Weingarten ma-

trix. The action of the k− fold Haar Channel depends explicitly on Tr{Pλρ}. Given

Eq. (3.8) the permutation operator commutes with the k−copies of an operator of

the form U⊗k and thus Φ(k)
Haar (Pλ) = Pλ. According to this last relation, we derive

that

Pλ = ∑
σ,λ

Wσ,λPσ tr {PλPσ} , (3.21)

using that Tr {PσPλ} = d#cycles(σλ), we end up with

δσ,λ = ∑
σ∈Sk

Wσ,λCσ,λ, Cσ,λ := d#cycles(σλ), (3.22)
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where δσ,λ is the Kronecker delta, indicating the identity between permutations σ

and λ in Sk. Eq. (3.22) can be expressed in a more compact way as the matrix multi-

plication 1 = WC and thus the Weingarten matrix is defined as:

W = C−1 (3.23)

Here, it was assumed that the inverse C−1 exists, which is true for k ≤ d. I should

mention that the cycle decomposition is a common characteristic of the permutations

belonging to the same conjugacy class, #cycles(pλp−1) = #cycles(λ), ∀p, λ ∈ Sk

making the #cycles(.) a class function. Applying this at Eq. (3.22), one deduces that

Cpσ,λp−1 = Cσ,λ. This can be, equivalently, written as:

B(p)CA(p) = C, ∀p ∈ Sk (3.24)

where I define the matrices A(p)σ1,σ2 = δσ1,σ2 p−1 and B(p)σ1,σ2 = δσ1,pσ2 . Due to their

definitions, it is straightforward to observe that A−1(p) = A(p−1) and B−1(p) =

B(p−1). By inverting Eq. (3.24) I manage to recover the following property of the

Weingarten function

A(p)WB(p) = W, ∀p ∈ Sk (3.25)

where, I replaced p−1 with p.

In order to understand better how to calculate a k-fold Haar channel, I present

the case of k = 2 copies. In this scenario, the symmetric group contains only two ele-

ments S2 = {I = (1)(2), S = (12)} and C is a 2× 2 matrix. The identity permutation

I is composed by 2 cycles and the transposition S by one, meaning that:

C =

 d2 d

d d2

 (3.26)

and by inverting it, we can directly find the Weingarten matrix:

W =
1

d2 − 1

 1 −1/d

−1/d 1


From Eq. (3.20) the Haar channel becomes explicitly:

Φ(2)
Haar(ρ) =

1
d2 − 1

(
I[Tr{ρ} − 1

d
Tr{Sρ}] + S[Tr{Sρ} − 1

d
Tr{ρ}]

)
(3.27)
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One can extend the previous considerations to the k-fold average of a Haar random

state. One can define a random state by |ψ⟩ = U|0⟩, where U is uniformly sampled

from the unitary group U(d) and |0⟩ is a normalised state in H. The integration over

Haar measure of this state tensorized k times is given by Eq. (3.20)

∫
Haar

(|ψ⟩⟨ψ|)⊗kdψ := Φ(k)
Haar

(
(|0⟩⟨0|)⊗k

)
= ∑

σ,λ∈Sk

Wσ,λPσ Tr
{

Pλ|0⟩⟨0|)⊗k
}
=

(3.28)

= ∑
σ,λ∈Sk

Wσ,λPσ = ∑
σ∈Sk

cσPσ (3.29)

where the k copies of |0⟩ are invariant under any permutation, Pλ |0⟩⊗k = |0⟩⊗k and

the normalisation leads to Tr
{
|0⟩⟨0|⊗k

}
= ⟨0|0⟩k = 1. The last thing one needs

to calculate is the expression cσ = ∑λ∈Sk
Wσ,λ. In matrix representation, it can be

written as v⃗T
σ Wv⃗1 with (⃗vσ)′σ = δσ,σ′ being one of the vectors of the basic and v⃗1 =

(1, 1, . . . ). By the definitions of, A(p), B(p) one can directly deduce the following:

A(p)⃗v1 = B(p)⃗v1 = v⃗1 , A(p)⃗vσ = v⃗σp−1 , B(p)⃗vσ = v⃗pσ∀p ∈ Sk (3.30)

Finally, I use these equations as well as Eq. 3.25:

v⃗T
σ A(p)WB(p)⃗v1 = v⃗T

σ Wv⃗1 =⇒ v⃗T
σp−1Wv⃗1 = v⃗T

σ Wv⃗1 =⇒ cσp−1 = cσ∀p ∈ Sk

(3.31)

The quantity cσ = c∀σ ∈ Sk is common for every permutation and the k−fold aver-

age becomes ∫
Haar

(|ψ⟩⟨ψ|)⊗kdψ = c ∑
σ∈Sk

Pσ (3.32)

. At this point, I am taking advantage of the normalisation of |ψ⟩ and by tracing Eq.

(3.32)

cσ = c =
1

∑λ∈Sk
d# cycles(λ)

=
1

k!(k+d−1
k )

. (3.33)

Finally, one arrives at the relationship

∫
Haar

(|ψ⟩⟨ψ|)⊗kdψ =
1

k!(k+d−1
k )

∑
σ∈Sk

Pσ. (3.34)

Before ending this section, we should mention a useful mathematical trick that
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FIGURE 3.1: (i) The folded picture of an operator over Hk, with each
leg representing the degrees of freedom of Hk. (ii) The product UOU′

of operators, which in the folded picture becomes U′T ⊗ U |O⟩⟩

we are going to need later. This trick is called the “folded” picture and is used to

map an operator over Hk, to a state in H2k and thus the “folding” transfers us from

a k−copies Hilbert space to a 2k-copies one. For example, an arbitrary operator O

over Hk with elements, Oa,b will be mapped to the state |O⟩⟩ ∈ H2k with components

⟨a, b|O⟩⟩ = Oa,b. This is graphically represented in Fig. 3.1. In the same figure, there

is as well the demonstration of a product of operators. Another example that we are

going to use later is the “folded” picture of the permutation operator defined in Eq.

(3.7), which is symbolised as |σ⟩⟩, has elements ⟨a, b|σ⟩⟩ = δa,σ(b) and is graphically

depicted as

|σ⟩⟩ → Pσ

k k

(3.35)

where each leg represents the degrees of freedom of H. The state |σ⟩⟩ is known as

the permutation state. A final important example that we are going to need later is

the k−fold Haar channel, which according to Eq. (3.20), its folded picture will be

Φ(k)
Haar(.) → ∑

σ,λ∈Sk

Wσ,λ⟨⟨λ|.⟩⟩ |σ⟩⟩ (3.36)

which is represented diagrammatically as

Haar (3.37)
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where each open leg represents the degrees of freedom of H2k and each permutation

“bond”, depicted with the double lines has a weight given by the Weingarten matrix.

3.2 Universal distributions of overlaps from unitary dynam-

ics

I would like to, firstly, inform the reader that this part showcases the theory and re-

sults presented in [37]. The authors in [36] have already proved the Porter-Thomas

distribution, which is, practically, the distribution that one recovers for overlaps

w′ = N ⟨Ψ1|Ψ2⟩ of quantum states |Ψ1⟩ , |Ψ2⟩ when they are being sampled from the

Haar ensemble and N is the dimension of the Hilbert space. However, in this sec-

tion, we emphasize on something more general and in particular, on the distribution

of these overlaps when |Ψ1⟩ , |Ψ2⟩ come from a random circuit that forms a k-design.

Particularly, in our study, we focus on the scaling limit where both time t and space

L are large. The regime is characterized by the parameter x = L/LTh(t), with LTh(t)

representing the volume scale at which complete scrambling occurs. We find exact

results for a family of universal distributions p(w′; x), largely independent of mi-

croscopic details and for two different types of boundary conditions: periodic ones

(pbc) and open (obc). This scaling regime is mapped to a statistical model where

the moments of the overlaps are expressed as a partition function, via a transfer ma-

trix. This leads to an effective statistical one-dimensional model with ferromagnetic

interactions in permutation space, where universality emerges from the density of

dilute domain wall excitations governed by x.

The methodology followed is extensive, and for this purpose, I organise this sec-

tion as follows:

• In Sec. 3.2.1, we set up the problem by defining the generic type of RQCs

that we are going to study, as well as the random variable of the overlaps.

Afterwards, we focus on the moments of this random variable, which is going

to be the main object of our study.

• In Sec. 3.2.2, we use a coarse-grained picture to express the moments of the

overlaps via a transfer matrix, where the transfer matrix is drawn from the

Ginibre unitary ensemble (GinUE). Our problem is established for two types
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of boundary conditions: periodic and open. Then we show how in the scal-

ing limit, the moments admit a universal form that does not depend on the

microscopic details of the model, but on just a single parameter named x.

• In Sec. 3.2.3, we explicitly show that the moments of the overlaps are related

to a partition function of a statistical model with domain walls. We explicitly

define the Hamiltonian of this model and then analytically calculate the par-

tition function. Finally, we demonstrate that our statistical model leads to the

same scaling limit for the moments.

• In Sec. 3.2.4, we introduce the Random Phase Model(RPM) and then explicitly

find the transfer matrix related to the moments of the overlaps in the limit of

large local Hilbert space with the help of many-body diagrams. This transfer

matrix is what we will see later as a generalisation of the Toeplitz matrix.

• In Sec. 3.2.5, we introduce a methodology to diagonalise a generalised Toeplitz

matrix, we showcase analytically, that in the limit of a large local Hilbert space

for the model, one recovers the same scaling limit for the moments, validating

our theory.

• In Sec. 3.2.6, we finally obtain the universal probability distribution of the

overlaps from the moments, for the case of open boundary conditions (obc),

whereas in the case of periodic boundary conditions (pbc), we obtain an in-law

relation to another random variable, which is related to the exponentiation of

a matrix drawn from Gaussian Unitary Ensemble (GUE).

3.2.1 Setting up the problem

We begin by establishing the specifics of the type of model that we are interested in.

We consider a circuit that acts on N qdits with a total depth of t. Each qdit corre-

sponds to a q−dimensional local Hilbert space Cq and thus the total Hilbert space is

H = CqN
. For the moment, we consider the system to start from an arbitrary initial

state |ψ0⟩ and evolve to a depth t in time as |ψ(t)⟩ = W(t) |ψ0⟩. The operator W(t)

denotes a random unitary operation, which implements a RUC of depth t. Now

we consider two independent realizations W(t1), W ′(t2) of the circuit, with differ-

ent depth t1, t2 and create the two random states |ψ(t1)⟩ = W(t1) |ψ0⟩ , |ψ′(t2)⟩ =

W ′(t2) |ψ0⟩. We are interested into investigating the distribution of the overlap,
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which is given by the random variable

w′ = N
∣∣〈ψ′(t2)|ψ(t1)

〉∣∣2 = N
∣∣∣〈ψ0

∣∣∣W ′†(t2)W(t1)
∣∣∣ψ0

〉∣∣∣2 , (3.38)

where N = qN represents the dimension of H. As either or both (what matters

is the total depth t = t1 + t2) of the depths t1, t2 becomes large, the unitary ma-

trix W
′†(t2)W(t1) behaves more and more like a Haar random unitary operation on

U(N ) and the RUC is anticipated to serve as a k-design for increasingly large values

of k. Consequently, the distribution p(w′) of the overlap w′ approaches the Porter-

Thomas distribution pPT(w′) = e−w′
, w′ ≥ 0 [36], which is typically associated with

the overlap between two uniformly selected pure states.

A RUC forms ensembles of pure states, which are defined as distributions of

states obtained by acting on a reference state |ψ0⟩ with unitary operators W, drawn

according to a specific measure, E := {|ψ⟩ = W |ψ0⟩ , W ∼ dµ(W) or |ψ⟩ ∼ dµE (ψ)}.

For any given ensemble E , the overlap distribution is defined as

pE (w′) =
∫

dµE (ψ)dµE (ψ
′)δ
(

w′ −N
∣∣〈ψ′ | ψ

〉∣∣2) = E
[
δ
(

w′ −N
∣∣〈ψ′ | ψ

〉∣∣2)]
E

(3.39)

It is important to mention that actually, the ensemble E has a dependence in the

depth t of the RUC, but for practical reasons we omit it. Given an ensemble of states

E , one can define the object

ρ(k)[E ] =
∫

dµE (ψ) |ψ⟩⟨ψ|⊗k , ∥ψ∥ = 1 =⇒ Tr
{

ρ(k)[E ]
}
= 1 (3.40)

This is the average over the ensemble E of the k-replicated density matrix, and it is

an operator acting on H⊗k. To understand its significance, we can examine a specific

element of it

(
ρ(k)[E ]

)
α1,α2,...αk ,α′1,α′2,...α′k

=
∫

dµE (ψ)ψα1 ψ∗
α′1

ψα2 ψ∗
α′2

. . . ψαk ψ∗
α′k

(3.41)

with αi = 1, 2, . . . ,N . Knowing that ψαψ∗
α′ are elements of the density matrix |ψ⟩⟨ψ|,

Eq. (3.41) represents the moments of the density matrix, related to the ensemble E .

These moments are characteristic of the specific ensemble of states, and thus can be

used to define a notion of how similar or how close two ensembles are. In particular,
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we define the notion of distance between two ensembles E , E ′ as

∆(k)
2 [E , E ′] =

∥∥∥ρ(k)[E ]− ρ(k)[E ′]
∥∥∥

2
(3.42)

where we used the ∥O∥2 =
√

Tr{O†O} Frobenius norm. When ∆(k)
2 [E , E ′] = 0

by definition ρ(k)[E ] = ρ(k)[E ′] and thus the k-moments of the distributions are the

same. If this is true for every, k then the ensembles E , E ′ are the same. Another,

more familiar way of denoting Eq. (3.40) is by writing down the explicit dependence

in W, W†, and from Eq. (3.28) we can see that the k-fold density matrix satisfies

ρ(k)[E ] = Φ(k)
E (ρ

(k)
0 ) and is actually a k-fold channel acting on ρ

(k)
0 = |ψ0⟩⟨ψ0|⊗k where

the expectation is taken over |ψ⟩, |ψ′⟩, both sampled independently of E .

To quantitatively study the approach of one ensemble to the other, we define the

Frame Potential

F(k)[E ] =
∥∥∥ρ(k)

∥∥∥2

2
= Tr

[(
ρ(k)
)2
]
=
∫

dµE (ψ)dµE
(
ψ′) ∣∣〈ψ′ | ψ

〉∣∣2k (3.43)

another expression of the Frame Potential comes from using the explicit dependence

on W, according to which Eq. (3.43) becomes

F(k)[E ] =
∫

dµ(W)dµ
(
W ′) ∣∣∣⟨ψ0 | W

′†W | ψ0⟩
∣∣∣2k

=∫
dµ(W)dµ

(
W ′) ⟨ψ0 |⊗2k (W†W ′)⊗k ⊗ (W

′†W)⊗k | ψ0⟩⊗2k (3.44)

we set U = W
′†W and by denoting the measure of U as dµ′(U). The random matrix

U generally follows a different ensemble than W, which we denote as E ′. Thus, the

measure dµ′ is not the same as dµ. Then Eq. (3.44) becomes

F(k)[E ] =
∫

dµ′(U)⟨ψ0 |⊗k U†⊗k(|ψ0⟩⟨ψ0|)⊗kU⊗k | ψ0⟩⊗k =

⟨ψ0 |⊗k Φ(k)
E ′ (|ψ0⟩⟨ψ0|) | ψ0⟩⊗k (3.45)

This equation expresses a direct relation of the Frame potential with the k−fold

channel. There is an average over the k−copies of U and k−copies of U†, which can

be graphically seen in Fig.3.2, where we used the “folded” picture introduced in Sec.

3.22. A special case that is interesting for our problem is the Haar RUC, when the

pure states are drawn from the Haar ensemble E = Haar. We can explicitly calculate

the Frame Potential of the Haar ensemble over U(N ) by using Eq. (3.34), according
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FIGURE 3.2: The Frame potential F(k)[E ] for an ensemble E in the
folded picture. Each operator is represented by N incoming and N
outgoing legs, and the quantum state by N input legs. The folding of

k copies of U† leads to 2k copies of U, U∗.

to which the k-fold density matrix becomes

ρ(k)[Haar] =
1

k!(k+d−1
k )

∑
σ∈Sk

Pσ. (3.46)

and from the definition Eq. (3.43)

F(k)
Haar =

1

k!(k+N−1
k )

∑
σ∈Sk

Tr
{

Pσρ(k)[Haar]
}
=

1

k!(k+N−1
k )

∑
σ∈Sk

Tr
{

ρ(k)[Haar]
}

(3.47)

The permutation operator of the k−copies, by definition leaves the k−copies of the

same state invariant Pσ |ψ⟩⊗k = |ψ⟩⊗k and thus it is true in general that

Pσρ(k)[E ] = ρ(k)[E ] for any E and σ ∈ Sk (3.48)

Since k-fold density matrix has a unit trace, we finally deduce the Frame Potential

for the Haar ensemble

F(k)
Haar =

1

(k+N−1
k )

N≫1→ k!
N k (3.49)

At this point, we present a theorem that we are going to need for our study.

Theorem 2 For any ensemble of pure states E produced by unitary operations, it is true

that

F(k)
E ≥ F(k)

Haar
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Proof

By the definition in Eq. (3.42) and of the Frame Potential, we obtain

(∆(k)
2 [E , Haar])2 = Tr

{(
ρ(k)[E ]

)2
}
+Tr

{(
ρ(k)[Haar]

)2
}
− 2 Tr

{
ρ(k)[E ]ρ(k)[Haar]

}
=

= F(k)
E + F(k)

Haar − 2 Tr
{

ρ(k)[E ]ρ(k)[Haar]
}

(3.50)

The third term can be simplified by using Eq. (3.48) and the result in Eq. (3.49),

which lead to Tr
{

ρ(k)[E ]ρ(k)[Haar]
}
= F(k)

Haar. So finally, we end up with

(∆(k)
2 [E , Haar])2 = F(k)

E − F(k)
Haar (3.51)

and consequently, F(k)
E − F(k)

Haar ≥ 0. This is valid for any E ensemble, and the Haar

ensemble is the ensemble of pure states that minimises F(k)
E . We can also write that

∆(k)
2 [E , Haar] =

√
F(k)
E − F(k)

Haar (3.52)

showcasing, that the approach to a k-design can be quantified by the approach of

the Frame Potential to its Haar value. Another, important property of the Frame

Potential is that it is directly connected to the probability distribution of overlaps,

which we denote as p(w′). In particular, based on the definitions Eqs. (3.38),(3.43) it

is straightforward to observe that

F(k)
E = N−kE

[
w′k
]
E

(3.53)

The frame potential defines the moments of w′ and thus the distribution of the over-

laps for a RUC. At large depths the ensemble E approaches the Haar one and from

Eq. (3.49) we can find that the moments become E[w′]Haar = N k/(k+N−1
k )

N≫1→

k!, for t ≫ 1, which as expected are the moments of the PT distribution [36].

3.2.2 Ginibre Ensemble and transfer matrix

In our investigation, we analyse a one-dimensional lattice with L q-dimensional

sites. Although our argument is more broadly applicable to different geometries

of RUC with local interactions, we choose to consider a brick-wall RUC. Each local

gate ui,i+1(t) that acts on adjacent sites i and i + 1 at time t is random and selected

independently of some ensemble E . Each time step, ∆t = 1, consists of both an even
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TH

FIGURE 3.3: (a) A representation of the overlap w′k = ⟨ψ0|W ′†(t2 =
1)W(t1 = 2)|ψ0⟩ with k = 3 for depth 3 and system size L, with 6 in
total copies. The transfer matrix is highlighted in light blue for a sin-
gle copy. The tensor product of the local gate , u⊗ u∗⊗ · · · ⊗ u⊗ u∗, is
highlighted in light green. (b) In the Thouless scaling limit, the over-
lap E[wk] can be interpreted as the grand canonical partition function
of a dilute gas of domain walls, corresponding to transpositions con-
necting two permutations and each carrying a fugacity L−1

Th . Corre-
spondingly, the size of each domain is ∼ LTh(t).

and an odd layer, relatively shifted to each other by a single site as shown in Fig.

3.3(a).

At this point, it is important to mention an alternative way of representing w′.

Mathematically, one can use the properties of the tensor product and express the

k−power of the overlap as

w′k = N k (⟨ψ0| ⊗ ⟨ψ0|∗
)⊗k

(
W

′†(t2)⊗ W ′T(t2)
)⊗k (

W(t1)⊗W∗(t1)
)⊗k (

|ψ0⟩ ⊗ |ψ0⟩∗
)⊗k

(3.54)

This expression, admits k copies of the RUC and k copies of its complex conjugate,

leading to a graphical representation of 2k copies as shown in Fig. 3.3. The space of

2k copies or else H2k will be where we establish our theory, as we demonstrate later.

Within this setup, the overlap w′ is depicted as in Fig. 3.3(a). When averaged

over the ensemble, determining w′ simplifies to computing an appropriate partition

function. This becomes clear by examining the overlaps in the spatial direction. In



3.2. Universal distributions of overlaps from unitary dynamics 67

particular, the local interactions of the circuit allow us to define a spatial transfer

matrix Gi, which includes all gates (and initial states) acting temporally on the i-th

qudit. An example of this is shown in Fig. 3.3(a) for a brick-wall circuit. We represent

the product of these transfer matrices by,

G = G1G2 · · · GL.

with Gi representing the transfer matrix of the i-th site and of a single replica. The

overlap w′ is directly related to the transfer matrix G, and its explicit form depends

on the boundary conditions. For periodic boundary conditions (pbc), w′ is expressed

as w′
pbc = |Tr[G]|2, and for open boundary conditions (obc), it is w′

obc = |l†Gr|2

where l, r are boundary vectors whose specific forms depend on the details of the

boundary conditions and are not important here. The statistical independence of the

local gates implies that the matrices Gi are statistically independent as well between

different indices. At total depth, t = t1 + t2 Gi “cuts off” an increase in t number of

legs, with each leg representing q degrees of freedom. Thus Gi are of size M(t) ×

M(t) matrices where M(t) = q f (t), where f (.) is a non-decreasing function, and

its exact form depends on the geometry of the circuit. In our case of a brick-wall

geometry, every single time step cuts off 2 legs and the boundary conditions in the

time direction, induced by, |ψ0⟩ reduces the number of legs by 2, leading to f (t) =

2t − 2. The exponential growth in time of matrix size is a general feature, and we

omit the time dependence of M unless necessary.

We focus on RUCs, that represent chaotic quantum systems. In this scenario, if

we imagine a system of specific size L then at sufficiently large times the unitary

dynamics, having no conserved quantities are going to be described by the Haar

measure over U(qL) and the circuit will form a k-design for increasing values of k in

time. As the unitary dynamics in the time direction approach higher moments of the

Haar ensemble, the non-unitary “dynamics” in the space direction [86, 87] demon-

strate an emergence of non-Hermitian Ginibre Unitary Ensemble (GinUE) [38]. This

is a complex matrix ensemble, where the matrix elements are iid complex Gaussian

variables. When both t and L are large, there can be cells of smaller subsystems for

which the spatial dynamics have converged to GinUE, and we denote the cell’s size

as ℓ, which in general is time-dependent ℓ = ℓ(t). The system is then described by

the product of many large random matrices, indicating a domain where universality
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could emerge, as suggested in references [38, 88, 89, 90] and this is what we are going

to prove later. More precisely, in a coarse-grained view, we organise these matrices

into groups of size ℓ an indicated below

G̃a := Gaℓ+1Gaℓ+1 · · · G(a+1)ℓ, (3.55)

with

G =
L/ℓ

∏
a=1

G̃a (3.56)

For sufficiently large ℓ, we assume the absence of a privileged basis due to the chaotic

nature of the system. Since the dynamics in the spatial direction of generic many-

body chaotic systems is non-Hermitian, the matrices G̃a are appropriately sampled

from the simplest non-Hermitian random matrices, the GinUE, where each matrix

element is independently drawn as a complex Gaussian variable with zero mean and

variance, which we denote as ν2. We are interested in the moments of the overlaps

and thus in th behaviour of w′k, which also can be written as

w′k =


Tr[G ⊗ · · · ⊗ G ⊗ G∗ ⊗ · · · ⊗ G∗], for pbc

(l†⊗k ⊗ r†⊗k)G ⊗ · · · ⊗ G ⊗ G∗ ⊗ · · · ⊗ G∗(r⊗k ⊗ l⊗k), for obc
(3.57)

with k− copies of G, G∗. The object, G ⊗ · · · ⊗ G ⊗ G∗ ⊗ · · · ⊗ G∗ represents the k−

moments of the ensemble of the transfer matrix. In the coarse-grained picture, Eq.

(3.57) becomes

w′k =


Tr
[
∏L/ℓ

α=1(G̃α ⊗ · · · ⊗ G̃α ⊗ G̃∗
α ⊗ · · · ⊗ G̃∗

α)
]
, for pbc

(l†⊗k ⊗ r†⊗k)
(

∏L/ℓ
α=1 G̃α ⊗ · · · ⊗ G̃α ⊗ G̃∗

α ⊗ · · · ⊗ G̃∗
α

)
(r⊗k ⊗ l⊗k), for obc

(3.58)

When G̃α approach the GinUe then G̃α ⊗ · · · ⊗ G̃α ⊗ G̃∗
α ⊗ · · · ⊗ G̃∗

α represent the

k−moments of this ensemble and as calculated in App. B.1, they are exactly:

EGinUe
[
G̃α ⊗ · · · ⊗ G̃α ⊗ G̃∗

α ⊗ · · · ⊗ G̃∗
α

]
= ν2k ∑

σ∈Sk

|σ⟩⟩⟨⟨σ|, (3.59)

The average over GinUE leads to the average over products of Gaussian random

variables, which can be computed by Isserlis’ theorem This theorem allows one to

compute higher-order moments in terms of the second-order ones, which in our case

are E[(G̃α)b,c(G̃∗
α)b′,c′ ] = ν2δb,b′δc,c′ and E[(G̃α)b,c(G̃α)b′,c′ ] = E[(G̃α)∗b,c(G̃α)∗b′,c′ ] = 0.
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Isserlis’ theorem imposes that the only non-vanishing components of the tensor in

Eq. (3.59) are the ones related to the permutation of each copy of G̃α with the copies

of G̃α. That is why there is the appearance of the permutation states |σ⟩⟩ ∈ CM2k

via ⟨β, β̄ | σ⟩⟩ = δβ,σ(β̄), where β, β̄ represent the indices corresponding to the k−

copies of the M dimensional Hilbert space of G̃α. Here we used the formalism of

the “folded” picture that was established. in Sec. 3.1.2. We continue with defining

another matrix over the permutation space Sk with elements

Tσ,σ′ = ν2k⟨⟨σ | σ′⟩⟩ (3.60)

. Then, with the help of Eq. (3.60) the coarse-grained picture of the moments leads

to

E[G ⊗ · · · ⊗ G ⊗ G∗ ⊗ · · · ⊗ G∗] = ν2k ∑
σ,σ′

[
TL/ℓ−1

]
σ,σ′

|σ⟩⟩⟨⟨σ′| (3.61)

So it is straightforward, to observe that T acts like another transfer matrix but this

time over Sk and that we get as many T as cells of the system that have converged to

GinUE. A direct application of Eq. (3.61) to Eq. (3.57), helps us derive the moments

of the overlaps as a function of this transfer matrix, written exactly as

E[w′k] =


Tr[TL/ℓ], for pbc

|l†r|2k ∑σ,σ′(TL/ℓ−1)σ,σ′ for obc
(3.62)

This expression is going to be useful later for the mapping to the statistical model

and the emergence of universality of our problem. We proceed with calculating ex-

actly the values of Tσ,σ′ . First, we should remind to the reader that |σ⟩⟩ is a state over

the 2k copies of a M dimensional Hilbert space, permuting by σ the k−copies of

them to the rest k−copies. This is actually the representation of the permutation op-

erator Pσ in Eq. (3.7) in the folded picture, or as a state in the Mk ⊗ Mk space. In this

picture, then Pσ → |σ⟩⟩, we directly get ⟨⟨σ | σ′⟩⟩ = Tr
{

P†
σ P′

σ

}
= M#cycles(σ−1σ′) =

M#cycles(σσ
′−1), where we used the properties of Pσ from Sec. 3.1.2 and the fact that

#cycles(.) is a class function. Thus, the transfer matrix’s elements are exactly

Tσ,σ′ = ν2k M#cycles(σσ
′−1) (3.63)
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Another way of writing this equation is through the minimum number of trans-

positions needed to decompose a permutation, e.g. (123) = (12)(23). As proven in

[91], if σ ∈ Sk can be decomposed in #cycles(σ) disjoint cycles, then it can be decom-

posed to a minimum number of D(σ) = k − #cyclyes(σ) transpositions. Following

this logic, for the composition σσ′ of permutations, one can interpret D(σσ
′−1) =

k − #cyclyes(σσ
′−1) as the minimal number of transpositions that σ differs by σ′ and

Eq. (3.63) can be then expressed as

Tσ,σ′ = (ν2M)k M−D(σσ
′−1) (3.64)

On can also express M−D(σσ
′−1) as

M−D(σσ′) = δD(σσ
′−1),0 +

δD(σσ
′−1),1

M
+

δD(σσ
′−1),2

M2 + · · ·+
δD(σσ′),k−1

Mk−1 (3.65)

where one gets an expansion over the different number of minimal transpositions

that σ, σ′ can differ. As we already mention M is increasing in time, so at large times

or equivalently at M → ∞, with the help of Eq. (3.65), Eq. (3.64) one can see that T

admits the expansion

T
(
σ, σ′) = (ν2M

)k
(

δD(σσ
′−1),0 +

δD(σσ
′−1),1

M
+ O

(
M−2)) (3.66)

When D(σσ
′−1) = 0 then σ = σ′ since they do not differ by any transposition and

this corresponds to the diagonal elements of T and when D(σσ
′−1) = 1 then σ = τσ′

for some transposition τ, which corresponds to the elements of T that differ by a

single transposition. Thus, we define over Sk the matrices 1σ,σ′ = δσ,σ′ and Aσ,σ′ =

δD(σσ
′−1),1 and then we can write Eq. (3.66) in the matrix from

T =
(
ν2M

)k
(

1 +
1
M

A + O(M−2)

)
(3.67)

The matrix A denotes the adjacency matrix of the transposition graph and practically

indicates which pairs of permutations differ minimally by a single transposition, by

having unity elements for those pairs and zero otherwise. The higher order adja-

cency matrices defined similarly by δD(σσ
′−1),i, i = 2, 3, 4, . . . are related to A and

they can be defined by, A as we prove in App. B.2. The important information that

we can extract from Eq. (3.67) is that at large M, the leading contributions to T and
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thus of Eq. (3.61), are the terms coming from identical pairs of permutations σ = σ′

and the ones that differ by a single transposition, meaning that D(σσ
′−1) = 1.

For practical purposes, we do not want to carry factors that enter the moments

Eq. (3.62) from Eq. (3.64), or the l, r vectors of obc, since the factors do not alter the

physical context of our results. To achieve this, we normalise the first moment by

demanding E[w′] = 1 and then absorb the remaining coefficient to ν2. For k = 1 the

symmetric group S1 and Eq. (3.62), becomes

E[w′] =


(ν2M)L/ℓ → ν2 = 1/M, for pbc

(ν2M)L/ℓ|l†r|2 → ν2 = |l†r|−2ℓ/L/M, for obc
(3.68)

The variance ν2 of the GinUE absorbs the extra factors coming from the boundary

conditions, so from now on we can ignore them. We proceed with studying a spe-

cific scaling limit of our model. We firstly define the Thouless length as LTh(t) =

M(t)ℓ(t) and based on this we define the scaled length x = L/LTh so we can restrict

our study to the limit where t, L approaches infinity such that x is constant. In this

limit, we can write Eq. (3.82) as

lim
t,L→∞

x=L/LTh(t)

TL/ℓ =

(
1 +

xA
Mx

)Mx

= exA (3.69)

and the moments of the overlap have the following asymptotic behaviour.

lim
t,L→∞

x=L/LTh(t)

E
[
w′k
]
=


Tr
{

exA}, for pbc

∑σ,σ′
(
exA)

σ,σ′ , for obc
(3.70)

The definition of LTh(t) = M(t)ℓ(t) contains an important physical interpretation

for our problem. The specifics of M(t) and ℓ(t) are characteristic of the microscopic

details of the system, making LTh the parameter of our problem, which in the scaling

limit, encodes the details about the specific choice of the system of interest. Thus, we

can say that the fine details of the circuit’s microstructure, such as the level locality

and the coupling strength, influence the scaling limit by determining the character-

istic length scale LTh(t). However, the asymptotic behaviour of the moments in Eq.

(3.70) directly depends on x and does not capture the fine details of the system, but

rather showcases a universal behaviour. They rely solely on the eigenvalues of the
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adjacency matrix A.

3.2.3 The statistical model of domain walls

At this point, we have all the tools we need to establish our statistical model, to

which we can map our problem. We start with the definition of the state space. We

are focussing on a statistical model with the state of Ω = {σ1, σ2, . . . , σL/ℓ+1}, σi ∈

Sk for i = 1, 2, . . . , L/ℓ+ 1. Each microstate is represented by a chain L/ℓ+ 1 sites,

with a local spin variable σi as a permutation of Sk. The Hamiltonian defined on Ω

has the exact form:

H(σ1, σ2, . . . , σL/ℓ+1) =
L/ℓ

∑
i=1

D(σiσ
−1
i+1) (3.71)

and the effective inverse temperature is defined as β = log M. This Hamiltonian

represents effectively a spin chain with nearest neighbour ferromagnetic interactions

and with a two-site energy bond of D(σiσ
−1
i+1). The boundary conditions of the spin

chain are defined by the choice of pbc or obc in the original problem, and they do

not affect the Hamiltonian H. Thus, for a statistical model like this, we define the

partition function for each boundary condition:

Zb.c(β) =


∑{σi}∈Ω
σi=σL/ℓ+1

e−βH({σi}) = ∑{σi}∈Ω
σi=σL/ℓ+1

∏L/ℓ
i=1 M−D(σiσ

−1
i+1) for pbc

∑{σi}∈Ω Lσ1 RσL/ℓ+1 e−βH({σi}) = ∑{σi}∈Ω Lσ1 RσL/ℓ+1 ∏L/ℓ
i=1 M−D(σiσ

−1
i+1) for obc

(3.72)

where in the case of periodic boundary conditions the spin on the edges of the chain

σ1 = σL/ℓ+1 are bound to be the same, whereas the open boundary conditions intro-

duce some extra vectors over the Sk space, whose components depend on the spin

variables on the left and right edge Lσ1 , RσL/ℓ+1. For our purpose, these vectors are

defined to be

Lσ = ⟨⟨L | σ⟩⟩ = (l†r)k, Rσ = ⟨⟨σ | R⟩⟩ = (r†l)k (3.73)

We continue, by using (3.72)(3.63) and Eq. (3.62) to derive:

E[w′k] = (ν2M)kL/ℓZb.c(β), for b.c=pbc or obc (3.74)

We now see the direct connection of the moments of the overlap distribution with

our statistical model of the spin chain. The calculation of these moments is mapped
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to the calculation of the partition function Zb.c. It is important to mention that we

chose not to focus on the general expansion of Eq. (3.66), but only up to orders up

to the adjacency matrix A, since the rest are sub-leading in the scaling limit. This is

equivalent to restricting the energy bonds up to, 1 and to achieve that we have to

introduce a new term on the Hamiltonian that imposes the condition D(σiσ
−1
i+1) ≤ 1.

So we write H as follows:

H(σ1, σ2, . . . , σL/ℓ+1) =
L/ℓ

∑
i=1

D(σiσ
−1
i+1) +

L/ℓ

∑
i=1

V
(

D(σiσ
−1
i+1)

)
(3.75)

where

V(x) =


0, when x ≤ 1

∞, otherwise
(3.76)

The second term in the Hamiltonian is a potential on the spin chain that diverges

when an energy bond contributes more than 1, leading to zero contribution of these

microstates for the partition function. This is a way of “filtering out” these mi-

crostates from our problem. The potential V(x) can be chosen to diverge at some

other integer, e.g. x = 2, 3, . . . , meaning that we consider the case of higher order

terms e.g. O(M−2), O(M−3), . . . in Eq. (3.66), and thus contributions from permuta-

tions that have D(σσ′−1) > 1, but this leads to a more complicated statistical model,

which is out of our scope of interest. From now on, we focus on the model described

by Eq. (3.75).

A trivial way of expressing a partition function is as a function of the energy

levels of H. In particular, the state space partitions into sectors of microstates and

each one of them corresponds to a specific energy level Ei of the Hamiltonian, which

is written as Ω = Ω0 ∪ Ω1∪, . . . . For example, if E0 is the ground state, then Ω0 =

{{σi} ∈ Ω s.t H({σi}) = E0}. In the same way, we can define the other sectors

Ω1, Ω2, . . . for the first, second excited state e.t.c. The cardinality |Ωi| = #(Ei) is

what we call the degeneracy of the energy level Ei. Thus, we can now write the

partition function as

Zpbc(β) = ∑
i

#(Ei)e−βEi (3.77)

We demonstrate analytically the calculation of the partition function only for pbc,
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since the methodology can be directly extended to the case of obc. Eq. (3.77) ex-

presses that the partition function is completely defined by knowing the energy lev-

els Ei and their degeneracy #(Ei). So let’s try to find these numbers for our specific

model of spin chain.

We start with the ground state. The Hamiltonian H in Eq. (3.71) is frustration-

free, meaning that its ground state energy is the ground state of each local term

D(σiσ
−1
i+1). There is no energy wise, competition between the local terms of the

spin chain when it reaches the ground state and thus E0 = 0, where each bond

D(σiσ
−1
i+1) = 0. This implies that the microstate that minimises the energy is the

one where all spins have the same value H(σ, σ, . . . , σ) = 0. There are |Sk| = k!

of such possible microstates, which means that #(E0) = k!. We call these common

spin-valued regions as domains. The first excited state can be easily found by Eq.

(3.71). If we just change one of the zero energy bonds in the microstate, to the unit

value, D(σiσ
−1
i+1) = 1 then this would imply that there should be another bond of

unit value because of pbc and thus the first excited energy level is E1 = 2. This

change is equivalent to creating two different domains of spins and thus two do-

main walls, between them, but the two different values of spin should differ only by

a single transposition, as a result of the unity that τ1τ2 = 1. The number of configu-

rations that satisfy this is, actually Tr
{

A2}, based on the definition of the adjacency

matrix A. Since the two walls can be distributed in L/ℓ different bonds, we get a

degeneracy of #(E1) = Tr
{

A2}(L/ℓ
2 ). The second excited state requires three energy

bonds as 1 and the rest zero, leading to E2 = 3. The microstates that have this prop-

erty should have three domain walls of cost 1. One example of this is a microstate

like {σ1 = σ, σ2 = σ, . . . , σi = σ′, σi+1 = σ′, . . . , σj = σ′′, σj+1 = σ′′, . . . , σL/ℓ+1 = σ}

for pbc, where σ = τ1σ′, σ′ = τ2σ′′, σ′′ = τ3σ and where we have three domain

walls of cost 1. Again, the transpositions that the spin values differ should satisfy

τ1τ2τ3 = 1. By counting again in the same manner as for the previous case and

taking into account, we can find that the degeneracy of E2 of these types of states is

#(E2) = (L/ℓ
3 )Tr

{
A3}. The factor (L/ℓ

3 ) represents the number of possible configu-

rations of 3 domain walls among L/ℓ bonds. There is a pattern in the degeneracy,

that starts to appear. To generalise it, the N-th excited state is, EN = N + 1 and the

microstates that correspond to this energy level should have N + 1 domain walls.
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By the same counting scheme as before, one can find that

#(EN) =

(
L/ℓ

N + 1

)
Tr
{

AN+1
}

(3.78)

At this point, we can write explicitly the partition function for the periodic boundary

conditions by using Eq. (3.77) and Eq. (3.78):

Zpbc(log M) = k! +
L/ℓ−1

∑
N=1

M−(N+1)
(

L/ℓ
N + 1

)
Tr
{

AN+1
}

(3.79)

The pbc is what makes the trace operation over A appear and Tr{A} = 0 repre-

sents that the single domain-wall configurations are not allowed under these specific

boundary conditions.

The previous formalism on the study of the energy levels of the statistical model

was done for pbc however, it can be used to describe the obc case as well. There are a

few minor changes that need to be made. Specifically, assume that in the framework

of obc, the spins on the edges of the chain are fixed to the values σ1, σL/ℓ+1. The

ground state of the system, then, will be the same as before, so zero domain walls.

The absence of domain walls is true only for σ1 = σL/ℓ+1 with a degeneracy of 1

and zero otherwise. In the absence of pbc, it is not necessary that σ1 = σL/ℓ+1 and

thus we can have microstates of a single domain wall of energy E1 = 1. As we pass

from domain walls, we accumulate transpositions, meaning that at a single domain

wall configuration, the spin edges should satisfy σ1 = τσL/ℓ+1. So, if σ1 = τσL/ℓ+1,

then the degeneracy #(E1) = L/ℓ and zero otherwise. For the level E2 = 2 we should

have 2 domain walls and thus σ1 = τ1τ2σL/ℓ+1. There are (A2)σ1,σL/ℓ+1 ways to choose

such τ1, τ2 degeneracy of these microstates. In the same manner, we can study the

higher excited states and get the following energy levels and degeneracies:

EN = N, #(EN) =

(
L/ℓ
N

)
(AN)σ1,σL/ℓ+1 (3.80)

and the partition function for the obc would be according to Eq. (3.72)

Zobc(log M) =
L/ℓ

∑
N=0

M−N
(

L/ℓ
N

)
Tr
{

LRT AN
}

(3.81)

where RT is the transpose of the vector R over the Sk space. By replacing the matrix

LRT with 1, we get back the pbc partition function.
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We made all the previous discussion so that we can explain and understand our

statistical model of the spin chain and finally find the partition function that is re-

lated to the moments E[w′k]. This statistical model was just a trick to help us digest

the mathematics behind it. But now let us have a look at what exactly these mathe-

matics are.

The main object of interest is the transfer matrix T, which is directly connected

to the moments in Eq. (3.62) and specifically its power TL/ℓ. At this point, we use

Eq. (3.66) and recover that

TL/ℓ = (ν2M)KL/ℓ(1 +
1
M

A)L/ℓ (3.82)

The matrices A, 1 commute and thus we can employ the binomial expansion to fur-

ther deduce:

TL/ℓ = (ν2M)kL/ℓ
L/ℓ

∑
N=0

M−N AN
(

L/ℓ
N

)
(3.83)

It is then straightforward to get the same expressions as with the statistical model

when we apply Eq. (3.83) in Eq. (3.62). The binomial expansion, practically, demon-

strates that what the statistical model was calculating was the choices of N terms

A/M out of the L/ℓ terms of 1 + A/M. The specific choices of A/M representing

the domain walls’ microstates and the possible such choices, the degeneracy of their

energy level EN . Every time we stumble upon A, this creates a domain wall. Finally,

by fixing the parameter ν as indicated in Eq. (3.68), one observes that the statistical

model leads to the same expressions for the moments as in Eq. (3.70).

3.2.4 Random Phase Model

In this section, we study a specific model and substantiate the universality of the

moments of w′ established previously by analytically extracting the Frame potential

for this specific model.

The model of interest is the random Phase Model (RPM) and it was initially intro-

duced in [39]. RPM is a random quantum circuit model, for which the time evolution

is a matrix product

T (t) =
t

∏
t′=1

U (t′) (3.84)

where U (t) is a qL × qL operator, with L the number of sites and q the local Hilbert

space dimension of each site. T (t) represents the time evolution up to t, whereas
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FIGURE 3.4: Circuit representation of the RPM model. Rectangles
represent single-site unitaries drawn from the Haar ensemble; el-
lipses represent the two site coupling gates v(j,j+1). The layer of rect-
angles represents the U1(t) layer of single site gates, whereas the el-
lipses represent the layer U2(t) of coupling phase gates. The circles at

the bottom represent the initial, factorised, state.

U (t) represents the single time step evolution operation at the time moment t. Here

we focus on a 1D lattice with L sites and open boundary conditions. The evolu-

tion at each time step is obtained by two types of gates with U (t) = U2(t)U1(t),

where U1(t) contains only single-site operations and U2(t) couples neighbouring

sites. More specifically,

U1(t) =
L⊗

j=1

u(j)(t) (3.85)

generates transformations at each site, with the q × q unitary matrices u(j)(t) being

drawn from the Haar ensemble over U(q). U2(t) couples neighbouring sites and is

diagonal in the basis of site orbitals with matrix elements

[U2(t)]a1,...aL;a1,...aL = exp

[
ı

L

∑
j=1

φ
(j)
aj,aj+1(t)

]
(3.86)

where aj ∈ {1, . . . , q} are the degrees of freedom for the i−th site. We take each

coefficient φ
(j)
aj,aj+1(t) to be a Gaussian random variable with mean zero and variance

ϵ. The standard deviation
√

ϵ defines the typical scale of the fluctuations that the

phases can have, and thus by increasing it we increase the mixing that U2 causes

upon the L sites. This indicates that ϵ effectively controls the coupling between

neighbouring spins. a trivial case is when there is zero coupling, with ϵ = 0 and

U2 = 1. A diagrammatic representation of the RPM circuit is shown in Fig. 3.4.

Constraining the gates u(j)(t) and ϕ(j)(t) to be site or time-independent (or both),
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this model gives access to translational invariant and Floquet models, as explored in

[92]. Here, in contrast, we shall consider the case where all gates are drawn inde-

pendently in space and time. The coupling gate in Eq. (3.86) admits nearest neigh-

bouring interactions, making it possible to be expressed by a two-site coupling gate.

In particular, if we define the two-site gates:

v(j,j+1)(t)aj,aj+1,a′j,a
′
j+1

= δaj,a′j
δaj+1,a′j+1

exp
{

iφ(j)
aj,aj+1(t)

}
(3.87)

then Eq. (3.86) becomes,

U2(t) =
L⊗

i=1

v(j,j+1)(t) (3.88)

making it straightforward that v(j,j+1) represents a two site coupling gate for our

model. So the local random gates uj, v(j,j+1) generate an ensemble of random circuits

of the RPM, which is denoted as ERPM.

3.2.4.1 Many-body Diagrams in the RPM

We now consider the diagrammatic calculation of ρk[ERPM(t)]. The time-evolved

wave function |ψ(t)⟩ = T (t) |ψ0⟩ is constructed by acting the circuit, represented as

in Fig. 3.4, to an arbitrary initial state |ψ0⟩. By drawing the random local gates from

the ensembles described in Sec. 3.2.4 we construct an ensemble of time evolution

operators T (t) and thus an ensemble of states described by the following k−fold

density matrix

ρ(k)[ERPM(t)] =
∫

dµERPM(ψ) |ψ(t)⟩⟨ψ(t)|
⊗k =

∫
dµERPM(t)T (t)⊗k(|ψ0⟩⟨ψ0|)⊗kT (t)†⊗k

(3.89)

To represent ρk[ERPM(t)], we need to consider k copies of the bra and k copies of the

ket. A first observation that we can make from ρ(k)[ERPM(t)] is that there is freedom

of choice for the initial state |ψ0⟩, up to single site unitary operations. This is the

result of the single-site Haar random matrices in RPM. If we consider the initial

state |ψ′
0⟩ =

⊗L
i=1 u′(i) |ψ0⟩, with u′(i) being single site unitary matrices from U(q).
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FIGURE 3.5: The ρ(k)[ERPM(t)] as the 2k copies of RPM averaged over
the local one site gates uj and the two site coupling ones v(j,j+1). The
Haar average on the single site gates introduces the pairs of local
“spin” variables σ(x, t), τ(x, t) at every space-time point of the circuit.
On the left, it is the circuit with the initial state, |ψ0⟩⊗2k. On the right,
the independence of the initial state since ⟨⟨σ| (|ψ0⟩⊗2k) = 1∀σ ∈ Sk.
A more detailed explanation of the diagram is presented in the main

text.

Then the k−fold density matrix for that initial condition would be

ρ(k)[ERPM(t)] =
∫

dµERPM(t)

(
T (t)

L⊗
i=1

u′(i)
)⊗k

(|ψ0⟩⟨ψ0|)⊗k

(
T (t)

L⊗
i=1

u′(i)
)†⊗k

=

=
∫

dµERPM(t)T (t)⊗k(|ψ0⟩⟨ψ0|)⊗kT (t)†⊗k

(3.90)

where we used the property of the Haar measure for the single site operations of U1

layer, of being invariant under left and right multiplication by unitary operations Eq.

(3.12). As a result, the average over ERPM absorbs local operations such as u′(i). All

initial states |ψ′
0⟩ lead to an ensemble of states with the same statistics. This can be

generalised to the level of the locality of the Haar random unitary gates. For exam-

ple, if U1 incudes Haar random unitary gates that couple m sites, then the same result

holds for initial states like |ψ′
0⟩ =

⊗L/m
i=1 u′(i) |ψ0⟩, that differ by unitary operations

u′(i) on m sites. Thus, in this section, we choose the initial state as |ψ0⟩ =
⊗L

i=1 |0⟩,

where each site is on the same orbital, and perform our calculations without loss

of generality. The calculations can be understood better through a diagrammatic

approach, and that is the technique we will use from now on, for the estimation of

ρ(k)[ERPM(t)]. The local gates u(j)(t), v(j,j+1)(t) in the two layers in Eq. (3.85),(3.88)

are being drawn independently meaning that the measure dµERPM(t) is factorizing

into the single site Haar measures of each u(j) at each time moment and site of the
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circuit T (t), as well as the measure of the coupling gates v(j,j+1) for each pair of cou-

pled sites and time moment. Thus ρ(k)[ERPM(t)] represented in Fig. 3.5, is a 2k copy

of the circuit T (t), where one has to perform the average over these local gates.

At this point, we will explain the diagram we just mentioned in more detail, so

that we can clarify the different parts of it more clearly. The result is a circuit with

the same geometry as T (t) and the local gates being replaced by their average. So

it is important to find the result of these local averages. We start with the Haar

gates for one site u(j). When one averages over u(j), one obtains a k−fold Haar

channel, which admits the graphical representation shown in Eq. 3.37, according to

which the Haar average replaces the copies of u(j) with two local “spin” degrees of

freedom. Moreover, the Haar average introduces, “spin” variables σ(x, t), τ(x, t) ∈

Sk indicated as ◦ in Fig. 3.5. Each specific choice of these permutations represents a

permutation “bond” and contributes with a weight given by the Weingarten matrix.

We use the notation introduced in Eq. (3.37), where the Weingarten matrix Wσ,τ is

represented, with double lines. The coloured rectangles, on the other hand, indicate

the average over the 2k copies of the phase gate v(j,j+1), depicted as

(3.91)

where the average is being performed over the phases φ(j),drawn from N (0, ϵ). Fi-

nally, |ψ0⟩⊗2k, are depicted as . Then, based on the diagrammatics just explained,

one can interpret Fig. 3.5 as tensor products and products of the local averages.

Now, looking back at Fig. 3.5, it is clear that a transfer matrix representation is

possible. The transfer matrix can be built using the building block

(3.92)

which depends on the local “spin” degrees of freedom of nearest neighbours. The

transfer matrix is then represented as a single site column of Fig. 3.5, and it is a ma-

trix in Sk. This is explained in more detail in the next section. Finally, ρ(k)[ERPM(t)]
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can be slightly simplified by, noting that, the term with the initial states, on the

bottom of Fig. 3.5, can be evaluated explicitly as ⟨⟨σ|0⟩⟩ = Tr
{

Pσ−1(|0⟩⟨0|)⊗k} =

⟨0|0⟩k = 1. Consequently, they are trivially one for every σ ∈ Sk, since k copies of a

state are invariant under any permutation. From now on we can ignore these terms,

meaning that there is no dependence on |ψ0⟩ and we can focus on the rest part of the

diagram as indicated in Fig. 3.5

This shows that for any k the density matrix is reduced to a sum over permuta-

tions σ and τ that can appear at every space-time position, weighted by the cost or

coming from the average over the random phases.

However, the number of terms in this calculation grows rather quickly: there

are k! permutations for each σ(x, t), τ(x, t) at each spacetime point (x, t); this leads

to (k!)2Ltmax diagrams, for a circuit of L sites and evolved up to a maximum time

moment tmax. Since ρk[ERPM] is being expressed as a sum of these (k!)2Ltmax diagrams,

the fast growth of the number of terms makes the analytic calculations very intricate,

if not feasible at all. That is why, we focus on the limit of q → ∞, where the number

of diagrams reduces to (k!)L since, as we will see later, the leading contributions

in this limit come from common local spins over the same site. The next section is

devoted to showcasing the details of the analytic results in this limit.

3.2.4.2 Large-q calculation

To make the calculation feasible in practice, we consider the limit q → ∞. In this

limit, one can use the expansion

Wσ,τ
q→∞∼ q−k−D(στ−1) ∏

i
(−1)Ci(στ−1)−1cCi(στ−1)−1 , (3.93)

where Ci(σ) is the length of the i-th cycle in the cycle-decomposition of σ, and

cm = (2m)!/m!(m + 1)! is the Catalan number. Finally, D(σ) is the minimal number

of transpositions that σ can be decomposed into. It becomes thus obvious from Eq.

(3.93) that in the limit, q → ∞ the leading terms are the ones that minimise, D(στ−1)

and this is true when σ = τ. At this limit the leading contribution comes when σ = τ

in Wσ,τ and thus σ(x, t) = τ(x, t) at every space-time position in Fig. 3.5. Addition-

ally, contractions between loops at different time steps force σ(x, t) = σ(x, t + 1).

The average over the diagonal matrices of the phase gates v(j,j+1) leads to a diag-

onal matrix in the 2k copies space. When σ(x, t) ̸= σ(x, t + 1) then we end up
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with a non-diagonal element of the 2k rank tensor and thus only configurations with

σ(x, t) = σ(x, t + 1) have non-vanishing contributions. This can be understood by

using the “folded space” formalism presented in Sec. 3.22, which can help us in-

terpret the diagrams as mathematical objects. With this discussion, we established

that the leading order in 1/q configurations of ρ(k)[ERPM(t)] are the ones, where the

permutations over a single site x are common at every time step. These type of

configurations of the k replicated density matrix leads to the following expression,

ρ
(k)
RPM(t) = q−kL ∑

σ1,...,σL

[
L

∏
i=1

M(k)
σi ,σi+1

]
Pσ1 ⊗ . . . ⊗ PσL , (3.94)

where Pσ labels the permutation operator over the k copies on each site. The coeffi-

cient M(k)
σ,σ′ comes from the average over the random phases. This expression is well

understood through Fig. 3.5, where at each site j, we get t layers of the circuit with

each layer represented as

(3.95)

Thus, for each site, there is a product of t factors coming from the gates v(j,j+1) and

in the last time step the state |σj⟩⟩ or the permutation operator Pσj is left. Each site is

characterised by a specific permutation σj, which, as already explained, is common

for every time moment of this specific site.

In order to find the analytic expression of M(k)
σ,σ′ , we first need to calculate exactly

the diagram Eq. (3.95) This diagram is interpreted as

m(k)
σ,σ′ where , m(k)

σ,σ′ = q−2k⟨⟨σ, σ′|v(j,j+1)⊗k ⊗ v∗(j,j+1)⊗k|σ, σ′⟩⟩ (3.96)

where (.) indicates the average over the Gaussian phases of the matrix representa-

tion of v(j,j+1) and |σ, σ′⟩⟩ = |σ⟩⟩ ⊗ |σ′⟩⟩. The factor q−2k comes from the asymptotic

limit of the Weingarten function. Then the factor M(k)
σ,σ′ is a product of t of these

building blocks,

M(k)
σ,σ′ = (m(k)

σ,σ′)t = m(k)
σ,σ′

t
(3.97)

where we took advantage of the statistical independence of the local phase gates
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v(j,j+1) at different time steps. For an exact calculation of ρ(k)[ERPM(t)] is thus manda-

tory to find m(k)
σ,σ′ . In order to evaluate this expression, we need to employ the def-

inition of |σ⟩⟩, demonstrated in Sec. 3.1.2 and Eq. (3.87), according to which we

obtain

m(k)
σ,σ′ = q−2k ∑

i,j,i′,j′

〈
i, σ(i), j, σ′(j)

∣∣v⊗k ⊗ v∗⊗k∣∣i′, σ(i′), j′, σ′(j′)
〉
=

q−2k ∑
i,j,i′,j′

〈
i, j
∣∣v⊗k∣∣i′, j′

〉 〈
σ(i), σ′(j)

∣∣v∗⊗k∣∣σ(i′), σ′(j′)
〉
=

q−2k ∑
i,j,i′,j′

k

∏
n=1

δ
i′,j′,σ(i′),σ′(j′)
i,j,σ(i),σ′(j) e

i ∑k
n=1(ϕin ,jn−ϕiσ(n) ,j

σ′(n)
)
= q−2k ∑

i,j
e

i ∑k
n=1[ϕin ,jn−ϕiσ(n) ,j

σ′(n)
]
=

q−2k ∑
i,j

e
i ∑k

n=1[ϕin ,jn−ϕi
σσ′−1(n)

,jn ]

(3.98)

where the site indices j, j + 1 were omitted for this calculation and in the last step

we change the summation variables such that i → σ′−1(i), j → σ′−1(j). For prac-

tical purposes, we compactify all the Kronecker δ to a single one, which is defined

as follows δa1,a2,...
b1,b2,... = ∏i δai ,bi . Now that we have found m(k)

σ,σ′ as an explicit expression

of the Gaussian phases, we can also find its average. To understand, how to do that,

we demonstrate the simpler case of k = 3 and then generalise it to any k.

• k = 3 case of m(k)
σ,σ′

When we are dealing with three copies for example one gets that

m(3)
σ,σ′ = q−2k ∑

i,j
eix

σσ′−1 (3.99)

where the exponent is denoted as

xσσ′−1 = ϕi1,j1 + ϕi2,j2 + ϕi3,j3 − ϕi
σσ′−1(1),j1

− ϕi
σσ′−1(2),j2

− ϕi
σσ′−1(3),j3

(3.100)

This exponent is a sum of Gaussian random variables making it a Gaussian ran-

dom variable itself. Depending on the values of i, j and σσ′−1, the phases ϕin,jn and

ϕi
σσ′−1(n),jn

can be different or the same to each other, and this is what defines the exact

Gaussian distribution of xσσ′−1 . As a result, terms in the sum which have an exponent

xσσ′−1 , with the same number of independent phases ϕi,j and identical ones, lead to
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the same contribution. We define n f (σ), σ ∈ Sk as the number of fixed points of

the permutation σ. A fixed point is the index which is unchanged by the permuta-

tion, e.g. σ = (12) has the property that σ(3) = 3 in the case of three copies. The

index 3 remains unchanged. Assume that we are interested in a permutation with

no fixed points such as σσ′−1 = (123) for Eq. (3.99) then the same equation becomes

m(3)
σ,σ′ = q−6∑

i,j
ei[ϕi1,j1+ϕi2,j2+ϕi3,j3−ϕi2,j1−ϕi3,j2−ϕi1,j3 ] (3.101)

The terms of the sum with i1 = i2 = i3 have an exponent of x(123) = 0, leading to a

contribution of 1 for all these q3+1 = q4 terms. The same is valid for the terms with

j1 = j2 = j3. For terms of, i1 = i2 ̸= i3, j1 = j2 ̸= j3 the exponent becomes x(123) =

ϕi2,j2 + ϕi3,j3 − ϕi3,j2 − ϕi1,j3 . That makes x(123) a sum of 4 Gaussian random variables

N (0, ϵ) and thus x(123) ∼ 2N (0, ϵ). Using the well-known Gaussian integrals, one

can calculate that in this case eix(123) = e−2ϵ. The number of such terms, according to

simple combinatorics, is (q(q − 1))2. In the case of i1 ̸= i2 ̸= i3, j1 ̸= j2 ̸= j3, there

is no cancellation of the phases and the exponent is a sum of 6 Gaussian random

variables making x(123) ∼
√

6N (0, ϵ) and eix(123) = e−3ϵ. Again, one can find that

there are (q(q − 1)(q − 2))2 = (q
3)

2 such terms. Now we bring back to our memory

that the calculations are being performed in the q → ∞ limit and consequently, out of

all these cases, the leading contributions come from the one with the leading number

in q terms and the rest of the cases are subheading in q. In this limit, thus we can

write:

∑
i,j

ei[ϕi1,j1+ϕi2,j2+ϕi3,j3−ϕi2,j1−ϕi3,j2−ϕi1,j3 ] ≈
q→∞

q6e−3ϵ + O(q5) (3.102)

or equivalently,

m(3)
σ,σ′ ≈

q→∞
e−3ϵ + O(q−1) (3.103)

This example makes clear that the leading contribution comes from the terms of

i1 ̸= i2 ̸= i3, j1 ̸= j2 ̸= j3, and that each of these terms has a contribution, which

depends on how many independent phases exist at xσσ′−1 . In the previous example,

we studied the situation when, σσ′−1 has no fixed points. Assume now, that we are

interested in a permutation with a single fixed point e.g. σσ′−1 = (12). Then we get

an exponent of x(12) = ϕi1,j1 + ϕi2,j2 − ϕi2,j1 − ϕi1,j2 . In the same manner as before, the

leading contribution comes from the (q
3)

2 terms of i1 ̸= i2 ̸= i3, j1 ̸= j2 ̸= j3, with the

only difference that x(12) ∼ 2N (0, ϵ) and eix(12) = e−2ϵ. Every single fixed point of
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the permutation reduces the number of independent phases by 2. The large q limit

would then be

m(3)
σ,σ′ ≈

q→∞
e−2ϵ + O(q−1) (3.104)

• Arbitrary k case of m(k)
σ,σ′

Now it is simple to generalize this logic to arbitrary k and σ, σ′. Under this most

general scenario, the leading contribution at large q comes from the (q
k)

2 terms of

i1 ̸= i2 ̸= . . . ̸= ik, j1 ̸= j2 ̸= . . . ̸= jk and the exponent is a sum of 2(k − n f (σσ′−1))

independent phases and thus xσσ′−1 ∼
√

2(k − n f (σσ′−1))N (0, ϵ) leading to a con-

tribution of eix
σσ′−1 = e−ϵ(k−n f (σσ′−1)) for each of these terms in the sum. Finally, one

recovers that in the most general case

m(k)
σ,σ′ ≈

q→∞
e−ϵ(k−n f (σσ′−1)) + O(q−1) (3.105)

This implies that at the leading order in q Eq. (3.97) becomes

M(k)
σ,σ′ ≈

q→∞
e−tϵ(k−n f (σσ′−1)) + O(q−1) (3.106)

This calculation gives access to an exact form of ρ
(k)
RPM(t) and with this knowledge

on our hands we can now find the exact form of the Frame Potential for the RPM.

By going back to Eq. (3.43) we can now evaluate the frame potential. We have

F(k)[ERPM(t)] = Tr
[
ρ
(k)
RPM(t)2

]
= q−2kL ∑

{σ},{σ′}

L

∏
i=1

M(k)
σi ,σi+1 M(k)

σ′
i ,σ′

i+1
Tr
[

Pσi Pσ′
i

]
(3.107)

with Tr
[

Pσi Pσ′
i

]
= q#cycles(σiσ

′
i ). At the leading order in large q, is the identity per-

mutation with the leading contribution, and thus we take σ′
i = σ−1

i . Moreover, the

number of fixed points is a class function and a permutation and its inverse has the

same number of fixed points, meaning that n f (σ) = n f (σ
−1). It is straightforward

that the use of these properties of n f in (3.106) imply that M(k)
σ,σ′ = M(k)

σ−1,σ′−1 . This
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leads to

F(k)
RPM(t) = q−kL ∑

{σ}

L

∏
i=1

[M(k)
σi ,σi+1 ]

2 = q−kL ∑
{σ}

L

∏
i=1

e−2ϵt(k−n f (σσ′−1)) = q−kL Tr
[

T(α)L
]

(3.108)

where we introduced the matrix T(α) of size k! × k! defined over Sk.

T(α)σ,σ′ = α(k−n f (σσ′−1)) , α = e−2ϵt (3.109)

The trace is a result of the periodic boundary conditions of our problem. The ma-

trix T is the spatial transfer matrix for our problem, and it encodes the information

about the behaviour of the Frame potential and consequently of the overlaps, as we

will demonstrate later. The diagonal elements are T(α)σ,σ = 1 and the symmetry

of n f under inversion of the permutation means that T(α)σ,σ′ = T(α)σ′,σ and the

transfer matrix is being symmetric. Quantum chaotic systems such as RPM are ex-

pected to demonstrate at larger t, time evolution operators, which can be mirrored

by the statistical properties of Random Haar matrices. This can be seen, via Eqs.

(3.108),(3.2.2) in the limit of t → ∞ the parameter α → 0 and the sum is dominated

by the situation where all permutations are the same σi = σ independently of i, lead-

ing to limt→∞ F(k)
RPM(t) = k!/qkL. This is the value of the Frame potential for the Haar

measure Eq. (3.49) proving the convergence to Haar at large times.

Another interesting limit, as a benchmark for the theory, is the non-interacting

one. As we already mentioned, this is the limit ϵ → 0, of vanishing effective cou-

pling, where the nearest neighbouring sites do not interact and thus the system de-

couples to L independent local systems. Let us see if our current results, for the

RPM, comply with the previous logic. In the limit ϵ → 0, α = 1 and from (3.109) we

observe that T(α)σ,σ′ = 1. It is easy to prove that for a matrix with only +1 entries

one gets
(
T(α)L)

σ,σ′ = (k!)L−1, and Eq. (3.108) leads to limϵ→0 Fk
RPM(t) =

( k!
qk

)L in

large q, with k!
qk being the value of the Frame potential for a single-site system that

converged to the Haar measure. In general, in the uncoupled case, the local Haar

unitaries u(j), make each site converge to Haar measure, and thus we end up with L

copies of the Haar distribution, which agrees with our expectations. Moreover, the

action of the local Haar gates u(j) at every time step makes the site converge to Haar

after just a single time step, explaining the time dependence of the frame potential

in ϵ → 0.
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In Sec. 3.2.2, we mentioned how the overlaps and the Frame potential omit a

universal description based on the spatial transfer matrix formalism that was devel-

oped in that section. In addition, the expansion of the transfer matrix Eq. (3.67) up

to permutations that differ by a single transposition leads to the use of the Thouless

length LTh, which depends on the microscopic details of the model. We can use the

definition of the spatial transfer matrix T(α), in order to find LTh for RPM. More

specifically, we expand Eq. (3.109) in α, up to permutations σσ′−1 = τ, where τ is a

transposition.

T(α) = 1 + α2A + O(α3) (3.110)

where A is the adjacency matrix transpositions. The maximum number of fixed

points is k, and comes uniquely from the identity permutation n f (1) = k. So the

diagonal elements σ = σ have the leading contribution. The next order term, comes

from permutations that have k − 2 fixed points since it is not possible to have k − 1

fixed points. These permutations are the ones that satisfy σσ′−1 = τ. So now we

compare Eq. (3.110) with

T(α) = 1 +
1

LTh(t)
A + O(LTh(t)−3/2) (3.111)

and we recover that LTh(t) = α−2 = e4ϵt. This is consistent with the scaling limit of

x = L/LTh(t) defined in Sec. 3.2.2, and gives the same result

lim
t,L→∞

x=L/LTh(t)

T(α)L =

(
1 +

xA
xLTh(t)

)xLTh(t)

= exA (3.112)

and consequently

lim
t,L→∞

x=L/LTh(t)

F(k)
RPM(t) = q−kL Tr

[
exA
]

(3.113)

At this point, we have expressed the Frame potential of the RPM, through the

transfer matrix T(α), and found its scaling limit. The relation between the frame

potential and the moments of overlaps F(k)
RPM(t) = N kE

[
w′k] (for pbc), lead to the

same result demonstrated in Sec. 3.2.2. In general, the transfer matrix of the RPM

model demonstrates the same scaling limit as the universal transfer matrix in Sec.

3.2.2, indicating already the validity of the universality of the theory. However, in

the next section, we will show in detail how to diagonalise the matrix T(α), by ex-

ploiting the Toeplitz matrix formalism, and find exact results for F(k)
RPM(t). One can
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also use the same formalism to directly find the spectrum of the adjacency matrix of

transpositions A and thus obtain the exact forms of the moments Eq. (3.70).

3.2.5 Diagonalisation of T(α)

To find the trace of T(α)L it is enough to know the spectrum of the transfer matrix.

Here we demonstrate a general formalism that makes it possible to find the full

spectrum {λ1, λ2, . . . , λk!} of the matrix T(α), where we ordered λi > λi+1. The

formalism that we are going to use is based on the generalisation of the concept

of Toeplitz matrix [40] as well as the application of the Fourier transform on finite

groups [93].

3.2.5.1 Generalised Toeplitz matrices

A Toeplitz matrix is a special type of matrix in which each descending diagonal from

left to right is constant. In other words, all the elements along any given diagonal

are the same.

A Toeplitz matrix F of size n × n can be represented as

F =



f0 f−1 f−2 · · · f−(n−1)

f1 f0 f−1 · · · f−(n−2)

f2 f1 f0 · · · f−(n−3)
...

...
...

. . .
...

fn−1 fn−2 fn−3 · · · f0


, Fi,j = fi−j

Here, fi are the elements of the matrix, and each element fi−j depends only on

the difference i − j, not on the individual indices i and j. Due to the finer structure,

a n × n Toeplitz matrix has only 2n − 1 degrees of freedom instead of n2.

A circulant matrix is a special type of Toeplitz matrix where each row vector is

shifted by one element to the right relative to the preceding row vector. Formally, a

circulant matrix C of size n × n can be represented as:

C =



c0 c1 c2 · · · cn−1

cn−1 c0 c1 · · · cn−2

cn−2 cn−1 c0 · · · cn−3
...

...
...

. . .
...

c1 c2 c3 · · · c0


, Ci,j = c(i−j) mod n
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Here, the first row defines the entire matrix, making the total degrees of the matrix

n. The set of indices in a circulant matrix can be associated with the elements of

the cyclic group Zn. The cyclic group Zn is the group of integers 0, 1, . . . , n − 1,

equipped with modulo n addition. In this context, the element ci in the first row of

the circulant matrix corresponds to the element i ∈ Zn.

The structure of a circulant matrix is inherently related to the group operation in

Zn. Specifically, the (i, j)-th entry of a circulant matrix depends only on the differ-

ence (i− j) mod n, reflecting the group operation of Zn and that property is the key

one, which makes circulant matrices diagonalizable by Discrete Fourier Transform

(DFT) [40].

Now we will generalize this concept to an arbitrary finite group G. Given any

function f : G → C, we can generalise this notion to an arbitrary group G introduc-

ing a |G| × |G| (with |G| the order of the group G) matrix

Fσ,σ′ = f (σσ′−1) , ∀σ, σ′ ∈ G (3.114)

The matrix T(α) defined in Eq. (3.109) has exactly this form with G = Sk, but here we

will keep the discussion general. Similarly to the case of standard Toeplitz matrices,

the spectrum can be investigated using the Fourier transform. However, the DFT

is not useful for groups, which have different structures than Zn; therefore, we will

generalize this concept as well.

For Given a finite group G, the group’s representations ρ : G → GL(dρ, C) with

dimension dρ, and a function f : G → C, we define its Fourier transform f̂ (ρ) as a

function over the space of representations of G which reads

f̂ (ρ) = ∑
σ∈G

f (σ)ρ(σ) . (3.115)

The inverse of this relation can be shown [93] to be given by

f (g) =
1
|G| ∑

ρ∈Irr(G)

dim(ρ)Tr
[
ρ(g−1) f̂ (ρ)

]
(3.116)

where the sum is restricted to the irreducible representations Irr(G) [94]. The nice

property about this Fourier transform is that it converts convolutions into a product
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of Fourier Transforms [93]. In other words, if h, g : G → C

h(σ) = ∑
σ′∈G

f (σσ′−1)g(σ′) ⇒ ĥ(ρ) = f̂ (ρ)ĝ(ρ) (3.117)

•Proof

We start from the definition Eq. (3.115) for the scalar h, where we insert the con-

volution Eq. (3.117)

ĥ(ρ) = ∑
σ∈G

h(σ)ρ(σ) = ∑
σ,σ′∈G

f (σσ′−1)g(σ′)ρ(σ) (3.118)

Afterwards, we take advantage of the group structure and change summation vari-

ables as σ = σ′′σ′.

ĥ(ρ) = ∑
σ′,σ′′∈G

f (σ′′)g(σ′)ρ(σ′′σ′) (3.119)

By definition a representation ρ is a homomorphism meaning that ρ(σ′′σ′) = ρ(σ′′)ρ(σ′).

So finally, we recover

ĥ(ρ) =

(
∑

σ′′∈G
f (σ′′)ρ(σ′′)

)(
∑

σ′∈G
g(σ′)ρ(σ′)

)
= f̂ (ρ)ĝ(ρ) (3.120)

Now let’s consider an eigenvector of the matrix F in Eq. (3.114). Labelling its com-

ponents as c(σ) for any σ ∈ G, it must satisfy

∑
σ′∈G

f (σσ′−1)c(σ′) = λc(σ) (3.121)

This is a convolution and thus taking the Fourier transform of both sides, this implies

f̂ (ρ)ĉ(ρ) = λĉ(ρ) , ∀ρ ∈ Irr(G) (3.122)

Note that each side of this equation is matrices of size dim(ρ) × dim(ρ). To solve

this equation, let’s write the spectral decomposition of the matrix f̂ (ρ) in bracket

notation:

f̂ (ρ) =
dim(ρ)

∑
j=1

λj(ρ) |j⟩ ⟨j| (3.123)
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Then, we see that for any ρ̃ ∈ Irr(G) and any pair i, j ∈ {1, . . . , dim(ρ)}, the follow-

ing choice of ĉ(ρ) provides a solution of Eq. (3.122)

ĉ(ρ) ≡ ĉ(i,j,ρ̃)(ρ) =


0 ρ ̸= ρ̃

|i⟩ ⟨j| ρ = ρ̃

(3.124)

where |i⟩ and ⟨j| refer respectively to the right and left eigenvectors of f̂ (ρ). Once

plugged in Eq. (3.122), it leads to,

f̂ (ρ)ĉ(i,j,ρ̃)(ρ) = λi(ρ̃)ĉ(i,j,ρ̃)(ρ) . (3.125)

This shows that the spectrum of the matrix F is given by the λi(ρ) for ρ ∈ Irr(G) and

i = 1, . . . , dim(ρ). In Eq. (3.125) we can fix the index i, while j is “running” all over

its dim(ρ) values and thus each λi(ρ) has a degeneracy dim(ρ). This provides a full

spectral decomposition since one has the known equality [93]

∑
ρ∈Irr(G)

dim(ρ)2 = |G| (3.126)

Now let us consider the case where the function f is a class function, i.e. it is invari-

ant under the group conjugation

f (ωσω−1) = f (σ) . ∀ω, σ ∈ G (3.127)

A conjugacy class of an element in G is defined as the set of elements of G, that differ

by a conjugacy transformation cl(σ) = {gσg−1, ∀g ∈ G}. Consequently, a class

function f has the same value all over cl(g) and in general if we define Cl(G) =

{cl(g), ∀g ∈ G}, then f has, at most, as many values as conjugacy classes exist.

Moreover, conjugacy is an equivalence relation, making Cl(G) a partition of G. This

property implies that the generalised Toeplitz matrix, has a finer structure, when f

is a class function and this as we will see later is reflected upon its spectrum, by

increasing the degeneracy of the eigenvalues.

In the case where f is a class function, one can see that

[ f̂ (ρ), ρ(σ)] = 0 , ∀σ ∈ G (3.128)
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•Proof

Indeed, by definition we have

f̂ (ρ)ρ(σ) = ∑
σ′∈G

f (σ′)ρ(σ′)ρ(σ) ∑
σ′∈G

f (σ′)ρ(σ′σ) = ∑
σ′′∈G

f (σ′′σ−1)ρ(σ′′)

where we used the fact that ρ is a homomorphism on G and changed summation

variables as σ′′ = σ′σ. Then we use the property of a class function to obtain

f (σ−1σ′′) = f (σ′′σ−1) .

f̂ (ρ)ρ(σ) = ∑
σ′′∈G

f (σ−1σ′′)ρ(σ′′) = ∑
σ′′′∈G

f (σ′′′)ρ(σσ′′′) = ρ(σ) ∑
σ′′′∈G

f (σ′′′)ρ(σ′′′) =

ρ(σ) f̂ (ρ) (3.129)

Due to Schur’s lemma [93], if ρ ∈ Irr(G), f̂ (ρ) must be a multiple of the identity.

f̂ (ρ) = λ(ρ)1 (3.130)

where thus in the spectral decomposition Eq. (3.123), λj(ρ) = λ(ρ) for all j’s. For

generalised Toeplitz matrices obtained by class functions, the eigenvalues are la-

belled by the irreducible representations ρ and since every λj(ρ) has already a de-

generacy dim(ρ), each λ(ρ ∈ Irr(G) each has a degeneracy given by dim(ρ)2. From

now on we are working with the irreps of G, so ρ indicates an irrep. We can finally

obtain an equation for λ(ρ) by taking the trace of both sides in Eq. (3.115) and using

(3.130)

Tr
[

f̂ (ρ)
]
= dim(ρ)λ(ρ) = ∑

σ∈G
f (σ)χρ(σ) (3.131)

where χρ(σ) = Tr[ρ(σ)] is the character of the representation ρ and thus, by defini-

tion χρ(1) = dim(ρ), with 1 indicating the neutral element of G and ρ(1) = 1. Since

both the function f and the character are class functions, we can rewrite the sum as

a sum over conjugacy classes Cl(G)

λ(ρ) = ∑
σ∈G

f (σ)χρ(σ)

χρ(1)
= ∑

µ∈Cl(G)

f (µ)χρ(µ)|µ|
χρ(1)

(3.132)
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where we used that χρ(1) = dim(ρ), we denote as |µ| the size of the conjugacy class

µ and f (µ) is the common value of the scalar over µ. Eq. (3.132) demonstrates a

direct connection of the eigenvalues of the generalized Toeplitz matrices with the

group structure of G. In particular, knowing the characters over the irreps and the

conjugacy classes Cl(G), is enough to determine the eigenvalues. As an example, we

can look at the case where f (µ) = 1 irrespectively of µ. In this case, from Eq. (3.132),

we have

λ(ρ) = ∑
σ∈G

χρ(σ)

χρ(1)
= δρ,1r |G| (3.133)

where, 1r is the trivial irrep. The trivial irreducible representation of G is a homo-

morphism 1r : G → GL(1, C), to 1-dimensional complex vector spaces. Formally, it

maps every element σ ∈ G to 1, ρ(σ) = 1 ∀σ ∈ G and thus its character is triv-

ially χ1r(σ) = 1, ∀σ ∈ G. Eq. (3.133) is derived by using the orthogonality of the

characters over irreps ρ, ρ′

1
|G| ∑

σ∈G
χρ(σ)χ

∗
ρ′(σ) = δρ,ρ′ (3.134)

by making the choice of ρ′ = 1r. Eq. (3.133) is of course consistent with the fact that

for f = 1, the matrix F reduces to a matrix made of 1’s, which thus has only one non-

vanishing eigenvalue, which equals the size of the matrix itself, i.e. |G|. The non-

vanishing eigenvalue is characterized by 1r, and has a degeneracy of dim(1r) = 1,

making it unique. A matrix composed just of ones satisfies, F2 = k!F and that makes

this operation a scalar multiple of a projection.

3.2.5.2 Spectrum of T(α) and scaling functions

We now use the formalism developed in the previous part and specialise the discus-

sion to the case, where we diagonalise the matrix T(α). In this case, G = Sk and

f (σ) = αk−n f (σ). We can expand Eq. (3.108) as

F(k)
RPM(t) = q−kL ∑

ρ∈Irr(Sk)

dim(ρ)2λ(ρ)L (3.135)

In the case of Sk, the irreducible representations and the conjugacy classes are la-

belled by partitions (or Young diagram) of size k [95]. Unfortunately, the explicit

expression of χρ(λ) is not simple (see for instance [95]). There are two simple cases:

t = 0, where α = 1 making T(α) a matrix of ones and thus one can apply (3.133); the
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case t → ∞, where α = e−4ϵt → 0. In this case, f (σ) = δσ.1 and from Eq. (3.132) we

can observe, that only the conjugacy class of the identity survives (as all points are

fixed) and λ(ρ) = 1, ∀ρ ∈ Irr(Sk). Consequently, Eq. (3.135), becomes:

lim
t→∞

F(k)
RPM(t) = q−kL ∑

ρ∈Irr(Sk)

dim(ρ)2 = k!/q−kL = F(k)
Haar (3.136)

where we used the identity given in Eq. (3.126) and taken into consideration the

large q limit for F(k)
Haar .

The largest eigenvalue corresponds to the case of the trivial irreducible represen-

tation 1r, where all elements of Sk are sent to 1. We shall provide a brief proof of this.

•Proof

In [96] it was already proven that the characters of Sk have the following upper

bound ∣∣∣∣χρ(σ)

χρ(1)

∣∣∣∣ ≤ χ(1)β−1+ε →
∣∣∣∣χρ(σ)

χρ(1)

∣∣∣∣ ≤ 1∀σ ∈ Sk (3.137)

for some β ∈ (0, 1 − ε) and ε > 0 and ρ ∈ Irr(Sk). If we apply Eq. (3.137) to Eq.

(3.132) then we get

|λ(ρ)| ≤ ∑
µ∈Cl(G)

∣∣∣∣ f (µ)χρ(µ)|µ|
χρ(1)

∣∣∣∣ ≤ ∑
µ∈Cl(G)

f (µ)|µ| = λ(1r) (3.138)

with f (µ) being a real, non-negative scalar. Therefore, the trivial representation is

the one characterizing the maximal eigenvalue. This gives the maximal eigenvalue,

λ(1r) = ∑
aj,

∑j jaj=k

k!αk−a1

∏j(aj)!jaj
(3.139)

where we rewrote the sum over partitions µ as a sum over the integers aj counting

the number of j’s in the partition (as explained in the following paragraph). We also

used the explicit formula for the size of the conjugacy class [96], µ as

|µ| = k!
∏j(aj)!jaj

(3.140)

A conjugacy class µ of Sk is characterised by an integer partition which is denoted as
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(1a12a2 . . . kak) and denotes the conjugacy class of permutations with cycle type as a1-

cycles of length 1, a2 cycles of length 2, etc. For, example, all transpositions belong to

the class, with cycle type (1k−221). The permutations arrange k points meaning that

the lengths should add up to k, and thus ∑j jaj = k. The value of the class function

is f (µ) = αk−a1 since the fix points are indicated by cycles of length 1. In the same

approach, as for λ(1r) one can find that an expression for all the eigenvalues

λ(ρ ∈ Irr(Sk)) = ∑
aj,

∑j jaj=k

k!αk−a1

∏j(aj)!jaj

χρ((1a1 . . . kak))

χρ((1k))
(3.141)

with the identity element represented as the k fixed point partition (1k) In addition,

the unique maximal eigenvalue has an eigenspace spanned by the vector |1s⟩, which

is just a column of ones.

•Proof

We apply the transfer matrix T(α) to the vector, |1s⟩

T(α) |1s⟩
σ component→ ∑

σ′∈Sk

f (σσ′−1) = ∑
σ′′∈Sk

f (σ′′) (3.142)

where we used the group structure to change the summation variable σ′′ = σσ′−1.

Since f is a class function we can write the sum over Cl(Sk) and finally get that

∑
σ′′∈Sk

f (σ′′) = ∑
µ∈Cl(Sk)

|µ| f (µ) = λ(1r) → T(α) |1s⟩ = λ(1r) |1s⟩ (3.143)

This result is valid for any generalised Toeplitz matrix of a class function and by

replacing f (σ) = αk−n f (σ), in our case, we get Eq. (3.139). The maximal eigenvalue

has the leading contribution in the trace appearing in the Frame Potential in Eq.

(3.108), making it a good way to extract the time scales at which RPM approaches

a k−design. In particular, if we perform an expansion over α at Eq. (3.139), up to

order α2, one gets

λ(1r) = 1 +
(

k
2

)
α2 + O(α3) (3.144)

where we kept the partitions with k and k − 2 fixed points, which correspond to

the identity and the (k
2) transpositions, respectively. So the Frame Potential of RPM
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depends on λ(1r)L and has approached the Haar one at times for which the maximal

eigenvalue is close at one and thus (k
2)Lα2 ≪ 1, or equivalently

t ≫ tk ≡
1
4ϵ

log
(

Lk(k − 1)
2

)
(3.145)

with tk indicating the time scales at which the system approaches a k−design and

as we can see it is of the order of ∼ log
(

Lk2). It is interesting to also note that, the

time scales tk agree also with our intuitive expectations. In the non-interactive limit

ϵ → 0, RPM never approaches a L site Haar measure and thus tk diverges, and the

larger the effective coupling, the more mixing the local phase gates v(j,j+1) cause and

thus the system approaches the Haar ensemble faster. As a final part of this section,

we will find the exact form for the Frame potential in the scaling limit.

In order to investigate this limit, we assume large L and t, such that x = Lα2 =

L/LTh(t) is constant. The asymptotic behaviour of the Frame potential would then

be

F̃(k)
RPM = lim

t→∞
L→∞

L/LTh(t)=x

F(k)
RPM(t)

F(k)
Haar

=
1
k! ∑

ρ∈Irr(Sk)

dim(ρ)2exν(ρ) (3.146)

To obtain this expression, we performed again an expansion up to the second order

in α for Eq. (3.141) and obtained that

lim
t→∞
L→∞
α2L=x

λ(ρ)L = lim
t→∞
L→∞

L/LTh(t)=x

(1 + α2ν(ρ) + O(α3))L = exν(ρ) , ν(ρ) =

(
k
2

)
χρ((1k−221))

χρ((1k))

(3.147)

The coefficient ν(ρ) is obtained by the conjugacy class of transpositions, which is

responsible for the order α2 term in the eigenvalues. Moreover, according to Eq.

(3.137) the coefficient satisfies |ν(ρ)| ≤ ν(1r) = (k
2), meaning that the trivial repre-

sentation is the irrep with the leading exponential in Eq. (3.146) and thus, at large x,

one obtains

F̃(k)
RPM

x→∞
=

1
k!

exk(k−1)/2 (3.148)

At small x instead, we have the expansion

F̃(k)
RPM

x→0
=

(
1 +

k(k − 1)x2

4
+ O(x3)

)
(3.149)
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•Proof

This limit can be calculated by expanding the exponential exν(ρ) = 1 + xν(ρ) +

x2ν(ρ)2/2 + O(x3) up to second order in Eq. (3.146) and then using Eq. (3.147),

which leads to

F̃(k)
RPM =

1
k! ∑

ρ∈Irr(Sk)

dim(ρ)2 + x
(

k
2

)
χρ(1k−221)χρ((1k)) +

x2

2

(
k
2

)2

χρ((1k−221))2

(3.150)

where we used that χρ((1k)) = dim(ρ).At this point, we will need the second or-

thogonality relation of the characters, according to which

∑
ρ∈Irr(G)

χρ(σ)χ
∗
ρ(σ

′) =

|CG(σ)| , if σ, σ′ belong to the same conjugacy class

0 otherwise.
(3.151)

for an arbitrary finite group G. CG(σ) is called the centralizer and is defined as

CG(σ) = {σ′ ∈ G such that σ′σσ′−1 = σ}. Henceforth, CG(σ) contains all the ele-

ments of the group that commute with σ. We can directly see that by choosing σ′ as

the identity element we get for Sk that,

∑
ρ∈Irr(Sk)

χρ(1k−221)χρ((1k)) = 0 (3.152)

So the order x term in Eq. (3.150) vanishes. For the third term of the same equation,

we need to notice that a transposition is the same as its inverse. Then by using that

χρ(σ−1) = χ∗
ρ(σ), we can deduce from the orthogonality relation that

∑
ρ∈Irr(Sk)

χρ((1k−221))2 =
∣∣∣CSk((1

k−221))
∣∣∣ (3.153)

For a cycle type (1a12a2 . . . kak) its centralizer is found [95] to have an order of

|CSk((1
a12a2 . . . kak))| =

k

∏
i=1

iai · ai! (3.154)

Then we can deduce for the cycle type of the transpositions that,

∣∣∣CSk((1
k−221))

∣∣∣ = 2 · (k − 2)! (3.155)
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Finally we replace Eqs. (3.152),(3.153) into the expansion Eq. (3.150) to recover

F̃(k)
RPM

x→0
=

(
1 +

k(k − 1)x2

4
+ O(x3)

)
(3.156)

The previous discussion in this section was made for the RPM with pbc, however,

it can be used to study as well the case of open boundary conditions. Specifically,

for obc there is no coupling between the sites L, 1 from the layer U2(t), implying that

there is no transfer matrix coupling these sites and thus (3.108) becomes:

F(k)
RPM,obc(t) = q−kL ∑

{σ}

L−1

∏
i=1

[M(k)
σi ,σi+1 ]

2 = q−kL ∑
{σ}

L−1

∏
i=1

e−2ϵt(k−n f (σσ′−1)) = q−kL ∑
σ1,σL

(
T(α)L−1)

σ1,σL

(3.157)

One can validate again by Eq. (3.112), that F(k)
RPM,obc(t) leads again to the same mo-

ments of the overlaps as in Sec. 3.2.2. We now use the vector |1s⟩ that was introduced

before and deduce

F(k)
RPM,obc(t) = q−kL ⟨1s|T(α)L−1|1s⟩ = q−kLk!λ(1r)

L−1 (3.158)

where we used t that |1s⟩ is an eigenvector of the maximal eigenvalue. In the scaling

limit that was established before, one finally recovers the scaled Frame potential for

obc

F̃(k)
RPM,obc = ex k(k−1)

2 (3.159)

which is the same as the x → ∞ limit of the pbc case.

3.2.6 Probability distribution of overlaps

We now explore the probability distribution p(w′; x) of the overlaps. We are going

to use the results of the previous section to find the universal exact expression of

the moments of, w′, and then reverse engineer our way from the moments to the

exact form of the probability distribution. Our method is based on expressing w′ as

a product of two independent random variables, for which we find the probability

distributions.

The moments and Frame potential are related via the equation F(k)
RPM(t) = NE

[
w′k],

with N being the dimension of Hilbert space. Now the results in Eqs. (3.146),(3.159),
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lead to the following exact results

lim
t,L→∞

x=L/LTh(t)

E
[
w′k
]
=

∑ρ∈Irre(Sk)
dim(ρ)2exν(ρ), for pbc

k!exk(k−1)/2, for obc
(3.160)

We start with finding the probability distribution pobc(w′; x) in the case of obc.

Using the information from the moments in the equation above, we can now derive

the overlap distribution. It is practical to view k!exk(k−1)/2 as a product of the mo-

ments of two independent random variables. We express w′ in law
= w0g as the product

of the random variables w0, g. Here, w0 is the variable with moments Eobc[wk
0] = k!,

whereas the variable g represents the residual Eobc[gk] = exk(k−1)/2. The distribution

that leads to the moments of w0 is already known and is the Porter-Thomas distri-

bution. Consequently, the distribution of w0, which we denote as P1(w0), is exactly

P1(w0) = Θ(w0)e−w0 (3.161)

On the other hand, exk(k−1)/2 are the moments of the Log-normal distribution with

parameters µ = −x/2 and σ = x (the mean value and variance of the normal distri-

bution, where the log-normal comes from), meaning that g follows the distribution

P2(g) = Θ(g)
1

g
√

x
√

2π
exp

(
− (ln g + x/2)2

2x

)
(3.162)

Afterwards, we can find the distribution of the overlaps since

pobc(w′; x) =
∫ +∞

−∞
dw0dgP1(w0)P2(g)δ(w′ − w0g) =

∫ +∞

−∞
dgP1(w′/g)P2(g) (3.163)

We use the expressions given for P1, P2 and by performing the change of variables

y = (ln g + x/2)/
√

2x, we finally recover

pobc(w′; x) = Θ(w′)
∫ +∞

−∞

dy e−y2

√
π

exp
{
−w′ey

√
2x−x/2

}
(3.164)

For the case of pbc, the procedure is the same but in this case, the moments of g

take a more complicated form, whereas we choose to keep the same moments for w0

Epbc[wk
0] = k!, Epbc[gk] =

1
k! ∑

ρ∈Irre(Sk)

dim(ρ)2exν(ρ) (3.165)
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For periodic boundary conditions, the distribution of g is more complex. As dis-

cussed in various studies [97, 98], its generating function can be expressed as

gpbc
in law
= lim

n→∞

1
n

tr
[
e
√

xnH+xB
]

(3.166)

where H is a n×n matrix drawn from the Gaussian Unitary Ensemble (GUE), P(H) ∝

exp
{
−n Tr

{
H2}/2

}
, [99]. B is a diagonal matrix with and its diagonal entries are

(−1/2,−3/2, . . . ,−(2n − 1)/2). Eq. (3.166) is being proven in detail in App. B.3.

The random variable g represents the crucial random fluctuations that cause the

system to diverge from the Porter-Thomas distribution (an indication of the ap-

proach to Haar statistics). To see that, let us assume the limit of large time and

fixed system size, or else the limit x → 0. From the expressions derived above (for

both obc and pbc), it is straightforward to observe that the fluctuations of g vanish

in this limit, and its distribution converges to P(g) → δ(g − 1). Thus, g = 1 and

the overlaps follow the same distribution as the random variable w0, which is the

Porter-Thomas one. Conversely, on the limit where the system size is increasing suf-

ficiently, such that x > 0 is increasing, then the typical value of g is increasing as

well, with respect to the value 1, indicating an increase in the fluctuations of w′ from

w0, which have a typical size of E[w′ − w0] = E[g]− 1.

We conclude by demonstrating the agreement of the numerics with our theory

for the distributions of w′, in Fig. 3.6, where we present numerical results for two

different models: RPM and brick-wall-model (BWM), verifying the universality of

our theory. The reader can refer to App. B.4 for more details about the numerical

simulations as well as additional numerics on our theory.
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FIGURE 3.6: Comparison of the distribution of y = log w′ between
numerical simulation and the theoretical prediction (black dashed
line) for different values of x and increasing value of the depth t,
which is indicated with darker shades of the same colour. For each t,
the value of L ∼ LTh(t) (shown in the insets) is chosen so that E[y]
matches the theoretical prediction. (a): The pbc, numerical simula-
tion of the RPM at q = 2, ϵ = 1. For x = 0, we show the pairs (t, L) ∈
{(7, 8), (11, 8), (15, 8)}; for x = 1, (t, L) ∈ {(3, 6), (5, 9), (10, 17)}; for
x = 1.5, (t, L) ∈ {(3, 8), (5, 11), (8, 18)}. The theoretical distribu-
tion of y was generated for w = w0 g using (3.166) and for a sam-
ple size Nsample = 106 at n = 300. (b): The obc, numerical sim-
ulation for a brick-wall model (BWM) where the local 2-site gate is
chosen independently of the Haar distribution at q = 2. We show
data for x = 0, (t, L) ∈ {(1, 6), (3, 6), (4, 6)}; for x = 1, (t, L) ∈
{(1, 8), (3, 40), (4, 88)}; for x = 1.5, (t, L) ∈ {(1, 11), (2, 26), (3, 57)}.
The theoretical distribution P(y) was created by the use of (3.164). All
numerical distributions were obtained from a sample size Nsample =

1.5 × 106. Figure taken from [37].
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Chapter 4

Universal out-of-equilibrium

dynamics of critical quantum

systems

This chapter examines critical one-dimensional quantum systems initially prepared

in their ground state. Practically, the starting Hamiltonian is homogeneous and

gapless, ensuring scale invariance. Under these conditions, the low-energy spec-

trum is independent of the microscopic details and can be accurately described by

a CFT. Here, we introduce a spatially smooth, temporally white noise, coupled to

the energy density for t > 0, which drives the system out-of-equilibrium through

the resulting unitary dynamics. Using conformal field theory, we derive a universal

description of the out-of-equilibrium dynamics. We demonstrate that the complete

distribution of correlation functions reaches a non-trivial stationary limit, which is

not apparent at the level of noise averages but instead shows apparent heating. This

chapter is organized as follows:

• In Sec. 4.1, we present a brief introduction to CFT and focus mainly on notions

from this theory that are going to be useful. In more detail, we first present

how primary fields and their N−point functions transform under conformal

transformations, as well as in the special case of d = 2. Secondly, we present

the stress-energy tensor and its relation with conserved charges such as energy

and momentum. Finally, we demonstrate how the replica trick can relate the

entanglement entropy with the N−point function of specific primary fields,

called twist fields.
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• In Sec. 4.2 we showcase our original results on the out-of-equilibrium dynam-

ics of d = 1 + 1 critical systems. In particular:

– In Sec. 4.2.1 we introduce the model and give a brief review of the main

results. The theory is established for a one-dimensional model, that un-

dergoes a second-order quantum phase transition and that is quenched

by noise coupled to the energy density with spatial correlation given by a

smooth function f (x).

– In Sec. 4.2.2, we take advantage that the time evolution under our set-up,

of a primary field, is a conformal transformation and relate the dynam-

ical N− point functions of primary fields, with N stochastic backward

trajectories. Our description appears with two chiralities due to the CFT

in d = 1 + 1. In addition, we derive the Fokker-Planck (FP) equation that

governs the statistics of these backward trajectories.

– In Sec. 4.2.3, we focus on the case of two-point correlations and thus two

stochastic trajectories and obtain the exact relation between the two-point

correlations and the backward trajectories via two stochastic variables

κ± ≡ κ, r for each chirality. r is related to the initial distance ℓ of the

backward trajectories.

– In Sec. 4.2.4, we use the 4-point FP equation of the backward trajectories

in order to find the FP equation of the jpdf Pt(r, κ)(for either chiralities).

This new FP equation is then employed to extract the stochastic differen-

tial equations (SDEs) of κ, r.

– In Sec. 4.2.5, we study the SDEs at both the cases of ℓ ≪ 1 and ℓ ≫ 1 by

keeping only the leading terms in these limits. We prove that in the case of

ℓ ≪ 1 we obtain a Bougerol SDE, which admits a stationary distribution

of −3/2 tails for κ, whereas for ℓ ≫ 1 at small times κ follows a rescaled

Brownian motion.

– In Sec. 4.2.6, we use the characteristic function of κ and derive its sta-

tionary equation, which takes the form of a Schrödinger equation. By

analysing it, we prove the “fat” −3/2 tails of the distribution of κ for ar-

bitrary ℓ and in the case of ℓ ≫ 1, we exhibit that a Levy distribution

appears.
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– In Sec. 4.2.7, we employ the replica trick and the Schwarzian derivative to

find the exact relation between the entanglement entropy and the energy

density respectively, with κ and thus obtain their distributions.

– In Sec. 4.2.8, we provide a brief description of the Wigner function formal-

ism used to extract the energy density for a spinless, free fermion model.

In the scaling limit, the theory approaches our CFT result, and we con-

clude with some numerical benchmarking for the entanglement entropy

and energy density as well.

4.1 Introduction to Conformal Field Theory

To begin with, I would like to inform the reader that this section includes theories

that can be found in Chaps. 4,5 from [100], and [101], with more details.

4.1.1 Primary Fields and Correlation Functions

Consider gµν the metric tensor in a space-time of dimension d. A conformal transfor-

mation of the coordinates is an invertible mapping x → x′, which leaves the metric

tensor invariant up to a scale:

g′µν

(
x′
)
= Ω(x)gµν(x) (4.1)

In other words, a conformal transformation is locally equivalent to a (pseudo)

rotation and a dilation. This set of transformations forms the conformal group and

their different types can be (translation) x′µ = xµ + aµ, (dilation) x′µ = αxµ , (rotation),x′µ =

Rµ
νxν with the R being a symmetric tensor and (special conformal transformations)

x′µ = xµ−bµx2

1−2b·x+b2x2 , where b is a constant vector. Consequently, the infinitesimal trans-

formation ϵµ of the coordinates xµ → xµ + ϵµ, can be ϵµ = aµ, αxµ, Rµ
νxν, bµx2 −

2xµb · x and have at most quadratic dependence on x. It is important to mention,

that even though gµ,ν can be arbitrary, from now on we focus on a Euclidean metric

gµ,ν = δµ,ν.

An important feature of CFT is the effect of conformal transformations on specific

fields called quasi-primary fields. In particular, CFT satisfies the following:

1. There is a set of fields {Φi} that is generally infinite and contains all the deriva-

tives of these fields as well.
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2. There is a subset of fields {ϕj} which are called quasi-primary and under a

finite conformal mapping x → x′ transform by definition as:

ϕi(x) →
∣∣∣∂x′

∂x

∣∣∣∆i/d
ϕi(x′) where

∣∣∣∂x′

∂x

∣∣∣ = 1√
det(g′)

= Ω−d/2

(4.2)

with ∆i is a parameter that characterises change of the respective field ϕi under

a conformal transformation, known as scaling dimension. The Jacobian of the

transformation is indicated, as
∣∣∣∂x′/∂x

∣∣∣. Due to this, the N-point correlation

functions satisfy:

⟨ϕ1(x1) . . . ϕN(xN)⟩ =
( N

∏
i=1

∣∣∣∂x′

∂x

∣∣∣∆i/d

x=xi

)
⟨ϕ1(x′1) . . . ϕN(x′N)⟩ (4.3)

under a finite conformal mapping x → x′.

3. The rest of the fields can be expanded as linear combinations of quasi-primary

ones and their derivatives.

4. There is a vacuum |0⟩ that is invariant under finite conformal transformations.

The discussion in this part is done in an arbitrary dimension d and not just d = 2.

The change of the N-point function Eq. (4.3) under conformal transformations, can

impose restrictions on it, especially in the case of N = 2, 3. We illustrate this with

the following examples.

As mentioned earlier, ordinary translations and rotations are part of the confor-

mal group, and it is easy to check that Ω = 1 for them. According to Eq. (4.3):

⟨ϕ1(x1) . . . ϕN(xN)⟩ = ⟨ϕ1(x′1) . . . ϕN(x′N)⟩ (4.4)

Translations imply that the correlation function depends only on the relative posi-

tions {xi − xj} of the coordinates, while rotations restrict the dependence to just the

distances rij = |xi − xj|. Invariance under dilatations (Ω = λ−2) implies dependence

only on ratios rij/rmn, and special conformal transformation symmetry implies de-

pendence only on specific cross ratios of the form (rijrmn)/(rimrjn). Therefore, in-

variance under the full conformal group tells us that the correlation function is a
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function of only these cross-ratios, with N(N − 3)/2 such cross-ratios [102].

Next, we will demonstrate the calculation of a 2-point function of two quasi-

primary fields, which according to our conformal field theory ⟨ϕ1(x1)ϕ2(x2)⟩ =

f (r12), is just a function of the relative distance r12. For a dilation x′ = λx, from

Eq. (4.3):

⟨ϕ1(x1)ϕ2(x2)⟩ =
∣∣∣∂x′

∂x

∣∣∣∆1/d

x=x1

∣∣∣∂x′

∂x

∣∣∣∆2/d

x=x2

⟨ϕ1(x′1)ϕ2(x′2)⟩ →

f (r12) = λ(∆1+∆2) f (λr12)

(4.5)

With a differentiation with respect to λ, we end up with the first-order ordinary

differential equation:

y f ′(y) + (∆1 + ∆2) f (y) = 0 (4.6)

where y = λr12. This is a first-order linear differential equation and is straightfor-

ward to observe that it admits the solution:

⟨ϕ1(x1)ϕ2(x2)⟩ =
A12

r(∆1+∆2)
12

(4.7)

where A12 is an integration constant. As a last step, we exploit the special conformal

invariance with Ω = (1+ 2b · x + b2x2)2 and the known analytic expression Eq. (4.7)

of the correlation function. By substituting these quantities into Eq. (4.5), one finds

the following relation:

A12

[
1 −

(1 + 2b · x1 + b2x2
1

1 + 2b · x2 + b2x2
2

)(∆2−∆1)/2]
= 0 (4.8)

Therefore the above equation, requires ∆1 = ∆2 = ∆ if A12 ̸= 0 or ∆1 ̸= ∆ if A12 = 0.

The 2-point correlations of fields with the same ∆i survive, whereas the ones that

transform differently under conformal transformations have trivially vanishing 2-

point functions. This is expressed by the following equation:

⟨ϕ1(x1)ϕ2(x2)⟩ =
A12

r2∆
12

δ∆1,∆2 (4.9)

The 3-point function can also be exactly calculated, in a similar approach [103]:

⟨ϕ1(x1)ϕ2(x2)ϕ3(x3)⟩ =
A123

r∆1+∆2−∆3
12 r∆2+∆3−∆1

23 r∆3+∆1−∆2
31

(4.10)

Conformal invariance allows us to determine the exact expressions of the two- and
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three-point correlation functions of the quasi-primary operators. The same is not

true for higher-point correlation functions. For N ≥ 4 point functions, the con-

straints due to conformal invariance, which we used before, are not enough to de-

termine ⟨ϕ1(x1)ϕ2(x2) . . . ϕN(xN)⟩ explicitly. In this case, the N-point correlation

functions can have an arbitrary dependence on the N(N − 3)/2 cross ratios. An ex-

plicit expression would require additional information related to the specific type of

problem in the study, except in two dimensions (d = 2), where the local conformal

group can provide more constraints.

The systems of interest in this chapter are of 1 spatial and 1 temporal dimension.

Consequently, we now focus on CFT of d = 2 with the temporal coordinate x0 and

the spatial x1. In two dimensions, CFT has a spatial property. It can be described

by a pair of complex coordinates z = x0 + ix1, z̄ = x0 − ix1 on C2. We will call the

analytic functions of just z(or z̄) dependence holomorphic (or just antiholomorphic)

ones. The infinitesimal form of the Conformal transformations z → z + ϵ(z), z̄ →

z̄ + ϵ̄(z̄) have a holomorphic ϵ(z) and an anti-holomorphic part, ϵ̄(z̄) and each part

can have at most quadratic dependence on z, z̄ respectively. Specifically, the zero-

order is associated with translations, the first order with dilatations and rotations,

and the second order with special conformal transformations. Under these complex

variables, we define the primary fields ϕi(z, z̄) as those that transform as:

ϕi(z, z̄) →
(∂F

∂z

)ai
(∂F̄

∂z̄

)āi
ϕi(z′, z̄′) (4.11)

under an arbitrary conformal transformation z → z′ = F(z) , z̄ → z̄′ = F̄(z̄). The

conformal transformation is defined by two parts: the holomorphic F(z) and the

anti-holomorphic F̄(z̄). As we can see in Eq. (4.11), one gets a Jacobian term for

each holomorphic/anti-holomorphic dependence. The two real quantities ai and āi

are known as the conformal weights of the primary field. The primary fields can be

seen as a generalization in C2 of the quasi-primary fields mentioned in the previous

section. As a consequence of Eq. (4.11), their correlation function satisfies:

⟨ϕ1(z1) . . . ϕN(zN)⟩ =
[ N

∏
i=1

(∂F(zi)

∂z

)a(∂F̄(zi)

∂z̄

)āi
]
⟨ϕ1(z′1) . . . ϕN(z′N)⟩ (4.12)

with (ai, āi) being the conformal weights of each primary field. For example, given

a field with scaling dimension ∆ dimension and spin s, its conformal weights would

then be α = (∆ + s)/2, ᾱ = (∆ − s)/2.
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A primary field is also a quasi-primary field, but the reverse is untrue. A pri-

mary field satisfies Eq. (4.11) for an arbitrary conformal transformation; however,

for the case of a quasi-primary field transform similarly, only under finite conformal

transformations (the Möbius mappings [102] in two dimensions). The primary fields

constitute a subset of the theory’s {Φi}. The remaining fields are called secondary

fields and may be quasi-primary or not.

4.1.2 Stress-Energy Tensor and Radial Quantization in d = 2

Due to the locality of the theory, there exists a local field Tµν [104], called the stress-

energy tensor, defined by the variation of the local action S[ϕ] under the infinitesimal

transformation ϵν:

δS =
1

(2π)d−1

∫
dxdTµν∂µϵν(x) (4.13)

According to Polyakov’s theorem [105], translational invariance implies the conser-

vation law:

∂µTµν = 0 (4.14)

Rotational invariance implies that the stress-energy tensor is symmetric with respect

to its indices:

Tµν = Tνµ (4.15)

Finally, invariance under dilatations leads to the zero trace condition:

Tµ
µ = 0 (4.16)

In two dimensions, the line element for the Euclidean metric is ds2 = dzdz̄. Thus,

the components of the metric in the complex coordinates are:

gzz = gz̄z̄ = 0 , gzz̄ = gz̄z =
1
2

(4.17)

and its inverse is therefore:

gzz = gz̄z̄ = 0 , gzz̄ = gz̄z = 2 (4.18)
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Considering the covariance transformation of the stress-energy tensor for the x → x′

coordinate change:

Tµ′ν′ =
∂x′µ

∂xα

∂x′ν

∂xβ
Tαβ (4.19)

one can calculate the relations connecting the components in (x0, x1) and in (z, z̄):

Tzz =
1
4

(
T00 − T11 − 2iT10

)
Tz̄z̄ =

1
4

(
T00 − T11 + 2iT10

)
Tzz̄ = Tz̄z =

1
4

Tµ
µ =

1
4
(T00 + T11)

(4.20)

Due to the traceless condition from Polyakov’s theorem, the crossing components

vanish Tzz̄ = Tz̄z = 0. Additionally, the conservation Eq. (4.14) leads to:

∂̄Tzz + ∂Tz̄z = 0 → ∂̄Tzz = 0

∂Tz̄z̄ + ∂̄Tzz̄ = 0 → ∂Tz̄z̄ = 0
(4.21)

where we used Eq. (4.18) and Tµν in the complex plane coordinates. In two-dimensional

conformal field theories, there is a natural splitting in the variables (z, z̄). The two

non-vanishing components depend only on z or only on z̄: the former has a holo-

morphic dependence, while the latter has an anti-holomorphic dependence:

T(z) = Tzz , T̄(z̄) = Tz̄z̄ (4.22)

These properties will be important in the sequel.

Why do we need to discuss the stress-energy tensor? The reason lies within

Noether’s theorem [106], which states that a quantum theory with symmetry is as-

sociated with a conserved current jµ that satisfies the conservation law ∂µ jµ = 0.

Through this current, one can construct the conserved charge Qj =
∫

dxd−1 j0(x),

which gives us the symmetry variation of a field Φ:

Φ → δΦ = ϵ[Qj, Φ] (4.23)

for an infinitesimal transformation ϵ. The charges related to a conformal invari-

ant theory can be generated by the stress-energy tensor, defining the transformation

laws of the fields. For example, the current related to an infinitesimal conformal
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transformation is jµ = Tµνϵν with a conserved charge:

Qj =
1

2πi

∮ (
dzT(z)ϵ(z) + dz̄T̄(z̄)ϵ̄(z̄)

)
(4.24)

where the integration is performed over a circle with a fixed radius in the complex

plane. From Eq. (4.23):

δΦ(w, w̄) =
1

2πi

∮ (
dzϵ(z)[T(z), Φ(w, w̄)] + dz̄ϵ̄(z̄)[T̄(z̄), Φ(w, w̄)]

)
(4.25)

At this stage, it is beneficial to introduce the procedure of radial quantization for

a more practical approach to our formulation. We begin with the two-dimensional

space-time d = 2 → (x0, x1), which we already know maps to the complex coor-

dinates Z, Z̄ = x0 ± ix1 (the notation for z, z̄ changed to capital letters). Next, we

compactify the space coordinate x1 ≡ 2π + x1. This allows us to define the space-

time on a cylinder, where x0 determines the height and x1 its circumference. Now,

we consider a conformal mapping of this cylinder to the complex plane of z:

(x0, x1) → z = ex0+ix1
(4.26)

The infinite past and future x0 = ±∞ are mapped to the origin and infinity, respec-

tively z = 0, ∞, while the equal-time circles (for fixed x0) of the cylinder become

circles of constant radius in the complex plane (fixed |z| = exp
(
x0)). Considering

this, we can understand how the conformal mappings can be implemented in the

z-plane. For example, a time translation x0 → x0 + ∆t in the cylinder is a dilation

z → e∆tz in the complex plane. We know that the conserved charge of time transla-

tions is the Hamiltonian H [107] of the system, thus H is the generator of dilatations

in the z-plane. Moreover, since we already know that for the infinitesimal time trans-

lation x0 → x0 + c.s.t the change of Z, Z̄ is ϵ(Z) = ϵ̄(Z̄) = 1. Therefore, from Eq.

(4.24), the Hamiltonian is constructed via Tµν as:

H =
1

2πi

∮ (
dZ T(Z) + dZ̄ T̄(Z̄)

)
(4.27)

In the same approach, by employing that momentum P is the charge related to space

translations x1 → x1 + c.s.t with ϵ(Z) = −ϵ̄( ¯̄Z) = i one recovers:

P =
1

2π

∮ (
dZ T(Z)− dZ̄ T̄(Z̄)

)
(4.28)
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FIGURE 4.1: From density matrix to reduced density matrix. Left:

path integral representation of ρ
(
{Ox}

∣∣{O′
x′}
)

. Centre: the partition
function is obtained by sewing together the edges along τ = 0 and
τ = β to form a cylinder of circumference β. Right: the reduced
density matrix ρA is obtained by sewing together only those points

which are not in A. This is a consequence of TrĀ.

4.1.3 Entanglement Entropy and the Replica Trick

The entanglement entropy SA of a subsystem A is given by the von Neumann en-

tropy SA = −TrA ρA ln ρA, where ρA = TrĀ ρ is the reduced density matrix of

this subsystem. For instance, A could represent a block or multiple disjoint blocks

of spins in an infinite Ising chain. When the density matrix ρ of the entire system

Σ ≡ A ∪ Ā is in a pure state, then SA = SĀ. Furthermore, we utilise the concept of

Rényi entropies, defined as:

S(n)
A =

1
1 − n

ln Tr ρn
A, (4.29)

which satisfies the limit SA = limn→1 S(n)
A . Entanglement entropy is a critical indica-

tor of the properties of an extended quantum system when A and Ā correspond to

a spatial bipartition of the system [108]. However, for a system Σ in a mixed state,

entanglement entropy is no longer an effective measure of entanglement as it com-

bines quantum and classical correlations. Consequently, in high-temperature mixed

states, it must reflect the extensive thermal entropy unrelated to entanglement, ne-

cessitating the definition of a new quantity [109].

In models with a finite number of degrees of freedom, the entanglement entropy

is most practically computed through the diagonalisation of the reduced density ma-

trix ρA. Once its eigenvalues {ϱi} are obtained, one can calculate the entanglement

entropy as SA = −∑i ϱi ln ϱi. However, for a generic interacting quantum field the-

ory, obtaining the full matrix ρA is a complex task. Therefore, we adopt the replica

trick as an alternative approach [108, 110].

A concise description of the replica trick is as follows: By definition, ∑i ϱi = 1
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with ϱi ∈ [0, 1]. Hence, Tr ρn
A = ∑i ϱn

i converges for n ⩾ 1 and is analytic for Re(n) ⩾

1. The same applies to the derivative with respect to n in this region. Therefore, if

Tr ρn
A is known for any n ≥ 0, the limit SA = limn→1 S(n)

A can also be determined. The

replica trick is applied for positive integers and reduces the computation of Tr ρn
A to

that of a partition function on a composed Riemann surface [101, 111].

In this report, we study a system in a d = 1 + 1 dimensional space. We start

with a (discrete space) lattice quantum theory with lattice spacing as, where x is the

discrete space coordinate and {Ôx} represents a complete set of local commuting

observables. Their eigenstates {|Ox⟩} form a complete basis |{Ox}⟩ =
⊗

x |Ox⟩.

Given the Hamiltonian H of the system, the elements of the density matrix are:

ρ
(
{Ox}

∣∣{O′
x′}
)
= Z−1⟨{Ox}|e−βH |{O′

x′}⟩ (4.30)

The normalization factor is the partition function Z = Tr exp(−βH), ensuring Tr ρ =

1. In the path integral formulation [112], the density matrix is expressed as:

ρ
(
{Ox}

∣∣{O′
x′}
)
= Z−1

∫
D[O(y, τ)] ∏

x,x′
δ(O(y, 0)− Ox′)δ(O(y, β)− Ox)e−SE ,

(4.31)

where SE =
∫ β

0 dτL is the Euclidean action and L the Euclidean Lagrangian. Integra-

tion is performed over the imaginary time τ = −it on the x − τ plane. A graphical

representation of the path integral introduced in Eq. (4.31) is presented in Fig. 4.1.

The trace restricts our interest to the diagonal elements of ρ and thus the partition

function is determined by setting {Ox} = {O′
x′}, equivalent to sewing the edges at

τ = 0 and τ = β, forming a cylinder of circumference β (see Fig. 4.1).

We focus on the case of a single subinterval [u, v], with length denoted as l =

|u − v|. Thus, the subsystem A consists of the points in [u, v]. To obtain ρA, we

trace over Ā, which in Eq. (4.31) translates into sewing only points not belonging

to A. This results in open cuts on the cylinder along (u, v) at τ = 0. By making n

copies (each labelled by j) of this cylinder and sewing them along the cut, we obtain

a n sheet structure Rn,1 (see Fig. 4.2) to find Tr ρn
A. Denoting Zn(A) as the partition

function on this surface, we have:

Tr ρn
A =

Zn(A)

Zn . (4.32)

In the continuous space limit as → 0, the coordinate x takes real values and the
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FIGURE 4.2: A representation of the Riemann surface R3,1. Each sheet
represents the open cylinder of a single copy of ρA and Tr ρ3

A is rep-
resented by sewing together 3 sheets with periodic boundary condi-

tions.

equality in Eq. (4.32) changes to proportionality[113]. This is due to the divergences

that appear in the as → 0, where one multiplies by a renormalisation constant so that

we can eventually get something finite. We also introduce the Lagrangian density L

through L =
∫

dxL.

Another crucial feature is the locality of the Lagrangian density, implying no

explicit dependence on Rn,1. This allows expressing and calculating the partition

function from a different model. Specifically, it is a model of n independent copies

(labelled by i) of the complex plane C (z = x + iτ), implementing suitable bound-

ary conditions near the boundaries of A → u, v. As detailed in [113], the partition

function on Rn,1 becomes a path integral in the complex plane:

Zn(A) =
∫

D[T1] . . . D[Tn] exp
(
−
∫

C
dxdτL(n)[{Ti}](x, τ)

)
, (4.33)

where:

Ln[{Ti}](x, τ) = L[T1](x, τ) + . . .L[Tn](x, τ) (4.34)

with conditions Ti(x, 0+) = Ti+1(x, 0−) , x ∈ [u, v] and n + i ≡ i.

The local fields Ti are termed twist fields and arise whenever there is a global

symmetry σ →
∫

dxdτL[σT ](x, τ) =
∫

dxdτL[T ](x, τ). By global symmetry, we

mean a symmetry that acts the same way everywhere in space, and that does not

change the positions of fields. In the model described by Eq. (4.34) we have the ap-

pearance of twist fields that are associated with two cyclic permutation symmetries
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i → i + 1 , i → i − 1 under the exchange of copies (where i = 1, . . . , n + 1 ≡ 1). We

denote them respectively as Tn , T̃n. For a single subinterval [u, v] subsystem A in

Rn,1, we have the following formulation:

⟨B(x, τ; j-sheet)⟩L,Rn,1 =
⟨Tn(u, 0)T̃n(v, 0)Bj(w)⟩L(n),C

⟨T (u, 0)T̃ (v, 0)⟩L(n),C
, (4.35)

where Bj is the field in the L(n) model (n−copies of C) of the j−copy, and the de-

nominator is the partition function:

Zn(A) ∝ ⟨Tn(u, 0)T̃n(v, 0)⟩L(n),C (4.36)

Eq. (4.35) is valid because the ratio accounts for all proportionality constants that we

get in the continuous limit.

For two or more (N ⩾ 2) disjoint subintervals [114] with [u1, v1], . . . , [uN , vN ],

these results generalise to the boundary points {ui, vi} (also called branch points) by

adding the twist fields on them and denoting Rn,N for the n− sheet structure with

N branch cuts. For example, Eq. (4.35) becomes:

⟨B(x, τ; j-sheet)⟩L,Rn,1 =
⟨Tn(u1, 0)T̃n(v1, 0) . . . Tn(uN , 0)T̃n(vN , 0)Bj(w)⟩L(n),C

⟨Tn(u1, 0)T̃n(v1, 0) . . . Tn(uN , 0)T̃n(vN , 0)⟩L(n),C
,

(4.37)

and the partition function is:

Zn(A) ∝ ⟨Tn(u1, 0)T̃n(v1, 0) . . . Tn(uN , 0)T̃n(vN , 0)⟩L(n),C (4.38)

Therefore, the N−point function of twisted fields depending on the branch cuts de-

fined by A is directly related (via Eq. (4.32)) to S(n)
A . One recovers SA in the limit

n → 1. Moreover, twisted fields are primary fields with scaling dimension dn and

conformal weights hTn , hT̃n
given by:

hTn = hT̃n
=

c
24

(n − 1
n
) , dn =

c
12

(n − 1
n
) (4.39)

The detailed proof for this can be found at [102].
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4.2 Universal Out-of-Equilibrium Dynamics, Perturbed by

Noise Coupled to Energy

I would like to inform the reader that this section deals with the theory presented in

[46]. We first introduce the model and give a brief review of the main results. The

technicalities and notions mentioned in this part will be explained in detail in the

sections after.

4.2.1 Model and Results

We investigate a one-dimensional model that undergoes a second-order quantum

phase transition, initially prepared in the ground state |Ψ0⟩ of its gapless and ho-

mogeneous Hamiltonian Ĥ0. For simplicity, we denote ground state averages as

⟨. . .⟩ = ⟨Ψ0|. . .|Ψ0⟩. Although we assume continuous space, this treatment can be

readily extended to lattice systems, for which a scaling limit is applied (as we will see

in the free fermion case) and recovers the continuous theory. This will become clear

later. At time t = 0, a perturbation Ĥ1 is introduced by coupling a space-dependent

white noise term with the system’s energy density. The total Hamiltonian is ex-

pressed as:

Ĥ = Ĥ0 + Ĥ1 =
∫

dx(1 + η(x, t))ĥ(x), (4.40)

where ĥ(x) is the Hamiltonian density and η(x, t) represents the noise perturba-

tion. Examples of such Hamiltonians with experimental counterparts include tight-

binding non-interacting fermions with noisy hopping (see Sec. 4.2.8). Here, we char-

acterize the noise by the spacetime correlation η(x, t)η(x′, t′) = δ(t− t′) f (x− x′) and

η(x, t) = 0. The function f (x), controlling the noise correlation, has the dimension

of time; it is even, positive, and is chosen to be smooth, monotonically decreasing

for x > 0, with rapid decay for large x. This criterion restricts the Fourier transform

of f (x) to be real, even and non-negative.

Throughout this work, we denote quantum operators with a hat Ô and use Q

to indicate the average of any quantity Q over noise realizations. The low-energy

behaviour of Ĥ0 is effectively described by conformal field theory (CFT).

When a Hamiltonian is both homogeneous and gapless, the low-energy spec-

trum becomes largely independent of the microscopic details of the system. This in-

dependence arises, due to the universality at critical points, where the macroscopic
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behaviour of the system is dictated by symmetries and dimensionality rather than

specific interactions at the microscopic level. This concept is encapsulated in the

renormalisation group theory, where irrelevant short-range details are averaged out,

leaving a universal description that applies to a wide range of systems [115].

In the absence of noise, the Heisenberg evolution of chiral primary fields under

Ĥ0 reduces to translation in time at the light velocity v: ϕ̂±(y, t) = ϕ̂±(y ± vt). The

coupling in Eq. (4.40) ensures that the time evolution of chiral primary fields remains

equivalent to a flow but along a random stochastic trajectory (see Eq. (4.47)). In [116],

the focus was on quench protocols resulting in an initial state with short spatial

correlation length, whereas here the initial state is gapless with quasi-long-range

order. This implies that for primary fields Φ̂(x, t) = ϕ̂+(x, t)× ϕ̂−(x, t) with scaling

dimension ∆ = ∆+ + ∆−, the time evolution of the two-point correlation function

can be parametrized by κ±, two random functions of spatial separation ℓ and time t:

C(ℓ, t) ≡ a2∆
0 ⟨Φ̂(0, t)Φ̂(ℓ, t)⟩ (4.41)

= C(ℓ, t = 0)e−∆+κ+−∆−κ− , (4.42)

where a0 is an ultraviolet cut-off, that limits the highest energy (or the smallest length

scale) that is considered in a discrete space theory. As discussed in Sect. 4.2.3, the

statistics of the random variable κ± can be related to the joint distribution of four

stochastic trajectories in the same noisy environment. By studying this stochas-

tic process in detail, we demonstrate that the time-dependent distribution of each

κ = κ± can be reduced to solving two coupled ordinary stochastic differential equa-

tions, as shown in Eq. (4.61). Surprisingly, this leads to a stationary state as t → ∞,

characterized by broad distributions of the variable κ± for all values of separation

ℓ. This distribution takes a simple universal form in the limits of small and large ℓ,

compared to the correlation length of the noise, chosen to be of order unity here.

For large ℓ, we set κ = θℓ2χ/ f (0) + O(ℓ) and find that the random variable χ

follows the stable one-sided Lévy distribution with index 1/2:

L(χ) ≡ 1√
2π

e−
1

2χ

χ3/2 Θ(χ). (4.43)

For small ℓ, we set κ± = ℓ2κ̃0 [(ω/ω0)− 1], where κ̃0 and ω0 are constants de-

rived from derivatives of f (x) around x = 0 (see Eq. (4.73)). This yields the following
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stationary distribution for the random variable ω:

B(ω) ≡ Γ(3/4)
Γ(1/4)

1√
π(1 + ω2)3/4

. (4.44)

As explained in Sect. 4.2.5, in the small limit ℓ, the proportionality ⟨T̂±⟩ ∝ limℓ→0 κ±/ℓ2

holds, where T± are the chiral components of the stress-energy tensors. Conse-

quently, we can infer the stationary distribution of the local energy density, given

by h(x, t) = ⟨ĥ(x, t)⟩ = v(⟨T̂+⟩+ ⟨T̂−⟩):

lim
t→∞

h(x, t) in law∼ vcκ̃0

4π
(Ω/ω0 − 2), (4.45)

where c is the central charge of the underlying CFT and Ω = ω+ + ω−. At large

times, the two chiral components are expected to be only weakly correlated, as they

depend on increasingly distant regions. Thus, ω+ and ω− can be assumed to be

two independent random variables, both distributed according to B(ω). Therefore,

the stationary distribution of the local energy density reaches a universal form, still

displaying a fat tail with a 3/2 decay exponent and no finite integer moments. This

aligns with our finding in Eq. (4.98), where we compute the first moment over time

and show that, due to conformal invariance, it diverges exponentially fast in time.

This highlights that the average over noise is not indicative of the typical behaviour

of the full distribution. Interestingly, we extend this result to the steady distribution

of the local energy density even when the initial state is prepared at a finite temper-

ature. Remarkably, the initial temperature only affects the transient dynamics, while

the stationary distribution remains unchanged, preserving the 3/2 tail even at finite

temperatures.

Equations (4.43) and (4.44) characterise the asymptotic behaviour of the station-

ary distribution for κ at small and large ℓ, respectively. For intermediate values of

ℓ, a stationary distribution for κ± is still reached, but its explicit form depends on

the function f (x). However, we prove that the 3/2 exponent for the right tail is con-

sistently present for any ℓ with a sufficiently smooth f (x) (see Appendix C.3.3). In

Appendix C.3.6, we provide a general method to determine the stationary distribu-

tion, along with analytical formulas for some specific solvable choices of f (x).

A direct manifestation of these results can be observed in bipartite entanglement
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Rényi entropies. Indeed, one can express entanglement entropies in terms of corre-

lators of twist fields [113], which leads to the relation (see Sec. 4.2.7):

S (n)
t =

1
1 − n

ln Tr
[
ρn
ℓ,t
]
= S (n)

t=0 +
(n + 1)c

24n
(κ+ + κ−), (4.46)

where ρℓ,t is the reduced density matrix at time t for an interval of length ℓ and S (n)
t=0

is the initial entropy of the ground state. Assuming that at large times κ+ and κ− are

only weakly correlated, the corresponding stationary distribution can be extracted

by convolution. Generally, the 3/2 right tail emerges for all interval sizes ℓ.

To test the validity of the field theory description, in Sec. 4.2.8, we study analyti-

cally and numerically a chain of non-interacting spinless fermions at half-filling with

noisy hopping. At low energy, these fermions are well described by Dirac fermions

corresponding to a c = 1 CFT. We identify a scaling for time and the energy density

where the noise correlation length on the lattice ξ diverges and the CFT predictions

are exactly recovered, as confirmed numerically by computing the local energy and

entanglement entropy on the lattice.

4.2.2 Solution of the Dynamics via CFT

In this section, we establish the mathematical framework that we used to obtain the

results presented in Sec. 4.2.1. We start by summarising some key results from [116],

which allow for the computation of dynamical correlation functions in the presence

of the noise term (4.40) within the framework of CFT. As mentioned in Sec. 4.1.2,

CFT allows local operators to be decomposed over the primary fields. Moreover,

in the same section we established that the Hamiltonian density is related to the

stress-energy tensor and depends on both the holomorphic and antiholomorphic

component T̂+, T̂− (previously denoted as T(z), T̄(z̄)) of the tensor and in 1 + 1 di-

mensions one can write ĥ(x) = v(T̂+(x) + T̂−(x)), where v is a model dependent

velocity. According to Sec. 4.1.2, this implies that there can be two types of primary

fields in 1 + 1 dimensions, the right and left chiral primary fields [117, 101]. So a

primary field can be written as Φ̂(x, t) = ϕ̂+(x, t) × ϕ̂−(x, t), with ϕ̂±(x, t) being

the two different chiral components. In principle, these chiral components are pri-

mary fields with conformal weights of ∆+, 0 and, 0, ∆− respectively. Consequently,

ϕ̂±(x, t), have the property of changing only by the holomorphic/antiholomorphic

part (see Eq. (4.11)) of the conformal transformation. All local operators, then, can
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be decomposed into these chiral (right/left moving) components as mentioned in

Sec. 4.1.2. An example is the Hamiltonian density, as well as the momentum density

p̂(x) which, is related to the two different chiralities as p̂(x) = T̂+(x)− T̂−(x). This

is the result of Eqs. (4.27), (4.28), where we restrict from the complex plane to the

coordinate system of (t, x) ≡ (x0, x1) and in particular over the spatial coordinate.

In [116], it was demonstrated that the time evolution of primary fields under Ĥ

can be interpreted as a conformal transformation, which is briefly presented in the

next paragraph. This is a very significant result that we use for the derivation of our

results.

Time evolution as a conformal transformation: In practice, one introduces the stochas-

tic trajectories q±(s) as solutions of the Langevin equation:

dq±(s)
ds

= ±v(1 + η(q±(s), s)) (4.47)

where the Îto convention is assumed [118]. We assume that these are trajectories of

some quasiparticles, just for a more intuitive picture of the problem. The Langevin

equation describes the stochastic trajectories generated by a velocity field of ±v(1 +

η(q±(s), s)) and the ± is related to the two different chiralities in our problem, as

we will see later. Then, we define the functions X±
t (y) as the initial condition for Eq.

(4.47) at t = 0 (i.e., q±(0) = X±
t (y)) such that q±(t) = y. By definition X±

0 (y) = y.

The functions X±
t (y) represent what we call backward trajectories and one can think

of them as the backward in-time motion of the stochastic trajectories q±(t). The

time evolution of the two different chiral primary fields is related to the backward

trajectories and more explicitly the exact relation is:

ϕ̂±(y, t) = (X±′
t (y))∆±

ϕ̂(X±
t (y), 0) (4.48)

where X±′
t (y) = ∂X±

t (y)/∂y. This result can be proven with the use of Îto Calculus

and Heisenberg time evolution. It is important to mention, that Eq. (4.48) indicates

that the time evolution of ϕ̂±(y, t) under Ĥ, reduces to being the Conformal transfor-

mation (x, t = 0) → (X±(x)
t , t), which in turn introduces some Jacobian factors like

(X±′
t (y))∆±

. This property introduces a graphical representation of time evolution as

left/right moving quasiparticles, which follow the stochastic backward trajectories.

Following, Eq. (4.48), arbitrary n−point correlation functions of primary fields, at
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time t can be expressed as:

〈
n

∏
i=1

ϕ̂+
i (yi, t)

〉
= J (y1, . . . , yn)

〈
n

∏
i=1

ϕ̂+
i (X+

t (yi))

〉
(4.49)

where the factor J (y1, . . . , yn) = ∏i(X+′
t (yi))

∆+
i accounts for the Jacobian of the

conformal transformation. An analogous equation applies to the other chiral com-

ponent, with X+
t → X−

t and ∆+
i → ∆−

i .

A simple example of the above is the case of noiseless dynamics. The absence

of noise in Eq. (4.47), implies that the quasiparticles travel in straight lines, with a

constant velocity of ±v, and their backward trajectories become X±
t (y) = y ∓ vt.

It is straightforward then to see that the chiral primary fields evolve as ϕ̂±(y, t) =

ϕ̂(y∓ vt, 0). The time evolution is nothing more than a space translation of the initial

state of the field.

At this point it starts to become more obvious, that the stochasticity in our theory

is introduced via X±
t and the statistics of these backward trajectories are the ones that

are going to define the statistics of the physical quantities. This will become more

evident in the following parts.

To analyse the correlation functions in Eq. (4.49) and their sample-to-sample

fluctuations, we need the joint probability distribution function (jpdf) of the set of

2n random variables X±
t (yj), j = 1, . . . , n. Let us first focus on the jpdf of the back-

ward trajectories and denote them from now on as, X±
t (yj) = xj for a fixed chirality,

choosing either ±, denoted P±
t (x|y). Given n trajectories q±j (s) satisfying Eq. (4.47)

with endpoints q±j (0) = xj and q±j (t) = yj, P±
t (x|y) represents the jpdf of the initial

positions x = (x1, . . . , xn) of these n trajectories conditioned on their final positions

y = (y1, . . . , yn). The Langevin equation can be used to derive the equation for the

probability distribution P±
t (x|y), which is known as the Fokker-Planck (FP) equa-

tion. In particular, P±
t (x|y) satisfies:

∂tP±
t (x|y) = (±v

n

∑
i=1

∂i +
v2

2

n

∑
i,j=1

∂i∂j f (xi − xj))P±
t (x|y) (4.50)

where ∂i = ∂/∂xi and f is the space correlation function of the noise defined in

Sec. 4.2.2. The detailed derivation is being demonstrated in App. C.1. In order to

understand how correlations exist between the different chiralities X±
t (yj), let us

assume a specific realization of the velocity field in Eq. (4.47) for all the points in
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space-time up to time t. Then all trajectories xj = X±
t (yj) evolve under this same

realization of the velocity field and thus the space correlation of η(x, t), correlates

xj as well. This appears as the second term in Eq. (4.50), which represents a two

quasiparticle interaction that decays over large distances. By taking the average

over Eq. (4.47), one recovers the martingale property from the initial time:

xi = yi ∓ vt (4.51)

Additionally, the trajectories yj are solutions to a well-posed Cauchy problem and

cannot cross each other, ensuring that the coordinates of y and x remain ordered in

the same way.

4.2.3 Two-Point Correlations

In this section, we proceed with finding the exact relation between the two-point cor-

relations and the backward trajectories and also the stochastic differential equations

(SDE) that define the statistics of the correlations.

Consider a primary field Φ̂(x, t) = ϕ̂+(x, t) × ϕ̂−(x, t), which it has two chiral

components and a scaling dimension ∆ = ∆+ + ∆−. We are interested in the two-

point correlator, C(y1, y2, t) = a2∆
0 ⟨Φ̂(y1, t)Φ̂(y2, t)⟩. The parameter a0 is called the

ultraviolet cut-off and is a theoretical limit imposed on the maximum energy or the

smallest length scale in a field theory. It acts as a boundary beyond which the theory

does not apply.

At t = 0 since x1, x2 are the initial conditions we recover:

C(y1, y2, t = 0) = a2∆
0 ⟨Φ̂(y1, 0)Φ̂(y2, )⟩ =

(
a0

y1 − y2

)2(∆++∆−)

(4.52)

where we used the known 2-point functions (see Sec. 4.1.1) from CFT in d = 1+ 1

dimensions. Using Eq. (4.49), we can relate the correlator at time t to the one at the

initial time, leading to:

C(y1, y2, t) = C(y1, y2, 0)e−∆+κ+−∆−κ− (4.53)

where we assume y1 > y2 and define:

κ±(y1, y2, t) = ln
∣∣∣∣ (X±

t (y1)− X±
t (y2))2

(y1 − y2)2X±′
t (y1)X±′

t (y2)

∣∣∣∣ (4.54)
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The order of the final points y1, y2 fixes as well the order of the backward trajecto-

ries X±
t (y1) > X±

t (y2) as we mentioned for Eq. (4.51). The stochastic variable κ±,

encodes the full statistics of the correlation function and that is why, we first focus

on either κ+ or κ−. The variables κ+, κ− depend only on a single chiral trajectory

X+
t , X−

t respectively and in principle, they are correlated. However, at large enough

times, they become uncorrelated. Let us try to understand this.

Typically, the trajectories X±
t (y) corresponding to the two chiral components are

separated by a distance, ∼ 2vt as we can see from Eq. (4.51). The stochastic trajec-

tories of different chiralities have typical velocities, ±v and thus their spatial sep-

aration is growing in time. As we already mentioned, these trajectories take place

under the same noise realization, which induces spatial correlations of f (.). There-

fore, for large times when 2vt ≫ 1, the noise they experience becomes uncorrelated,

suggesting that the two components have little statistical correlation and X±
t (y) and

eventually, become independent stochastic variables.

Let us define ℓ ≡ y1 − y2 > 0 and the dimensionless ratio r ≡ (X±
t (y1) −

X±
t (y2))/ℓ. We are interested in studying the stochastic variable κ, but since it sat-

isfies κ = κ±(y1, y2, t) = ln
∣∣∣ r2

X±′
t (y1)X±′

t (y2)

∣∣∣, it is coupled to the stochastic variable r,

implying that we should consider the joint pdf (jpdf) Pt(r, κ) of κ and r. Finding

this distribution is essential to study the statistics of the correlations C(y1, y2, t) and

the physical properties of our theory. As we shall see later, Pt(r, κ) is related to the

distributions of the entanglement entropy and energy density.

4.2.4 jpdf Pt(r, κ) and SDE of κ, r

This part is devoted to finding the FP equation for Pt(κ, r) and the SDEs of κ& r. We

first perform a point splitting in the derivatives in Eq. (4.54):

X±′
t (y) = lim

h→0

X±
t (y + h)− X±

t (y)
h

(4.55)

This is important to our proof since it showcases that the derivatives introduce two

backward trajectories, with the ending points (t, y) and (t, y + h) being infinitesimal

close. Thus, Eq. (4.54), and the definition of ℓ suggests that, both κ±(y1, y2, t) and r

depend only on the initial points x1, x2, x3, x4 of four trajectories ending at y1, y2, y1 +

ϵ, y2 + h, whose jpdf is given by Eq. (4.50) for n = 4 (see Fig. 4.3). We mention that y1

and y2 are kept fixed while two additional variables are taken infinitesimally away
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FIGURE 4.3: Sketch of the four trajectories required to access the full
pdf of two-point correlation functions in the limit ϵ → 0.

from y1 and y2. More explicitly:

x1 = X±
t (y1), x2 = X±

t (y2), x3 = X±
t (y1 + ϵ), x4 = X±

t (y2 + ϵ) (4.56)

We then perform the change of variables x1, x2, x′1 = (x3 − x1)/ϵ, x′2 = (x4 − x2)/ϵ

together with the limit h → 0, so we can recover X±′
t (y1), X±′

t (y2). By applying this

change of variables in the Fokker-Planck equation Eq. (4.50) (n=4) and taking the

limit h → 0, one obtains the following equation for Pt = Pt(x1, x2, x′1, x′2):

∂tPt =v
(
(∂x1 + ∂x2) +

v
2

f (0)(∂2
x1
+ ∂2

x2
) + v∂x1 ∂x2 f (x1 − x2)−

v
2

f ′′(0)(∂2
x′1
(x′1)

2 + ∂2
x′2
(x′2)

2)

+ v∂x2 ∂x′1
x′1 f ′(x1 − x2)− v∂x1 ∂x′2

x′2 f ′(x1 − x2)− v∂x′1
∂x′2

x′1x′2 f ′′(x1 − x2)

)
Pt

(4.57)

Then, we exploit the invariance under the translation of the PDE by making the

change of variables from (x1, x2, x′1, x′2) to (R = x1+x2
2 , r = (x1 − x2)/ℓ, x′1, x′2). Fi-

nally, integrating out the centre of mass variable R, we obtain the FP equation for

the jpdf Πt(r, x′1, x′2) =
∫

dRPt(x1, x2, x′1, x′2)

∂tΠt = v2
(

1
ℓ2 ∂2

r ( f (0)− f (rℓ))− f ′′(0)
2

(∂2
x′1
(x′2)

2 + ∂2
x′1
(x′2)

2)− f ′′(rℓ)∂x′1
∂x′2

x′1x′2−

− 1
ℓ

∂r f ′(rℓ)(∂x′1
x′1 + ∂x′2

x′2)
)

Πt (4.58)
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From this result, we now obtain the Fokker-Planck equation for the joint distribu-

tion Pt(κ, r) of the variable κ and the variable r. Using the explicit relation between,

κ& r, it is defined as:

Pt(κ, r) ≡
∫

dx′1dx′2 Πt(r, x′1, x′2)δ
(

κ − ln
( r2

x′1x′2

))
(4.59)

Interestingly, Pt(κ, r) satisfies a closed evolution equation. To obtain it, we compute

the time derivative of Eq. (4.59) using Eq. (4.58), then we integrate by part and

obtain

ℓ2

v2 ∂tPt(κ, r) =
[

∂2
r ( f (0)− f (ℓr)) + 4

f (0)− f (ℓr) + ℓr f ′(ℓr)
r2 ∂2

κ + ℓ2 f ′′(0)(∂κ − ∂2
κ)−

−ℓ2 f ′′(ℓr)∂2
κ + 2ℓ∂r∂κ f ′(ℓr) + 4∂r( f (0)− f (ℓr))

1
r

∂κ + 2
f (0)− f (ℓr)

r2 ∂κ

]
Pt(κ, r)

(4.60)

We, finally, deduced the FP for the probability distribution of κ, r. This equation

has a complex form and is not as easy to handle directly to obtain results. For this

purpose, it is more convenient to reformulate the problem in terms of equivalent

SDEs of κ, r in Îto’s form. To deduce them, we employ the same method as the

one used in App. C.1, where we demonstrate the relation between an SDE like the

Langevin equation Eq. (4.47) and its respective FP equation. Then, the FP equation

in Eq. (4.60) is equivalent to the stochastic equations for r and κ (in Îto convention)

given by:

dr = v dW1(t) , dκ = v2g(r)dt + v dW2(t) (4.61)

where v2g(r) is a drift term and dW1(t), dW2(t) are two centred Gaussian white

noises in time with r-dependent variances dW1(t)2 = 2A(r)dt, dW2(t)2 = 2C(r)dt,

and cross-correlation dW1(t)dW2(t) = B(r)dt. To simplify the notation, we intro-

duced:

A(r) =
f (0)− f (ℓr)

ℓ2 , B(r) =
2 f ′(ℓr)

ℓ
+

4( f (0)− f (ℓr))
ℓ2r

,

C(r) =
4( f (0)− f (ℓr) + ℓr f ′(ℓr))

ℓ2r2 − f ′′(0)− f ′′(ℓr),

g(r) = − f ′′(0)− 2( f (0)− f (ℓr))
ℓ2r2 . (4.62)

At t = 0 by definition r = (y1 − y2)/ℓ = 1 and κ = 0. Eqs. (4.61) must be solved
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with the initial condition r = 1 and κ = 0 at t = 0. The SDEs that we found are the

main object of the study, as they define the statistics of κ, r, which in turn are related

to the physical quantities of our problem, as it will be more clear later.

Since the equation for r does not involve κ, one may first solve for r(t) and then

insert the solution for r(t) into the equation for κ(t). For finite ℓ, Eq. (4.61) cannot

be solved explicitly for an arbitrary f (x). Nevertheless, one can understand its be-

haviour at finite time in two regimes ℓ = y1 − y2 ≫ 1 and ℓ = y1 − y2 ≪ 1, as

well as in the large time limit. The following sections are devoted to extracting the

analytical results in the aforementioned limits.

4.2.5 Small and Large Separation ℓ

Case of ℓ ≪ 1

For small ℓ ≪ 1, we can Taylor expand the function f in Eq. (4.62). The leading

behaviour at small ℓ of each function is:

A(r) ≃ −1
2

f
′′
(0)r2, B(r) ≃ ℓ2

6
f (4)(0)r3, (4.63)

C(r) ≃ − ℓ4

72
f (6)(0)r4, g(r) ≃ ℓ2

12
r2 f (4)(0) (4.64)

The positivity of the Fourier transform of f (x) implies alternating signs of the even

derivatives sign( f (2n)(0)) = (−1)n, ensuring all variables above are positive. We

can rewrite Eq. (4.61) after redefining the noises dW1(t) = rdB1(t) and dW2(t) =

− ℓ2

6 r2dB2(t):

dr = rvdB1(t), dκ =
ℓ2r2v

6

(
v f (4)(0)dt

2
− dB2(t)

)
(4.65)

where dB1(t), dB2(t) are r-independent Gaussian white noises with fixed correlation

matrix:

dB1(t)2 = − f ′′(0)dt, dB2(t)2 = − f (6)(0)dt, dB1(t)dB2(t) = − f (4)(0)dt. (4.66)

At this point, we should mention that dB1(t), dB2(t) are scaled Wiener processes

[119], since a typical Wiener process has a variance of dt. Thus, the stochastic vari-

ables B1(t), B2(t) are Gaussian random variables B1(t) ∼
√
− f ′′(0)N (0, t), B2(t) ∼√

− f (6)(0)N (0, t). Let us first discuss the marginal distribution Pt(r) of r in this
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regime (ℓ ≪ 1). One can solve the stochastic equation for r and obtain, after apply-

ing Ito’s lemma [119]:

r(t) = e−θt+vB1(t) (4.67)

We define θ = −v2 f ′′(0)/2 > 0. Since B1(t) ∼
√
− f ′′(0)N (0, t), the exponent

in the equation above −θt + vB1(t) follows the normal distribution N (−θt, 2θt).

Alternatively, one can find the SDE of log r by using Ito’s lemma, which suggests

that we should keep up to second order in dr. More explicitly, we find that log r

should satisfy:

d(log r) =
1
r

dr − 1
2r2 (dr)2 = −θdt + vdB1(t) (4.68)

where we used Eq. (4.65). In either ways we find out that log r is a Brownian motion

with a drift (of velocity −v), implying Pt(r) is a log-normal distribution for r, with

mean and variance:

ln r = −θt, Var[ln r] = 2θt (4.69)

We remind the reader, that r = (x1 − x2)/ℓ and taking into account that r(t = 0) = 1,

the positive θ leads to a decrease in time for the typical value of log r. Therefore, the

initial separation of the trajectories is smaller than ℓ and this implies that, trajec-

tories x1, x2 or equivalently Xt(y1), Xt(y2) tend to converge over time, illustrating

the sticky particle phenomenon observed in turbulent fluids [120]. Additionally, the

absence of a drift term for r in Eq. (4.65), leads to dr/dt = 0 (this is due to the van-

ishing of the Ito integral under averaging [119] e.g
∫

dB1(t)r(B1(t), t)v = 0). Hence,

r = 1 independently of time, showing that although the typical value rtyp = elog r

decreases to zero, the distribution of r broadens over time. The higher moments of r

can be found by the standard moments of log-normal distribution as rn = en(n−1)θt

and demonstrate an exponential growth in time, in the regime of small ℓ.

Using this result, we can calculate the noise average of κ = κ± by integrating Eq.

(4.65) over time and averaging:

κ(t) =
v2 f (4)(0)ℓ2

12

∫ t

0
dt′r(t′)2 (4.70)

using the already known moments of r, we finally obtain:

κ(t) =
v2 f (4)(0)ℓ2

24θ
(e2θt − 1) (4.71)
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Using that r(t) is uncorrelated in time r(t)r(t′) = r(t) r(t′) we can find the higher

integer moments of κ as κn = κn. The moments grow exponentially with time in the

small ℓ regime. However, κ has an exact upper bound. In order to see that, we use

that the space correlation f (x), is a decaying function of x and thus Eq. (4.62) leads

to g(r) ≤ g(∞) = − f ′′(0). This upper bound establishes in Eq. (4.61) that dκ ≤ 2θdt

and finally the bound κ ≤ 2θt. This limit is exact for an arbitrary ℓ and not just in

the regime of small ℓ. Thus, going back to the small ℓ regime, the moments diverge

at large times, but the exponential growth, established before, is valid only for times

that satisfy ℓ2e2θt ≲ 1.

Remarkably, the pdf of κ converge to a stationary distribution at large times,

which is broad and lacks finite integer moments for n ≥ 1. We now proceed with

the proof for this. To obtain the pdf of κ, we proceed in two steps: first, solve for

r(t) using Eq. (4.67); second, reparameterize the Wiener processes B1(t), B2(t) by

looking at them from their final point, setting B̃1,2(s) = B1,2(t) − B1,2(t − s) The

detailed calculations are being demonstrated in App. C.2. This recasts the resulting

stochastic equation in a form studied by Bougerol [121]:

dω = 2θωdt +
√

8θ
√

1 + ω2dB̃, ω(t = 0) = ω0 (4.72)

where B̃(t) is a standard Wiener process. The stochastic variables ω is related to κ,

based on κ = κ0(ω/ω0 − 1) where:

κ0 = − ℓ2

12
f (4)(0)
f ′′(0)

, ω0 =
1√

f (6)(0) f ′′(0)
f (4)(0)2 − 1

(4.73)

Note that the positivity of the Fourier transform f̂ (k) > 0 of f (x) ensures ω0 being

real and positive. This is a direct result of the Cauchy-Schwartz inequality in the

case of:

f (6)(0) f ′′(0)− f (4)(0)2 =
∫

k2 f̂ (k)
∫

k6 f̂ (k)−
(∫

k4 f̂ (k)
)2

> 0 (4.74)

Performing another change of variable ω = sinh(Y) for Eq. (4.72), the random

variable Y satisfies:

dY = −2θ tanh Ydt +
√

8θdB̃, sinh(Y(0)) = ω0 (4.75)
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Eq. (4.75) describes Langevin motion for Y, which reaches an equilibrium stationary

measure at large times, Pstat(Y) = C/
√

cosh(Y) with C =
√

2π/Γ(1/4)2. The details

for this derivation are in App. C.2. Finally, using the relation ω = sinh Y, we recover

the corresponding to the stationary distribution for ω and thus κ:

B(ω) ≡ Γ(3/4)
Γ(1/4)

1√
π(1 + ω2)3/4

, Pstat ℓ≪1(κ) =
Γ(3/4)ω0

Γ(1/4)κ0

1
√

π
(
1 + ω2

0(κ/κ0 + 1)2
)3/4

(4.76)

The stationary distribution has tails of, ∝ |κ|−3/2 indicating that ω and κ do not

have finite integer moments, as we expected by the exponential growth of the mo-

ments.

Case of ℓ ≫ 1 at Short Times

The leading behaviour at large ℓ of each function in Eq. (4.62) up to O(1/ℓ2) is:

A(r) ≃ f (0)
ℓ2 , B(r) ≃ 4

f (0)
ℓ2r

,

C(r) ≃ − f ′′(0) + 4
f (0)
ℓ2r2 , g(r) ≃ − f ′′(0)− 2 f (0)

ℓ2r2

(4.77)

assuming f (x) decays faster than a power law. In leading order, setting Bℓ(r) ≃ 0

implies that the equation for κ becomes independent of r. Using g(r) ≃ − f ′′(0) and

C(r) ≃ − f ′′(0) in leading order, we obtain the following SDEs from Eq. (4.61):

dr = vdW1(t), dκ = 2θdt + vdW2(t) (4.78)

with dW1(t)2 = 2 f (0)/ℓ2dt, dW2(t)2 = −2 f ′′(0)dt. In the large ℓ limit the two

Gaussian white noises have cross-correlation dW1(t)dW2(t) = 0, of leading order,

and can be considered uncorrelated. At this point, we rescale the Gaussian noises

as W1(t) = v
√

2 f (0)/ℓW̄(t), W2(t) = 2
√

θW(t), with W(t), W̄(t) being two inde-

pendent Brownian motions dW(t)2 = dW̄(t)2 = dt. The time integration of leads,

finally, to

κ = 2θt + 2
√

θW(t), r = 1 +

√
2 f (0)v
ℓ

W̃(t) (4.79)

note that the growth κ = 2θt saturates the exact bound κ ≤ 2θt for κ. We remind

the reader, that W̄(t) ∼ N (0, t) and hence the equation above suggests that r is

a stochastic variable with fluctuations around 1 of the order of
√

2t f (0)v
ℓ . At times

t ∼ v2ℓ2/ f (0), the fluctuations are large enough to bring r(t) close to zero, and thus
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the expansion done in Eq. (4.77) stops being valid and according to Eq. (4.62), the

expansion at small enough r ≪ 1 brings us back to the theory demonstrated in the

regime ℓ ≪ 1. This large ℓ expansion only holds for short times t ≲ v2ℓ2/ f (0). To

access the large time limit, a different approach is needed, and that is what will be

presented in the next section.

4.2.6 Large-Time at arbitrary ℓ

In this section, we investigate the stationary distribution of κ at arbitrary ℓ and

showcase the appearance of non-trivial stationary distribution, with divergent in-

teger moments. The calculations are quite technical, and for this reason, we present

briefly the procedure, and the interested reader can refer to the appendix section for

all the details.

We start by denoting the characteristic function of the distribution of κ, as:

Qk(r0, t) = e−ikκ
r0
=
∫

dκPt,r0(κ)e
−ikκ (4.80)

, where the superscript r0 = r(t = 0) signifies the initial condition for the variable

r in Eq. (4.61), eventually setting r0 = 1 and Pt,r0(κ) is the probability distribution

of κ at t, given the initial condition r0. The characteristic function is important since

it is the Fourier transform of Pt,r0(κ) and if it can be found, then the probability

distribution is an inversion of the Fourier transform. In the following part of this

section, we are going to denote the initial condition r0 as r.

Ito’s calculus can help us find a PDE for the evolution of Qk, and, as demon-

strated in App. C.3, one finds out the following equation:

∂tQk = v2 (A(r)∂2
r − ikB(r)∂r − k2C(r)− ikg(r)

)
Qk(r, t) (4.81)

The coefficients A, B, C, g appear due to the use of the SDEs of κ, r that we saw in the

previous sections. We are seeking a time-independent solution in the large time limit

Qk(r, t) → Qk(r) and thus the stationary solution of Eq. (4.81), which is governed

by: (
A(r)∂2

r − ikB(r)∂r − k2C(r)− ikg(r)
)

Qk(r) = 0 (4.82)
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By definition the stationary distribution that we are interested in is:

Pstat(κ) =
∫

dkeikκQk(r = 1) (4.83)

For practical purposes, we perform a shift by extracting an exponential factor Qk(r) =

eikκ0(ℓr)Gk(r), with:

κ0(x) = − log
(2( f (x)− f (0))

x2 f ′′(0)

)
. (4.84)

which in turn helps us recover a simpler equation satisfied by Gk(r):

−G′′
k (r)− k(k + i)V(r)Gk(r) = 0 (4.85)

(more details in App. C.3) with boundary conditions Gk(0) = 1 and limr→+∞ Gk(r) =

0. In this formulation, the function Gk(r) satisfies the Schrödinger-like equation for

r ≥ 0 with a potential which is given by:

V(r) = − d2

dr2 log[ f (0)− f (ℓr)] +
ℓ2 f ′′(0)

f (0)− f (ℓr)
. (4.86)

The aforementioned boundary conditions come from the boundary conditions of

Qk(r) which are explicitly:

Qk(r = 0) = 1 , Qk(r → +∞) = 0 (4.87)

The first one is a result of the “sticky” behaviour of the stochastic trajectories found

in Sec. 4.2.5. When we start at small r our theory is described by the ℓ ≪ 1 regime,

and as we can see from Eq. (4.65), dr = dκ = 0 for r = 0, implying no time evolution

for κ, r and thus their stationary probability distributions are just Dirac deltas around

their initial conditions. The second one comes from observing that in the limit r →

+∞ is described by the ℓ ≫ 1 regime, which was studied in Sec. 4.2.6. It was

found in Eq. (4.79) that κ ∼ N (2θt, 4θt) follows a Normal distribution, and one

can easily see that the characteristic function of this Normal distribution vanishes at

large times.

By analysing Eq. (4.85) (see Appendix C.3), one can not find an explicit solution

for the stationary distribution for an arbitrary function f (x) but we can prove the

existence of fat −3/2 tails. In Appendix C.3.3, we prove that for sufficiently smooth

f (x), Qk(r) = 1 +O(
√

k) at small k, regardless of ℓ. This leads to a −3/2 power-law
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tail on the positive κ side Pstat(κ) ∝ κ−3/2.

To provide intuition on why the −3/2 tail appears: the random variable r is

attracted to r = 0 since for r < 1, log r behaves approximately like a Brownian

motion with a negative drift (see (4.69)). In this regime, the typical value of r will

get smaller and smaller in time, and thus at large times, our theory is eventually

described by the ℓ ≪ 1 regime, where it was shown (in Sec. 4.2.5), that the stationary

distribution is Eq. (4.76). However, starting from 1, r has a finite probability of

moving towards r > 1; in this case, if the stochastic variable passes from 1 after

some later time t∗, then we enter again the case just described with r < 1, which at

large times lead to the expected fat tails. So the distribution of the first passage time

from 1 is essential for this case. More explicitly, when r > 1 the variable r follows

approximately a drifted Brownian motion as already mentioned in Eq. (4.79), for

which is known that the first passage time from r = 1 has a distribution of ∝ t∗−3/2

[122]. Based on the same equation (Eq. (4.79)), κ increases by ∼ t∗, showcasing a

distribution with the same tails as the one of t∗.

The previous formulation with the characteristic function can be used to recover

the stationary distributions of the already studied regimes of ℓ ≪ 1, ℓ ≫ 1. In

the limit of small ℓ, as a consistency check (in Appendix C.3.4), we re-derive the

asymptotic solution at small ℓ (Eq. (4.76)), obtained in Sec. 4.2.5 via a completely

different approach.

In the opposite limit of large ℓ, it is observed that the potential approaches a

constant value V(r) → ℓ2 f ′′(0)/ f (0), leading to the simple solution of Eq. (4.85) in

the form Gk(r) ∼ e−
√

2k(k+i)θ/ f (0)rℓ. For the full proof, see App. C.3.5. Consequently,

setting κ = θℓ2χ/ f (0), one finds that in the limit ℓ → ∞, the variable χ is distributed

according to:

L(χ) ≡ 1√
2π

e−
1

2χ

χ3/2 Θ(χ) (4.88)

i.e., the stable one-sided Lévy distribution of index 1/2.

Equations (4.44) and (4.88) describe the asymptotic behaviour of the stationary

distribution for κ at small and large ℓ, respectively. For intermediate values of ℓ,

an explicit expression is not available for generic f (x). Finally, note that for time

t ≫ 1/(2v), as already mentioned in Sec. 4.2.3, the two chiral components κ+ and

κ− are expected to decorrelate, and their joint distribution reaches a factorized form

Pstat(κ+)Pstat(κ−). This will be useful later for finding the stationary distribution of
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entanglement entropy.

4.2.7 Distribution of Entanglement Entropy and Energy Density

Entanglement Entropy

In the previous section, we talked about how CFT allows us to derive the stochastic

trajectories/quasiparticle picture, which is crucial for understanding the dynamics

of primary fields and thus correlations in our theory, as well as the statistics of these

objects. Now we showcase, an intriguing application of the preceding results on

the computation of entanglement entropies. Let ρA,t represent the reduced density

matrix for the interval A = [y1, y2] at time t. The Rényi entropies are then defined as

S(n)
t = 1

1−n ln Tr ρn
A,t .By introducing the twist fields Tn(y, t), one can identify Tr ρn

A,t ∝

⟨Tn(y1, t)Tn(y2, t)⟩. This is a result of the replica trick explained in Sec. 4.1.3. In

the same section, we saw that the twist fields are primary fields with the scaling

dimension of each chirality as ∆± = c/24(n − 1/n). Therefore, if we consider the

time evolution of their 2-point function under Hamiltonian in Eq. (4.40), we get the

same description as the one that was introduced in Sec. 4.2.2. Thus, if we denote the

entropy production as ∆S(n)
t ≡ S (n)

t − S (n)
t=0 and then use (4.53), one obtains:

∆S(n)
t =

(n + 1)c
24n

(κ+ + κ−) (4.89)

where c is the central charge of CFT and depends on the specific model of interest

[102] .The Von Neumann entropy production corresponds to the case n = 1 and is

denoted simply as ∆St. Equation (4.89) demonstrates the explicit relation between a

physical quantity like entanglement entropy and the random variables. Moreover,

it is important to note that, all the Rényi entropies’ production are governed by the

same random variable, and that the specifics of the model enter only through the

prefactor involving the central charge, indicating the universality of the theory.

Using the noise average:

∆S(n)
t =

(n + 1)c
12n

κ (4.90)

based on the results that we found for κ± in Secs. 4.2.5,4.2.6 we observe that at the

beginning of the study, there are two distinct growth regimes: for large intervals

(ℓ ≫ 1), the average entropy production grows linearly with time as from (4.79),

while for small intervals, it grows exponentially in time as from (4.71). Finally, at
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large times, we find that the entropy production (4.89) attains a stationary distribu-

tion, up to a scale, given by the convolution Pstat ∗ Pstat determined previously, which

still exhibits a −3/2 power law tail and lacks finite integer moments.

Distribution of Energy Density

A noteworthy physical quantity to examine is the dynamics of the energy density,

which, in the context of conformal field theory (CFT), is represented via the stress-

energy tensor and more explicitly as ĥ(x) = v
(
T̂+(x) + T̂−(x)

)
. The time evolution

of ĥ(x) can be directly calculated with the help of CFT. Specifically, one can use the

fact that time evolution can be viewed as a conformal mapping and the correspond-

ing transformation of the stress-energy tensor is:

T̂(y, t) = |X′
t(y)|2T̂(Xt(y), t = 0)− c

24π
(S · Xt)(y) (4.91)

where we used the known way that the stress-energy tensor transforms under a con-

formal map. The reader can find the relevant proof in Ch.5 of [100]. For simplicity,

we omit the ± superscript, since each component of the tensor is related to the re-

spective backward trajectory out of X±
t (y). The second term in the equation above is

proportional to the central charge c and the Schwarzian derivative (S · Xt) (y). The

Schwarzian derivative (S · ζ) (z) for two arbitrary variables ζ, z such that ζ = ζ(z),

is defined as follows:

(S · ζ) (z) =
ζ ′′′

ζ ′
− 3

2

( ζ ′′

ζ ′

)2
(4.92)

with ζ ′ = dζ/dz e.t.c for higher order derivatives. At this point we focus on the

expectation value over the quantum state of the system at time t for which, one has:

⟨T̂(y, t)⟩ = − c
24π

(S · Xt)(y) (4.93)

where we assume zero expectation value for the energy density in the initial ground

state, meaning that ⟨T̂(y, 0)⟩ = 0.

The time evolution of this quantity can be directly obtained from the previous

analysis of κ± in the regime ℓ → 0. Specifically, by expanding Eq. (4.54) at small

ℓ = y1 − y2, we obtain:

lim
ℓ→0

1
ℓ2 κ(y2 + ℓ, y2, t) = −1

6
(S · Xt)(y2) (4.94)
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where this is valid for each chirality. This equation showcases the direct connection

between the random variable κ and the physical quantity of ⟨T̂(y, t)⟩ of our problem.

More explicitly:

⟨T̂(y, t)⟩ = c
4π

lim
ℓ→0

κ(y + ℓ, y) (4.95)

It is important to mention, that this equation implies that the statistics of the distri-

bution of ⟨T̂±(y, t)⟩ can be derived from that of κ± in the limit of small ℓ. Following

the derivation in Sec. 4.2.5, the full distribution over the noise can be expressed as:

⟨T̂(y, t)⟩ in law
=

cκ̃0

4π

(
ω

ω0
− 1
)

(4.96)

where the random variable ω is a solution of Eq. (4.72) and the constants κ0, ω0 were

defined in Eq. (4.73). We observe a remarkable correlation between the entangle-

ment of an infinitesimal interval and the local energy density. Specifically, by using

⟨ĥ(x, t)⟩ = v(⟨T̂+⟩+ ⟨T̂−⟩) and the equation above, we find:

⟨ĥ(y, t)⟩ in law
=

vcκ̃0

4π

(
ω+ + ω−

ω0
− 1
)

(4.97)

The random variable of ω is space independent, making ⟨ĥ(y, t)⟩ space indepen-

dent as well. The expectation value of the energy density demonstrates the same

statistical behaviour at any point in space. Now if we compare with the Von Neu-

mann entropy production from Eq. (4.89) we find ⟨ĥ(y, t)⟩ = limℓ→0 v∆St/(πℓ2).

The expectation value of the energy density in our theory is directly defined by the

entanglement entropy of small subsystems. Additionally, defining the noise average

(which is space-independent) as we have from (4.71):

⟨ĥ(y, t)⟩ = cv3 f (4)(0)
48πθ

(
e2θt − 1

)
(4.98)

The noise average ⟨ĥ(y, t)⟩ demonstrates only an exponential increase in time, in

contrast to the entanglement entropy production, which in the ℓ ≫ 1 limit, increases

linearly, as shown in the previous section. The higher moments of ⟨ĥ(y, t)⟩ exhibit

an exponential increase in time as well. This is understood from Sec. 4.2.5, where

we saw the same exponential behaviour for the moments of κ.

For t ≫ 1/(2v), we expect κ± and therefore ω± to decorrelate; thus from (4.45),

we derive that the stationary distribution of the one-point energy density is coming

from the convolution B ∗ B, with B(ω) being the stationary distribution in (4.44).



136 Chapter 4. Universal out-of-equilibrium dynamics of critical quantum systems

FIGURE 4.4: Top: The average energy eF(τ) vs t = τ/ξ, the scaled
time, for different values of the noise correlation length ξ. Continuous
lines are obtained from the numerical solution of the Wigner function
equation (4.100), while the markers correspond to the exact dynamics
of (4.99) for L = 2048. The dotted dashed line is the CFT result (4.98),
which is predicted to hold for large ξ according to the scaling limit in
Sec. 4.2.8. Bottom: The median of the distribution of ξ2(⟨ĥi⟩τ − ⟨ĥi⟩0)
vs the scaled time τ/ξ. In the limit of ξ → ∞, the median is expected
to decrease towards the negative asymptotic value predicted by CFT
(dot-dashed horizontal line). For finite ξ, the median starts to grow
at large times, suggesting that heating may eventually dominate the

lattice.

At this time scale, one can also find that the median value for the energy density is

⟨ĥ(y, t)⟩ = −cκ̃0/2π. Consequently, at large times, the one-point energy density has

a distribution with fat −3/2 tails and all integer moments diverging.

4.2.8 Benchmarking with a Free Fermion model

Here we give a brief description of the analysis done to the free fermion model, that

we used in order to confirm our theory both analytically and experimentally. The

reader can refer to [46] for more technical details.

A. Tight-binding model

We examine a model of N non-interacting spinless fermions, where τ represents

the time and space is discrete with L sites. The system is perturbed by noise coupled
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to the energy density and its Hamiltonian will be:

ĤF = ∑
i
(1 + ηi(τ)) ĥi,

ĥi = −J
(

â†
i âi+1 + â†

i+1 âi

)
.

(4.99)

where âi, â†
i are annihilation and creation fermionic operations at site i. The terms

in ĥi include the hopping terms of the fermions from the site i to i + 1 and vice

versa. J controls the probability for the fermion to hop on to the nearest neighbour

e.g J = 0 implies no hopping. It is generally negative, indicating that fermions tend

to lower their energy by delocalizing over multiple sites. The noise is coupled to

the energy density, inducing some random hopping rates to our problem. Without

noise, ĤF can be diagonalised by a Fourier transform of the operators, âi in the mo-

mentum space and this leads to a dispersion relation ϵ(k) = −2J cos(k). where k is

the momentum with values k = −π + 2πm/L, m = 1, 2, . . . , L. The details of the

diagonalization can be found in [123]. For the noise, we select the correlation

ηi(τ)ηj (τ′) = τ0δ
(
τ − τ′) F(i − j), F(j) = f (j/ξ)

where ξ is the characteristic correlation length of the discrete model. Numerically,

we choose f (x) = 1/ cosh(x), as it corresponds to an analytically solvable case in the

CFT limit. The dynamics induced by ĤF are better studied using the noise-averaged

Wigner function nτ(k) = ∑j′
〈

â†
j+j′ âj

〉
τ
eikj′ , where ⟨. . .⟩τ denotes the quantum aver-

age at time τ. We choose the initial state as the ground state so that nτ(k) does not

depend on the lattice site j. The ground state of the noiseless tight binding model is

a Fermi sea, with fermions occupying all the momentum states between −kF and kF,

with kF being the Fermi point. The initial Wigner function with that ground state is

then, nτ=0(k) = Θ (k + kF)− Θ (k − kF), where Θ(z) is the Heaviside function and

kF is such that ϵ (kF) = 0 and kF = π/2, corresponding to half filling. Half filling

implies that we have to occupy N = L/2 k states of the system, starting from the one

with the smallest ϵ(k). We are interested in this specific setup because the system is

critical and can be described by a conformal field theory with central charge c = 1

[124], making it a good candidate for benchmarking out theory.

B. Scaling limit

Now we demonstrate the scaling limit of interest, but before we start we should
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mention that we consider a continuous space description, by taking L → ∞ and

keeping the half filling. In continuous space the momentum becomes continuous

and one can replace ∑k with,
∫ π
−π dk/2π based on the discrete values of k described

in the beginning of this section. Using the Wigner function, we can express the

noise-averaged energy density relative to the ground state as

eF(τ) ≡
〈

ĥi

〉
τ
−
〈

ĥi

〉
0
=
∫ dk

2π
ϵ(k) (nτ(k)− n0(k))

One can derive (see Appendix G in [46]) an exact evolution equation, for nτ(k)

which reads:

∂τnτ(k) = τ0

∫ dk′

2π
F̃
(
k′
)

ϵ
(
k + k′/2

)2 (nτ

(
k + k′

)
− nτ(k)

)
(4.100)

By analysing this equation (see Appendix G in [46]), we demonstrate that around

the Fermi points, nτ(k) takes the scaling form:

nτ(k) ≃ n (ξ (kF − k) , τ/ξ) + n (ξ (k + kF) , τ/ξ) . (4.101)

This leads to the result for fixed t as ξ → +∞:

lim
ξ→∞

ξ2eF(tξ) = ẽ+(t) + ẽ−(t) (4.102)

where we separate the energy contributions from the two Fermi points ±kF by ex-

panding k = ± (kF − p/ξ). Introducing the Fermi velocity as ϵ′ (±kF) = ±v, we

find for both chiral components:

ẽ±(t) = −v
∫ ∞

−∞

dp
2π

p[n(p, t)− n(p, 0)] = e(t)/2. (4.103)

and thus limξ→∞ ξ2eF(tξ) = e(t). The last equality is proven in Appendix G of

[46], with e(t) = ⟨ĥ(y, t)⟩ given in Eq. (4.98) at c = 1. Thus, the CFT predicts,

upon rescaling, the mean energy for the fermion system, confirming the exponential

growth from a first-principles lattice calculation. This result suggests that in the scal-

ing limit of large ξ, the noisy dynamics from ĤF is fully described by the universal

description provided by the CFT, with space and time rescaled as j = xξ, τ = tξ,

and setting τ0 = ξ.
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To validate this hypothesis, we numerically computed the two-point correla-

tion matrix Cij(τ) ≡
〈

a†
i aj
〉

τ
. Since the model of ĤF is non-interacting and the

initial ground state is Gaussian, all quantities for each noise realization can be ex-

pressed via the Wick theorem in terms of the coefficients Cij [125]. However, de-

spite the Gaussianity of the quantum state, the distribution of quantum expecta-

tions over different noise realizations remains analytically challenging. In Fig. 4.6

(top), we show the convergence of the noise-averaged energy density eF(τ) to its

CFT prediction as ξ → ∞, consistent with Eqs. (4.102),(4.103). The correlation

matrix C(τ) can also be used to compute the Renyi entropies for any interval I of

size ℓF. For the Von Neumann entropy of the interval I (denoted as SF), setting CI

as the ℓF × ℓF submatrix obtained by restricting the indices of C(τ) to I, we have

SF(τ) ≡ −Tr [CI ln CI + (1 − CI) ln (1 − CI)]. In Fig. 4.5 (upper right), we show the

noise-averaged entanglement entropy production SF(τ) ≡ SF(τ) − SF(0) for the

fermion system for intervals of various sizes ℓF on the lattice. Our prediction is that

at large ξ, it should equal the CFT value S(1)
t (without any prefactor) with ℓ = ℓF/ξ.

We also predict that the CFT describes the distribution of these quantities over

the noise. In Fig. 4.5 (top right), we show the one-point PDF for the local energy

density ξ2
〈

ĥi

〉
τ

at the largest available time τ. It compares reasonably well, with no

free parameters, to the CFT prediction, i.e., the convolution Pstat ∗ Pstat where Pstat

was obtained in Eq. (4.76). This confirms that with the chosen f (x), at this obser-

vation time, 2vFτ/ξ is sufficiently large, so that the two chiral components are only

weakly correlated. vF is the Fermi velocity satisfying ϵ′(kF) and is equivalent to v

the average velocity of the quasiparticles over the stochastic trajectories in our CFT

theory. As seen in Fig. 4.6 (top), the average energy increases over time, consistent

with Pstat having an infinite first moment. Therefore, the median of the energy dis-

tribution, shown in Fig. 4.5 (bottom), is a better indicator of the typical behaviour.

Remarkably, it is found to decrease over time, approaching a stationary value at

large ξ compatible with the CFT prediction emedian
stat = − c

2π κ̃0 < 0 as mentioned in

Sec. 4.2.7. Finally, in Fig. 4.5 (bottom), as a representative of finite ℓ behaviour,

we compare the entanglement entropy distribution at different times for intervals of

size ℓF = ℓξ and ℓ = 1/2, with the analytic prediction obtained from CFT.
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FIGURE 4.5: Upper left: Noise–averaged Von Neumann entangle-
ment entropy production S(1)(τ) vs t = τ/ξ evolving in time under
(4.99), for increasing values of ξ and fixed ratio ℓF/ξ = ℓ = 1/2. The
dotted line is obtained from the numerical solution of Eqs. (4.61) and
using (4.89) for n → 1, i.e. SF(τ) = cκ/6 with c = 1. Upper right:
Distribution of the scaled energy density ξ2⟨ĥi(τ)⟩ at ξ = 64.. For the
analytical prediction, we used that in the scaling limit ξ2⟨ĥj⟩ → h(x, t)
and at large time h(x, t) is distributed as (4.45), which in the present
case reduces to h in law

= (3Ω− 5)/(24π). In the inset, the right tail of the
distribution is shown in log-log scale, showing the predicted ∝ h−3/2

tail. Lower centre: Distribution of the entanglement entropy SF(τ) at
ξ = 64. for an interval of size ℓF = 32. For the analytical prediction,
we used that in the stationary limit limτ→∞ SF(τ)

in law
= c(κ++ κ−)/12,

with κ± independently distributed according to Pstat(κ). The sta-
tionary distribution Pstat(κ) is obtained by numerically inverting the
Fourier transform Qk(1) as a function of k, for ℓ = 1/2, defined in
(C.45) and (C.70) in Appendix C.3. All simulations are performed on
systems of total length L = 2048 and are repeated for Nsample = 800

samples.
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FIGURE 4.6: Top: The average energy eF(τ) vs t = τ/ξ, the scaled
time, for different values of the noise correlation length ξ. Continuous
lines are obtained from the numerical solution of the Wigner function
equation (4.100), while the markers correspond to the exact dynamics
of (4.99) for L = 2048. The dotted dashed line is the CFT result (4.98),
which from (4.102) is predicted to hold for large ξ. Bottom: The me-
dian of the distribution of ξ2(⟨ĥi⟩τ − ⟨ĥi⟩0) vs the scaled time τ/ξ. In
the limit of ξ → ∞, the median is expected to decrease towards the
negative asymptotic value predicted by CFT (dot-dashed horizontal
line). For finite ξ, the median starts to grow at large times, suggesting

that heating may eventually dominate the lattice.
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Appendix A

Correlations in dual Symplectic

circuits

A.1 Change of variables in the dual picture

In this Appendix, we derive analytically an additional condition resulting from the

requirement that the diagrammatic representations in both the original and dual

frameworks are equivalent. We begin with the elementary scenario of two sites,

hence our analysis is confined to the phase space M2. Considering two arbitrary

scalars A, B ∈ L2(M2), we explore the Hermitian product ⟨B|PΦ|A⟩, which is repre-

sented by the diagram below,

A

B

Φ

Φ̃

⟨B|PΦ|A⟩ =

(A.1)

With the help of Eqs. (2.33),(2.34) on can write Eq. (A.1) as an integral

⟨B|PΦ|A⟩ =
∫

dX⃗1dX⃗2dX⃗′
1dX⃗′

2 A(X⃗1, X⃗2)B∗(X⃗′
1, X⃗′

2)δ
(
(X⃗′

1, X⃗′
2)− Φ(X⃗1, X⃗2)

)
(A.2)

in the time direction. In order for one to obtain the same analytic interpretation in

the dual picture too, the following should be true

⟨B|PΦ|A⟩ =
∫

dX⃗1dX⃗2dX⃗′
1dX⃗′

2 A(X⃗1, X⃗2)B∗(X⃗′
1, X⃗′

2)δ
(
(X⃗2, X⃗′

2)− Φ̃(X⃗1, X⃗′
1)
)
, (A.3)
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where we used the definition of the dual map, as presented in Fig. 2.6, and ex-

changed the input from being the local states in space (X⃗1, X⃗2) to local states in time

(X⃗1, X⃗′
1). In order for both Eqs. (A.2),(A.3) to be valid one has to demand that

δ
(
(X⃗′

1, X⃗′
2)− Φ(X⃗1, X⃗2)

)
= δ

(
(X⃗2, X⃗′

2)− Φ̃(X⃗1, X⃗′
1)
)

(A.4)

The equivalence of the delta functions dictates the equivalence of the variable trans-

formations between the two frameworks, thereby imposing a constraint on the Jaco-

bian of this transformation. In particular, we define g(X⃗1, X⃗2, X⃗′
1, X⃗′

2) = (X⃗′
1, X⃗′

2)−

Φ(X⃗1, X⃗2) and assume that we want to change variables with respect to X⃗2, X⃗′
2 . Then

from Eq. (A.4), one obtains

δ
(

g(X⃗1, X⃗2, X⃗′
1, X⃗′

2) = 0
)

|det(Dg)| = δ
(
(X⃗2, X⃗′

2)− Φ̃(X⃗1, X⃗′
1)
)
, (A.5)

where Dg is the Jacobian matrix of the transformation g with respect to X⃗2, X⃗′
2, and

it is found as

Dg =

 − ∂Φ1(X⃗1,X⃗2)

∂X⃗2
0

− ∂Φ2(X⃗1,X⃗2)

∂X⃗2
1

 (A.6)

where we decomposed Φ into single-site outputs

Φ(X⃗1, X⃗2) =
(
Φ1(X⃗1, X⃗2), Φ2(X⃗1, X⃗2)

)
(A.7)

The solutions of g(X⃗1, X⃗2, X⃗′
1, X⃗′

2) = 0 with respect to X⃗1, X⃗′
1, are the points of the

dual map (X⃗2, X⃗′
2) = Φ̃(X⃗1, X⃗′

1), and if we assume that Φ has a unique and bijective

dual map then from Eq. (A.5) we obtain that

δ
(
(X⃗2, X⃗′

2)− Φ̃(X⃗1, X⃗′
1)
)

|det(Dg)| = δ
(
(X⃗2, X⃗′

2)− Φ̃(X⃗1, X⃗′
1)
)
. (A.8)

This is true in M2 if |det(Dg)| = 1, which according to Eq. (A.6) leads to

∣∣∣∣∣det
(∂Φ1(X⃗1, X⃗2)

∂X⃗2

)∣∣∣∣∣ = 1 ∀X⃗1, X⃗2 ∈ M × M (A.9)

This is an essential condition that the local gate Φ must fulfill to ensure the equiva-

lence of diagrammatic representations in both the time picture and the dual picture.
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We proceed by demonstrating that, as anticipated, Eq. (A.9) necessitates a cor-

responding condition for Φ̃. This indicates that an equivalent outcome is achieved,

even when the change of variables happens from the dual picture back to the origi-

nal one. Firstly, if we denote the output of as Φ(X⃗1, X⃗2) = (X⃗′
1, X⃗′

2), from Eq. (A.7)

we obtain:

X⃗′
1 = Φ1(X⃗1, X⃗2) (A.10)

X⃗′
2 = Φ2(X⃗1, X⃗2) (A.11)

Since, by the definition (X⃗2, X⃗′
2) = Φ̃(X⃗1, X⃗′

1) we need to find X⃗2, X⃗′
2 as functions of

X⃗1, X⃗′
1 and thus we invert Eq. (A.10) with respect to X⃗2 and replace it in Eq. (A.11),

X⃗2 = (Φ1
X⃗1
)−1(X⃗′

1)

X⃗′
2 = Φ2(X⃗1, (Φ1

X⃗1
)−1(X⃗′

1)
)

where we assume that the first output Φ1(X⃗1, X⃗2) = Φ1
X⃗1
(X⃗2) is a family of invertible

maps Φ1
X⃗1

: M → M for every X⃗1 ∈ M. Finally the dual map of Φ reads

Φ̃(X⃗1, X⃗′
1) =

(
(Φ1

X⃗1
)−1(X⃗′

1), Φ2(X⃗1, (Φ1
X⃗1
)−1(X⃗′

1)
))

(A.12)

Then, from Eq. (A.9), one can deduce that the inverse of Φ1
X⃗1
(X⃗2) has also a Jacobian

equal to one, ∣∣∣∣∣∣det
(∂(Φ1

X⃗1
)−1(X⃗′

1)

∂X⃗′
1

)∣∣∣∣∣∣ = 1, (A.13)

which is exactly the respective condition Eq. (A.9) for the dual map Φ̃, and thus

making this condition consistent with the the dual operation, being an involution.

The same methodology can be applied to scenarios where diagrams are inter-

preted from right to left, leading to a respective change of variables in Eq. (A.4)

is with respect to X⃗′
1, X⃗1. This is equivalent to defining a dual map as in Fig. 2.6,

but with the swapping of the other diagonal of the legs of Φ. This dual map is

the solution of g(X⃗1, X⃗2, X⃗′
1, X⃗′

2) = 0 with respect to X⃗′
1, X⃗1. Similarly, we demand

that Φ2(X⃗1, X⃗2) = Φ2
X⃗2
(X⃗1) is a family of invertible maps Φ2

X⃗2
: M → M for every

X⃗2 ∈ M, and we obtain the extra condition∣∣∣∣∣det
(∂Φ2(X⃗1, X⃗2)

∂X⃗1

)∣∣∣∣∣ = 1 ∀X⃗1, X⃗2 ∈ M × M. (A.14)
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In addition, one can prove, in the same manner as for Eq. (A.13), that Eq. (A.14) is

consistent with the dual map being an involution.

A.2 Weak contractivity and positivity of F±

In this Appendix, we demonstrate that the single-site transfer operator F (also de-

noted as F+) acts as a weak contraction and is a positive operator. Initially, as

highlighted in the main text, the map PΦ is unitary within L2(M × M), preserv-

ing the L2-norm. Consequently, using Eq. (A.20), we derive the following for any

ρ1, ρ2 ∈ L2(M):

|⟨ρ1|F |ρ2⟩| = |(⟨◦| ⊗ ⟨ρ1|) PΦ (|ρ2⟩ ⊗ |◦⟩)| ≤ ∥ |◦⟩ ⊗ |ρ1⟩∥2 ∥PΦ (|ρ2⟩ ⊗ |◦⟩)∥2

= ∥ |◦⟩ ⊗ |ρ1⟩||2 ∥ |ρ2⟩ ⊗ |◦⟩∥2 = ∥ρ1∥2 ∥ρ2∥2 (A.15)

Here, we apply the Cauchy-Schwarz inequality and note that the state |◦⟩ is normal-

ized. By setting |ρ1⟩ = F|ρ2⟩, we can confirm

∥F|ρ2⟩∥2 ≤ ∥ρ2∥2 (A.16)

for every ρ2 ∈ L2(M). This implies that the single-site transfer operator acts as a

weak contraction.

The operator’s positivity is directly linked to the characteristics of the Frobenius-

Perron operator. Consider ρ ∈ L2(M) and X⃗ ∈ M. We focus on the scalar value

⟨X⃗|F |ρ⟩. It is sufficient to prove, that it is always positive if ρ ≥ 0. The calculation

is based on the use of Eq. (A.20), from which we get

⟨X⃗|F |ρ⟩ = (⟨◦| ⊗ ⟨X⃗|) PΦ (|ρ⟩ ⊗ |◦⟩). (A.17)

The scalar |◦⟩ → u◦(X⃗) = 1/
√
|M| is positive. Therefore, assuming ρ ≥ 0, the

product |ρ⟩ ⊗ |◦⟩ → (ρu◦)(X⃗1, X⃗2) = ρ(X⃗1)u◦(X⃗2) also yields a non-negative scalar.

In the final step, it is important to recognize that PΦ acts as a Frobenius-Perron op-

erator, which is inherently positive. This confirms that PΦ(|ρ⟩ ⊗ |◦⟩) ≥ 0. . As a

consequence the value Eq. (A.17), is non-negative for every X⃗ ∈ M meaning that

F|ρ⟩ ≥ 0 for any ρ ≥ 0 ∈ L2(M).
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In the same manner, one can prove these properties for F− as well.

A.3 Diagrammatic equivalence

In this section, we demonstrate that our Ising Swap model meets the requirements

set forth in Eq. (2.42) for classical spin variables in S2. We begin by breaking down

Eq. (2.49) into its single-site components Φα,β,γ(S⃗1, S⃗2) =
(
Φ1

α,β,γ(S⃗1, S⃗2), Φ2
α,β,γ(S⃗1, S⃗2)

)
=

(S⃗′
1, S⃗′

2) with

S⃗′
1 = Rx(β)Rz

(
α(Rx(γ)S⃗1)

z)Rx(β)S⃗2 (A.18)

S⃗′
2 = Rx(γ)Rz

(
α(Rx(β)S⃗2)

z)Rx(γ)S⃗1 (A.19)

First, we observe that, Φ1
α,β,γ(S⃗1, S⃗2) = Rx(β)Rz

(
α(Rx(γ)S⃗1)

z)Rx(β)S⃗2 and Φ2
α,β,γ(S⃗1, S⃗2) =

Rx(γ)Rz
(
α(Rx(β)S⃗2)z)Rx(γ)S⃗1, which makes its Jacobian matrix over S⃗2 and S⃗1 re-

spectively, a composition of rotations and implies that

∣∣∣∣∣det
(∂Φ1

α,β,γ(S⃗1, S⃗2)

∂S⃗2

)∣∣∣∣∣ = |det
(

Rx(β)Rz
(
α(Rx(γ)S⃗1)

z)Rx(β)
)
| = 1 , ∀S⃗1, S⃗2 ∈ S2 × S2

∣∣∣∣∣det
(∂Φ2

α,β,γ(S⃗1, S⃗2)

∂S⃗1

)∣∣∣∣∣ = |det
(

Rx(γ)Rz
(
α(Rx(β)S⃗2)

z)Rx(γ)
)
| = 1 , ∀S⃗1, S⃗2 ∈ S2 × S2

where we used that the determinant of rotations is 1 since they belong to SO(3)

group.

A.4 The operator F± in block-diagonal form

In this Appendix, we compute the matrix representation of the one-site transfer op-

erator using spherical harmonics and demonstrate that it exhibits a block-diagonal

structure in terms of the angular momentum quantum number ℓ. This analysis is

grounded in the diagram depicted in Fig. 2.7. Specifically, the general local gate F±

can be understood either in terms of temporal dynamics governed by Φ, or spatially

via the dual representation with Φ̃. Although these perspectives are equivalent, we

opt for the former for this discussion. Consistent with the main text, we focus solely

on the right-moving chirality F+ ≡ F and do not consider the ± notation further.

As illustrated in Fig. 2.7, the transition amplitudes of F between any two functions
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ρ1, ρ2 from L2(M) are described as follows:

⟨ρ1|F |ρ2⟩ = (⟨◦| ⊗ ⟨ρ1|) PΦ (|ρ2⟩ ⊗ |◦⟩). (A.20)

We note that this holds for any dual-symplectic gate. We focus on the Ising Swap

model, where since |◦⟩ = |00⟩ in the basis spherical harmonics one can use Eqs.

(A.20),(A.31),(A.32) to obtain

⟨ℓm|F |ℓ′m′⟩ = ⟨00, ℓm|PΦα,β,γ |ℓ′m′, 00⟩ = δℓ,ℓ′
ℓ

∑
q2=−ℓ

⟨ℓm|PRx(γ)|ℓq2⟩
sin(αq2)

aq2
⟨ℓq2|PRx(γ)|ℓm′⟩,

(A.21)

where we used that T(0) = 1, C0,0,0
0,0,0 = 1 and j0(x) = sin(x)/x, and the fact that a

constant scalar is invariant under rotations, thus ⟨00|PRx(β)|00⟩ = 1. This expression

can be further simplified by defining the map Q(α) : M → M

Q(α) =
1
2

∫ 1

−1
dz′Rz(αz′) (A.22)

Spherical harmonics serve as the eigenbasis for the Frobenius-Perron operator asso-

ciated with rotations about the z-axis. Specifically, the matrix element ⟨ℓ1m1|PRz(θ)|ℓ2m2⟩

equals e−im1θδℓ1,ℓ2 δm1,m2 for a rotation by an angle θ ∈ [0, 2π). By applying this result

in Eq. (A.22) and carrying out the necessary integrations, we obtain the representa-

tion of PQ(α) : D(M) → D(M).

⟨ℓ1m1|PQ(α)|ℓ2m2⟩ =
sin(αm1)

αm1
δℓ1,ℓ2 δm1,m2 (A.23)

and we finally obtain the exact form of the transfer operator

F = PRx(γ)PQ(α)PRx(γ) (A.24)

This result confirms that the operator in question is the Frobenius-Perron operator

corresponding to the local phase-space map f : M → M:

f = Rx(γ)Q(α)Rx(γ) , F ≡ P f (A.25)

We have accurately derived the form of the transfer operator for both the density

representation and the pointwise phase-space map. As illustrated in Eq. (A.21),

the operator is block-diagonal with respect to the total angular momentum ℓ. The
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derivations for F− are analogous, employing the middle point reflection β, γ → γ, β.

A.5 The spherical harmonics representation of PΦ(α,β,γ)

In this Appendix, we detail the calculation of the matrix elements of the Frobenius-

Perron operator PΦ(α,β,γ)
for the local gate, using the spherical harmonics basis, de-

noted as |ℓ, m⟩ → Yℓ,m. This basis, where ℓ = 0, . . . , ∞ and |m| ≤ ℓ, is orthonormal

under the inner product defined in Eq. (2.33):

⟨ℓ1m1|ℓ2m2⟩ =
∫
S2

dX⃗ Y∗
ℓ1m1

(X⃗)Yℓ2m2(X⃗) = δℓ1,ℓ2 δm1,m2 (A.26)

According to Eq. (2.49), the local gate incorporates single-site rotations Rx(θ) for

θ ∈ [0, 2π) and the Ising Swap gate Iα. The rotations about the x-axis are conve-

niently described in the spherical harmonics basis by PRx(θ) = D(−π/2, θ, π/2),

where D represents the Wigner-D matrix [126] and is block diagonal in ℓ (implying

⟨ℓ1m1|D|ℓ2m2⟩ = 0 for ℓ1 ̸= ℓ2). The next step involves characterizing the represen-

tation of Iα, which we approach by deriving the kernel of the Ising gate on S2 × S2

and subsequently determining its action on |ℓ, m⟩.

We already know from Eq. (2.50), how Iα acts on two spins and this leads to the

following kernel

PIα(X⃗1, X⃗2, X⃗3, X⃗4) = δ
(
X⃗1 − Rz(αz3)X⃗4

)
δ
(
X⃗2 − Rz(αz4)X⃗3

)
. (A.27)

(one should mention that we choose polar coordinates X⃗i = (zi, φi) i = 1, . . . , 4 for

the parametrization of the unit sphere). This operation couples two spins and thus

by using Eq. (2.33) in the basis of two-spherical harmonics we obtain

⟨ℓ1m1, ℓ2m2|PIα |ℓ3m3, ℓ4m4⟩ = δm1,m4 δm2,m3∫
S2

dX⃗3dX⃗4 Y∗
ℓ1m1

(Rz(αz3)X⃗4)Yℓ4m4(X⃗4) Y∗
ℓ2m2

(Rz(αz4)X⃗3)Yℓ3m3(X⃗3). (A.28)

The Kronecker deltas arise from the integration over the variables φ3 and φ4, re-

flecting the interaction of the rotations through the z-components of each vector. To

advance our analysis, we recognize that a rotation around the z-axis translates into a

shift in the azimuthal angle, thus for spherical harmonics, we have Yℓ,m(Rz(θ)X⃗) =

Yℓ,m(x⃗)eimθ . Leveraging this property allows us to decouple the z-components as
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follows:

⟨ℓ1m1, ℓ2m2|PIα |ℓ3m3, ℓ4m4⟩ =∫
S2

dX⃗3dX⃗4 Y∗
ℓ1m1

(Rz(α
m2

m1
z4)X⃗4)Yℓ4m4(X⃗4) Y∗

ℓ2m2
(Rz(α

m1

m2
z3)X⃗3)Yℓ3m3(X⃗3) (A.29)

This formula demonstrates the coupling of the rotations Rz of one spin to its own z-

component. Such nonlinear rotational dynamics are termed ‘torsion’, where T(a)X⃗ =

Rz(az)X⃗ (with a representing the coupling constant and T(0) = 1). The representa-

tion of torsion in spherical harmonics is detailed in [127]. In particular, it was found

that

⟨ℓm|PT(a)|ℓ′m′⟩ = δm,m′(−1)m
√
(2ℓ+ 1) (2ℓ′ + 1)

ℓ+ℓ′

∑
p=|ℓ−ℓ′|

(−i)p jp(−ma)Cℓℓ′p
000 Cℓℓ′p

−mm0.

(A.30)

where jp is the spherical Bessel function and Cℓ1,ℓ2,ℓ3
m1,m2,m3 are the Clebsch-Gordan coef-

ficients. Finally, we obtain the representation of the Ising Swap gate

⟨ℓ1m1, ℓ2m2|PIα |ℓ3m3, ℓ4m4⟩ = ⟨ℓ1m1|PT(α m2
m1

)|ℓ4m1⟩ ⟨ℓ2m2|PT(α m1
m2

)|ℓ3m3⟩ δm1,m4 δm2,m3

(A.31)

This expression remains applicable even when m1, m2 = 0, as it can be seen from Eq.

(A.30) that the denominators in the argument of jp cancel out. With this understand-

ing, we now proceed to integrate all the discussed components, culminating in the

following representation:

⟨ℓ1m1, ℓ2m2|PΦα,β,γ |ℓ3m3, ℓ4m4⟩ =
ℓ1,ℓ2

∑
q1,q2=−ℓ1,−ℓ2

⟨ℓ1m1|PRx(β)|ℓ1q1⟩⟨ℓ4q1|PRx(β)|ℓ4m4⟩⟨ℓ2m2|PRx(γ)|ℓ2q2⟩⟨ℓ3q2|PRx(γ)|ℓ3m3⟩×

× ⟨ℓ1q1|PT(α q2
q1
)|ℓ4q1⟩ ⟨ℓ2q2|PT(α q1

q2
)|ℓ3q2⟩ (A.32)

A.6 The modes which contribute to the correlations

In this Appendix, we establish that the only relevant ℓ-subspaces contributing to the

correlations are those common to the expansions of the observables using spherical
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harmonics. These subspaces, denoted as Vℓ = span({|ℓ, m⟩}ℓm=−ℓ), are crucial for

our analysis. The proof stems from the block diagonal structure of the transfer op-

erator F (denoted as F+), which implies that it can be expressed as a direct sum

F =
∞
⊕
ℓ=0

F ℓ, where F ℓ represents the blocks associated with each total angular mo-

mentum subspace. Thus, it’s advantageous to work in a picture where the Hilbert

space L2(S2) =
∞
⊕
ℓ=0

Vℓ is a direct sum of these subspaces. In this context, the two lo-

cal observables mentioned in the main text can also be decomposed as |a⟩ =
∞
⊕
ℓ=0

|aℓ⟩

and |b⟩ =
∞
⊕
ℓ=0

|bℓ⟩. We assume that their expansions using spherical harmonics over-

lap only with a finite number of Vℓ spaces, denoted as ℓa
i for i = 1, . . . , na and ℓb

j for

j = 1, . . . , nb, respectively. Here, na and nb represent the total number of overlapping

Vℓ subspaces of the observables. Consequently, this implies that the components |aℓ⟩

and |bℓ⟩ trivially vanish in the remaining total angular momentum subspaces:

|aℓ⟩ = 0⃗ℓ for ℓ ̸= ℓa
i

|bℓ⟩ = 0⃗ℓ for ℓ ̸= ℓb
j

(A.33)

where 0⃗ℓ is the zero vector in Vℓ. Moreover, in this picture, the Hermitian product

splits into a sum of Hermitian products over Vℓ and by using |◦⟩ = |1⟩/2
√

π, we

obtain from Eq. (2.46)

Ca,b(t, t) =
1

4π

( ∞

∑
ℓ=0

⟨aℓ|(F ℓ)2t|bℓ⟩ − 1
4π

⟨1|b⟩⟨1|a⟩
)
=

1
4π ∑

ℓc ̸=0
⟨aℓc |(F ℓc)2t|bℓc⟩,

(A.34)

where we applied Eq. (A.33) and now, one can observe, that the only non-vanishing

terms are the ones of the common subspaces ℓc between ℓa
i and ℓb

j . The space V0 of

the constant on S2 scalars, does not contribute to the correlations since it is being

cancelled out from the second term in Eq. (A.34). In addition, our result automati-

cally implies, that only the eigenvalues of F ℓc contribute and thus the exact 2-point

function is defined by a finite set of exponentials. One can obtain the results for the

other chirality of correlations by using the middle point reflection β, γ → γ, β.
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Appendix B

Unitary designs and distributions

of overlaps

B.1 EGinUE and Isserlis’ theorem

In this part, we provide an analytic proof of Eq. 3.59, in the main text. We use the

compact way of representing the vectors on the basis of H2k, shown in Sec. 3.1.2. We

start by focusing on the average of an arbitrary element of the tensor in Eq. (3.59):

EGinUE
[
⟨i, a|G̃ ⊗ · · · ⊗ G̃ ⊗ G̃∗ ⊗ · · · ⊗ G̃∗|j, b⟩

]
=

EGinUE[(G̃)i1,j1 . . . (G̃)ik ,jk(G̃
∗)a1,b1 . . . (G̃∗)ak ,bk ] (B.1)

where we omit the index a since the result does not depend on it. So the average

is being performed over 2k complex Gaussian variables, k coming from matrix ele-

ments of G̃ and k from G̃∗. Now, we apply Isserlis’ theorem, which when applied to

a product of 2k complex Gaussian variables, is supposed to simplify it to products

of averages of pairings among these 2k random variables. However, in our case, we

know that E[(G̃α)b,c(G̃∗
α)b′,c′ ] = ν2δb,b′δc,c′ , E[(G̃α)b,c(G̃α)b′,c′ ] = 0. Consequently,

the only pairings that contribute are the ones where each of the k copies of G̃ is

paired to a copy of G̃∗. This pairing is nothing more than a permutation of Sk.Based

on that, the application of Wick’s theorem at the equation above leads to:

EGinUE
[
⟨i, a|G̃ ⊗ · · · ⊗ G̃ ⊗ G̃∗ ⊗ · · · ⊗ G̃∗|j, b⟩

]
= ∑

σ∈Sk

k

∏
m=1

EGinUE[(G̃α)im,aσ(m)
(G̃∗

α)jm,bσ(m)
] =

∑
σ∈Sk

ν2k ∏
m

δim,aσ(m)
δjm,bσ(m)

= ∑
σ∈Sk

ν2kδi,σ(a)δj,σ(b)

(B.2)
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where for practical reasons we compacted all the Kronecker-δ, with our vector no-

tation for the indices. By the definition of, |σ⟩⟩ in Sec. 3.1.2 we get that ⟨i, a| σ⟩⟩ =

δi,σ((a) and ⟨⟨σ |j, b⟩ = δj,σ(b), where the second equality comes from the fact that

|σ⟩⟩ has real components. Finally, by applying these relations to Eq. B.2, we obtain

that

EGinUE
[
⟨i, a|G̃ ⊗ · · · ⊗ G̃ ⊗ G̃∗ ⊗ · · · ⊗ G̃∗|j, b⟩

]
= ∑

σ∈Sk

ν2k ⟨i, a| σ⟩⟩⟨⟨σ |j, b⟩ =

⟨i, a|
(

∑
σ∈Sk

ν2k|σ⟩⟩⟨⟨σ|
)
|j, b⟩

Since this is true for every, i, a, j, b we finally recover the equation Eq. 3.59 in the

main text.

B.2 Adjacency matrices

In the main text, we focused more on the adjacency matrix A of a single transpo-

sition, defined as Aσ,σ′ = δD(σσ′−1),1. However, in the expansion in Eq. (3.65), we

can see that the adjacency matrices of multiple transpositions are appearing. In

particular, we define the family of adjacency matrices (Ai)σ,σ′ = δD(σσ′−1),i with

i = 0, 1, 2, . . . . By its definition, Ai expresses which pairs of permutations differ

by a minimal of i transpositions. The group structure of Sk actually connects all the

adjacency matrices to A1 = A. We are going to prove that one needs to know only

A and the rest adjacency matrices can be recovered from it.

We start with the definition of (Ai)σ,σ′ = δD(σσ′−1),i, which expresses that if (Ai)σ,σ′ =

1 then there exists a specific minimal number of i transpositions {τ1, τ2, . . . , τi} such

that σ = τ1τ2 . . . τiσ
′. In the main text for the purpose of studying our statistical

model in Sec. 3.2.3, we explained that (Ai)σ,σ′ is the total number of ways that σ, σ′

can differ by i transpositions, but not minimally. To understand this, let’s denote

π1, π2, . . . , πi, i transpositions and each of them can be any of the (k
2) transpositions

in Sk. Then (Ai)σ,σ′ , will be the total number of possible ways that σ = π1π2 . . . πiσ
′.

Among this possible combinations of transpositions and there should be as well the

specific minimal one given by τ1, τ2, . . . , τi. If (Ai)σ,σ′ = 0 then there is no way

of σ, σ′ differing by i transpositions and thus no minimal way either (Ai)σ,σ′ = 0.

There is only one thing left and that is related to the identity e permutation. When

σ = σ′ =⇒ D(σσ′−1) = D(e) = 0, where we consider that the identity element has
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no minimal expression with transpositions. Taking this into account we can then

deduce that (Ai)σ,σ = 0. To conclude, all of the above can be expressed with the

following relation for i ≥ 1

(Ai)σ,σ′ =


0, when σ = σ′

Θ
(
(Ai)σ,σ′ − 1

)
, otherwise

(B.3)

with Θ(x) being the Heaviside function such that Θ(0) = 1. The equation above

demonstrates that the knowledge of A determines the rest of the adjacency matrices

Ai.

B.3 Distribution of g for pbc

We start using the standard results of [98] about the spectrum of a random matrix

with an external deterministic source. Consider a matrix M distributed according to

Pro(M) = exp[−n Tr[V(M)− AM]] , (B.4)

where V is the potential and A is a deterministic matrix that we can assume to be

diagonal without loss of generality A = diag(a1, . . . , an). Then, the eigenvalues

{w1, . . . , wn} of M follow the joint probability distribution

Pro(w1, . . . , wn) =
1

Zn
det
(

wk−1
α

)n

α,k=1
det(enakwα)n

α,k=1

n

∏
α=1

e−nV(wα) , (B.5)

where the constant Zn enforces normalisation. For Eq. (3.166), one sets

M =
√

xnH + xB , (B.6)

where H and B are as defined in the main text, which is equivalent to choosing in

Eq. (B.5)

V(M) =
M2

2xn
, A =

B
n

, (B.7)

leading to

Pro(w1, . . . , wn) =
1

Zn
det
(

wk−1
α

)n

α,k=1
det
(

e−(k−1/2)wα

)n

α,k=1
e−∑n

α=1
w2

α
2x . (B.8)
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We are interested in computing the moments of Tr
[
eM], i.e.

Ωk(x) :=

〈(
∑
α

ewα
)k
〉

=
∫

dw1 . . . dwn Pro(w1, . . . , wn)

(
∑
α

ewα

)k

. (B.9)

The calculation will be analogous to [97], but we report it here with the appro-

priate notation and normalisations for convenience. As a proxy for the calcula-

tion of Ωk(x), we first introduce Schur’s polynomials. To an integer partition ρ =

(ρ1, . . . , ρn) of the integer k = ∑n
j=1 ρj, with ρ1 ≥ ρ2 ≥ . . . ≥ ρn ≥ 0, one associates

the corresponding Schur polynomial in n variables y1, . . . , yn via [128]

sρ(y) :=
det
(

y
ρj+n−j
α

)n

j,α=1

det
(

yk−1
α

)n

k,α=1

=
det
(

y
hj
α

)n

j,α=1

det
(

yk−1
α

)n

k,α=1

, (B.10)

where we denote hj ≡ ρj + n − j. Schur polynomials are symmetric and homo-

geneous of degree k. Setting yα = ewα and using the Vandermonde determinant

formula

det
(

yk−1
α

)n

α,k=1
= ∏

α<β

(yβ − yα) , (B.11)

we can deduce

(−1)n(n−1)/2e(n−1/2)∑α wα det
(

e−(k−1/2)wα

)n

α,k=1
= det

(
e(k−1)wα

)n

α,k=1
, (B.12)

which allows us to express the average as

⟨sρ(y = ew)⟩ = (−1)n(n−1)/2

Zn

∫
dw1 . . . dwn det

(
wk−1

α

)n

α,k=1
det
(

ewα(hj−n+1/2)
)n

j,α=1
e−∑n

α=1
w2

α
2x .

(B.13)

We can use Andreief identity [129] to express it in terms of a single determinant

⟨sρ(y)⟩ =
(−1)n(n−1)/2(2πx)n/2n!

Zn
det
(

Ik,ρj−j+1/2

)n

k,j=1
, (B.14)

where we defined

Ik,ℓ =
∫ ∞

−∞

dw√
2πx

wk−1eℓw− w2
2x = ∂k−1

µ

[
exµ2/2

]∣∣∣
µ=ℓ

=

(
−i
√

x
2

)k−1

eℓ
2x/2Hk−1

(
iℓ
√

x/2
)

,

(B.15)

and in the last equality we used the Hermite polynomials Hp(z) = (−1)pez2
∂

p
z [e−z2

].

Note that in these conventions, the leading coefficient is Hp(z) = 2pzp + O(zp−1).
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Thus, by using the properties of determinants, we can combine the rows to extract

only the leading coefficient out of each Hermite polynomials, obtaining

det
[

Ik,ρj−j+1/2

]n

k,j=1
= xn(n−1)/2 exp

[
x
2 ∑

j
(ρj − j + 1/2)2

]
det
[
(ρj − j + 1/2)k−1

]
.

(B.16)

This last determinant is once again a Vandermonde one which can be expressed via

Eq. (B.11). We can now plug this back in Eq. (B.14) and fix the normalization Zn

using that for the trivial partition of 0, ρ1 = ρ2 = . . . ρn = 0, so that sρ=0(y) = 1

identically. We finally obtain

⟨sρ(y)⟩ = exp

[
x
2 ∑

j
(ρj − j + 1/2)2 − (j + 1/2)2

]
sρ(1) , (B.17)

where we recognized the equality

∏
1≤j<j′≤n

ρj − ρj′ − j + j′

j′ − j
= sρ(y1 = 1, . . . , yn = 1) , (B.18)

which expresses the number of semistandard Young diagram of shape ρ and n en-

tries [128]. Eq. (B.17) is consistent with the fact that for x = 0, the distribution Eq.

(B.8) reduces to Pro(w1, . . . , wn) = ∏α δ(wα) as the matrix M vanishes identically.

Then, using the identity [128]

∑
j
(j − 1)ρj =

1
2 ∑

i
ρt

j(ρ
t
j − 1) , (B.19)

with ρt the dual partition of ρ, we obtain that

1
2 ∑

j
(ρj − j + 1/2)2 − (j + 1/2)2 = ν(ρ) , (B.20)

as defined in Eq. (3.147). Now, we can relate the average of Schur polynomials to

Mk(x) using (see Eq. 3.10 in [130])

(
∑
α

yα

)k
= ∑

ρ⊢k
dim(ρ)sρ(y) ⇒ Mk(x) = ∑

ρ⊢k
dim(ρ)exν(ρ)sρ(1) . (B.21)

Finally, we consider the limit of large n. We have the standard identity (see Example

5, page 46 in [128])

lim
n→∞

sρ(1)
nk =

dim(ρ)

k!
, (B.22)
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which leads to the final result employed in the main text

E(gk) = lim
n→∞

Mk(x)
nk =

1
k! ∑

ρ⊢k
dim(ρ)2exν(ρ) . (B.23)

B.4 Numerical Simulations

In this section, we present additional numerical results related to the temporal-

random and Floquet variations of the two models, RPM and BWM.

B.4.1 Temporal-Random Circuits

In this part we present the models with the local gates of the dynamics being chosen

randomly in time and space. In Sec. 3.2.4, we established the convergence to the

theory of the RPM and BWM under periodic (pbc) and open (obc) boundary con-

ditions. Here, we further support our findings by demonstrating consistency with

theoretical predictions under complementary boundary conditions, as illustrated in

Fig. B.1. Figure B.2 explicitly confirms the universality of the Thouless scaling limit,

as predicted by our theoretical framework. The numerical results presented in this

paper were obtained as follows:

• RPM: Simulations were performed in the time direction for systems with a

maximum size of Lmax = 20 and up to a maximum time of tmax = 20, with

an effective coupling strength ϵ = 1 and q = 2. The system’s dynamics were

computed using the transfer matrix in the time direction. The single-time step

transfer matrix at time t′ consists of two layers, U (t′) = U2(t′)U1(t′), where

U1(t′),U1(t′) represent the layer of single site and two site gates respectively

(as detailed in Sec. 3.2.4), applied iteratively for t steps. The resulting states,

|Ψ(t)⟩ =
(
∏t′≤t U (t′)

)
|Ψ0⟩ ≡ |Ψ⟩, were then used to produce the overlap of

two statistically independent states and thus generate the ensemble of w′ =

N | ⟨Ψ|Ψ′⟩ |2 for a sample size of Nsample = 1.5 × 106.

• BWM: The ensemble w was generated using the same approach as for RPM,

with q = 2, Lmax = 20, tmax = 20, but the local gate uj,j+1(t) acting on site j at

time t is drawn from the circular unitary ensemble (CUE). The single time step

dynamics are created by two layers of uj,j+1, an even and an odd one as indi-

cated in Fig. 3.3(a). The BWM model presents a greater numerical challenge

due to the rapid growth of LTh(t) overtime, as shown in Fig. B.1 and Fig. 3.6 (in



B.4. Numerical Simulations 161

8 6 4 2 0 2 4
y

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

P(
y)

x = 0

x = 1

x = 1.5

0 5 10
0

10

20

L T
h(

t)

(a)

8 6 4 2 0 2 4
y

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

P(
y)

x = 0

x = 0.5

x = 1

0 1 2 3
0

10

20

L T
h(

t)

(b)
FIGURE B.1: Convergence of the numerical distributions (colored
lines) to the theoretical ones (black-dashed line). (a): The obc numer-
ical simulations of the RPM. For x = 0, we provide data for (t, L) ∈
{(10, 6), (15, 6), (20, 6)}; for x = 1, (t, L) ∈ {(3, 8), (5, 10), (10, 19)};
and for x = 1.5, (t, L) ∈ {(3, 10), (5, 13), (7, 18)}. (b): pbc numerical
simulations for the BWM at q = 2 and up to Lmax = 20, tmax = 20.
We provide data for x = 0 at (t, L) ∈ {(3, 15), (5, 15)}; for x = 0.5 at
(t, L) ∈ {(1, 5), (2, 10)}; for x = 1 at (t, L) ∈ {(1, 7), (2, 16)}. Figure

taken by [37].

the main text). To manage this, we used the spatial transfer matrix method for

simulating ⟨Ψ|Ψ′⟩ with Lmax = 120 and tmax = 5. This method was specifically

applied to the obc case, as the pbc scenario requires even more computational

resources, reaching up to tmax = 2.

The theoretical distributions of the random variable y = log w′ were obtained using

equations Eq. (3.164) and Eq. (3.166) (in the main text) for obc and pbc, respectively.

This analysis was conducted for Nsample = 106 at x = 0, 0.5, 1, 1.5. Figure B.3(a)

illustrates that in the obc scenario, the theoretical distribution exhibits robust n-

convergence at n = 300, which was used for numerical comparison. In Fig. B.3(b),

we highlight the differences between the distributions for different boundary con-

ditions. The Thouless length LTh(t) in our simulations was determined as LTh(t) =

Lint(t)/x, where Lint(t) denotes the system size at which the numerical estimate of

E[y]sim(L = Lint(t), t) aligns with the theoretical prediction E[y]RPM/BWM for a given

time t and value of x. The consistency of LTh(t) estimates across different values of

x reinforces the robustness of our approach.
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FIGURE B.2: Convergence of the RPM (blue curves) and BWM
(coloured triangles) models to the same scaling limit (black dashed
curve) for x = 1. (a) The obc numerical simulations of RPM
at (t, L) ∈ {(3, 8), (5, 10), (10, 19)} and of BWM at (t, L) ∈
{(1, 8), (3, 40), (4, 88)}; (b) The pbc numerical simulations of RPM
at (t, L) ∈ {(3, 6), (5, 9), (10, 17)} and of BWM at (t, L) ∈

{(1, 7), (2, 16)}. Figure taken by [37]
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FIGURE B.3: (a) The convergence in n for the pbc theoretical predic-
tion of P(y), which was found via Eq. (3.166) (in the main text). The
lines of the same colour correspond to n = {10, 25, 50, 100, 150} from
lighter to darker shades, with the black dashed line corresponding to
n = 300. (b) Comparison of the theoretical distributions for obc (solid
curves) and pbc (dashed curves) at x = 1, 1.5. Figure taken from [37].

B.4.2 Floquet Circuits

Here, we present our numerical results for Floquet circuits, where the local gate

uj,j+1(t) = uj,j+1 and the layers U1,U2 remains common across time steps t and is

drawn randomly for both RPM and BWM models for different sites. Figure B.4

shows the convergence of the Floquet BWM model to our theoretical predictions,

while the Floquet RPM at q = 2 does not exhibit convergence to the theoretical

expectations. This observation is consistent with previous studies [39, 131], which

suggest that the q = 2 Floquet RPM may display characteristics of a many-body lo-

calized (MBL) phase, except at large effective coupling ϵ. In the MBL phase, the quasi

local conserved charges hinder scrambling, invalidating the coarse-grained picture
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G̃a of the transfer matrix in the spatial direction. Moreover, the complete scrambled

regions in the coarse grained picture are not expected to grow unbounded and thus

the same behaviour is expected for the Thouless length, as well as hindering of the

exponential its growth (see inset of Fig. B.4(a)).
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FIGURE B.4: The numerical distributions for the Floquet circuits (a):
RPM with obc, q = 2, ϵ = 1, Lmax = 20, and tmax = 20. We
present the distributions for x = 0 at (t, L) ∈ {(5, 8), (10, 8), (20, 8)};
for x = 1.5 at (t, L) ∈ {(11, 11), (13, 14), (15, 17)}. (b) BWM
with obc, q = 2 for x = 0 at (t, L) ∈ {(1, 6), (3, 6), (5, 6)}; for
x = 1 at (t, L) ∈ {(1, 8), (3, 19), (4, 80)}; for x = 1.5 at (t, L) ∈

{(1, 11), (3, 55), (4, 116)}. Figure taken by [37].
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Appendix C

Universal out of equilibrium

dynamics

C.1 Fokker-Planck equation

In this section we derive the Fokker-Planck equation (4.50) of the text, for the joint

PDF of the backward stochastic trajectories x1 = X+
t (y1), . . . , xn = X+

t (yn) associ-

ated to the Langevin equation (4.47). We thus consider only a given chirality, here

we choose +, but the same Fokker-Planck equation holds for the chirality −, with

v → −v. We do not consider here the joint PDF of both chiralities. So here we denote

simply X+
t → Xt.

One can show that Eq. (4.47) translates into a stochastic equation for the variable

Xt(yi) as a function of t which takes the form (see Eq. (58-59) in Supp. Mat. of [116])

dXt(yi) =
v2

2
X′′

t (yi) f (0)dt − X′
t(yi)v

(
dt + dWt(yi)

)
(C.1)

where dXt(yi) = Xt+dt(yi) − Xt(yi). The Wt(yi) are mutually correlated Wiener

processes in time t, which relates to the noise in Eq. (4.40) and Eq. (4.47) via

Wt(y) =
∫ t

0
ds η(y, s) , dWt(y)dWt(y′) = dt f (y − y′) (C.2)

Here dWt(y) = Wt+dt(y)−Wt(y) and f (y) is the noise correlation function defined

in the text.

Consider an arbitrary smooth function of n-variables G(x1, . . . , xn). In the case of

these variables being the backward stochastic trajectories xi = Xt(yi) of Eq. (4.47),

we define:

gt(y1 . . . yn) = G
(
Xt(y1) . . . Xt(yn)

)
(C.3)
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By Ito calculus the time variation dgt = gt+dt − gt of this observable is obtained by

expanding up to second order.

dgt =
n

∑
j=1

∂jG
(
Xt(y1), . . . , Xt(yn)

)
dXt(yj)+

1
2

n

∑
j,m=1

∂j∂mG
(
Xt(y1), . . . , Xt(yn)

)
dXt(yj)dXt(ym)

(C.4)

Here we shortened the notation setting ∂xj . . . ∂xm G(x1 . . . xn) = ∂j . . . ∂mG(x1 . . . xn).

Using Eq. (C.1) and Eq. (C.2), we derive

dXt(yi) dXt(yj) = v2X′
t(yi)X′

t(yj) f (yi − yj)dt + O(dt3/2) . (C.5)

Averaging over the noise we obtain

dgt

dt
= −v

n

∑
j=1

∂jG
(
Xt(y1), . . . , Xt(yn)

)
X′

t(yj)+
v2 f (0)

2

n

∑
j=1

∂jG
(
Xt(y1), . . . , Xt(yn)

)
X′′

t (yj)+

+
v2

2

n

∑
j,m=1

f (yj − ym)∂j∂mG
(
Xt(y1), . . . , Xt(yn)

)
X′

t(yj)X′
t(ym) (C.6)

From the chain rule for the derivation with respect to the variables {yi} it is easy to

check that

∂yj ∂ym gt = X′
t(yj)X′

t(ym)∂j∂mG + δj,mX′′
t (yj)∂jG (C.7)

which finally leads to:

dgt

dt
=
[
− v

n

∑
j=1

∂yj +
v2

2

n

∑
j,m=1

f (yj − ym)∂yj ∂ym

]
gt . (C.8)

It is useful to re-express Eq. (C.8) in terms of the Fokker-Planck Hamiltonian (and its

hermitian adjoint). In order to do so, we introduce the operators qj and pj, defined

by their action on any smooth function ω(y) as qj · ω(y) = yjω(y) and pj · ω(y) =

−ı∂jω(y). For these conjugate variables the canonical quantization holds [qi, pj] =

ıδi,j. We can then define

HFP ≡ −iv
n

∑
i=1

pi +
v2

2 ∑
ij

pi pj f (qi − qj) , (C.9)

so that we can rewrite

dgt

dt
= −H†

FP · gt , H†
FP ≡ iv

n

∑
i=1

pi +
v2

2 ∑
ij

f (qi − qj)pi pj . (C.10)
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To deduce the Fokker-Planck equation for P(x|y), defined in the text, we need

one more step. From the definition of P(x|y), we have

gt(y) =
∫

dx′ G(x′)Pt(x′|y) (C.11)

We can choose G(x′) = δϵ(x′ − x), where δϵ(x) is a mollifier of the Dirac delta func-

tion. In the limit ϵ → 0, we recover gt(y) → Pt(x|y) the jpdf for the initial points

x = (x1, . . . , xn) of the stochastic trajectories and finally deduce from Eq. (C.10)

∂tPt(x|y) = −HT
FP[y] · Pt(x|y) (C.12)

This equation can be formally solved starting from the initial condition at t = 0 is

Pt=0(x|y) = δ(x − y). It is useful to employ the bra ⟨y| and ket |x⟩ notation for

the eigenstates of the position operators q̂j. Then, we can represent the probability

distribution as:

Pt(x|y) ≡
〈

y|e−tH†
FP |x
∣∣∣y|e−tH†

FP |x
〉
=
〈

x|e−tHFP |y
∣∣∣x|e−tHFP |y

〉
(C.13)

where the last equality follows from the hermitian conjugation. Therefore, the fol-

lowing equation must also holds:

∂tPt(x|y) = −HFP[x] · Pt(x|y) (C.14)

where the action of the differential operator HFP[x] is now over the variables x. More

explicitly using Eq. (C.9), we arrive at

∂tPt(x|y) = v

(
n

∑
i=1

∂i +
v
2

n

∑
i,j=1

∂i∂j f (xi − xj)

)
Pt(x|y) . (C.15)

which coincides with Eq. (4.50) given in the main text.
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C.2 Analysis of the short distance regime for κ

In the limit ℓ ≪ 1, one has Eq. (4.65) in the main text that we report for convenience

dr = rvdB1 , dκ = − ℓ2

6
r2v(−v

2
f (4)(0)dt + dB2) (C.16)

dB1dB1 = − f ′′(0)dt , dB2dB2 = − f (6)(0)dt , dB1dB2 = − f (4)(0)dt (C.17)

We will now show from these equations, that κ satisfies a closed SDE which leads to

the stationary measure given in the main text. We first of all solve the equation for

the variable r, which takes the form

r(t) = exp
[

vB1(t) +
1
2

v2 f ′′(0)t
]

(C.18)

Injecting this solution in the equation for κ and integrating in time we arrive at

κ(t) = − ℓ2

6

∫ t

0
e2vB1(s)+v2 f ′′(0)sv

(
−v

2
f (4)(0)ds + dB2(s)

)
(C.19)

This equation gives already a closed representation for κ(t).

We can further simplify Eq. (C.19) by making use of the following reparametriza-

tion: for each t, we define for i = 1, 2, B̃i(s′) = Bi(t)− Bi(t − s′), s′ ∈ [0, t], which

is thus an equivalent Brownian process which measures the deviation from the final

point Bi(t) (which is kept fixed) of the original one. One clearly has B̃i(0) = Bi(0) =

0, B̃i(t) = Bi(t) and dB̃i(s′) = dBi(t− s′). We want now to rewrite Eq. (C.19) in terms

of the processes B̃i. A little bit of care is needed for the stochastic integral. Indeed,

writing explicitly the Ito integral, we have

∫ t

0
e2vB1(s)+v2 f ′′(0)sdB2(s) = lim

n→∞

n−1

∑
i=0

e2vB1(si)+v2 f ′′(0)si(B2(si+1)− B2(si)) =

= e2vB̃1(t)+v2 f ′′(0)t lim
n→∞

n

∑
j=1

e−2vB̃1(s̃j)−v2 f ′′(0)s̃j(B̃2(s̃j)− B̃2(s̃j−1)) (C.20)

where the si’s are a partition of n elements of [0, t], with s0 = 0 and sn = t. We have

defined s̃j = t − si with j = n − i, which is an equivalent partition. Clearly, the last

expression does not converge to a stochastic integral in the Ito form. We thus rewrite

in the last term as

e−2vB̃1(s̃j) = e−2vB̃1(s̃j−1)e−2v(B̃1(s̃j)−B̃1(s̃j−1)) (C.21)
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and then expand the second exponential, using (B̃1(s̃j)− B̃1(s̃j−1))(B̃2(s̃j)− B̃2(s̃j−1)) =

− f (4)(0)(s̃j − s̃j−1). We then arrive at

∫ t

0
e2vB1(s)+v2 f ′′(0)sdB2(s) = e2vB̃1(t)+v2 f ′′(0)t

[∫ t

0
e−2vB̃1(s)−v2 f ′′(0)sdB̃2(s) + 2v f (4)(0)

∫ t

0
e−2vB̃1(s)−v2 f ′′(0)sds

]
(C.22)

Applying these transformations to Eq. (C.19) we obtain

κ(t) = − ℓ2

6
e2vB̃1(t)+v2 f ′′(0)t︸ ︷︷ ︸

κ1

∫ t

0
e−2vB̃1(s)−v2 f ′′(0)sv

(
3v
2

f (4)(0)ds + dB̃2(s)
)

︸ ︷︷ ︸
κ2

(C.23)

Using Ito’s lemma, dκ = κ2dκ1 + κ1dκ2 + dκ1dκ2, which, after collecting different

contributions, leads to

dκ = v2
(
ℓ2

12
f (4)(0)− f ′′(0)κ

)
dt − ℓ2v

6
dB̃2(t) + 2vdB̃1(t)κ (C.24)

The correlations of the dB̃j(t) are the same as the ones of the dBj(t) in Eq. (C.17).

However, κ(t) defined by Eq. (C.23) is a different process in t than κ(t) defined by

Eq. (C.19). At fixed t the two random variables have the same law, but as t is varied

the trajectories are different (since the relation between B̃i and Bi involves t explic-

itly). As a consequence, the two stochastic equations Eq. (C.24) and Eq. (C.19) are

inequivalent although they lead to the same single-time distribution for κ(t). One

illustration of that is that while the second process converges, i.e. κ(t) → κ∞, where

the distribution of κ∞ is given below, the first process is ergodic (with the same law).

A simpler example, which allows to understand better this point (using more ex-

plicit notations) is worked out in the remark below.

We can recast Eq. (C.24) as an equation with a single Brownian process dB (we

are using that a1dB1 + a2dB2 =
√
−a2

1 f ′′(0)− a2
2 f (6)(0)− 2a1a2 f (4)(0)dB̃, where dB̃

is a new Wiener process with standard normalization, dB̃2 = dt)

dκ = v2
(
ℓ2

12
f (4)(0)− f ′′(0)κ

)
dt+

vdB̃
6

√
−
(
ℓ4 f (6)(0)− 24ℓ2 f (4)(0)κ + 144 f ′′(0)κ2

)
(C.25)

With the change of variable κ = κ0(ω/ω0 − 1) where we defined as in the main text

κ0 = − ℓ2

12
f (4)(0)
f ′′(0)

, ω0 =
1√

f (6)(0) f ′′(0)
f (4)(0)2 − 1

(C.26)
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Note that ω0 is real and positive as it is guaranteed by the positivity of the Fourier

transform f̂ (k) > 0 of f (x). Indeed,

f (6)(0) f ′′(0)− f (4)(0)2 =
∫

k2 f̂ (k)
∫

k6 f̂ (k)−
(∫

k4 f̂ (k)
)2

> 0 (C.27)

which is a consequence of the Cauchy-Schwartz inequality.

The SDE for ω becomes Eq. (4.72), which is solved by

ω(t) = e
√

8θB(t)−2θt
(

ω0 +
√

8θ
∫ t

0
e−

√
8θB(s)+2θsdγs

)
. (C.28)

One recognises a Bougerol variable with drifted Brownian motion in the exponent [121].

It is useful to do the change of variable (4.72)

ω = sinh Y , Y = Y(ω) = argsinhω (C.29)

One has

Y′(ω) =
1√

1 + ω2
=

1
cosh Y

, Y′′(ω) = − ω

(1 + ω2)3/2 (C.30)

and from Ito’s rule, it follows Eq. (4.75) in the main text.

Remark We presented a method to transform the random variable Eq. (C.19)

expressed as an integral into the solution of the stochastic process (C.25). As men-

tioned above, the two describe random variables having the same single-time dis-

tribution, but they differ as stochastic processes, i.e. in the way the realisation at

time t and t + dt are connected. In particular, Eq. (C.19) almost surely has a fixed

limit κ(t → ∞) for each realisation, while the latter is ergodic (being equivalent to a

Langevin equation Eq. (4.72)). Nevertheless, the distribution of κ(t → ∞) over the

noise realisations is the same in the two cases. To further clarify the aspect, we have

included a self-contained minimal example of this mechanism where we make the

notation more explicit. Consider the process

Zt =
∫ t

0
dseB(s)−s/2 (C.31)

where B(s) is a standard Wiener process with B(0) = 0. Since B(s) is almost surely

subleading with respect to s/2, for each realisation of B(s) the limit Z∞ = limt→+∞ Zt

exists almost surely. The value of Z∞ changes from realisation to realisation and is



C.3. Stationary measure for κ for any finite ℓ 171

thus a random variable. On the other end, as in the previous discussion, we define

at fixed t B̃t(s) = B(t) − B(t − s), which is also a standard Wiener process. Here

t denotes the time around which the Brownian has been reflected, is indicated for

clarity as a subscript. One can now write

Z(t) =
∫ t

0
ds′eB(t−s′)−t/2+s′/2 = e−t/2+B̃t(t)

∫ t

0
ds′e−B̃t(s′)+s′/2 = Z̃t(s)|s=t (C.32)

where we have defined

Z̃t(s) = e−s/2+B̃t(s)
∫ s

0
ds′e−B̃t(s′)+s′/2 (C.33)

This is a new process for s ∈ [0, t] which obeys the following stochastic equation

dZ̃t(s) := Z̃t(s + ds)− Z̃t(s) = ds + Z̃t(s)dB̃t(s) (C.34)

where Z̃t(0) = 0. By running this equation until s = t, we can recover Z(t) via

Eq. (C.32). We can solve this stochastic equation setting Qt(s) = ln Zt(s). One has

dQt(s) = dB̃t(s) +
(

e−Qt(s) − 1
2

)
dt = −V ′(Qt(s))ds + dB̃t(s) (C.35)

with V(Q) = e−Q + Q/2. This last equation is of Langevin type and it implies a

stationary distribution at large s = t → ∞ for Q∞ and Z∞

P(Q∞) = Ce−2V(Q∞) ⇒ P(Z∞) =
C
Z2 e−2/Z (C.36)

which leads to the known inverse gamma distribution for Z∞. Note that we have

chosen t sufficiently large so that the stationary measure has been reached when

s = t.

C.3 Stationary measure for κ for any finite ℓ

C.3.1 Backward method

We now apply the backward method to the full stochastic equation for r(t), κ(t) in

Eq. (4.61). As explained in the main text, we define

Qk(r0, t) ≡ e−ikκ(t)
r0

(C.37)
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where the superscript r0 = r(t = 0) indicates the initial condition for the variable r.

In the end we will set r0 = 1 as it is required in our case, but it is useful to keep it

free. One has

Qk(r0, t + dt) = e−ik(v2g(r0)dt+v dW2(0))Q(r0 + vdW1(0), t)
r0

(C.38)

expanding with Ito’s lemma and averaging we arrive at

∂tQk = v2 (Aℓ(r)∂2
r − ikBℓ(r)∂r − k2Cℓ(r)− ikgℓ(r)

)
Qk(r, t) . (C.39)

with the boundary conditions

Qk(r0, 0) = 1 , Qk(r0 = 0, t) = 1 , lim
r0→+∞

Qk(r0, t) = e−2θ(k2+ik)t (C.40)

and we recall that

Aℓ(r) =
f (0)− f (ℓr)

ℓ2 , Bℓ(r) = 2
f ′(ℓr)
ℓ

+ 4
f (0)− f (ℓr)

ℓ2r

Cℓ(r) = 4
f (0)− f (ℓr) + ℓr f ′(ℓr)

ℓ2r2 − f ′′(0)− f ′′(ℓr)

gℓ(r) = − f ′′(0)− 2
f (0)− f (ℓr)

ℓ2r2 (C.41)

The second condition in Eq. (C.40) comes from the fact that dκ = 0 and dr = 0 for

r = 0 since g(0) = 0 and C(0) = 0. The third condition is obtained using the fact

that the dynamics of κ is pure diffusion at large r0.

Let us denote Qk(r) the stationary solution of Eq. (C.39). It thus satisfies

Aℓ(r)Q′′
k (r)− ikBℓ(r)Q′

k(r)− (k2Cℓ(r) + ikgℓ(r))Qk(r) = 0 (C.42)

with the boundary conditions

Qk(r0 = 0) = 1 , Qk(r0 → +∞) = 0 (C.43)

From this stationary solution one obtains the stationary measure Pstat(κ) for κ by

Fourier inversion

Pstat(κ) =
∫ +∞

−∞

dk
2π

eikκQk(r = 1) (C.44)
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C.3.2 Schrodinger equation for the stationary measure

We can further simplify Eqs. (C.40) and Eq. (C.42) by removing the first derivative

term. This can be achieved setting

Qk(r) = ϕk(r)Gk(r) . (C.45)

We choose ϕk(r) so that

ϕ′
k(r)

ϕk(r)
= ik

B(r)
2A(r)

, ϕk(r) = eik
∫ r

0 dr′ B(r′)
2A(r′) =

(
ℓ2r2 f ′′(0)

2( f (ℓr)− f (0))

)ik

= eikκ0(ℓr) (C.46)

where κ0(x) is defined in Eq. (4.84) of the main text. Then, one finds that Gk(r)

satisfies the Schrodinger equation

−G′′
k (r)− k(k + i)V(r)Gk(r) = 0 (C.47)

with the potential

V(r) =
ℓ2 ( f ′(ℓr)2 + ( f (0)− f (ℓr)) ( f ′′(ℓr) + f ′′(0))

)
( f (0)− f (ℓr))2 = − d2

dr2 log[ f (0)− f (ℓr)]+
ℓ2 f ′′(0)

f (0)− f (ℓr)
(C.48)

on the positive half-space r ≥ 0 with the boundary condition inherited from Eq. (C.43)

Gk(0) = 1 , lim
r→∞

Gk(r) = 0 . (C.49)

C.3.3 Proof of the right 3/2–tail

Here, we show that for a smooth noise correlation f (x), the right tail of the stationary

distribution is always a power-law Pstat(κ) ∝ κ−3/2 for κ → +∞, independently of ℓ.

Thanks to Eq. (C.37), it is enough to prove the following expansion at small k for its

Fourier transform

Qk(r = 1) = 1 + C
√

k + O(k). (C.50)

where C is a constant (see below). To prove Eq. (C.50), we proceed as follow. First of

all, since ϕk(r) is analytic in k, using Eq. (C.45), we can focus on the small k expansion

of Gk(r). The small k behavior of the solution of Eq. (C.47) can be obtained setting

x = r
√

γ, with γ = k(k + i). Then, setting Gk(r) = g(r
√

γ), we can rewrite Eq.
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(C.47) in the limit k → 0 as

−g′(x)− V∞g(x) = 0 ⇒ g(x) = e−
√
−V∞x (C.51)

where we set V∞ = limr→∞ V(r) and enforced the boundary conditions Eq. (C.49).

This implies

Gk(r) ∼ g(r
√

γ) = e−
√
−V∞γr , ∀r = O(γ−1/2) (C.52)

This is still not enough because we require the expansion Eq. (C.50) for r = 1.

However, fixing δ > 0 and r, we can write

|G′
k(r)−G′

k(δ/
√

γ)| =
∣∣∣∣∫ r

δ/
√

γ
dr′G′′

k (r
′)

∣∣∣∣ ≤ γ
∫ r

δ/
√

γ
dr′|V(r′)Gk(r′)| ≤ Kγ(r− δ/

√
γ)

(C.53)

where we set K = supr |V(r)Gk(r)|, which is finite for a sufficiently smooth f (x) ∈

C6 fastly decaying at infinity. As a consequence, at small γ,

G′
k(r) = G′

k(δ/
√

γ) + O(δ
√

γ) = −
√
−V∞γ (g(δ) + O(δ))

δ→0−→ −
√
−V∞γ + O(γ)

(C.54)

Finally, integrating over r

Gk(1) = 1 +
∫ 1

0
dr G′

k(r) = 1 −
√
−V∞γ + O(γ) (C.55)

which proves Eq. (C.50) with C =
√
−V∞.

C.3.4 Small ℓ limit

At small ℓ one finds that the potential is a harmonic oscillator

V(r) =
ℓ4r2

(
f (4)(0)2 − f (6)(0) f ′′(0)

)
36 f ′′(0)2 + O(ℓ6r4) (C.56)

and

κ0 = κ̃0ℓ
2 + O(ℓ4) , κ̃0 = − f (4)(0)

12 f ′′(0)
(C.57)

We see that κ0 is O(ℓ2) as ℓ → 0, so the random variable κ = O(ℓ2) in this limit.

Therefore, we can obtain a ℓ independent limit by scaling k = k̃/ℓ2. In terms of this



C.3. Stationary measure for κ for any finite ℓ 175

variable the potential term in the Schrodinger equation has a finite limit

−k(k + i)V(r) ≃ 4k̃2r2κ̃2
0

ω2
0

(C.58)

where we have defined as in the text

ω0 =
1√

f ′′(0) f (6)(0)
f (4)(0)2 − 1

(C.59)

A solution of Eq. (C.47) with the potential Eq. (C.56) and the boundary conditions

Eq. (C.49) can be expressed in terms of Bessel function as

Gk(r) =
23/4

Γ(1/4)

(
κ̃0|k̃|
ω0

)1/4 √
rK 1

4

(
|k̃|r2κ̃0

ω0

)
(C.60)

and the prefactor has been fixed imposing that Gk(r = 0) = 1. This leads to

Qk(r = 1) =
23/4

Γ(1/4)

(
κ̃0|k̃|
ω0

)1/4

eik̃κ̃0 K 1
4

(
|k̃|κ̃0

ω0

)
(C.61)

which allows to determine Pstat(κ) by Fourier inversion from Eq. (C.44).

One can check that this coincides with the result in the text, identifying κ̃ =

κ̃0

(
ω
ω0

− 1
)

. Equivalently, we obtain the scaling form

Pstat(κ)
ℓ≪1≃ 1

ℓ2 P̃(
κ

ℓ2 ) , P̃(κ̃) ≡ Cω0

κ̃0

[
1 + ω2

0

( κ̃ + κ̃0

κ̃0

)2
]−3/4

(C.62)

and one can check that the Fourier transform of P̃

∫ dk̃
2π

eik̃κ̃ P̃(κ̃) = Qk(r = 1) (C.63)

as given in Eq. (C.61). This can be seen using the identity

∫
dxeikx 1

(1 + x2)3/4 =
√

2π
(2|k|)1/4K 1

4
(|k|)

Γ
( 3

4

) (C.64)
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f (x) V(r)/ℓ2 f̂ (k) Smoothness
e−|x| 1

(1−e−rℓ)2
2

1+k2 C0

2e−|x| − e−2|x| − 2
1−e−ℓr

12
k4+5k2+4 C2

1
cosh x − tanh(ℓr)2 π

cosh(kπ/2) C∞

1
(cosh x)2 −2 tanh(ℓr)2 πk

sinh(kπ/2) C∞

TABLE C.1: A few examples of noise correlation functions f (x) lead-
ing to Schrödinger equations with a solvable potential V(r).

C.3.5 Large ℓ limit

At large ℓ, under the hypothesis that f (x) and its derivatives decay at infinity, the

potential term reaches a constant value

−k(k + i)V(r) ≃ −k(k + i)ℓ2 f ′′(0)
f (0)

∼ 2ik̃θ

f (0)
. (C.65)

where we used once again the scaling k = k̃/ℓ2, which implies again κ = O(ℓ2), but

with ℓ → ∞ in this case. From this potential, we immediately derive the solution

respecting the boundary conditions Eq. (C.49) in the form

Gk(r) = e−
√

2ik̃θ/ f (0)r (C.66)

Note that at large ℓ

κ0(ℓ)
ℓ→∞
= log

(
ℓ2(− f ′′(0))/2 f (0)

)
(C.67)

so that kκ0
ℓ→∞−→ 0 and therefore Qk(r) = Gk(r). Inverting the Fourier transform Eq.

(C.44), we obtain once again the stationary distribution

Pstat(κ)
ℓ≫1≃ 1

ℓ2 p̃
( κ

ℓ2

)
, p̃(κ̃) ≡

√
θ

2π f (0)
e−

θ
2 f (0)κ̃

κ̃3/2 Θ(κ̃) (C.68)

Equivalently, denoting κ = θℓ2χ/ f (0) one finds that χ is distributed according to

L(χ) in Eq. (4.88) in the text, i.e. the stable one sided Levy distribution of index 1/2.

C.3.6 Solvable cases for f (x)

For some particular choice of the noise correlation function f (x), the potential Vk(r)

takes a form which is explicitly integrable. In Table C.1, we list a few interesting

cases. Here, we focus on the case
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f (x) = 1/ cosh(x) (C.69)

which is analytic and fastly decaying. Setting γ = k(k + i), the solution Gk(r) re-

specting the boundary conditions Eq. (C.49) can be expressed in terms of hypergeo-

metric function

Gk(r) = e−
√

γℓr(1+ tanh(ℓr))
√

γ
2F1

(√
γ

2 − 1
2

√
γ + 1

4 +
1
4 ,

√
γ

2 + 1
2

√
γ + 1

4 +
1
4 ;
√

γ + 1; 1
cosh(ℓr)2

)
2F1

(√
γ

2 − 1
2

√
γ + 1

4 +
1
4 ,

√
γ

2 + 1
2

√
γ + 1

4 +
1
4 ;
√

γ + 1; 1
)

(C.70)

Equivalently, this expression can be represented in terms of generalised Legendre

functions

Gk(r) =
P−√

γ
1
2 (

√
1+4γ−1)

(tanh(ℓr))

P−√
γ

1
2 (

√
1+4γ−1)

(0)
(C.71)

As a first check, we verify that the solution Eq. (C.70) reproduces the known solu-

tions in the small/large ℓ limits.

C.3.6.1 Asymptotic limits ℓ → ∞

At large ℓ, we simply have

lim
ℓ→∞

Qk′/ℓ2(r) = lim
ℓ→∞

Gk′/ℓ2(r) = e−r
√

ik′ (C.72)

in agreement with Eq. (C.66) (θ = 1/2 for Eq. (C.69)). The limit in Eq. (C.72) can be

easily obtained using Eq. (C.70) using that

lim
γ→0

2F1

(√
γ

2
− 1

2

√
γ +

1
4
+

1
4

,
√

γ

2
+

1
2

√
γ +

1
4
+

1
4

;
√

γ + 1; x

)
= 2F1(0,

1
2

, 1; x) = 1

(C.73)

irrespectively of x.

C.3.6.2 Small ℓ check

In this case, the limit is less trivial as k = k′/ℓ2 becomes large in the limit of small

ℓ. So that simultaneously the parameters of the hypergeometric are diverging, while
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its argument is going to 1. Thus, we first apply the transformation between hyper-

geometric functions

2F1(a, b, c; z) =
(1 − z)−a−b+cΓ(c)Γ(a + b − c)2F1(c − a, c − b;−a − b + c + 1; 1 − z)

Γ(a)Γ(b)
+

+
Γ(c)Γ(−a − b + c) 2F1(a, b; a + b − c + 1; 1 − z)

Γ(c − a)Γ(c − b)
(C.74)

Then, we use that

lim
ℓ→0

2F1

(
1
4

(
2
√

γ −
√

1 + 4γ + 1
)

,
1
4

(
2
√

γ +
√

1 + 4γ + 1
)

;
1
2

; tanh(ℓ)2
)
=

ek′/2(k′)1/4Γ
( 3

4

)
I− 1

4
(k′/2)

√
2

(C.75)

to recover, after some manipulations, Eq. (C.61).
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