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Abstract

In the last few years, we have witnessed a growing number of machine learning
publications in the field of condensed matter and statistical physics. In particular,
machine learning (ML) methods seem to perform well in tasks such as the identifi-
cation of phases of matter. In this thesis, we study machine learning through the
scope of two models. Our first model is the two-dimensional site percolation. In this
paradigmatic model, sites are randomly occupied with probability p; a second-order
phase transition from a non-percolating to a fully percolating phase appears at oc-
cupation density p., called percolation threshold. Through supervised deep learning
approaches like classification and regression, we explore the ability of convolutional
neural networks (CNNs) to predict the density of occupation p of percolation states,
the correlation length &£, as well as the presence of a spanning cluster. We find that
image recognition tools such as CNN, which are not naturally tailored for physics,
successfully identify p. However, when dealing with parameters like £ or the presence
of a spanning cluster, these same techniques fail to provide quantitative results.

The second model is the three-dimensional Anderson model of localisation.
This model is characterised by a localisation of the wavefunctions above a critical
disorder W.. We begin by reproducing previous work done on phase classification,
and perform several new studies with classification and regression methods, to iden-
tify individual disorders in both phases. Throughout our investigation, multiple
parameters such as the size of the system or the nature of the input are studied
to observe their influence on the performance of the model. Via the study of these
two models and the use of several ML methods, we will display the successes and

limitations that one might be confronted with when using ML for phase recognition.
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Abstract en francais

Ces derniéres années, nous avons vu I’émergence d’un grand nombre de publications
de machine learning (ML) dans les domaines de la physique de la matiere condensée
et de la physique statistique. En particulier, les outils de ML apparaissent comme
des méthodes valides pour l'identification de phase. Dans cette thése, nous étudions
le ML sous le spectre de deux modeles. Le premier est le modele de percolation
de site en deux dimensions. Dans ce modele paradigmatique, les sites sont occupés
avec une probabilité p; une transition de phase du second ordre d’une phase non-
percolante a une phase percolante apparait a une probabilité d’occupation p., appelé
seuil de percolation. A I'aide de méthodes d’apprentissage supervisé telles que la
classification et la régression, nous explorons les capacités des réseau de neurones
convolutifs (CNNs) a prédire la densité d’occupation p, la longueur de corrélation &,
ainsi que la présence d’amas percolant. Nous constatons que les CNNs, qui ne sont
a la base pas pensés pour la physique arrivent a prédire p. Cependant pour £ ou la
présence d’amas percolant, ces mémes techniques ne parviennent pas a donner de
résultats satisfaisants. Le second modele est le modele de localisation d’Anderson en
trois dimensions. Ce modele se caractérise par une localisation de la fonction d’onde
au-dela d’un désordre critique W,. Nous commencons par reproduire des résultats
obtenus précédemment en classification de phase, et réalisons par la suite des études
dans le but d’identifier plusieurs valeurs de désordres dans les deux phases. Au
cours de nos recherches, nous étudions l'influences de la taille du systeme ou la
nature de 'entrée sur la performance du réseau. Au travers de I’étude de ces deux
modeles, nous montrons les points forts et les limitations auxquels il est possible

d’étre confrontés en utilisant le ML pour la reconnaissance de phase.
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Chapter 1

Introduction

1.1 A brief history of machine learning

Throughout history, the concept of an object or machine being able to learn au-
tonomously has always fascinated philosophers and scientists. However, the foun-
dation of modern Machine Learning (ML) as we know it, dates back to the 40s. In
1943, McCulloch and Pitts proposed a mathematical model emulating the behaviour
of neurons in the brain: this is the artificial neuron, which is the building block of
our modern artificial neural network [3]. With this formalism established, a new
field emerged aiming at improving the learning capacity of machines by mimicking
the behaviour of neurons in the brain. F. Rosenblatt was the first to successfully
implement the model of McCulloch and Pitts and named it perceptron [4]. While
this discovery generated a lot of enthusiasm in the field, it was soon quelled by
the limitations of the perceptron. Indeed, by 1969 Minsky and Papert proved that
this first implementation was only able to distinguish simple patterns contrary to
Rosenblatt’s early claim [5]. This disillusion and the lack of practical application of
the perceptron led to a loss of interest from investors and marked the beginning of
what was later called the first Artificial Intelligence (AI) winter [6]. A new interest
grew in the 80s helped by two main events, through Hopfield who demonstrated
the ability of the simple network to calculate [7] and more importantly the research
of D. E. Rumelhart, G. E. Hinton and R. J. Williams [8] which were the first to
successfully implement the backpropagation algorithm on an artificial neural net-
work. However, these headways were not sufficient to relaunch sustained interest in
the field, which eventually led to a second Al winter by the end of the 80s. In the
decades that followed, we observed the publication of several important articles in
the field [9,10] but interest only returned in the early 2000s.



Input Hidden Layer Output

Figure 1.1: Artificial neural network with three layers, an input layer in blue, a
hidden layer in green and an output layer in yellow. FEach layer comprises four
neurons stacked on top of each other. The layers are connected through weighted
connections. To emphasise this point, here, we draw connections with different
thicknesses. Connections with high weights appear thicker than connections with
lighter weights.

In the 2010s we have seen a boom in the field of Al, due to the development
of technologies such as Graphic Processing Units (GPUs) and the creation of tools
such as CUDA [11,12].

1.2 Artificial Neural Networks

It is important to emphasise the multidisciplinary effort that contributed to the rise
of machine learning. After all, Al was developed with the intent to imitate the
human mind. Thus, psychologists, biologists and computer scientists worked hand
in hand to further the understanding that scientists had about the functioning of
the human brain to replicate it in machines. Among the mist of articles that pave
the way to modern machine learning, are the articles of Hubel and Wiesel. Through
a series of publications, Hubel and Wiesel [13-15] studied the visual cortex of cats,
and made several discoveries that contributed to shaping the functioning of image
recognition tools. They found that individual neurons had receptive fields, the whole
vision being recovered through overlaps of the receptive fields of several neurons.
Nonetheless, a neuron would not always perform the same task as other neurons in
the visual cortex. Some neurons specialised in identifying certain patterns such as
lines, and different neurons would recognise different line orientations, i.e., horizontal
or vertical lines.

Artificial Neural Networks (ANNs) also simply called Neural Networks (NNs)
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Figure 1.2: Representation of an artificial neuron, on the left we see the layer [ — 1

composed of n neurons. The yellow ellipse displays the operation undergone by the

4t neuron of layer [ and the blue rectangle the activation function applied after

layer .

are a type of model used during an ML training. They are composed of nodes called
neurons, which are stacked on top of one another in layers. Each layer is connected
to the next through vertices. In the cases where all the neurons from one layer are
connected to all the neurons of the subsequent, as shown in figure 1.1, we say that
we have a dense or fully connected layer. The first ANN was the extreme learning
machine introduced by Rosenblatt in his book Perceptron [4]. It was composed
of an input layer, a single hidden layer and an output layer. While this network
constituted a revolution in the field, it was later discovered that this type of network
was only able to identify simple patterns and was not able to perform complex tasks.
Further subsequent studies showed that adding several hidden layers contributed to
enhancing the performance of the model [16]. A neural network with more than one
hidden layer is then called a Deep Neural Network (DNN).

As we previously mentioned, ANNs are used for performing an ML task. The
training occurs after feeding an input to a network. Following this, the information
goes from layer to layer until it reaches the output where the performance is evalu-

ated. Let us consider a DNN with [ =1,2,..., M layers. Each neuron j in a given

lA
J

k from a layer [ — 1 to the neuron j in layer [ have a weight wé. - The information

layer [ has a value called activation a’; and each of the lines connecting one neuron

passes from one layer [ — 1 to layer [ through a linear combination of the activations
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Figure 1.3: In red the orer,u(2) activation function. In blue the ogigmoid(2) function,
we remark that this function saturates after z = 2 and has a maximum value of 1.

and the weights of the previous layer

aé» =0 (Z wé-ka?l + bé) =0 (zé) , (1.1)
k

where o is called the activation function and bé- is called the bias which essentially
allows to shift the activation function from the origin. Similarly to the behaviour of
neurons in the brain, all the neurons in a network are not firing at the same time,
the role of ¢ is to find a way to determine which neurons are active. Several dif-
ferent types of activation/non-linearity can be applied to layers, which in turn lead
to different training performances [17]. Some of the commonly used activation are
Rectified Linear Unit (ReLU) ogreLu(2) = max(0, z) or sigmoid ogigmoid(2) = H%’
shown in figure 1.3. We provide an example of the output of an artificial neu-

0, ifz<0

1, ifz>1

ron/perceptron in figure 1.2, here we use a step function, ogtep(z) =

as activation function.

1.3 CNN methods for image recognition

In 1980, we see the first attempt at reproducing the behaviour of natural neurons
described by Hubel and Wiesel, this is the neocognitron [18]. The neocognitron
had two types of layers that we nowadays identify as a convolutional layer and
a downsampling layer. The neocognitron was only using feed-forward techniques

but was already able to identify patterns or characters. The first Deep Learning



(DL) Convolutional Neural Network (CNN) was implemented several years later by
Yann Lecun et. al [19]. This network was using backpropagation as an optimisation

method and was able to identify hand-written ZIP numbers.

1.3.1 The convolutional layer

Now that we have provided a brief background on the timeline of the creation
of CNNs, let us look at its architecture in detail. A CNN is composed of two
main layers, the convolutional layer and the downsampling layer, also called the
pooling layer. The convolutional layer differs from the fully connected layer by
introducing the notion of receptive field [17]. Contrary to the dense layer shown in
figure 1.1, where neurons in a layer were connected to all neurons of the following
layer, here a neuron is only connected to neurons that are in its receptive field.
This receptive field, also called kernel, allows to retain local correlation between
neighbouring pixels. Similarly to the neurons in the visual cortex of animals, the full
image is retrieved through the overlap of the receptive field of several neurons. The
training occurs through convolution operation. When the kernel which is a weighted
matrix, convolves across the input image. To construct a convolutional layer five
parameters need to be defined. We begin by defining the width W, and the height
H of the receptive field of our network, which is called a kernel. Usually, the height
H is chosen as equal to W. Each layer applies a given number of kernels to the
input, this number is called the depth D. Now that we have defined the size of our
kernel /receptive field as W x H, we need to define the stride S. This is the number
of neurons chosen between two consecutive translations of the kernel. Finally, as
the input goes through our network its dimensions might decrease. To remedy this
issue we define a parameter P called the padding, which adds zero around the input
to keep its dimension constant. After going through a convolutional layer with a
kernel of size W x H, an input of size I x I has a new size Soutput defined as

I—-W+2P
Soutput = f + 17 (12)

1.3.2 The pooling layer

The second layer in the CNN architecture is a downsampling layer, also called
the pooling layer [17,20]. This is a coarse-graining layer which retains the spatial
structure of the input. A pooling layer does not modify the depth of the input,
pooling operations are applied to each of the filters taken in input. Similarly to

the convolutional layer, the pooling layer is not connected to all the neurons in the



subsequent layer, only to neurons in their receptive field. A pooling layer is defined
by the size of the kernel Wpyo X Hpool, and the stride S is usually taken to be
equal to W. Several types of pooling operations exist, the most popular being max
pooling and average pooling. Let us consider a Wpyo X Hpool pooling kernel. In
a max pooling layer, the kernel analyses the value of each pixel in the receptive
field Wpgo1 X Hpool and replaces it with one value corresponding to the value of the
maximum pixel. In an average pooling layer, a Wpyo X Hpool replaces the pixel in
the receptive field with the average value of the pixels in the kernel window. Pooling
operations allow for a decrease in the computational load and in turn, allow to work
with deeper networks.

CNN methods are usually used for image recognition, they have been shown
to be performing well for image or video recognition, natural language processing,

and medical image analysis [21-24].

1.4 Types of learning

ML distinguishes itself from classical programming by the fact that no rule is given
to solve a task, instead, we expect the network to find a strategy to achieve the
task required according to the dataset given as input. Let us define the dataset
D = (x;,y;) where z; is a tensor of independent variables representing the input,
and y; is a tensor of dependent variables representing the label of input x;. This
dataset represents a general input that we would feed to our ML model. In our
case x; could be a percolation lattice v; and y; the label associated, for instance
‘spanning’. Before introducing the different kinds of tasks that could be performed
by an ML program we need to introduce the different types of learning. There are
three main types of learning, the first one is supervised learning. Supervised learning
aims at acquiring the optimal strategy to perform a task through the use of a labeled
dataset D = (z;,v;). Two types of supervised learning tasks can be distinguished,
classification and regression. For classification, an ML process learns how to separate
data in discrete classes. It is equivalent to finding an optimal representation of the
dataset that separates samples from each class. A famous example is the classic
Cat/Dog classification [25]. In the case of regression, the ML algorithms are trained
to learn the relationship between the input z; and the label y; to make continuous
predictions of new y; according to ;. Regression can be used to infer the price of a
car according to several parameters such as the brand, and year of release. In that
sense, regression differs from classification as it allows us to make predictions on

samples with labels never seen by the network during the training procedure. Both



of these methods will be developed in section 3.10 with examples of applications.
The second type of learning is unsupervised learning. In this method unla-
beled data is fed to the ML algorithm, i.e. D = (x;). The network is then expected
to find an implicit correlation in the dataset without any other external input.
Unsupervised learning can be divided into three different categories, clustering, di-
mensionality reduction, and association learning. The clustering task intends to find
ways to group similar samples in the dataset. Dimensionality reduction methods
aim at finding ways to simplify representations of datapoints in a way that preserves
the main feature of the dataset, and association learning studies relations between
samples in the dataset. Applications of unsupervised learning techniques are wide.
It can serve as a preprocessing step to find structure in the dataset before a super-
vised learning training [26], or can be used to generate new samples with techniques
such as Variational Autoencoder (VAE) or Generative adversarial network (GAN).
Finally, the last type of learning is reinforcement learning. Contrarily to
the two previously presented techniques no dataset is employed during the learning
process. The learning occurs through an agent interacting with an environment, if
the agent performs the task as expected, it receives a bonus, and if the task is not
performed well the agent receives a penalty. Through a set of interactions with the

environment, the agent learns how to perform the task as expected.

1.5 Machine learning for phases recognition

As we have seen in the previous section, CNNs are a class of deep, i.e., multi-layered,
neural nets (DNNs) in which spatial locality of data values is retained during training
in an ML setting. When coupled with a form of residual learning [27], the resulting
residual networks (RESIDUAL NETWORKS (RESNETS)) have been shown to allow
astonishing precision when classifying images, e.g., of animals [28] and handwritten
characters [29], or when predicting numerical values, e.g., of market prices [30].
Residual networks are a specific type of network retaining memory through the use
of skip connections. We will present them in section 3.9. In recent years, we also
witnessed the emergence of DNN techniques in several fields of physics as a new
tool for data analysis [31-34]. In condensed matter physics in particular, DNN
and CNN proved to be efficient in learning the ground state of some many-body
system [35-38], and to speed up Monte Carlo sampling [39,40]. ML has also been
shown to be performing well in identifying and classifying the phases of matter
or learning order parameters [41-44]. In a specific case, ML proved to be able to

reconstruct the phase diagram of site-type quantum percolation after performing
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Figure 1.4: Phase diagram of the three-dimension site quantum percolation obtained
through classification of the Anderson metal-insulator model reproduced with per-
mission from [45]. On the vertical axis, we show the site probability of occupa-
tion ps and on the horizontal axis, we display the eigenenergies . The dashed
green line denotes the threshold for the classical three-dimensional site percolation
pclassical — ().3116 4+ 0.0002 [46]. The dashed white line is the mobility edge.

a classification task on the two phases of the three-dimensional Anderson metal-
insulator model as shown in figure 1.4.

Despite all these studies, the ML process in itself tends to be somewhat of
a black box, and it is not yet known what is allowing a DNN to correctly identify
a phase. To gain further insight into this issue, we choose a well-known and well-
studied classical system that exhibits perhaps the simplest of all second-order phase
transitions, the site-percolation model in two spatial dimensions [47,48]. In this
model, a cluster spanning throughout the system emerges at an occupation prob-
ability p., leading to a non-spanning phase when p < p. while p > p. corresponds
to the phase with at least one such spanning cluster [48]. Several ML studies on
the percolation model have been already published, mostly using supervised learn-
ing to identify the two phases via ML classification [26,49]. An estimate of the
critical exponent, v, of the percolation transition has also been given [26]. The
task of determining p. was further used to evaluate different ML regression tech-
niques in Ref. [50]. For unsupervised and generative learning, less work has been

done [26,49,51]. While some successes have been reported [51], other works show the



complexities involved when trying to predict percolation states [49]. Through our
study of the percolation model, we will show that ML methods are able to identify
a parameter such as the density and struggle with parameters related to long-range
properties such as the spreading of a cluster or the correlation length.

We also introduce a second model, the three-dimensional Anderson model
of localisation which is characterised by a localisation of its wavefunction in the
strong disorder regime. Similarly to the percolation model, previous ML studies
were performed and concluded the success of classification methods to identify the
two phases of the system [45,52,53]. Here, we will show that supervised methods
are able to identify the phases of the Anderson model of localisation. Furthermore,

we show that ML methods can make close predictions on the disorder values W.

1.6 Outline of the thesis

In this thesis, we aim to understand the reasons that allow ML techniques to perform
so well in phase recognition tasks. Chapter 2 and 4 provides the theory on the models
used for our study and the specificity of our datasets. In Chapter 3 we dive into
the theory of machine learning and detail the process of training for classification,
regression and a variational autoencoder. Finally, in Chapter 5 and 6, respectively,
we present the results of our ML analysis for the two-dimensional percolation model

and the three-dimensional Anderson model.



Chapter 2

Theory

2.1 The percolation model

The percolation problem is well-known with a rich history across the natural sciences
[47,48,54-57]. It provides the usual statistical characteristics across a second-order
transition such as, e.g., critical exponents, finite-size scaling, renormalisation and
universality [48].

Perhaps the simplest non-trivial implementation of percolation is provided
by the two-dimensional (2D) site percolation model [48] on a square lattice. In this
model a lattice of size L x L with individual lattice sites & = (z,y), =,y € [1, L], is
randomly occupied with an occupation probability p such that the state v of site & is
¥(Z) = 1 for occupied and ¥ (&) = 0 for unoccupied sites. We say that a connection
between neighbouring sites exists when these are side-to-side nearest-neighbours on

the square lattice, while diagonal sites can never be connected. A group of these

Figure 2.1: Example of percolation lattice of size L = 100 at p = 0.5. Occupied
sites are marked by small black dots while empty sites are left white.
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connected occupied sites is called a cluster. Such a cluster then percolates when it
spans the whole lattice either vertically from the top of the square to the bottom
or, equivalently, horizontally from the left to the right. Obviously, for p = 0, all
sites are unoccupied and no spanning cluster can exist while for p = 1 the spanning
cluster trivially extends throughout the lattice. In Figure 2.1, we show examples of
percolation lattice at p = 0.5.

The percolation threshold is at p = p.(L), such that for p < p.(L) most
clusters do not span while for p > p.(L) they do. In the case of an infinite lattice,
we observe the emergence of an infinite cluster spanning through the system at
pe = 0.59274605079210(2). This estimate has been determined numerically even
more precisely over the preceding decades [58] while no analytical value is yet known
[57]. An important quantity is the percolation strength which corresponds to the
probability of belonging to the infinite cluster P(p) = (s,(p)/L?), where s,(p) gives
the size of the percolating cluster for size L and (-) denotes an average over many
randomly generated realisations. Similarly, we can define the probability of not
belonging to the percolating cluster, Q(p) = ((L? — s,(p))/L?) and P(p)+Q(p) = 1.

Given the two very distinct phases of the system (spanning and non-spanning)
and the extended literature on this model, the percolation model provides an inter-
esting test case to study ML approaches which intend to predict phases of condensed

matter systems.

2.1.1 The cluster structure

In this section, we will define some important parameters related to the cluster
structure. As a first step, we will demonstrate these quantities in 1d. Let us define a
chain with occupied and unoccupied sites. We recall that according to the definition,
a cluster is defined as a grouping of s nearest neighbours occupied sites. In one
dimension this corresponds to having s nearest neighbour sites occupied and at
least two empty sites at the extremities of this cluster. From this observation, and
assuming that each site is independently occupied, we can define a quantity ng called
the cluster number, corresponding to the probability of a site belonging to a cluster

of size s
ns(p) = p*(1 —p)?, (2.1)

where p is the probability of having an occupied site and (1 — p) the probability to
have an empty site. In 1d, the percolating cluster appears only when all the sites in

the chain are occupied, i.e., p. = 1. Using this information and p* = exp(s(In(p)),
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eq. (2.1) can then be rewritten as

s
o) = (1= exp(sla) = (e = exp( ). (2
where we define s¢ = —ﬁ as the cutoff length. It corresponds to the size of the

largest cluster in the lattice. In order to generalise this formula to higher dimensions
we need to introduce the concept of perimeter. We define the perimeter ¢ of a cluster
as the number of nearest neighbour empty sites to the cluster. This parameter ¢ is
composed of the empty sites delimiting a cluster as well as the holes which might
exist in a cluster. In 1d the perimeter cluster ¢ = 2 corresponds to the two empty
sites delimiting a cluster at the left and right border. We now redefine the cluster

number as

ns(p) =Y goap®(1—p)', (2.3)

where g, ; is the number of possible cluster configurations. The probability of a site

to belong to any site in the cluster of size s is defined as ) sns(p)

D sng(p) = sp’(1-p)?, (2.4)

—p(1-p2 Y ‘f;; (2.5)
(1 —de%;pS. (2.6)

Using the geometric series formula we obtain

> sns(p) = p(1 —p)zd(l/;p_p) =p. (2.7)

The result of eq. (2.7) can be easily understood as an occupied site is simply a cluster
of size s = 1. As we mentioned earlier, in 1d, the percolation threshold p. = 1. As
a consequence, the 1d case is particular as only one phase of the transition can be
observed p < p..

Another quantity of interest is the probability to have a spanning cluster at

a given density p, in the infinite system. It is defined as

0, ifp<pec
I(p) = (2.8)
1, if p > pe.
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We also define a second probability x(p), which corresponds to the probability of

having a non-spanning cluster at a given probability p

L, ifp<pe
k(p) = (2.9)
0, if p > pe.

We remark that in a finite system, the transition from the non-spanning phase to the
spanning one is not instantaneous due to finite size effects. This leads to spanning
samples with a density p < p. and non-spanning samples for p > p.. As such, we
define the alternative probabilities II; and k1 describing the behaviour of a finite

size system of size L.

2.1.2 The correlation function

The correlation function is defined as g(r) = (Y(2)Y(F+7)) z z4+recr—|m — P2, where
the ()7 z+rec,r—|7 denotes the average over all Z, all distances r and all clusters {C'}
with £ and & + 7 belonging to the same cluster C'. This quantity is often used to
characterise the formation of clusters in the lattice. It corresponds to the probability
of having two occupied sites separated by a distance r which belongs to the same
cluster. It is important to note that we exclude the contribution of points in the
infinite cluster from g(r) [48]. By definition of the correlation function ¢g(0) = 1,

" i.e., in order to have a point

as the site is occupied. In 1d we find that g(r) = p
occupied at a distance r from the origin, every site in between must be occupied.

This can be reformulated as
, T
g(r)=p" = exp(—g), (2.10)

where
1 1
S Y75 B Y ey g & (2.11)

We recall that in 1d, the phase transition occurs at p. = 1. Using the expansion

In(1 — z) & —z, we obtain

&= _ln(p) ~ —(pe — p) = (pe —p)~ m 00. (2.12)

The quantity £ is the correlation length, in a higher dimension, we find that £
diverges at p. as |p. — p|”" where v is called the critical exponent. This critical
exponent depends on the dimension of the system. In 2d it is equal to v = 4/3 in
the 2d square lattice [48].
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2.1.3 The correlation length

The correlation length provides an estimation of the size of the cluster in the lattice.
Beyond the length £ it is improbable to find two occupied sites belonging to the same
cluster, as such £ can be seen as a cutoff length. The correlation length is defined

as

§= 2, 1%9(r) (2.13)

> 9(r)
where r is the distance between two occupied sites. For p < p. the correlation length
gives the scale of the largest cluster present in the lattice. Around p ~ p. we see the
emergence of an infinite cluster, £ = co. Above p., when we see the appearance of
the infinite cluster, the contribution of points belonging to this cluster is subtracted
from g(r) as shown in the previous section. The correlation £ can then be interpreted
as an indication of the size of the holes in the lattice. Let us now compute the value

of the prefactor C'

> r?g(r) 17 g(r)
=S T (214)

Cce?

As we seen in the previous section g(r) o« e ¢ provides a good estimation of g(r).

Let us now compute the numerator

27 o) "o [e'e) o
/0 /0 2 g(r) r dr df = 27r{ [—57’3 675]0 +3 5/0 r?e”€dr }, (2.15)
= 27r{3 [—¢2r? e €] — 6/00 r e Cdr } (2.16)
0
= 1271, (2.17)

We now look at the denominator

Combining egs. (2.17) and (2.21) we find

2w oo
ez = do_bo r2 g(r)rdrdd 127

o
02” fooo r g(r) r dr df 2mE?

o 6€2. (2.22)
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(a) (b)

Figure 2.2: (a) Percolation lattice at p = 0.4 before the HK labelling, occupied sites
shaded in grey and unoccupied sites are coloured in white. (b) Percolation lattice
after HK labelling. The five different clusters are coloured with different colours.

From equation eq. (2.22) we note the presence of a pre-factor C' = 6, that we will

need to remove to obtain the normalised value of &.

2.1.4 The Hoshen-Kopelman algorithm

Earlier in section, 2.1 we introduced the notion of clusters as a group of nearest
neighbours occupied site. We now present an algorithm able to identify such clusters,
the Hoshen-Kopelman (HK) algorithm. The HK algorithm, based on the union-find
algorithm, was first discussed in 1976 by J. Hoshen and R. Kopelman [59]. Given
a set of points with possible interconnections, the union-find algorithm provides an
effective way to find an equivalence relationship between these points. In percolation,
the HK algorithm applies this principle in order to find and identify each cluster in a
lattice. Let us define a grid of size L x L, where sites are occupied with a probability
p and unoccupied with a probability 1 — p. The first step of the HK algorithm is
to scan the lattice in search of occupied sites, once an occupied site a is identified
the second step is to check if this site has occupied neighbouring sites. This is the
find portion of the algorithm. In the case where a site a has an occupied neighbour
b and this site was previously labelled, the site a joins the equivalence class of site b
and is assigned the same label. This corresponds to the union part of the algorithm.
Finally, if the site a does not have any occupied neighbours, a new label is assigned
to the site a.

In figure 2.2(a) we show a two-dimensional percolation lattice of size 5 x 5
occupied at density p = 0.4. In the rest of this section, we will provide a detailed
application of the HK algorithm on this lattice. For the sake of clarity, we denote
each site with the notation s(7,j) where i is the row number and j is the column
number. We begin the algorithm at the top left corner of the lattice at site s(0,0).

The site is occupied, and does not have any occupied neighbours above or on the left,
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we assign the label 1 to this site. The two consecutive sites s(0,1) and s(0,2) are
unoccupied, we skip them. Site s(0, 3) is occupied without any neighbour above or
on the left, we relabel this site with label 2. The next occupied site is on the second
row, site s(1,1), again, without neighbouring occupied sites on the left or above,
we assign it the label 3. The site s(1,2) is occupied and has a nearest neighbour
occupied on the left, we relabel it as 3 with the same label as site s(1,1). The next
occupied sites, s(1,3) has two occupied neighbours, site s(1,2) labeled as 3 and site
5(0,3) with label 2. We join the two cluster and relabel sites s(1,1), s(1,2) and
s(1,3) with label 2. We scan the remaining sites in the lattice in the same manner
and assign label 3 to site s(2,0), label 4 to site s(2,4) and label 5 to the cluster
of sites s(3,1), s(3,2), s(3,3). In figure 2.2(b) we show the relabeled lattice, where

each cluster is assigned different colours.

2.1.5 Real space renormalisation

Let us consider a lattice with n sites, this amounts to having 2" configurations
possible as a site can be in two states, either occupied or unoccupied. Thus, it
becomes more and more difficult to perform operations on the lattice as the number
of sites increases. An important factor is that the physics of the percolation model
depends on a long-range behaviour, i.e. the spreading of the cluster. Therefore, the
need arises for a method that would neglect short-range correlation while preserving
long-range behaviour. Real space renormalisation, also called block spin technique
was introduced by Leo Kadanoff in 1965 [60]. This is a coarse-graining process
operating over microscopic degrees of freedom. It allows us to observe the large-
scale behaviour of the system by overlooking correlation on a scale smaller than
a certain length b that is smaller than the characteristic length of the system &.
Applied to percolation, real space renormalisation relies on the self-similarity of £ at
P = P, which means that each cluster of size inferior to £ is all similar. The first step
is to divide the lattice in super-site of linear size b, smaller than £. Following this,
the b¢ sites in the new super-site regions are replaced by a unique site according to
a predefined rule (for example majority rule on spanning/non-spanning). This leads
to an increase in the lattice spacing by a lattice spacing b. After renormalisation,
the occupation p’ of the new lattice of size can differ from p except at the transition
where p = p/ = p.. This also applies to £, we obtain a new ¢ which can differ from

& while following the same behaviour

¢ =2 (2.23)
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Figure 2.3: Example of renormalisation process on a 8 x 8 lattice with b = 2

We recall that at the transition & o [p — pc| ™%,

f/ X |p/ - pc|_y’ (2-24)
¢ o lp-gc'. (2.25)

We know that an import property of the renormalisation process is that £ behaves
similarly to £ at the transition
|p - pc| -
b

(‘p/_pc
vin
P — Pc

/

=[p' = p|™", (2.26)

) = In(b). (2.27)

By reorganising eq. (2.27) we retrieve a new expression of v,

yo 10 (2.28)

dp’
(%)
dp P=DPc

To illustrate this process, let us define a lattice of size 8 x 8 at p = 0.5, we

choose to rescale it with b = 2. As an averaging rule, we decide to apply a spanning
rule, if sites in the cell of size 22 are spanning vertically, then the new super-site is

occupied. After renormalisation, we obtain p’

P =p*+4p*(1 —p) + 2p*(1 — p)*. (2.29)
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We solve the fourth-degree equation to find the fixed points

=p* +4p*(1 - p) + 20°(1 = p)> = p =0, (2.30)
=p(—p*+2p—1) =0, (2.31)
0
pr=A91 (2.32)
0.618

The solutions p* = 0 and p* = 1 are trivial fixed points, while p* = 0.618 is the
non-trivial fixed point. We know from previous studies of the two-dimensional per-
colation model that p. = 0.5927, this means that despite a relatively small system,
renormalisation provides a good estimation of p.. The next step is to compute the
value of v. Using egs. (2.28) and (2.29) we find

In( |%&
(‘dp )p:p*
In(2)
_ , 2.34
(% + (231
— 1.5278838. (2.35)

From the literature on percolation, we know that in the two-dimensional square
lattice v = 4/3 ~ 1.3333. The result obtained through renormalisation is slightly
above the result expected. However, given the small size of the observed system,
we accept this result as a good approximation. As such, renormalisation appears as
a valid solution to reduce the computation load of large percolation lattices while
keeping information about the phase transition.

Through this first section, we presented the percolation model as our first
model of interest. Given the extensive studies carried out on this model, it appears

as a perfect test candidate for our ML study.

2.2 The Anderson Metal-Insulator model

In the first section, we introduced the percolation model which is the first model
that we will use for our ML study. Here, we present our second model of interest,
the Anderson model of localisation, and provide some important properties.

An ideal metal is usually represented as a periodic ion lattice immersed in
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a free electron gas. However, in real life materials are rarely devoid of defects
which contribute to hindering the way that electrons move in the system. The
first approach to this issue is the Drude model [61,62]. It introduces disorder in
the model and states that the conductivity in a metal depends on the distance
between two collisions which is called the mean free path. As such, a high mean
free path implies a long distance between successive collisions and therefore a high
conductivity. Therefore, when increasing the disorder in the lattice, we observe a
slow decrease in conductivity. However, while the Drude model provides an answer
to the behaviour of electrons in an imperfect lattice, it does not explicitly account
for the high disorder regime. In 1958, Philip W. Anderson in his paper ” Absence of
Diffusion in certain random lattices” [63] proposed a model to test the validity of the
Drude model for a strong disorder. He proved that increasing the disorder indeed
contributed to a decrease in conductivity, but furthermore, in three dimensions
above a critical disorder, electrons were completely stopped in their motion, this
is the Anderson localisation. In the following section, we will develop the main

properties of the Anderson model.

2.2.1 Weak localisation

The weak localisation model provides a correction to the model of the ideal metal
by introducing disorder in the medium. The conductance G, provides us with an
insight into how easily electrons can propagate in a medium, it is defined as the

inverse of the resistance R

11
R_pLQ_d

= = o872, (2.36)
where L is the linear size of the system, p is the electrical resistivity, o is the
conductivity of the medium and d is the dimension of the system. In the presence of
disorder, the trajectory of electrons is disturbed and they cannot propagate freely.
The Drude model states that an electron propagates freely until encountering the
first impurity, therefore the conductivity depends on the distance between collisions.

This distance between two collisions is called the mean free path and is defined as
Emfp = vT, (237)

where v is the average speed of electrons in the medium and 7 is the average time
between collisions. Consequently, a correlation exists between the disorder in our

medium and the conductivity.
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(a) (b)

Figure 2.4: (a) Two possible paths taken by electrons to propagate from path A to
path B. (b) Several paths displaying the propagation of electrons in the medium. We
observe that the red and green paths form a loop travelling in opposite directions,
as this doubles the odds of the electron returning to its origin.

A second important length appears due to the quantum nature of electrons,
the de Broglie wavelength A\, which dictates the scale at which quantum interference
can occur. When /¢, > A we are in the framework of the Drude model and no
quantum interference can take place. However, if ;¢ < A we enter a new regime
where electrons can be strongly localised due to the wave interference effect. As
we mentioned before, in the weak localisation regime, a wave propagates through
the medium until encountering the first impurity. Following this event part of the
wave is scattered. The main wave and the scattered wave keep propagating freely in
the medium until encountering the next impurity which will create new scattering
waves. Assuming that the scattering events are elastic, the main wave and the
scattered waves can interfere. Let us consider the propagation of a particle in a two-
dimensional disordered medium. The propagation of the electrons follows a random
path pattern, where the electrons undergo diffusive events. We can therefore define

the mean square displacement as
Az? ~ Dt with t > T, (2.38)

with D = L?/7 the diffusion coefficient for a system of size L.

In this framework, we define a probability p(t,0) as the probability of return.
This probability provides the odds of a particle returning to its origin after a series
of diffusive events.

Let us now look at two examples of diffusion of electrons. In figure 2.4(a)

we see two possible trajectories taken by electrons departing from a point A to
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reach point B. In the presence of elastic scattering, the main wave and the wavelets
maintain similar energy and can be summed. As we can see in figure 2.4(a) several
paths exist to connect points A to B, each with different lengths and different
phases acquired as a result of diffusive events. In this configuration the addition of
the contributions of each path cancel out and the model of Drude still holds. We
define the probability of going from a point A to a point B as

p(BlA) =) Ai(BlA), (2.39)

= JA(BIA)|+) A7 4A;, (2.40)
i (]
where A; designates the amplitude of the paths. The probability of travelling from
A to B depends on the coherent and incoherent contributions of the paths. A
second kind of path can appear in the system, a closed path which appears when
the electron comes back to its point of origin as depicted in 2.4(b). In this case,
interference effect emerges as two electrons could follow this loop path in opposite
directions. Let us consider such two electrons, with amplitudes Ay, As and phase

1 = 2. The return probability p(A|A) is then defined as

Pi(AlA) = [A1 + Ao, (2.41)
= ‘A1|2 + |A2|2 + ATAQ + A;Al, (242)
= 4]AJ?, (2.43)

where A7 Ay and A5A; are interference contributions. Without the contribution of
the external field, the two electrons travel the same path in opposite directions,
implying Ay = Ay = A and ¢1 = ¢3. From eq. (2.43) we observe that having
electrons in a closed loop increases the probability of backscattering, which in turn

reduces the conductivity. This phenomenon is called weak localisation.

2.2.2 The three-dimensional Anderson Model

Now that we have introduced the concept of weak localisation in the previous chap-
ter, let us introduce the strong disorder regime and the Anderson model of locali-
sation. The model proposed by Anderson is a tight binding model with a random
onsite disorder ¢; € [-W/2,W/2], where the variable W is the amplitude of the
disorder. In 1d and 2d, there is always localisation of the wavefunctions. However,
in 3d it was shown that above a certain disorder W, = 16.57, a phase transition

occurs from a metal state, with an extended wavefunction, to an insulated state
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with a localised wavefunction. The Hamiltonian associated with this model is

H=Hy+V, (2.44)
= ali)il + > Jigli)l, (2.45)
i (4,9)

where J; ; is a hopping matrix element acting on nearest neighbours, here the ratio
% gives the probability of hopping. An important quantity to monitor is the return
probability density, which provides the odds of an electron departing from a position

0 to return to its origin,
p(t) = et 0). (2.46)

We will now study this model in the disorder-free regime and in the infinite disorder
case. The disorder-free regime corresponds to the model of the ideal metal and
J/W — oo, an electron can move freely and all the onsite energies are identical.

The eigenstates of a system of size L with periodic boundary conditions are then

given by
ki
)= —— 2.4
where j = 1,2,..., N denotes the number of sites and k = %T" is the wave vector
with n =0,...,L — 1. We obtain the energy associated as
d
E=-2J) cos(ka). (2.48)
a=1
This allows us to obtain the time-evolved solution of the Anderson model
1 o
v, t) = ezk]+2zt] > a cos(kq) ) 2.49
6= 75 249
In the thermodynamic limit, there is a convergence of the solution to
Ak ikjaoits S cos(ka)] _ id a
¥(j,t) = / ——— eMITENS 2.0 €05l — 4 T, (2t]), (2.50)
ke[0,27]4 (2m)? al;Il ’

where 7, corresponds to a Bessel function of the first kind. From this expression,

it is possible to retrieve a convergence of the return probability

1
[0, ~ 55 (2.51)
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At the t — oo we observe a decay of the particle return probability. There is no
localisation.

For the infinite disorder case, the hopping probability J/W — 0, the kinetic
part of the Hamiltonian is negligible

H=> eili)il. (2.52)
i
We obtain the trivial solution

P(j,t) = €"'[0) (2.53)

In this configuration, the wave packet is perfectly localised and the proba-

bility of return is constant and equal to 1.

2.2.3 Scaling theory of localisation

After studying weak and strong localisation, a need arises to find a bridge between
these two regimes. Furthermore, an important question remains, how would a metal
or insulator evolve under a change of size? These important issues were studied by
the so-called ”Gang of Four” in their paper ”Scaling theory of localisation” [64].
They theorised that in the case of a system of size L, only one parameter g(L) was
needed to describe the behaviour of the system in both phases. Let us consider a
d-dimensional block of size L?.The density of states v(FE) provides us with all the

eigenstates v, of energy F, and is defined as,
v(E) =Y 6(E — Ea). (2.54)

We define 75 as the average time that an electron would take to reach the boundary
and escape the system
L2
Tesc = 57 (255)
where D = o/e?v is the diffusion coefficient. The Thouless energy is the energy

associated with this diffusion event and is defined as

h hD
Er = = —. 2.
4 Tesc L? ( 56)

We define the dimensionless conductance g, as the ratio of this energy with
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the mean level spacing A

According to the scaling theory, the change in conductance can be described through

a function [ defined as
dlng
P9 = gL

In the weak disorder limit, the Thouless energy is larger than the mean level spacing.

(2.58)

Several energy levels overlap leading to the presence of extended states
g>1=g~al®2 (2.59)

We now compute the value of 3(g) associated to this g

dln L2
Blg) = 7;1]& 7 (2.60)
=d—2. (2.61)

We find that 8(g) is always negative for d < 2. This result confirms the finding of
Anderson, that a phase transition only occurs in the three-dimensional model.

In the strong disorder limit, the mean level spacing is larger than the Thouless
energy. Electrons cannot travel easily from one energy level to the next, this leads
to a localisation of states. In this setting, the characteristic length of the system is

the localisation length X, and the conductance is expected to decrease exponentially

as
L
g<<1:>g~goexp(—L//\):lngwlngo—x. (2.62)
We proceed to a change of variable @« = —1/\ and we find the new value of
d(—al)
= 2.
d(—ae”)
== "7 2.64
=), (2.64)
L
=—— 2.65
3 (2.65)
= —ae”, (2.66)

using eq. (2.62) we obtain

B(g) = —ae® =1ng — In go. (2.67)
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Figure 2.5: Scaling function S(g) as a function of In(f) for the weak and strong
disorder regimes in d = 1, d = 2 and d = 3, reproduced with permission from [64].
Ind=1and d=2, 5(g) is always negative. In d = 3, 5(g) is negative for 5(g) < 0
and positive for 3(g) > 0.

Therefore 3(g) is always negative in the strong disorder limit. In both regimes, we
observe that (g) is independent of the material, and only depends on the dimension
d. Now that we established the behaviour of 5(g) in the two regimes, we can draw
B(g) by assuming that § is a monotonous smooth function. In figure 2.5 we display
the plot of B(g) for d = 1,2 and 3. Equation (2.61) tells us that for d < 2 the scaling
function is always negative in the weak disorder regime. For the three-dimensional
case [3(g) is positive (respectively, negative) for ¢ > 1 (¢ < 1). This implies the
existence of a critical point at 5(g.) = 0 corresponding to the metal-insulator phase

transition.

2.3 Conclusion

In this chapter, we have presented the two models that will be studied with ML
methods in chapter 5 and 6. The classical two-dimensional site percolation consti-
tutes the perfect test case for our study as this model is well-known and studied.
Several concepts introduced here will be used in later chapters. For instance, the
percolation dataset that we created was labelled by identifying the cluster through
the HK algorithm. The quantum Anderson model of localisation was chosen as our
second model, due to a previous study displaying the performance of ML methods
to identify its phases. In chapter 6 we will train our ML network to identify the
Anderson Metal-Insulator Transition (MIT) and W-values.
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Chapter 3

Theory of Machine Learning

3.1 Polynomial regression

When dealing with a machine learning task, the first step even before training is
to randomly split the dataset in two parts. The first part is the training set and
the second is the so-called validation set. Generally, we reserve 90% of the dataset
for the training dataset and the 10% remaining for the validation set. A separate
test set is also generally created to analyse the performance of the network after
training. At the heart of machine learning resides the notion of generalisation. We
train a model on a dataset, but we also want this model to make correct predictions
on a dataset unseen during the training process. Thus, by having a validation set,
we can monitor the capacity of prediction of our model on a test set during the
training. It is important to note that while a model can be performing very well on
the training set it may fail on the validation and test set. This phenomenon is called
overfitting. Many factors could be at cause, but this often occurs in the presence
of a model that would be too complex for the dataset that it is training on. To
illustrate this idea we will use the example of polynomial regression. Let us define
a function y = f(x;) + n from which samples are taken, where f(x;) is an unknown
function and 7 an uncorrelated noise variable i.e () = 0 and (n;n;) = &;;02, where
o is the noise strength. We define f,(z;0,) as a family of functions that we use
as a model to reproduce the behaviour of the samples in our dataset. Here, the
quantity 6, represents the internal parameters of the model. We train four different
polynomial orders fi1(x;61), f3(x;63), fio(x;010) and fs0(z;050), each of them with
«a + 1 parameters. The different orders represent the degree of complexity of the
models.

In figure 3.1(a) we show a random sampling of N = 10 datapoints with
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N=10, o = 1.00 (train) N=100, ¢ = 1.00 (train)
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Figure 3.1: (a) Polynomial regression training for N = 10 datapoints. We observe
that the families of functions fio(z;6010) and fs0(x; 050) fit perfectly the datapoints.
(b) Polynomial regression training for N = 100 datapoints. This time, none of the
functions perfectly fit the datapoints, but the function f50(x;650) seems to follow
more the trend of the datapoints.

o = 1 and the associated fitting by the four families of functions fi(z;61), f3(x;03),
fio(x; 010) and fso(x;050). Figure 3.1(b) shows a random sampling of N = 100
datapoints with ¢ = 1. As we can see, higher-order functions are better suited to
perfectly fit points in the dataset while the linear function is only able to give the
general tendency of the dataset. This is due to the so-called bias of the function: a
linear function cannot accurately represent a non-linear function as it cannot bend.
In this case, we say that the fi(z;6;) function has a high bias while fio(x;610)
and f50(x;050) have low bias. Therefore, one might conclude that using a high-
order function, which here equates to an ML model with high complexity, would
be the solution to having a good predictor. However, we now need to evaluate the
prediction of such a polynomial function on a test set.

Let us look at the prediction made on a test set, in figure 3.2(a) and (b) we
notice that the functions fio(z;610) and fs50(z;050) which previously fitted points
in the training dataset are now failing on the test dataset. This example perfectly
illustrates the phenomenon of owerfitting mentioned in the previous section: the
function learned the noise in the training set and is now unable to make predictions
on the test set. Hence, the selection of the model requires finding a good equilibrium
between variance and the bias of the function. This is what is known in the field of

ML as the bias-variance trade-off.
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N=10, o = 1.00 (pred.) N=100, o = 1.00 (pred.)
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Figure 3.2: (a) Polynomial regression predictions for N = 10 datapoints. The
families of functions fio(x;610), f50(x;050), that fit the datapoints so perfectly in
figure 3.1(a) are now struggling to make an accurate prediction on the test set. The
linear function seems the best suited for the prediction. (b) Polynomial regression
predictions for N = 100 datapoints. Similarly to (a) the higher order polynomial
fails to make a decent prediction on the test set, the lower order polynomial gives
the best prediction

3.2 The bias-variance trade off

In this section, we will formalise the concepts of bias-variance briefly introduced
in the previous section. Let us again consider a dataset defined as y = f(x) + 7
where 7 is some Gaussian noise with mean zero and variance o,. Similarly to the
previous section the aim of our training is to find a family of functions f(x;6p)),
also called model, capable of fitting the data. We use regression techniques to do
so. During the regression process, we monitor the progress of our training through
a cost function C(y, f(x;0p). We choose to employ the Mean Squared-Error (MSE)
defined as

Cly, fBp)aise) = + 3 lor — Flas 00, (3.1)

i
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where n is the number of samples in the dataset. Let us look at the expected value

of the cost function

Epy[C(y, f(0p))] =Epy [Z(yi — f(@s; 9D))2] ; (3.2)

=Epy [Z(f(ﬂfi) +n = f@i; HD))ZI ) (3.3)

= ZED,U[(f(xi) — [(::00))*] +Epy[20(f(x:) — f(x::0p))] + El’].

(3.4)

Using the independent random variable property E[AB] = E[A]E[B], the first term

can be expanded as

Epql(f(zi) = f(2i;0p))%] = E[f (2:)®] — 2E[IE[(f (z)]E[f (215 00)] + E[f (25; 0p)?].
(3.5)

Similarly, the second term of eq. (3.4) can be expanded as

Epy2n(f(xi) — f(zi;0p)] = 2E[]E[f (2:) — f(2:;0p)] = 0. (3.6)

We recall that the random noise 1 has a mean of zero, therefore E[f(z;)?] = f(x:)%.
Now by adding and subtracting E[f(x;; 0p)|E[f(x;;0p)] we obtain

Epy[Cly. f(6p))] = Y (EI(f(2i;6p)] — f(2:)* + ELf (i 6p)*] — ELf (i3 6p)JELS (213 6p)] + En?].

i

(3.7)

Ep,C(y, f(6p)) = Z Bias® + Variance + E[n?] (3.8)
The first term of the equation is the squared bias

Bias® = (E[(f (xi;0p)] — f(z:))*, (3.9)

it gives an estimation of the deviation of the prediction from the true value. The

second term is the variance
Variance = E[f(x;0p)?] — E[f (zs; 0p)|E[f (2 0p)], (3.10)

which measures the fluctuation in the prediction due to finite size effect. The average

error of our model is a function of the bias, the variance and some noise. By
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increasing the complexity of the function of the network f(z;;0p) we reduce its
bias. However, this leads to a higher variance as f(x;;0p) will fit accurately points
in the datasets. While a network able to fit every point in the training dataset
appears appealing, we saw in the previous section that this leads to overfitting, i.e
a network learning the noise in the training dataset which is then unable of making
correct predictions on a test dataset. Therefore, an optimal network should be
complex enough to reduce the bias, and not too complex to avoid overfitting. This

is the so-called bias-variance trade-off.

3.3 Machine Learning as an optimisation problem

In this part, we are going to describe fundamental machine learning concepts and
the steps involved in the training process. In section 1.4 we previously defined the
dataset D = {(x;,v;)}~;, where x; is an input and y; the label associated to the
input z;. In the case of supervised learning the labelled dataset D = {(z;,v:)}Y,
is given as input to our network. Let us define f(z,0p) the function associated
with the network that we train, where 0p is a parameter of our network also called
hyperparameter. The information flows in the network from one layer to the next
through the different activation functions as defined in eq. (1.1). Once the last layer,
the output layer, is reached, we evaluate the performance of the prediction of the
network and compare it to the label fed in input. This is performed through a
cost function C(y, f(x,0p)). Several types of cost functions can be used, depending
on the task. For instance, regression provides us with continuous predictions while
classification gives categorical predictions, as a result, these two methods need two
different types of cost functions. Let us look at the case of regression, a popular
cost function (also called error or loss functions) is the MSE as in eq. (3.1), which
provides a direct estimation of the distance between the target and the predictions
made by the network. However, as stated above a loss function such as the MSE is
not suited for a classification task, we need a loss adapted to categorical predictions.
Before introducing this new loss function it is necessary for us to define a concept
from information theory, the Shannon entropy. Given a multiple outcome event with
an associated distribution p, the Shannon entropy is defined as the average optimised

number of bits required to communicate information about the outcome [65]

H(p) = = pilog(pi). (3.11)
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In case of prior knowledge or prediction of the outcome, the encoding of this infor-
mation might be optimised to minimise H(p). Thus, we define the Cross Entropy

(CE) as the actual number of bits sent per option. The CE is defined as

— Zpi log(g:), (3.12)

where p is the distribution of the true event and ¢ is the distribution of the predicted
outcomes.

If our prerequisite about the outcome ends up being correct, H(p) = H(p, q)
otherwise the CE will differ from the entropy by an amount called the Kullback
Leibler (KL) divergence denoted by Dgr. The KL divergence Dgr (p||g) measures
how a probability distribution p differs from a probability distribution ¢ and is
defined by

Dkr(pllg) = H(p,q) — H(p), (3.13)

B Z( pilog(qi) + pi log(pz)) (3.14)

_ zi:pi log(%). (3.15)

Dkr(pl|g) is not a metric as it is not symmetric and does not satisfy the triangular
inequality, however, we note that the KL is non-negative.

The cross-entropy allows us to define two important losses for tasks employing
categorical labels such as classification. When dealing with multi-class classification,
a pre-processing is generally performed to encode the labels, it is called one-hot
encoding. Suppose a classification with C-classes denoted by classes index ¢ =
0,1,...,C — 1, the label are encoded in a new label y;. such as y;c = 1 if x; = ¢
and x;. = 0 otherwise. The loss function associated to this C-classes classification
is the Categorical Cross-Entropy (CCE) , defined as:

Lecp = —— Z Z chlo.g (1 - Xic)log(l - f(xz)) (316)

=1 c=1
Once an estimation of the error is performed through the appropriate loss function,
we need to find an optimal way to decrease it by varying the parameters of the
network. As physicists, an intuitive way to see this cost function is to assimilate it

to the energy F of a system that we want to minimise.
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3.4 Gradient Descent

The essence of an ML training resides in the optimisation of a cost function. For us
physicists, it is easy to visualise this cost function as the energy of a system that
we wish to minimise. A popular optimisation technique is the gradient-descent.
This method allows a decrease in the cost function by following the direction of the
gradient. Gradient-based methods are a set of optimisation methods, used to find the
optimal solutions for a wide range of problems. Let us define E(0) = C(y, f(x,8))
as the function that we want to minimise. This cost function can be reformulated

as

|
—

Cly, [(2,0)) = E(0) = ) _ei(z;;0), (3.17)

i

Il
o

where e; is the error on the sample i. At the start of the optimisation process we
are usually at a random point 6y on the cost function landscape. After computing
the gradient of the cost function VyE(#), we update the value of # to move in
the direction of the minimum of E(#). This is done iteratively by changing the
hyperparameter 6 of the model,

915—‘,—1 == 975 - UVQE(H), (318)

where 7 is a parameter called the learning rate which controls the steps taken in the
direction of the minimum. We update the value of 6, as long as the minimum is not
reached.

While the gradient descent method provides a nice solution for some opti-
misation problems, its application for a machine learning scheme is revealed to be
quasi-impossible. The main issue remains that gradients are computationally ex-
pensive. For a cost function like the mean squared error, the computation of the
gradient requires a sum over all the n datapoints in the system. The second issue
resides in the non-adaptive nature of 7. The cost function landscape is generally
rugged, and a constant learning rate would lead to being stuck on a saddle point
or completely diverging. A learning rate capable of taking into account the curva-
ture of the landscape would be more adapted. Finally, the gradient descent method
inherently depends on the initial conditions and tends to converge to a local mini-
mum without being able to escape it, which implies that good optimisation is highly

dependent on the initial point in the cost function landscape.
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3.5 Newton’s Method

Newton’s method operates in a similar way to gradient descent, however, it makes

use of the second-order Taylor’s expansion
1
E0+v) =~ E0)+ VeE(0)v + §H(e)v2. (3.19)

Newton’s method aims to find an optimal 7 to iterate on, to minimise the second-

order Taylor expansion. Let us now look at the gradient of the Taylor expansion
VoE(0) + H(0)vop = 0, (3.20)
by rearranging this expression we obtain
v, = H 1(6,)VeE(6,), (3.21)

9t+1 = Gt — Vi¢. (322)

This expression is similar to the eq. (3.18), however, we remark that while 7 is
constant in the gradient method it now depends on the Hessian in Newton meth-
ods. This allows an adaptation of the steps taken toward the minimum in real-time
according to our position in the cost function landscape. While Newton’s method
helps us to gain insight into the role of learning rate 1 and possible improvement,
it is most of the time impractical. The main issue resides in the computation of the
Hessian matrix that scales badly with an increasing number of parameters. Fur-
thermore, inverting a n x n Hessian matrix at each iteration of n is computationally

expensive.

3.6 Stochastic gradient descent

In section 3.4 we introduced the gradient descent as an optimisation tool. However,
as we have seen previously this method suffers from many drawbacks that make it
impractical for machine learning. One of the issues resides in the deterministic na-
ture of the Gradient Descent (GD) that makes it impossible to escape local minima.
A solution to this issue is the introduction of stochasticity. The dataset is divided
into so-called mini-batches and the gradient is computed on each of these subsets.
We choose the mini-batches to be smaller than the total dataset. For a dataset
composed of n datapoints and a mini-batch of size w, there are n/w mini-batches in
the dataset. We denote each mini-batch by By where k =0,...,n/w. The gradient
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of the cost function can then be reformulated as

VoEMP(0) = > Vei(w,0). (3.23)

i€By,

An iteration of the optimisation process is complete when the gradient of each of
the mini-batches has been computed, this is what we call an epoch. The eq. (3.18)

can be rewritten as

i1 = 60; — Vo EMB(9). (3.24)

The Stochastic Gradient Descent (SGD) method gives a solution to the expensive
computation of the gradient by dividing the task through the mini-batches. It is
less costly to compute n/w times a gradient of w point than a gradient on the full
dataset which comprises n samples. Furthermore, computing the gradient on each
of the mini-batches contributes to adding stochasticity and allows to escape local

minima in a rugged cost function landscape.

3.7 Back propagation

The optimisation process described in the previous sections relies heavily on the
computation of the derivative of the cost function with respect to the parameters
of the network 6. Nevertheless, the computation of the derivative can prove to be a
tedious task, as it requires to compute as many gradients as parameters at each step
of the optimisation process. The backpropagation algorithm [8] takes into account
the layered architecture of the network and provides us with a straightforward way
to compute the gradient by making use of the chain rule. We recall the activation

function a,JL of neuron j in a layer L

ajL =0 (Z ijka,%_l + b]L> = a(sz), (3.25)
k

where k is the index of a neuron from the previous layer, which has a connection with

the neuron j. Therefore at layer L 4+ 1 we obtain the following activation function

L L L L
a; e (Z wj,jla% +b; +1> = 0(2; . (3.26)
k
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As the cost function F depends on the behaviour of all the layers connected to the

output, the change in layer L according to the activation sz is defined by

Ao OF

j L’
8zj

(3.27)

Chain rule coupled with the dependence of E on aJL and b allow us to obtain

OE  OE daf  OE
AL = = J — "(2E 3.28
7=k = pak o:F ~ 9ak” ) (3.28)

AL_ OE _ OB - OE

= =7 _ = 2
L VS 2 (3:29)

One can also find the dependence of £ on wé > by applying chain rule and using the
layer L + 1

L+1 5, L
0z, Ba]

OE OE 0zFt!
AL = 27 — —— Tk _ AL — 3.30
J GzJL zk: 8,2,5“ 8sz zk: k aaf asz ( )
Llazxfﬂ/L L+1, L+1 1/ L
=y At o (2)) = Apttwpel (2)). (3.31)
k J k
Finally, we derive E by the weight w]’-:k
OE _ 0B 0%} L L-1

L — a.L A L
(%)jk 8zj awjk

The eq. (3.31) summarises quite well the backpropagation process. While the feed-
forward step described by the activation function aﬁ in eq. (3.25) was computed
through the activation of the previous layer aﬁ_l, here we notice that the change in

layer Aﬁ depends on the change in layer Aﬁ“.

3.8 Overfitting, vanishing gradients

Now that we introduced the main steps of the training of an ANN, we need to also
explore the different issues that one can encounter during the process. In section
3.1, we briefly introduce the idea of generalisation. We recall that the aim of the
training is to obtain a network able to make correct predictions on a dataset never
seen before. This ability is called generalisation and is one of the most sought-after

capacities of a network in DL. Nonetheless, two main types of issues can arise and
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hinder this ability, underfitting and overfitting. Underfitting occurs when a network
is not performing enough and overfitting occurs when the network is overperforming
and is learning the noise in the training dataset. The main drawback of overfitting is
that while the network performs perfectly on the training data, it is unable to make
correct predictions on unseen data as depicted in figure 3.2(a). Knowing this, several
techniques have been developed to avoid the pitfall of overfitting/underfitting. The
first step is to optimise the size of the network according to the task performed. A
complex network used for a simple task will lead to overfitting, as the network is
too powerful and vice versa. Furthermore, another problem can occur when using
a DNN; the so-called vanishing gradient. This phenomenon is characterised by a
rapid decrease in performance as the depth of the network increases. We recall
that the training process involves an optimisation of the parameters of the network
performed through backpropagation. The backpropagation step relies heavily on
the chain rule derived from the gradient of the cost function as we showed in the
egs. (3.27) to (3.29) and (3.32). However certain types of activation functions such
as the sigmoid shown in figure 1.3(b) can contribute to the disappearance of the
gradients as 803157;“0“ — 0 leading to A]L = 0. Residual learning comes as a solution
to this specific issue, it makes use of ”skip-connections” which bypass several layers
to merge the information with an output further down in the network. By feeding the
activation several layers down, we avoid the vanishing of the information in a deep
neural network. In figure 3.3 (a) we show a representation of the skip-connection
operation. Usually, the number of layers skipped is between two or three, and this
unit constitutes what we call a residual block. Let us define an input x and an
output F'(x) several layers down in the network. This input = merge with F(z)

through a skip connection such as,
y=x+ F(x). (3.33)

While some models preserve the size of the input z, in other networks the input
could also see a change in dimension and increase. In this case, the activation x
passed several layers down must have the same dimension as the activation F(x), of
the layer that we are trying to merge with. One way to solve this issue is to add a
padding of zero around the input x, to increase the dimension before merging with
the output F(z).
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Figure 3.3: (a) Representation of a residual block with two layers (b) Architecture
of the ResNet18 [27]. This network is composed of eight residual blocks stacked on
top of each other, to which we had one layer in input and a fully connected layer
in output. The solid lines show skipped-connection operations where the input x
and the output F(z) have the same dimensions. Meanwhile, the dotted lines show
skipped-connection operations where the output F(x) has a larger dimension than
z. In the second case, a padding of zeros is added to the input x before merging
with the output F(x).

3.9 The ResNetl8

The ResNet [27] is a deep neural network using the skip connection method, it is
composed of several residual blocks stacked on top of each other. Several depths of
ResNet can be achieved, but we will focus our attention on the ResNet18 shown in
figure 3.3 (b). The network is organised in 8 residual blocks of two convolutional
layers staked on top of each other, to which we add a convolutional layer as input
and a fully connected one as output. This network proved to be performing well in
image recognition and won the ImageNet competition in 2015. Furthermore, it is
easily adaptable by replacing the last layer with the desired number of outputs. The
original network was constructed for two-dimensional images, but in 2018 a three-
dimensional version was implemented for training on video [66]. The structure of this
ResNet for three-dimensional inputs only differs in the use of three-dimensional con-
volutional layers instead of the usual two-dimensional ones. Therefore the ResNets

architecture appears as a perfect candidate for a deep neural network.
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3.10 An example of classification

Now that we have given a brief overview of key concepts and methods to know
when training a ML process, we will provide a thorough example of training for
phase classification with CNN. This classification aims to obtain a network capable
of predicting the two phases of the percolation model. Our dataset is composed of
310000 percolation lattices labelled as spanning or non-spanning, i.e. spanning and
non-spanning denoted by S and N, respectively. We randomly split this dataset
using a 90%/10% training/validation split. We recall that during the training each
of the samples of the training dataset is presented to the network. The performance
of the network is checked after each epoch on the validation set. As such, using a
validation set provides a way to perform a dynamic test during the training phase.
Once the splitting is performed, the labels are encoded using the one-hot encoding
method mentioned in section 3.3. For our training, we employ the ResNet18 network,
presented in the previous section. We modify the last layer of this network to have
two outputs corresponding to the two possible predictions. A softmax activation is
added to the last layer and acts as a normalisation function for the predictions of

the network. The softmax function is defined as

eyi

—_— 3.34
Z][‘(ZI o 9 ( )

Osoftmax (y)z =

where y; is the output of node i. As we have seen in section 1.4, classification
tasks deal with categorical data. The label seen by the network during the training
is encoded. We therefore need a loss function adapted to this type of problem. In
section 3.3, we introduce the CCE, a cost function tailored for categorical data. This
is the cost function that we employ for our example. We recall that a ML training
is an optimisation problem. However, as we have seen in sections 3.3, egs. (3.18)
and (3.24), employing gradients-based methods on large datasets is computationally
expensive. To reduce the computational load, it is customary to divide the dataset
into mini-batches, which in turn allows us to add stochasticity to our optimisation
process. We choose to use a mini-batch of size 256. We call an epoch a full passing
of the dataset through the network. For this example and the rest of the trainings
in this thesis, we launch ten trainings with the same network but different random
seeds. As we have seen in section 3.3, in some cases the performances of the network
after training might depend on the initial point in the cost function landscape. As
such, by repeating the trainings with different initial random seeds, we ensure that

the results obtained are not dependent on a specific initial position in the cost
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Figure 3.4: (a) Average confusion matrix for -classification according to
spanning/non-spanning. The dataset used is the test data 7 and the models used
for predictions are those corresponding with a minimal /. y,1. The true labels for NV
and S, are indicated on the horizontal axis while the predicted labels are given on
the vertical axis. (b) Dependence of losses l¢ train and ¢ yva1 on the number of epochs
e for classification according to spanning/non-spanning.

function landscape. The implementation is done with the PyTorch [67] library.
During the training, we track the performance of the network through the evolution
of the validation and training loss functions denoted by I train and I yq, respectively.
The curves associated with our example are shown in figure 3.4(b), and correspond
to an averaging of the ten differents I train and l.,q obtained.

After training, we evaluate the efficiency of the model on a test set 7. A
confusion matrix is an efficient way to summarise the performances of a model after
training. The horizontal axis of the matrix corresponds to the true labels while the
vertical relates to the labels predicted by the network. As a result, we expect that
a well-trained model produces a heavily diagonal confusion matrix and a poorly
trained model a confusion matrix with several off-diagonal elements. The confusion
matrix obtained after the training of the two phases is shown in figure 3.4(a). This
matrix is an average of the ten confusion matrices obtained from the ten different
random seed-initiated trainings. We observe that the network is overall able to
distinguish the two phases in most cases. However, we note that 7% of the samples

were wrongly predicted. This result will be discussed further in the section 5.5.
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Figure 3.5: (a) Average prediction curve obtained for regression according to p
at the minimal [, yo;. The dataset used is the test data 7 and the models used for
predictions are those corresponding with a minimal /, 4. The blue open squares
denote p-values that have been used during the training and the green open circle
shows p-values that were not trained. (b) Dependence of losses I train and Iy val
averaged on the number of epochs e for regression according to p. The squares (blue
open) denote Iy train While the circles (red solid) show [, va1. The green crosses show
the minimal [, v, for each of the ten trainings.

3.11 An example of regression

Still using the same percolation dataset, we want to obtain a network capable of
making predictions on the density p. This can be achieved by training our network
for a regression task [17]. Instead of separating samples into predefined classes, the
network then makes continuously ranging predictions. While we previously used the
full dataset in the classification example in section 3.10, here we choose to train the
network for a subset of the dataset with density p = 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8
with 10000 samples per classes. Similarly to the previous section, we perform a
90%/10% training/validation split. The key difference between classification train-
ing and regression training is the lack of encoding of the label. In the case of the
classification training shown in the previous section, an encoding of the label was
performed. Here, we recall the existence of a direct correlation between the label y
and the inputs x. Therefore, the labels are not encoded. We again use the ResNet18
network and modify the last layer to only include one neuron as output. While in
classification the output layer was giving us the probability of belonging to a given
class, here the unique output neuron is generating continuous predictions on the

density. The cost function chosen for this task is the MSE loss, which allows us
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to directly monitor the deviation between the predictions of the network and the
actual labels of the samples. Again, during the training the quality of the prediction
of our network can be tracked through the evolution of validation I, ,,; and training
1oss Iy train, as shown in figure 3.5(b).

Once the training is done, we challenge the performance of the network on a
test set composed of percolation lattices with densities p = 0.55,0.555,0.56,0.565, . . .,
0.655,0.66. We average the predictions made on the test set and plot the average
prediction curve in figure 3.5. The plot obtained follows the red line correspond-
ing to the perfect prediction. This leads us to conclude that the training was well

implemented. We will expand more on the result of this training in section 5.2.

3.12 Variational Autoencoder

In the previous sections, we gave two examples of the application of supervised
learning tasks, classification and regression. While supervised learning methods
provide nice applications tasks like classification or regression, unsupervised learning
can provide useful insight into the dataset. In this section, we give the general
background of one specific unsupervised learning task, the VAE.

Before invoking VAEs, it is instructive to introduce the classical autoen-
coders. Autoencoders are networks used for unsupervised training; their task is to
encode an input z; in a way that allows the reconstruction of the input xz; after
decoding [17]. They are composed of two main building blocks, an encoder and a
decoder. One might think about the simplicity of this task as it would be equivalent
to learning the identity matrix. However, this is made impossible by an intermedi-
ate hidden layer. Two main different kinds of autoencoders exist, the undercomplete
and the overcomplete. The undercomplete autoencoder is perhaps the most intuitive
of the two. In this network, the hidden layer is smaller than the encoder and decoder
and acts as a bottleneck. An analogy of this process would be image compression,
where the aim is to compress the image in a way that would preserve it after uncom-
pression. The overcomplete autoencoder has a larger intermediate layer between the
encoder and the decoder. As a result, the intermediate layer contains more neurons
than the encoder and decoder layers, which might lead to a network inclined to copy
the input to the output. To circumvent this issue, several techniques exist, one of the
most popular is the denoising autoencoder (DAE). Let us consider a dataset com-
posed of N independent and identically distributed datapoints D = {x;}¥,. Each
datapoint in the dataset follows a distribution p*(x) and lives on the manifold of

the dataset D. The denoising autoencoder operates by displacing these points away
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Encoder Hidden Layer Decoder Encoder Hidden LayerDecoder

Figure 3.6: (a) Architecture of a fully connected undercomplete autoencoder, the
hidden layer contains fewer neurons than the encoder or decoder layers. (b) Archi-
tecture of a dense overcomplete autoencoder, this time the hidden layer has more
neurons than the encoder or decoder layers.

from the manifold through the addition of noise, the training then aims at moving
them back on the manifold. Through this process, the network is forced to learn
a vector field mapping each displaced point to the manifold. As such, the trained
network knows implicitly the structure of the manifold representing the samples of
the dataset, and can reconstruct the input.

Autoencoders are useful tools with many applications such as phase detec-
tion [68—70] or anomaly detection in high energy physics [71,72]. However, we are
interested in an even more powerful tool: VAE. While a classical autoencoder aims
at reconstructing a compressed representation of the input data, VAEs are gener-
ative networks, i.e. they create new samples similar to samples of the dataset D
through a probabilistic procedure. We wish to have a network able to produce new

samples following a distribution py(x) such that

po(x) =~ p* (). (3.35)

Here 6 denotes the parameters of the network. As we suppose that the samples
are independent and identically distributed, the total probability distribution of the
model can be written as a product of distribution. It is then possible to define the

log-probability of the model as

log pg(D) = ) _ log py(x). (3.36)
xeD

This function acts as a cost function for generative models.

42



The training of a VAE is performed through the introduction of a latent vari-
able z. A latent or hidden variable is a parameter of the model that is not typically
observed. When dealing with marginal distributions in physics, it is customary to
integrate out some variables. However, this often contributes to inducing complex
correlations between the remaining variables. Here, we apply the reverse idea, by
introducing a latent variable z we aim at simplifying correlations between observ-
ables in the system. Thus, the distribution function of the model can be rewritten

as a marginal distribution over the samples xz and the latent variable z

po(x) = /pg(x,z)dz. (3.37)

This distribution is also referred to as the marginal likelihood [73]. According to

the general product rule we have,

po(x, z) = po(x|2)pe(2), (3.38)

where pg(z) is the distribution of the latent space, also called prior distribution.
Similarly to a classical autoencoder, a VAE is composed of an encoder, where the
distribution of the dataset is coded, and a decoder, which this time generates new
samples. The hidden block between the encoder and decoder is a probabilistic
sampler. The distribution py(x|z) represents the mapping from the latent space to
the new sample that we generate. This distribution is often called stochastic decoder.
The inverse distribution pg(z|z) maps the distribution of the input sample to the
latent space and is often called stochastic encoder. However, one problem arises, the
marginal likelihood displayed in eq. (3.37) is not tractable as it would require to sum
over all the configurations of the latent variables. To solve this issue we introduce an
infer distribution g4 (2|2) which acts as an approximation of the distribution pg(z|z).
Usually, this distribution is chosen as a Gaussian multivariate [17,74]. From this, it

is possible to rewrite the log-likelihood as

log py(x) = Ey, (21 [log po()], (3-39)
= Eqy, (-1a) :log (1; Z((;;)) )] : (3.40)
)
(S v [ (8]
= Lg,¢(x) + Drcr(as(2|2)|[po(2|2)), (3.43)
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Figure 3.7: Diagram of the mappings between the x-space of the dataset D and
the z-space of the latent space for a VAE [75]. The distribution pg(z|z) gives the
mapping of the z-space to the x-space and is usually refered as stochastic decoder.
The probability ge(z|x) is called stochastic encoder, and is the infer distribution,
usually a multivariate Gaussian which approximates the intractable distribution

po(z|x).

where Ly 4(x) is the reconstruction error and Dgr (qs(2|2)||[pe(2]x)) is the KL di-

vergence. By reorganising the term in 3.43 we obtain,

log po(xi) — Log(wi) = Drcr(gs(2|2)lIpe(2]2)), (3.44)

We recall the non-negativity of the KL divergence defined in section 3.3. As such,
Lo 4(x) is also called the Evidence Lower BOund (ELBO) and corresponds to the
lower bound of the log-likelihood. From this, we deduce that maximising the ELBO
contributes to maximising the log-likelihood and decreasing the KL divergence.

As we previously mentioned, ML trainings are equivalent to solving optimi-
sation problems, i.e. minimise the cost function. Therefore, we compute the gradient

of the reconstruction error with respect to the parameter 6

VoLoo(x) = VoEq, 2z [log po(w, 2) — log gs(2]2)], (3.45)
=By, (o) [Vo( log po(w, 2) — log qy(2l7))], (3.46)
= Egy(elo) [Volog po(z, 2)]. (3.47)
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Let us now look at the gradient with respect to ¢

VLo gs(x) = VEq,(z12) llog pg(z, z) — log q4(2|z)]. (3.48)

While in eq. (3.47) we could easily move the gradient Vg inside the expected value
Eqy(2lz)s here we cannot as the expected value E, o(2]2) depends on the same pa-
rameter as our gradient V4. Therefore, the backpropagation method described in
section 3.7 cannot be directly applied here. To bypass this issue, we make use of the
reparametrization trick [75]. We recall that z is sampled from the infer distribution
and can be expressed as z ~ gy(z|x). Usually, it is not easy to sample from this
distribution. A solution is to define z as a differentiable deterministic function of

several parameters

z=g(e, ¢, 1), (3.49)

where € ~ p(e) is a random noise sampled from a simple probability distribution,
independent of ¢ and x. Usually, we choose € such as e ~ N(0,1), given that gy (z|x)

is a multivariate Gaussian distribution, eq. (3.49) can be expressed as
z=p+oQe (3.50)

According to the Law of The Unconscious Statistician (LOTUS), when dealing with
a function g(X) of a random variable X, the expected value E,[g(X)] is

Epel9(X)] = / 9(@)p(e)de (3.51)

Using the change of variable in eq. (3.49) and the LOTUS it is then possible to
rewrite eq. (3.48)

VoLog(x) = VsEyellog po(z, 2) —log gy(z]2)], (3.52)
= Epo[=Vglog gs(2]2)]; (3.53)
~ =V log g4(2]2)]; (3.54)

The reparametrisation trick provides us with a simple way to optimise the param-
eters of the network. While backpropagation cannot happen through the random

variable z, it can occur through the change of variables z = g(¢, z, €).
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Figure 3.8: Architecture of the VAE used during the training of percolation states.

3.12.1 An example of application of the VAE

We will now provide a detailed example of the training of a VAE. The goal of
this training is to obtain a network able to generate new percolation samples. For
our study, we use a similar network as the one described in the article of Cheng et
al. [76], which is composed of two convolutional layers, a bottleneck with z = 400 for
the dimension of the latent space and two deconvolutional layers. Our training set
is composed of percolation states at densities p = [0.4,0.41,0.42...,0.79,0.8] with
1000 samples per class. Again, following the strategy employed for the classification
and the regression, we split our dataset following a 90%/10% training/split. As
this is an unsupervised method we simply feed these configurations to the network
without label. For the reconstruction loss, we choose the Binary Cross-Entropy
(BCE) defined as

Lpcep = —% > wi loglf ()] + (1 - wi) log[l — f ()], (3.55)
i=1

where f(x;) is the prediction made by the network on the input x;.

We set the dimension of our latent space to z = 400 and train for 20 epochs.
After completing a training cycle we obtain the following outputs In figure 3.9 we
display the output of the trained VAE. The network seems to perform the task of
reproducing the image, however, the high similarity of the image might lead us to

think that the VAE process did not work as it was supposed to. We will discuss the

46



il

i TR H
E y

Figure 3.9: On the top row we see the input fed by the network, on the second
row, we see the reproduction made by the network after training. As we can see the
network is able to reproduce the inputs after training.

result of this training in section 5.10 in more detail.

3.13 Conclusion

In this chapter, we gave a brief introduction to some essential ML concepts. We
presented ML trainings as optimisation problems and provided several methods such
as Newton’s method or SGD to solve it. We introduced the concept of generalisation,
at the centre of the ML philosophy. More than being able to perform well on our
training set, we aim at performing well on unseen data. Finally, we provided detailed

examples of the training processes for classification, regression and VAF.
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Chapter 4

The datasets

When training a ML, the most important criterion is the quality of the data fed
to our network. A bad dataset can lead to a biased network unable to generalise
on a test set. As such, one should worry about the quality of the dataset used for
training. In general, when training a ML task, we observe that small inputs tend
to be used. In condensed matter and statistical physics, small systems might see a
change in the behaviour of some parameters of the systems due to finite size effect.
These changes need to be taken into account when proceeding with our ML analysis.
For our studies, we generated our own datasets with sizes similar to those observed
in the literature. In this part, we will present these two datasets, the percolation

dataset and the Anderson dataset.

4.1 The percolation dataset

4.1.1 Training/Validation datasets

To facilitate the recognition of percolation with image recognition tools of ML,
we have generated finite-sized L x L, with L = 100, percolation states, denoted
as 1;(p), for the 31 p-values 0.1,0.2,..., 0.5,0.55,0.555,0.556, ...,0.655,0.66,0.7,
...,0.9. For each such p, N = 10000 different random ;(p) have been generated.
Each state ¥;(p), ¢ = 1,..., N, is of course just an array of numbers with 0 denoting
unoccupied and 1 occupied sites. Nevertheless, we occasionally use for convenience
the term “image” to denote ¥;(p). When training, we split this dataset according
to a 90%/10% training validation split. In the rest of this thesis, we will use the
notation T'UV to qualify this dataset.

In Figure 4.1 we have shown examples of percolation states generated for

various p values. The different grey scales used in Figure 4.1 mark the different
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Figure 4.1: Examples of four percolation clusters of size L? = 1002, obtained for
(a) p=10.2 < pe, (b) p=0.6 > p. and (c) p = 0.5, i.e. just below p.. Occupied sites
are marked by small dots while empty sites are left white. Each cluster of connected
sites has been identified through the HK algorithm. While individual clusters have
been highlighted with different grey scales for the first three images, image (d) with
p = 0.5 shows all occupied sites in black only, irrespective of cluster identity. This
latter representation is used below for the ML approach.

connected clusters. However, for the ML approach below, we shall only use the
numerical values 0 and 1 corresponding to the state v;(p). This is visualized as the
simple black and white version shown, e.g., for p = 0.5 in figure 4.1(d).

We emphasise that in this construction, we took care to only construct states
such that for each p, the number of occupied sites is exactly Ny = px L?, and hence
p can be used as an exact label for the supervised learning approach. Indeed, using
the preexisting binomial function in Python led to the creation of lattices of densities
p £ dp. This would have resulted in several samples labeled with p which would in
reality have slightly different densities which in turn could have affected the quality
of the training. We note that with our construction p = Nyce/ L? can therefore
also be called the percolation density. For the ML results discussed below, it will
be important to note that the spacing between p values reduces when p reaches
0.5 with the next p value given by 0.55 and then 0.555. Similarly, the p spacing
increases as 0.655, 0.66, 0.7. This smaller spacing allows us to have more samples
in the transition region. We will later see that this results in some deviations from
perfect classification/regression. Last, we have also generated a similar training set
with L = 200 for 20 p-values 0.1,0.2,...,0.5,0.56,...,0.66,0.7,0.8,0.9. We find
that our results do not change significantly when using this much larger data set.
To prove our point, we will present the result of a classification training to identify

the presence of spanning/non-spanning for L = 200.

4.1.2 The spanning/non spanning property of the lattices

For our study we choose to focus on three parameters of interest, the density p (i), the

correlation function g(r) (ii), and the presence or absence of a spanning cluster (iii).
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N S
D # K # I

0.1 10000 | 1.0 0.0 0.0
0.2 10000 | 1.0 0.0 0.0
0.3 10000 | 1.0 0.0 0.0
0.4 10000 | 1.0 0.0 0.0
0.5 10000 | 1.0 0.0 0.0

0.55 9889 | 0.9889 | 111 0.0111
0.56 9778 | 0.9778 | 222 0.0222
0.565 9555 | 0.9555 | 445 0.0445
0.57 9171 | 0.9171 | 829 0.0829
0.575 8541 | 0.8541 | 1459 0.1459
0.58 7731 | 0.7731 | 2269 0.2269

Table 4.1:  Distribution of spanning/non-spanning in the full dataset 7 UV for
p € [0.1,0.58]. We notice the presence of several percolating samples from p = 0.55,
which is below p. =~ 0.585. The inverse trend is observed above p., where several
non-percolating samples remain.

As a first step to identify g(r) and the presence of spanning clusters, we label each of
the clusters in each of ¥;(p) the states. This labelling is performed through the HK
algorithm described in section 2.1.4. After the complete labelling of the dataset, we
can give the precise distribution of spanning (non-spanning) samples in the dataset.
As a first step to our analysis of our dataset we retrieve the finite size version of the
parameters IT and x defined in section 2.1.1. In figure 4.2(a) we observe the extracted
IT100, K100 and p.(100), the latter obtained through the crossing of I1;po and k1gp.
We note that II(p) behaves qualitatively as expected [48]. Due to finite size effect,
close to p., we find samples which are already spanning for p < p. as well as samples
for p > p. which are not spanning. Clearly, p.(L = 100) ~ 0.585(5) < p.. This latter
behaviour is as expected since sz, (p) < soo(p), i-€., a cluster that seemingly spans an
L x L finite square might still not span on an infinite system. For reference, we now
have 12 values p = 0.1,...,0.58 < p.(100) and 18 values p = 0.59,...,0.9 > p.(100).
We also note that the training set contains 92.7% of states without a spanning cluster
below p. and 94.8% are spanning above p.. The detailed analysis of the proportion
of spanning and non-spanning samples is given in table 4.1 and 4.2. We observe that
the first percolating states appear earlier than p.(100) ~ 0.585. The inverse trend
also occurs for p > p.(100) ~ 0.585 where non-percolating samples remain until
reaching p = 0.635. A training set with L = 200% was also generated in figure 4.3.
Similarly to the dataset with L = 100, the HK cluster labelling algorithm was applied

to each of the samples. After performing the labelling, we find a new percolation
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N S
p # K # II

0.585 | 6577 | 0.6577 | 3423 0.3423
0.59 | 3841 | 0.3841 6159 0.6159
0.595 | 2501 | 0.2501 7499 0.7499
0.6 1547 | 0.1547 | 8453 0.8453
0.605 | 827 | 0.827 9173 0.9173
0.61 373 | 0.0373 9627 0.9627
0.615 | 162 | 0.0162 9838 0.9838
0.62 70 | 0.007 9979 0.9979

0.625 21 | 0.0021 9993 0.9993
0.63 71 0.0007 | 9997 0.9997
0.635 3| 0.0003 | 10000 1.0
0.64 01]0.0 10000 1.0
0.645 01]0.0 10000 1.0
0.65 01]0.0 10000 1.0
0.655 01]0.0 10000 1.0
0.66 01]0.0 10000 1.0
0.7 01]0.0 10000 1.0
0.8 01]0.0 10000 1.0
0.9 01]0.0 10000 1.0

Table 4.2:  Distribution of spanning/non-spanning in the full dataset 7 UV for
p € [0.585,0.9]. We notice the presence of several percolating samples from p = 0.55,
which is below p. ~ 0.585. The inverse trend is observed above p., where several
non-percolating samples remain.

threshold p.(L = 200) ~ 0.588(6) < p.. While p.(L = 200) remains lower than p,
we notice that p.(L = 100) < p.(L = 200) < p.. As the size L of the lattice increases
pe(L) ﬁ pe, therefore, it appears logical that p.(L = 100) < p.(L = 200).

—00

4.1.3 The correlation function and correlation length

The correlation function g(r) was computed for each of the 31000 samples in the
dataset with periodic boundary conditions. Let us consider an occupied site 7 in a
lattice 1;(p), the computation of g(r) involves visiting each of the other sites in the
lattice and checking first if they are occupied and secondly, in the case where they
are occupied if they belong to the same cluster as the original site ¢. For each of the
pair of sites 7 and ¢ controlled, we keep in memory the distance r separating them,
in a list and if they belong to the same cluster or not by appending 1 or 0 to a list.
Once all of the sites of the lattice are checked we normalise the numbers obtained

by dividing by the number of sites visited. It is useful to note that we subtract
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Figure 4.2: (a) Probabilities II(p) and x(p) of having a spanning cluster (.5, blue open
squares)/ or not (N, red open circles) close to the percolation threshold for dataset
T UV, respectively. Similarly, N, (orange +) and S; (cyan x) for probabilities I1(p),
k(p) obtained for the test data set 7. The vertical lines denote p.(L) (dashed) and p,.
(dotted). (b) Average correlation length (£) with respect to p. Each of the red open
circles designates the average £ over 10000 samples. The green dotted and black
dashed lines indicate respectively p. ~ 0.5927 and the p.(100) = 0.585 associated
with our dataset.

the probability of belonging to the largest cluster from the correlation function, the

correlation retained is therefore

g/(T) = g(?") - Plargest- (41)

In figure 4.4 we display several correlations associated with random samples in our
dataset taken at p = 0.4 < p., p = 0.585 =~ p. and at p = 0.7 > p.. On the top
row, we show plots of g and ¢’ at these three p-values on a linear scale. On the
bottom row, we plot g and ¢’ on a logarithmic scale. In each figure we provide the
decay g ~ exp(—r/§), found in section 2.1.2. For every plot, we notice that while
exp(—r/€) is close to g(r) and ¢'(r) the slope does not coincide perfectly. This could
be attributed to a normalisation issue. The curves shown in figure 4.4(a) display a
common behaviour of g and ¢’. At low p-values the largest cluster remains small
and the probability of belonging to it is negligible. However, when entering the
transition region we observe a divergence of the behaviour of g and ¢’. In figure
4.4(b), we clearly see a convergence of ¢’ — 0 while ¢ — 0.1. The same behaviour

is observed in figure 4.4(c), where ¢’ — 0 while g — 0.55. As the value p increases,
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Figure 4.3: (a) Probabilities II(p) and x(p) of having a spanning cluster (S, blue
open squares)/ or not (N, red open circles) close to the percolation threshold for
dataset T U Vo, respectively. Following the same convention as figure 4.2 the
vertical lines denote p.(L = 200) ~ 0.588(6) (dashed) and p. (dotted).

the probability of a point belonging to the largest cluster increases, leading to a
saturation of the correlation function. Therefore, we adopted ¢’ as the correlation
function of our system.

From these correlation functions we compute the correlation lengths & fol-
lowing eq. (2.13). While theory predicts a diverging £ at p ~ p., the correlation
length obtained for our dataset does not diverge due to the finite size effect. This
finite size effect is also observed through the shift of p.(100) from p,.

We recall the presence of the normalisation factor in £ as seen in eq. (2.22).

As such, £ presented in figure 4.2 is normalised.

4.1.4 The test datasets: 7, 75, +w and 7g,

As stated throughout chapter 3, one of the most sought qualities of a ML network
is the generalisation. Therefore, to test the ability of prediction of our network we
need a test set never seen by the network during the training phase. We generate a
test data set, 7, of 1000 states for each of the 31 p-values, such that in total we have
N, = 31000. This test set is used to make all the confusion matrices given below.
By doing this, we ensure that the performance of the trained DL networks is always
measured on unseen data [20].

In addition, we generate three special test data sets. These data sets have

been constructed to allow testing for the existence of the spanning cluster. The
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Figure 4.4: On the first row correlation function for (a) p = 0.4, (b) p = 0.585 and
(¢) p = 0.7 on a decimal scale. On the bottom row correlation function for (d)
p = 0.4, (e) p = 0.585 and (f) p = 0.7 on a logarithmic scale. In each plot, the
red solid line denotes the decay exp(—r/£). We note that for p < p.(100) ~ 0.585

g(r) = g'(r).

first special data set, 7, is made for the 27 p-values 0.5,0.55,0.555,...,0.66,0.7
close to p. and again consists of 1000 states 1;(p) for each p. After generating each
¥i(p), we add a straight line of occupied sites from top to bottom, while keeping p
constant by removing other sites at random positions. Obviously, every 1;(p) in 74,
therefore, contains at least one spanning cluster by construction. As a consistency
check to the performance of the ML networks, we also add two more 1; without
any connecting path for p = 0.1 and 0.2. In the next set, 7w, we start with the
same 27 p-values for a new set of 27000 ;(p), but instead of the straight line, we
add a directed random walk from top to bottom. As before, we conserve the overall
density p of occupied sites. Hence, every sample in 7y is spanning. We again add
two 1; for p = 0.1 and 0.2 without the connected random path. Finally, the third
special data set, q,, again contains 27000 lattices for the same previously mentioned

27 p-values, but in each of the states, we apply random firebreak paths, horizontally
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Figure 4.5: Examples of percolation images from the three special test sets with (a)
T, a percolating straight line from top to bottom, (b) 7w, a percolating random
path from top to bottom and (c) g, a " firebreak”-like cross of empty sites preventing
percolation. For the sake of visibility, in (a+b) the connected path is highlighted in
red. In all three cases, p = 0.5.

and vertically, of unoccupied sites. This set is clearly non-spanning. Following the
same logic as for 75 and 7., we add two spanning test samples above p. without the
firebreak, namely, for p = 0.8 and 0.9. In all three cases, despite the modification
in the lattices, we ensure that Ny = p X L? and hence the occupation density is p.

Examples of the three sets can be seen in figure 4.5.

4.2 The Anderson dataset

4.2.1 Training/Validation datasets

For the sake of clarity, we choose to make use of the same notation introduced for the
study of the percolation model. As such, we will denote the training/validation sets
as TUYV and the test sets as 7. To conduct our study we generated a primary dataset
T U V)15,18) composed of eigenstates for 17 disorders W = 15,15.25,...,17.75,18
across the Anderson transition in the centre of the band close to £ = 0. The
computation of the states ¢ = ). 1);]i) were performed with the JADAMILU library
[77-79]. For each disorder, N = 5000 independent samples were created for three
system sizes, L = 203, L = 403 and L = 1003. An associated test set T[15,18] Was
created for these three system sizes with 17 disorders W = 15,15.25,...,17.75,18
and Niest = 500. To compare our results to the previous work of Ohtsuki et al. [45],
several disorders W = 14,14.25,14.5,14.75 and W = 18.25,18.5,18.75, 19, also with
N = 5000 independent samples were added to the original dataset to create the
second set T UV 4,19]- The aim is to allow us to observe the difference in performance
between the simple network described by Ohtsuki and the ResNet18. Similarly to

the first dataset, we also generate an associated test set 7(14,19) for the three system
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(a)

Figure 4.6: (a) Extended, (b) critical and localised (c) wave function probabilities
|¢(7)|? for the 3D Anderson model with periodic boundary conditions at E = 0
with N = 100% and W = 14, 16.5 and 19, respectively. Every site with prob-
ability |¢(z,y, 2)|? larger than the average 1/N? is shown as a box with volume
N|Yg—o(z,y,2)>. Boxes with N|(x,y, z)|?> > +/1000 are plotted with black edges.
The colour scale distinguishes between different slices of the system along the axis
into the page. In each panel, the left half is the originally constructed image while
the right half shows the image in its converted PNG form with 500 x 500 pixel res-
olution. Obviously, upon conversion, the black boxes around the large | (z,y, 2)|?
become less prominent and the outside black frames are also removed.

sizes, with Niest = 500.

During our study, two types of training were performed. One was performed
on images created from the eigenstates and the second one directly on the eigen-
states. For each dataset TUV|15 15, T UV [14,19] and each system size, for the system
size L = 202, 403 and 1003, two size of images were created, s = 1002, s = 2002
We generated a supplementary size of images s = 500? for the system L = 1003.
The aim is to compare the performance of the trainings realised with images of
three-dimensional eigenstates and directly of the eigenstates. To avoid confusion,
we will denote the training on images as 7 UV s, and the training on ¢ and [y|?
respectively as T U Vy () and T U Viy2 (.- Here, ¢ and u represent the range of

disorders in the dataset.
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Chapter 5

Machine Learning study of the

Percolation Problem

5.1 Classification of states labeled with density p

We use the density p-values as labels for the ML task of image recognition with the
ResNet-based DL implementation outlined in section 3.10. After ten trainings with
all 310000 images for 20 epochs, we find on average a validation loss of (l¢ya) =
0.052 £ 0.009 (corresponding to an accuracy of (acva1) = 99.323% =+ 0.003). This
is comparable to the very good image classification results shown on Kaggle [25].
Figure 5.1(a) gives the resulting averaged confusion matrix. The dependence of the
training and validation losses, (lc train) and (lcval), respectively, on the number of
epochs, €, is shown in figure 5.1(b). From the behaviour of the loss functions, we
can see that (lcyal) > (lc train) until € = 15 after which both losses remain similar.
This suggests that emax = 20 for our DL approach is indeed sufficient and avoids
over-fitting. Similarly, the confusion matrix is mostly diagonal with the exception
of very few samples around the change of resolution in density, at p ~ 0.555 and

0.655, as commented before in section 4.1.

5.2 Prediction of densities p via regression

For the regression problem, we train the RESNET18 only for the nine evenly spaced
densities p = 0.1,0.2,...,0.9. After training and validation with 7 and V, respec-
tively, we examine the states in 7 and predict their p values. In figure 5.2, we present
the results with (a) indicating the fidelity of the predictions for each p-value and

(b) showing good convergence of the losses Iy train and [y ya1. Clearly, the regression
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Figure 5.1:  (a) Average confusion matrix for classification according to p. The
dataset used is the test data 7 and the models used for predictions are those corre-
sponding to a minimal /¢ ,. True labels for p are indicated on the horizontal axis
while the predicted labels are given on the vertical axis. The colour scale represents
the number of samples in each matrix entry. (b) Dependence of losses [ train and
lcval averaged over ten independent training seeds, on the number of epochs e for
classification according to p. The circles (red solid) denote [ train While the squares
(blue open) show l;v,1. The green crosses indicate the minimal [ v, for each of the
ten trainings.

works very well for the nine trained p-values p = 0.1,...,0.9 as well as the untrained
values 0.55,0.555,...,0.0.655,0.66 close to p.(100). After reaching ¢ = 20, we find
that mine[(ly train)] = 0.0003 £0.0002 and mine[(l; va)] = (6.241.2) x 107°. In other
terms, the best model provides predictions on p with a variance 4, = 0.008.
Overall, we can conclude that our CNN performs well for classification and
regression tasks while 7, V, and 7 present appropriately structured data sets for

these ML tasks in terms of data size.

5.3 Classification with correlation length &

We now turn our attention to studying image recognition when using the correlation
lengths &, instead of p, as labels for the 1;(p) states. One way to do this is to use
(&(p)) as label. While for the classification by p the label value was identical to the
actual density p of a given state, now each state is labeled by ({(p)). This means
that the actual ¢ of the state might be different from the label assigned. Since
(¢(p)) can be uniquely identified by p, this strategy in fact should be equivalent

to the previous situation and the CNN should give us similar classification results.
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Figure 5.2: (a) Average prediction (p’) obtained for regression according to p. The
dataset used is the test data 7 and the models used for predictions are those cor-
responding to a minimal /; y;. The (p’) on the solid p = p’ line corresponds to the
solid bottom and left axes, while the same (p') data lying in the dashed p = p/
line is associated with the dashed top and right axes. The latter corresponds to a
detailed representation of the region around p.(L). For both data representations,
the blue open diamonds denote p-values that have been used during the training
and the green open circles show p-values that were not trained. The vertical cloud
of small orange dots shows the spread of (p,p’) values for 1000 individual samples
at p = 0.56 with average (p, (p)) indicated by an orange circle. In the same fashion,
the magenta dots give (p,p’) for p = 0.65 with the average denoted by the magenta
circle. (b) Dependence of losses Iy train and Iy va1 averaged as in Fig. 5.1 on the num-
ber of epochs € for regression according to p. The circles (red solid) denote l; train
while the squares (blue open) show I; va1. The green crosses show the minimal I, va1
for each of the ten trainings. Both plots were used previously in figure 3.5 as an
example of regression training.

The results of such a classification are shown in figure 5.3 where similarly to figure
5.1 we present in (a) the average confusion matrix for the 31 ({(p)) values (cf.
also figure 4.2(b) and in (b) the evolution of losses during the training. We find a
validation loss of mine[(l¢va1)] = 0.38 = 0.07 (corresponding to a maximal accuracy
of max,[(acval)] = 87.12% %0.05) and a highly diagonal confusion matrix, with only
a small deviation that can be linked to the change in resolution in our data set above
p = 0.5.

One might wish to interpret the above classification with ({(p)) as a success of
the ML approach. However, let us reemphasize that it is fundamentally equivalent
to simply changing labels while keeping the direct connection of the labels with

p unaltered. We now wish to obtain a classification of states via their &’s which
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Figure 5.3: (a) Average confusion matrix for classification according to (£). The
dataset used is the test data 7 and the models used for predictions are those corre-
sponding to a minimal l¢ va1. (b) Dependence of losses l¢ train and . va1 on the number
of epochs e for classification according to (£). We follow the same convention as in
figure 5.1 and figure 5.2.

is independent of the p’s. In figure 5.4 we show the distribution = of the £’s in
T UV. Clearly, the number of small £ values is larger than the number of ¢ values
close to the maximal value of max[{] = 15.771 (cp. figure 4.1(c)). Hence simply
using each ¢ as label for the corresponding ; would result in a biased dataset. We
therefore reorganise the 7 UV data set. This can be done in two ways. For the
first reorganisation, we create bins with a constant number of 10000 samples in each
bin. We call this dataset =,,. This results in a varying bin width. The second way
to reorganise the data set is to keep the bin width constant while restricting the
number of samples in each bin. We shall denote this reorganisation as =,,. Since
&(p) is non-monotonic in p, we split the reorganisation into the case (i) p < p. with
and (ii) p > p.. We emphasise that the reorganised data sets consist of the same
states as in T UV but now have different labels according to the bin labels for =,
and Z,,. Furthermore, there is now no longer any direct connection of the new labels
to the original p densities.

In figure 5.5 and 5.6, we plot the resulting confusion matrices and losses. We
see that the classification for =, and =,, only results in large diagonal entries in the
confusion matrices for small correlation lengths labels €. Overall, the classification
for E,, is somewhat better than for =,, when away from p.(L). We attribute this to
the uneven spread of £ values for the Z,,.

Still, with overall 52.4% and 59.6% of states misclassified for 2, and Z,,
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Figure 5.4: Probability distributions for correlation lengths & when (a) p < p.
(with 12 p-values) and p > p. (18 p-values) with unbalanced = and the balanced
counterparts =, and =, denoted by yellow, magenta and green, respectively. In
each case, the distributions are normalised relative to the total number of £’s in
each set, i.e. for (a) 120000 in = and Z,, and 6 x 3560 = 21360 in =,, while for (b)
there are 180000 in = and =,, and 5 x 3077 = 15385 in =,,.

respectively, it seems clear that classification for correlation lengths must be consid-

ered unsatisfactory.

5.4 Regression with correlation length ¢

For the regression task with £, we proceed analogously to section 5.2. Again, we
train the CNN for the individual correlation length &;(p) corresponding to each
1; € T for the nine densities p = 0.1,...,0.9. We then compute the predictions of
&i(p) for all 31 densities in 7. The results are shown in figure 5.7. We find that the
network architecture which previously predicted the density quite accurately is now
struggling to correctly predict &.

A structure seems to exist in the predictions. By looking closely we notice
that the network makes use of the density for its predictions: although the individ-
ual true &;(p) values have a large spread for the untrained p-values, the regression
reassigns them all a predicted (£') value similar to the average of the £ from the
two neighbouring p values. Furthermore, by plotting the correlation length (£')(p)
for p = 0.1,...,0.9 we retrieve the plot of {(p) as seen in figure 5.8. We have de-
tailed the case p = 0.56 in Fig. 5.7(a). We find that while the spread of £ values

is rather large, reflecting the fluctuations inherent when calculating & close to pe,
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(a+c) Confusion matrices on 7 set for the classification when using the
correlation-function-relabeled =,, data sets for p < p.(L) and p > p.(L),
respectively. (b+d) Dependence of losses lc train and lcva1 on the number of epochs
e for classification according to Z,, for p < p.(L) and p > p.(L), respectively. The
model used for prediction in (a) was trained with 12 classes and the model (b) was
trained with 18 classes. For (a) and (b) we used 10000 samples per class.

the spread of & is much less, and (£/(0.56)) = 3.48 is close to the average of the
trained (£(0.5)) and (£(0.6)), namely 3.46. Similarly, the prediction at p = 0.65 is
2.14 and hence close to the average of (¢/(0.6)) and (£/(0.7)), namely 1.91. We note
that in obtaining these results, we have taken care to avoid unintentional feature

leakage [80,81] by removing information about p in the 7 data set.

5.5 Classification with the spanning or non-spanning
properties with L = 100

As discussed earlier, the hallmark of the percolation transition is the existence of

a spanning cluster which determines whether the system is percolating or not [48].

In the previous section, our DL approach has classified according to p or & values

without testing whether spanning clusters actually exist. We now want to check
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Figure 5.6:

(a+c) Confusion matrices on 7 set for the classification when using the
correlation-function-relabeled =, data sets for p < p.(L) and p > p.(L),
respectively. (b+d) Dependence of losses lc train and lcva1 on the number of epochs
e for classification according to Z,, for p < p.(L) and p > p.(L), respectively. The
model used for prediction in (a) was trained with 5 classes and 3560 states per
class. For (b), 6 classes were trained with 3077 states per class.

this and label all states according to whether they are spanning or non-spanning.
From figure 4.2(a), it is immediately clear that for finite-sized systems considered
here, there are a non-negligible number of states which appear already spanning
even when p < p. and, vice versa, are still non-spanning when p > p.. Furthermore,
we note that for such L, the difference between p. and p.(L) is large enough to be
important and we hence use p.(100) ~ 0.585 as the appropriate value to distinguish
the two phases.

Figure 5.9 shows the average results after ¢ = 20 with a validation loss
of mine[(lcva1)] = 0.165 £ 0.001 (corresponding to a maximal validation accuracy
maxe[(acval)] = 92.702% =+ 0.001). At first glance, the figure seems to indicate
a great success: from the 31000 states present in 7, 11510.6 have been correctly
classified as non-spanning (i.e., N — N’), and 17206.9 as spanning (S — S’) while
only 1223.1 are wrongly labeled as non-spanning (S — N’) and 1059.41 as spanning
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Figure 5.7: (a) Average predictions for regression according to . The dataset used
is the test data 7 and the models used for predictions are those corresponding to a
minimal /; va1. The cloud of small purple dots shows the distribution of the individual
samples predictions for the purple circle, in the same fashion, the orange cloud shows
the distribution of predictions for the orange circle. (b) Dependence of losses I train
and [, va1 on the number of epochs e for regression according to {. We follow the
same convention as in figure 5.2.

(N — §") L. Overall, we would conclude that 92.6% of all test states are correctly
classified while 7.4% are wrong. However, from the full percolation analysis for
T, we can compute that there are 11127 states (92.7%) without a spanning cluster
below p.(L) while 873 states (7.3%) already contain a spanning cluster. Similarly, for
p > pe(L), 94.9% of states, equivalent to 17075 states, are spanning and 5.1% are not
corresponding to 925 states. At p.(L) = 0.585, we furthermore have 482 spanning
and 518 non-spanning states. Hence in total, we expect 2280 wrongly classified
states. Since the last number is decisively close to the actual number of 2282.5 of
misclassified states, this suggests that it is precisely the spanning states below p.(L)
and the non-spanning ones above p.(L) which the DL network is unable to recognise.
Let us rephrase for clarity: it seems that the DL CNN, when trained in whether a
cluster is spanning or non-spanning, completely disregards this information in its

classification outputs.

!We note that these numbers are not integers since they are computed as averages over the 10
independent training runs as mentioned in section 3.10
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Figure 5.8: (a) Average predictions for regression according to £. For each of the
trained £(p) we give the distribution for 1000 datapoints. The horizontal line denotes
(¢(p)) for each p. (b) Plot of the prediction of the trained £(p) according to p. We
observe that the predictions allow us to retrieve the &(p) (cf. figure 4.2(b)) from the
T UV dataset.

5.6 Classification with the spanning or non-spanning

properties with L = 200

In the previous section, we presented the result of the classification of percolation
lattice according to the presence of a spanning cluster. We raised the hypothesis that
our network failed to identify spanning samples below the percolation threshold.
To see if this trend is confirmed in larger system sizes we propose to study one
classification training for spanning/non-spanning with L = 200. In figure 5.10 we

display the result of one training after 20 epochs.

5.7 Density-resolved study of spanning/non-spanning

close to p.(L)

In order to understand the behaviour observed in the last section, we now reexam-
ine the result of figure 5.9 by analysing the ML-predicted probabilities, Ty, (p). In
figure 5.11, we show both IIyy,(p) as well as II(p); the latter having been obtained
by the HK algorithm, cf. figure 4.1(a). While the II(p) and Iy (p) curves — and
of course also the corresponding x(p) and kg, (p) — appear qualitatively similar,
they are nevertheless not identical and the slopes of Iy, (p), £MmL(p) are different.

We emphasise that the slopes are important for determining the universality class
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Figure 5.9: (a) Average confusion matrix for -classification according to
spanning/non-spanning. The dataset used is the test data 7 and the models used
for predictions are those corresponding to a minimal I. .. The true labels for N
and S, are indicated on the horizontal axis while the predicted labels are given on
the vertical axis. (b) Dependence of losses l¢ train and ¢ yva1 on the number of epochs
e for classification according to spanning/non-spanning. Both figures were used pre-
viously in figure 3.4 as an example of classification training. Again, we follow the
same convention as for figures 5.1, 5.3, 5.5 and 5.6

of a second-order phase transition via finite-size scaling [82]. Since we know for
each image whether it percolates or not, we can also check how well the ML pre-
dictions worked by considering the covariance. Let ((¢;(p)) = 0 when there is no
percolating cluster in the state ;(p) while ((¢;(p)) = 1 if there is. Similarly, we
define (i, (wi(p)) for the prediction by the DL network. Then cov((, (umr)(p) mea-
sures the covariance of states being found to span by percolation and by ML for
given p. In figure 5.11(b) we show the normalised result, i.e., the Pearson coeffi-
cient r¢ ¢, (p) = cov(C, Cmr)(p)/[0¢(P)o¢yy, (P)], Where o¢ and o, are the standard
deviations of the percolation results and the ML predictions. We see that in the
transition region, 7¢ ¢, < 0.12 which is very far from the maximally possible value
1. This suggests that while the ML predictions are not simply random, they are
also not very much better than random. Furthermore, we explain the null value
¢ e (p) for p < 0.57 and p > 0.6 by the trivial character of the phases in these two
regions. Indeed, for p < 0.57, we are far away from the transition region and most
of the samples are labeled and predicted as non-spanning. The same could be said
for p > 0.6, most of the samples are labeled and predicted as spanning. As such,
cov(¢, (ur)(p) ~ 0 in both of these regions and 7¢ ¢, (p) is only non-negative in the

region where true decisions happen, i.e the transition region.
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Figure 5.10: (a) Confusion matrix for classification according to spanning/non-
spanning and L = 200. The validation set V was used for predictions and the
models are those corresponding to a minimal [.y,. The true labels for N and S,
are indicated on the horizontal axis while the predicted labels are given on the
vertical axis. (b) Dependence of losses l¢ train and lc a1 on the number of epochs e
for classification according to spanning/non-spanning.

Let us now study the classification into spanning/non-spanning states in
detail for each p. Figure 5.12 and Table 5.1 show a comparison of the classification
for the ten p values 0.56 to 0.605. We see, e.g., that for p = 0.56,0.565,0.57,0.575 <
pe(L) ~ 0.58,0.585, 485 (= 48 + 87 + 126.5 + 223.5) of 492 (= 48 + 87 + 127 +
230) samples, which are already spanning, have been misclassified as non-spanning.
Similarly, for p = 0.59,0.595,0.6,0.605 > p.(L), 745.9 of in total 864 still non-
spanning samples are classified as spanning. These results are similar whether one
considers a typical sample or the averaged result. Hence, contrary to the supposed
success of figure 5.9, we now find that the seemingly few misclassified states of
figure 5.9 are indeed precisely those which represent the correct physics. Saying it
differently, the ML process seems to have led to a DL network that largely disregards
the characteristic of spanning clusters and just uses the overall density of occupied
vs. non-occupied sites to ascertain the phases. Of course, this is the wrong physics

when considering percolation.

5.8 Testing the accuracy of the DL network

The difficulties that the trained DL network has with recognising whether a state
contains a percolating cluster or not can be made more explicit. In section 4.1.4,

we generated three test sets for this purpose. Namely, percolating states even for
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Figure 5.11: (a) The blue curve (red curve) shows the probability of having a span-
ning (non-spanning) sample in the training dataset. The cyan (orange) curve gives
us the prediction of the probability of having a spanning (non-spanning) sample,
according to the trained network. (b) Dependence of the Pearson correlation coeffi-
cient r on the density p for classification according to spanning/non-spanning. The
confidence interval is indicated in grey. In both (a) and (b), The lines connecting
the symbols are only a guide to the eye.

p < pe(L) by adding (i) a straight line, 74, and (ii) a random walk, 7,,, of connecting
sites as well as for p > p.(L) (iii) the firebreak states, 7y, of percolation-prohibiting
random unoccupied sites. We now use these sets and feed them independently as
test sets to the DL network. Figure 5.13 shows the three confusion matrices obtained
when classifying for spanning vs. non-spanning. In figure 5.13(a+b), we see that
the network completely misclassifies the spanning datasets 7y and 7. The two
correctly identified non-spanning images are just the two such states added to each
of the data sets to show that the network is still performing. Similarly, in figure
5.13(c), we see that this time the network cannot correctly identify the non-spanning
samples in 7¢,. Again, the two samples correctly identified are the ones without the
firebreak.

5.9 Training of the Spanning/Non-spanning at p = 0.585

In the previous sections, we found out that CNN methods were struggling to un-
derstand the concept of connectivity in the lattice and were instead relying on
the density as a proxy. However, one could think about improving the quality
of the training by removing the involuntary intake of the density. For this purpose,
we performed a final training on a dataset composed of 30000 lattices labelled as
spanning/non-spanning at p = 0.585, close to the percolation threshold. Following

the same protocol as the previous sections, we performed ten independent runs with
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N S S — 9 S — N’ N =5 N — N’

P # % # % | F) (%) | #) () | @) (R | &) (%)
0.56 952 95.2 48 4.8 0.0 0.0 48.0 4.8 0.0 0.0 ]952.0 95.2
0.565 | 913 91.3 87 8.7 0.0 0.0 87.0 8.7 04 0.01]912.6 91.3
0.57 873 87.3 | 127 12.7 0.5 0.1 ] 126.5 12.7 1.8 0.2 | 871.2 87.1
0.575 | 770 77.0 | 230 23.0 6.5 0.7 | 223.5 224 13.1 1.3 | 756.9 75.7
0.58 646 64.6 | 354 354 51.0 5.1 | 303.0 30.3 55.7 5.6 | 590.3 59.0
0.585 | 518 51.8 | 482 48.2 | 218.8 21.9 | 263.2 26.3 | 181.5 18.2 | 336.5 33.6
0.59 380 38.0 | 620 62.0 | 512.8 51.3 | 107.2 10.7 | 279.0 27.9 | 101.0 10.1
0.595 | 232 23.2 | 768 76.8 | 737.1 73.7 309 3.1 | 217.0 21.7 15.0 1.5
0.60 169 16.9 | 831 83.1 | 824.9 82.5 6.1 0.6 | 167.0 16.7 20 0.2
0.605 83 83| 917 91.7 | 916.3 91.6 0.7 0.1 82.9 &3 0.1 0.0

Table 5.1: Predictions of the trained network on the test data set 7 with n = 1000
for p € [0.56,0.605]. N and S denote, respectively, the number of non-spanning and
the number of spanning samples in 7. The four following columns S — S’, S — N/,
N — S, and N — N’ give the averaged results of 10 independent prediction runs.

a pre-trained ResNetl18 and tested the performance on a test set 79585 composed
of 3000 samples. In figure 5.14(a) we give the confusion matrix obtained after ten
independent trainings. We clearly observe that the network fails to systematically
identify the two phases and produces 47% of misclassification. Additionally, we no-
tice that the network struggles more to identify the spanning samples with 78.7% of
the misclassification being spanning samples misclassified as non-spanning. Looking
at 5.14(b) we obtain a mine[(l; q)] = 0.6864285+0.000686 corresponding to a max-
imal validation accuracy max,[(lcq1)] = 54.3% £ 0.004031. These results confirm
the shortcomings of classical CNN techniques in understanding the importance of
connectivity in our percolation samples. Despite removing the input of density the
network was not able to understand on its own the global property in our dataset.
We emphasise that this training was also performed for several different learning
rates and another optimizer, Adam. In all such combinations, we were not able to

obtain a network able to predict the phases with an accuracy higher than 55%.

5.10 VAE for percolation

Until this point, our study of the percolation model was performed through the lens
of supervised learning. However, unsupervised learning could give us some insight
into special structures in the dataset which would give an indication of the phase.
As such we wish to test how unsupervised learning deals with a model such as

percolation. This study was motivated by previous results, claiming the ability of
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unsupervised learning and in particular VAE to reconstruct percolation states [76].
In this section, we aim at reproducing and analyse the performance of the model
described in the article. We construct a Convolution VAE with two convolution
layers in the encoder, the first layer comprised of 32 filters and the second with 64
filters. At the output of each convolutional layer, we apply a ReLU activation. The
decoder follows the same parameters but uses transposed convolutional layers. For
the hidden layer, we choose a latent space dimension z = 400. The training process
follows the procedure described in section 3.12. After training we obtain percolation
states highly similar to the one fed in input. Subtracting the input from the output
allows us to notice the high similarity of the two samples. Observing this leads us
to hypothesise that the output presented might be a close copy of the input. The
copying could be explained by the large dimension of the latent space, we recall that
our dataset is composed of percolation states of size L = 282. Therefore a latent
space z = 400 cannot act as a bottleneck for our dataset, too much information
passes through the hidden block. In figure 5.15(a) we present samples generated by
our VAE after training. While the new samples on the bottom, are not fidele copies
of the input on top, we notice the presence of common cluster architectures in the

input and the output.
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Figure 5.12: Confusion matrices showing the predictions of the trained network fig-
ure 5.9 in a region p = [0.56,0.605] comprising p., with (a) for predictions made
before the percolation threshold, (b) in the threshold region and (c) after the per-
colation threshold. Each confusion matrix is an average of the predictions made by

the 10 trained models shown in figure 5.9(b).
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Figure 5.13: Sample states for the three special test sets (a) 7y with added straight
spanning lines, (b) 7w with spanning random walks and (c) 7, with the firebreaks.
In each case, the bottom plots gives the confusions matrices obtained from the DL
model previously trained in a spanning vs. non-spanning classification. In all cases,

the density is strictly p = 0.5. The states shown above each confusion matrix are
taken from figure 4.5.
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Figure 5.14: (a) Average confusion matrix for classification according to
spanning/non-spanning at p = 0.585. The dataset used is the test data 79585 and
the models used for predictions are those corresponding to a minimal /¢ ya. The
true labels for N and S, are indicated on the horizontal axis while the predicted
labels are given on the vertical axis. (b) Dependence of losses l¢ train and lc va1 on the
number of epochs e for classification according to spanning/non-spanning. Again,
we follow the same convention as for figures 5.1, 5.3 and 5.5
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Figure 5.15: (a) Output of the VAE training, on the top row we see the input fed
by the network, on the second row, we see the reproduction made by the network
after training. (b) Dependence of losses Iy train and ly va1 on the number of epochs €
for one VAE training. The circles (red solid) denote [y train while the squares (blue
open) show Iy ,. Figure (a) was used previously in figure 3.9 as an example of
training of a VAE.
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Chapter 6

ML study of the Anderson

model of localisation

In this section, we will study our second model. Contrary to the study of the
percolation model where we worked directly with the arrays, here, we will present
the result of our study on three different types of input. We will begin by realising
several classifications on image representation of |¢|? states for phases and disorder
classifications. Following this, we will reproduce similar training on || and ¥
states. The aim of the study is to evaluate how different types of input can influence
the quality of our training. Initial scoping work was performed by a student of our

group, Quangminh Bui-Le, as part of his master’s project.

6.1 Image classification of phases from [¢|> at E =0

In the first part of this study, we intend to discover if standard ML classification
methods applied to images of || states can accurately predict the two phases of
the three-dimensional Anderson model. The training was performed on the dataset
T U V5,18, with images of [9|? at two disorder values, W = 15 < W, for the
extended phase and W = 18 > W, for the localised one. We choose to use 5000
samples per class. In order to observe how different parameters such as the size
of the system or the size of the images could influence the performance of our net-
work, several trainings were implemented. The phase classification was done for the
sizes L = 203, L = 40%, L = 1003, and a fixed image size of s = 100%. For each
of these systems, the dataset 7 UV 1515 Was split according to a 90%/10% train-
ing/validation split and we train the ResNet18 DL architecture previously described
in section 3.9 for 50 epochs with 10 different seeds. After completing a full training
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Figure 6.1: (a) Average confusion matrix for image classification according to ex-
tended/localised on system size L = 20% and s = 100%. The dataset used is the test
data 7; (15,18 and the predictions are made with models corresponding to a minimal
leva1- The true labels for W = 15.0 and W = 18.0, are indicated on the horizontal
axis while the predicted labels are given on the vertical axis. In (b) dependence of
losses l¢ train and l¢ yva1 on the number of epochs € for this training.

cycle, the generalisation capacity of the ten models was tested on the dataset 7; 15 15]
and summarised in average confusion matrices.

The first training was performed for the system size L = 203. After a full
training cycle we achieved a minimal validation loss min[(lva1)] = 0.06 =0.01 (cor-
responding to a maximal validation accuracy max,[(lcva1)] = 98.3%+0.22). Looking
at the confusion matrix in figure 6.1(a), we notice the heavy diagonal character of
the matrix with a misclassification rate of 2.7%. This training shows us that even
for a relatively small system size such as L = 203, ML image recognition tools are
able to identify reasonably well the localised and extended phases of the Anderson
MIT model.

We are now interested in knowing if an increase in the size of the system,
while keeping the size of the image constant, could contribute to an increase in the
performance of our model. We reproduce the same training process with now L =
40% and s = 100?. Following the training we obtain mine[(l¢ yal)] = (5.24£3.4) x 1074
(corresponding to a maximal validation accuracy max,[{acva1)] = 100% =% 0.02).
In figure 6.2(a) we display the average confusion matrix of the predictions on the

dataset 7; 15 1g]-
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Figure 6.2: (a+c) Average confusion matrices for image classification according
to extended/localised on system size L = 40%,s = 100? and L = 1003, s = 1002
respectively. The dataset used is the test data 7; ;515 and the models used for
predictions are those corresponding to a minimal . v,1. The true labels for W = 15.0
and W = 18.0, are indicated on the horizontal axis while the predicted labels are
given on the vertical axis. In (b+d) dependence of losses I train and lcva on the
number of epochs e for classification according to extended/localised on L = 203,
L = 402 and s = 100?, respectively.

Similarly to 6.1(a) we obtain a highly diagonal matrix. Concerning the mis-
classification, only 0.2% of the samples are incorrectly predicted which is a drop of
more than 10% compared to the misclassification previously obtained for L = 203.
This suggests that an increase in L contributes to increasing the classification per-
formance of the network. The last system that we study is L = 1003, again we
perform ten independent iterations and obtain the confusion matrix shown in fig-

ure 6.2(c). We rapidly notice that this matrix is fully diagonal, implying a perfect

76



prediction on the test set. This result is confirmed by the minimal validation loss
min,[(lcva1)] = (1 £8) x 107% which here corresponds to a maximal validation accu-
racy maxe|(lcva1)] = 100% £ 0.0. The misclassification rate is 0.4%, which is slightly
above the one obtained for L = 403 while remaining a good training. These three
trainings clearly confirm the idea that while conserving the same image sizes, an
enhancement of the prediction of our model can be achieved through an increase in

the size of the system L.

6.2 Size dependent image classification of phases from
[]? at £ =0

Now that we tested the impact of the size of the system on the performance of our
network, one might like to know how the size of the image input could influence the
performance. To do so, we train the network for the system of size L = 100% at two
additional image sizes, s = 200% and s = 5002. We begin by training on the L = 1003
with image size s = 200%. After 50 epochs we obtain min,[(l.ya)] = (2 £3) x 1076
(corresponding to a maximal validation accuracy maxc[(dc va1)] = 100% =+ 0.0) which
is comparable to the results obtained for the L = 100® with image size s = 1002.
As we can see from the averaged confusion matrix in figure 6.3(a), 0.14% of the

test samples are misclassified. This is more than the misclassification obtained with

image size s = 100? but it is not significant. Finally, we perform the training
with images of size s = 5002. The training produce a minimal validation loss
mine[(leval)] = (4 & 2) x 1077 (corresponding to a maximal validation accuracy

maxe[(acval)] = 100% £ 0.0). Again, similarly to the previous training with L =
100® and image size s = 2002, we observe in figure 6.3(c) that the performances
of the network do not increase compared to the performance of L = 1003 with
image size s = 100%. Furthermore, by looking at the confusion matrix we notice
that the percentage of misclassification is slightly higher than the previous one at
0.16%. However, it is important to note that training a system with s = 5002
induces a higher training time. Therefore, the training of L = 100® and s = 1002
appears as the better-suited option, which provides good performance while keeping

a reasonable training time.
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Figure 6.3: In (a+c) confusion matrices for imagesclassification according to ex-
tended/localised for L = 1003, s = 2002 and L = 1003, s = 5002, respectively. The
dataset used is the test data Tiy[lg)’lg]] and the models are the ones corresponding to
minimal [¢ va for L = 100% and respectively image size s = 2002 and s = 500%. The
true labels for W = 15.0 and W = 18.0, are indicated on the horizontal axis while
the predicted labels are given on the vertical axis. In (b+d) dependence of losses

le train and I ya1 on the number of epochs € for the associated training.

6.3 Image classification of disorders from [¢)|?

Now that we have established the capacity of CNN methods to identify phases of
the Anderson model from images of |¢|?, we would like to determine if these same
CNN methods are able to identify |t/|? at different (more than two) disorder values.
For that purpose we train the ResNet18 on the dataset 7 UV 1515 With images of
|| at 17 disorder values W = 15.0,15.25,...,17.25,17.5,17.75,18 and s = 100

As for all the previous trainings, each training process is repeated ten times with
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Figure 6.4: In (a) average confusion matrix for image classification according to 17
disorders on L = 20% and s = 100%2. The dataset used is the test data 715,18 and
the models used for predictions are those corresponding to a minimal /. y,1. The true
labels for W = 15.0,15.25,...,17.5, 18 are indicated on the horizontal axis while the
predicted labels are given on the vertical axis. In (b) dependence of losses [ train
and l¢ yva1 on the number of epochs € for the associated training.

ten independent seeds. Three system sizes were trained, L = 203, L = 40% and
L = 100°.

The first system that we train is L = 203. After 50 epochs we obtain a
minimal validation loss mine[(l¢va1)] = 2.408 & 0.003 (corresponding to a maximal
validation accuracy maxe[(l¢va1)] = 15.9% =% 0.13) which is relatively high compared
to loss values obtained in the previous section. As we can see from the averaged
confusion matrix in fig 6.4 (a), we can guess the hint of the beginning of a diagonal
matrix. Nevertheless, correct predictions remain rare and seem to concern disorder
values at the edge of the disorder spectrum such as W = 15 and W = 18. Following
the logic of section 6.1 we hope to increase the number of correct predictions of the

network by training for a larger system size.
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Figure 6.5: In (a+c) average confusion matrices for image classification according
to 17 disorders for L = 403, s = 100? and L = 100% s = 100%, respectively. The
dataset used is the test data 7; (1515 and the models used for predictions are those
corresponding to a minimal [¢v,. The true labels for W = 15.0,15.25,...,17.5,18
are indicated on the horizontal axis while the predicted labels are given on the
vertical axis. In (b+d) dependence of losses I train and lcyar on the number of

epochs € for classification according to 17 disorders for the corresponding trainings.

The second training is conducted on L = 403. Once the training completed
we obtain a minimal validation accuracy mine[(lva1)] = 1.951+0.004 (corresponding
to a maximal validation accuracy maxc[(acval)] = 25.7% % 0.19). As expected, we
observe an increase in the accuracy of the network, as shown by the confusion
matrix in figure 6.5(a). We perform a final training for L = 100 and s = 1002.
The minimal accuracy obtained is mine[(l¢va1)] = 1.327 +0.006 (corresponding to a
maximal validation accuracy maxc[(acva1)] = 43.9%=+0.22), which is an improvement
compared to maxe[{a.val)] = 25.7% + 0.19) obtained for the training with L = 40.
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Figure 6.6: In (a) average confusion matrix for image classification according to 17
disorders for L = 1002, and s = 200%2. The dataset used is the test data 7 and
the models used for predictions are those corresponding to a minimal. The true
labels for W = 15.0,15.25,...,17.5,18 are indicated on the horizontal axis while
the predicted labels are given on the vertical axis. In (b) dependence of losses [ train
and ¢ yva1 on the number of epochs € for the associated training.

By observing the confusion matrix displayed in figure 6.5(c) we notice that the
predictions appear to follow closely the diagonal. Thus, while the accuracy of this
trained network remains below 50%, we conclude here that the network performs
reasonably well. Indeed, in our setting classes are not totally independent from one
another. Therefore, a network identifying disorder values close to the true label is

an improvement.

6.4 Size dependent image classification of disorders from
[Y> at E =0

The last step is to attempt to enhance the performance of the network by increasing
the resolution of the images. We trained the system L = 100 at size s = 2002.
After training, we obtain the average confusion matrix shown in figure 6.6(a). This
confusion matrix is highly similar to the one obtained in figure 6.5(c), the increase
in the size of the input did not seem to affect the prediction significantly. This is
confirmed by the metrics, we obtain a mine[(l¢va1)] = 1.22+0.003 (corresponding to
a maximal validation accuracy maxc[(acva1)] = 47.0% £ 0.22).

Overall, we conclude that working with a large system size such as L = 1003
increase drastically the quality of the predictions. In figure 6.7(a) we present a

comparison of the losses according to the system size. We notice that L = 1003 has
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Figure 6.7: In (a) dependence of losses lc rain and lcya1 on the number of epochs
e for classification according to 17 disorder values for L = 203, 40% and 100? and
s =100%. In (b) dependence of losses le,train and ¢ va1 on the number of epochs e for
classification according to 17 disorder values for L = 1003 for image size s = 1002
and s = 2002

much lower metrics than L = 20% and L = 403. Nonetheless, looking at the figure
6.7(b), we do not observe important differences between the losses of the training
s = 200% and s = 5003. Therefore, good trainings could be achieved with a large

system size and a reasonable image size such as s = 1007

6.5 State classification of phases from || with a six
layers CNN

In the two previous sections, we showed that image classification of |¢)|> was suc-
cessful in predicting the localised and extended phase of the Anderson. However,
we saw the shortcomings of image classification when trying to predict several dis-
order values. In this section, we explore the idea of directly using the |¢|? states
to improve the accuracy of the CNN method. Again, we train the three sizes of
systems used in the previous sections, L = 203, 403, and 100 to identify the two
phases. To compare our results to previously published work [45], we use the dataset
T U Vg2, 1419 and choose 5000 [¢)|*-values with W € [14,16] labeled as extended
and 5000 |¢|?-values with W € [17,19] labeled as localised. As a first step, we choose
to use the same network architecture as the one described in a previous study of the
same model, i.e., three blocks of two convolutional layers separated by max-pooling
layers followed by two fully connected layers [45]. For the sake of clarity, we choose
to call this network the Ohtsuki network.
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Figure 6.8: (a) Average confusion matrices for state classification of ||? according
to extended/localised for the Ohtsuki network. The dataset used is the test data
T(1|2,[14,19) @nd the models used for predictions are those corresponding to a minimal
leval for L = 203, The true labels for W. € [14.0,16.0] and W~ € [17.0,19.0], are
indicated on the horizontal axis while the predicted labels are given on the vertical
axis. (b) Dependence of losses I train and [cya on the number of epochs e for

classification according to extended/localised for L = 203.

Following the training of system size L = 20® we obtain the confusion ma-
trix shown in figure 6.8(a). We observe that 3.3% of the samples are misclassi-
fied. Through the training of |1|?> we manage to achieve a minimal validation accu-
racy mine[(lcva1)] = 0.080 £ 0.006 (corresponding to a maximal validation accuracy
maxe[(acval)] = 97.3% £ 0.21). We notice a decrease in accuracy compared to the
image classification training implemented in section 6.1 but the present result still
constitutes a good training. Our second training is done for the size L = 403. The
confusion matrix shown in figure 6.9(a) allows us to see a 5.4% misclassification
rate. Through a study of the ten independent trainings, we notice the existence of
several trainings which appear to get stuck in local minimal on the cost function
landscape. This is confirmed by the plot in figure 6.9(b) displaying an almost con-
stant confidence interval of (l.yva1) and (l¢ train). This training allowed us to reach a
minimal validation accuracy mine[(l¢ va1)] = 0.035 & 0.066 (corresponding to a max-
imal validation accuracy max[(acva1)] = 99.0% £ 4.2). We deduce that while eight
of our trainings seem to provide low accuracy the network is not complex enough

to avoid falling into a local minima for two of our trainings.
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Figure 6.9: In (a) average confusion matrices for state classification of || according
to extended/localised for the Ohtsuki network. The dataset used is the test data
T(1|2,[14,19) @nd the models used for predictions are those corresponding to a minimal
leval for L = 403. The true labels for W. € [14.0,16.0] and W~ € [17.0,19.0], are
indicated on the horizontal axis while the predicted labels are given on the vertical
axis. In (b) dependence of losses lc train and lcya1 on the number of epochs e for

classification according to extended/localised for L = 403.

6.6 State classification of phases from ||*> with a ResNet

In the previous section, we confirmed the phase prediction ability of a simple network
composed of six convolutional layers, for the MIT while highlighting the possible
shortcomings of this network [45]. We now would like to challenge CNN methods to
identify |1|? at several different disorder values. Given the complex nature of this
task, we decide to employ a deeper network, i.e. the 3D ResNet18 architecture [66].
As a first step in our study, we aim to emulate the result obtained in the previous
section for phase classification with the Ohtsuki network. We trained [¢|? states for
system size L = 203, 403 and 1003. Following ten independent training on system
size L = 20% we achieve minimal validation accuracy mine[(leva1)] = 0.066 == 0.009
(corresponding to a maximal validation accuracy max[{dcval)] = 97.9% =+ 0.437).
The average confusion matrix computed after training is shown in figure 6.10(a).
We observe that 3.9% of the samples are misclassified. The validation accuracy is
slightly worse than the one previously obtained in the case of image classification for
L = 203. However, one could argue about the difference in the task, a classification of
|)|? states appears as much more complex than the classification of their associated

image representation.
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Figure 6.10: (a+c) Average confusion matrices for state classification of |¢|? ac-

cording to extended/localised with the ResNet18 network and L = 203, L = 403,

respectively. The dataset used is the test data 7jy2 14,19] and the models used for

(c)

predictions are those corresponding to a minimal [; v, for L = 203 and L = 403,
respectively. The true labels for W, € [14.0,16.0] and W~ € [17.0,19.0], are in-
dicated on the horizontal axis while the predicted labels are given on the vertical
axis. (b+d) Dependence of losses ¢ train and lcya1 on the number of epochs e for

classification according to extended/localised for L = 20% and L = 403, respectively.

Overall, the quality of the predictions remains satisfactory. We increase
the system size to L = 403 and perform the same training. After 50 epochs we
reach a minimal validation loss min[(lcya1)] = 0.0123 £ 0.003 (corresponding to
a maximal validation accuracy maxc[(acval)] = 99.7% £ 0.088). Looking at the
confusion matrix we observe a drop in misclassification compared to the training

on system L = 202, only 1.8% of the samples end up being misclassified. These
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results lead us to conclude about the similar performance of the deep ResNet18 and

a simple six layers CNN architecture in the case of phase prediction.

6.7 State classification of disorders from |¢|*> with a ResNet

We now train our network directly with the |1|? eigenstates to predict 17 disorder
values. Given the time taken to train L = 203, we will only be able to show the result
obtained for one system size. Furthermore, we note that the result displayed here
corresponds to a reduced number of epochs, e = 30. Looking at the figure 6.11(b),
we see that the network quickly overfits and l. va1 diverges from [ train. After training
for e = 30 epochs we barely rich mine[(lcva1)] = 3.414 £ 1.436 (corresponding to a
maximal validation accuracy maxe[(acva1)] = 15.75% £ 0.967). This result is further
confirmed by the confusion matrix shown in figure 6.11(a). The network completely
fails to make any meaningful predictions and predicts every disorder as W = 15.0.

It appears that our network is unable to identify disorders from [+|? states.
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Figure 6.11: (a) Average confusion matrices for state classification of || according
to 17 disorder values for the ResNet18 network. The dataset used is the test data
Ty[2,[15,18] and the models used for predictions are those corresponding to a minimal
leval for L = 20%. The true labels for W = 15.0,15.25,...,18.0, are indicated on
the horizontal axis while the predicted labels are given on the vertical axis. (b)
Dependence of losses l¢train and l¢va1 on the number of epochs e for classification

according to extended/localised for L = 203.
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6.8 State classification of phases from ) with a ResNet

Now that we have compared the performance of the ResNet for images and state
recognition with [t/|?, we would like to test the possibility of simply feeding the v

states as input to our ML process.
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Figure 6.12: In (a+c) average confusion matrices for state classification of 1 accord-
ing to extended/localised. The dataset used is the test data 7, [14,19) and the mod-
els used for predictions are those corresponding to a minimal [ a1 for L = 203 and
L = 403, respectively. The true labels for W. € [14.0,16.0] and W~ € [17.0,19.0],
are indicated on the horizontal axis while the predicted labels are given on the ver-
tical axis. In (b+d) dependence of losses [ train and l¢va1 on the number of epochs e
for classification according to extended/localised for L = 20% and L = 403, respec-

tively.
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If the classification with ¢ provides satisfying results, this could contribute
to reducing the preprocessing steps (squaring of the 1) states) taken before the ML
training. For the phase recognition we train the same classes as the one mentioned in
section 6.6 with 5000 |1)|>-values € [14, 16] label as W and 5000 ||?-values € [17,19]
that we label as Ws. The training L = 203 results in a min,[(l.ya)] = 0.015 4 0.002
which corresponds to a maximal validation accuracy max[(acva1)] = 99.8%40.092).
Thus, by training on 1 we gain almost 1% in terms of the maximal validation
accuracy compared to the training performed on the same system with |¢|2. This
result is confirmed by the confusion matrix given in figure 6.12(a), which shows that
only 1.2% of the sample ends up misclassified.

We once again increase the system to size L = 403 and train the network.
This time we obtain minc[(l¢va1)] = 0.002 & 0.001 which corresponds to a maxi-
mal validation accuracy maxc[(acva1)] = 100% = 0.0154). This result might appear
counter-intuitive by looking at the confusion matrix obtained in figure 6.12(c), as the
misclassification appears higher than the one obtained in figure 6.12(a). However,
we recall that each confusion matrix corresponds to an average over ten prediction
runs. To conclude, our ResNet appears to be able to identify the two phases of the

Anderson model by training on .

6.9 State classification of disorders from ) with a ResNet

We again aim at predicting 17 disorder values. Here, we choose v as input. Similarly
to section 6.7 we only present L = 20% due to the long running time of the training.
Surprisingly, we see that the training which previously failed to give meaningful
results in section 6.7, now provides good results. Looking at I.ya and lc,train in
figure 6.13(b), we immediately notice drastic change from 6.11(b). After 45 epochs
we reach a ming[(l;va1)] = 0.907 = 0.014 which corresponds to a maximal validation
accuracy maxe[(acva1)] = 64.1% £ 0.497). This low validation accuracy might lead
us to deduce a complete failure of our training. However, looking at 6.13(a), we
observe that we obtain a heavily diagonal confusion matrix with misclassification
remaining close to the true disorder value. We hypothesise that the use of the larger
system might contribute to refining the result obtained. An explanation for the
success of the training with ¢ compared to the failed training of ||?> might reside
in the nature of these two inputs. Indeed, 1)-states are complex while [|?-states
are real. Thus, we hypothesise that our network finds meaningful information in

tp-states that are not in |¢)|>-states.
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Figure 6.13: (a) Average confusion matrices for ¢ classification according to 17
disorder values using the ResNet1l8 network. The dataset used is the test data
Ty,[15,18] and the models used for predictions are those corresponding to a minimal
leval for L = 203. The true labels for W = 15.0,15.25,...,18.0, are indicated on
the horizontal axis while the predicted labels are given on the vertical axis. (b)
Dependence of losses l¢train and I va1 on the number of epochs € for classification

according to extended /localised for L = 203.

6.10 Regression with disorders [1)|> with a ResNet

Now that we have explored classification methods to identify the phases and states
of the three-dimensional Anderson model, we would like to train a network to make
continuous predictions on the disorders from |¢|? states. This is done through
the use of the regression method. We use the 3D ResNet network architecture
employed in section 6.5-6.9 and modify the last layer to have one output neuron
making continuous predictions. Following the scheme of the previous sections we
train two different system sizes L = 20% and L = 403. For each of these systems, we
train two sets of |¢)|2. The first series of training is done at five different disorder
values W = 15.0,15.75,16.5,17.25,18.0 and the second one for 4 disorder values
W = 14.0,16.0,17.75,19.0. In each case, ten independent networks are trained for
50 epochs. Once the trainings are performed, we evaluate their prediction abilities
on 24 disorder value W = [14.0,14.25, ..., 18.25,18.5,18.75,19.0].
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Figure 6.14: (a) Average prediction curve obtained for regression according to |2,
L =20% and W = 15.0,15.75,16.5,17.25, 18.0 at the minimal I, y,. (b) Dependence
of losses ;. train and [, a1 averaged on the number of epochs € for associated to training
(a). (c) Average prediction curve obtained for regression according to |¢|? trained
for W = 14.0,16.0,17.75,19.0 at the minimal I, 5. (d) Dependence of losses I train
and [, a1 averaged on the number of epochs e for regression according to W. For
both training, the dataset used is the test data 7,2 [14,19) and the models used for

predictions are those corresponding to a minimal ;. v,

In figure 6.14(a) we show the prediction curve obtained after training the sys-
tem L = 203. After 50 epochs we obtain a minimal validation loss of min[(l; va1)] =
0.087 +0.002. Overall, the network seems to understand the task at hand. Despite
a spread in prediction, the mean associated with samples with disorder W €]15, 18]
follows the line of perfect predictions. We however notice that the network struggles
to correctly identify samples with disorder values out of the range of the training. For

the training with 4 disorder values, we reach a minimal mine[(l, va1)] = 0.06240.006.
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In figure 6.14(c) we display the result of the training for |¢|?-states trained for four
disorder values, W € [14.0,16.0,17.75,19.0]. The general trend of the predictions
seems to follow the curve of perfect prediction despite the small number of W val-
ues trained. We repeat the same process for the I = 403 system. For the five
disorders, we observe a similar result as the one obtained for L = 203, with the
out-of-range value deviating from the line of perfect prediction. This training allows
us to reach a minimal validation loss of min,[(l,va1)] = 0.022 £ 0.024. Finally, we
train the L = 403 for four disorder values. In figure 6.15(c) we show the results
of the predictions. We observe a clear improvement of the prediction compared to
the 4-disorders training of the L = 203. This training allows us to reach a minimal
mine[(ly va1)] = 0.032+£0.033. We notice this time that the confidence interval of this
training is of the same order of magnitude as the minimal loss. For L = 203 and
L = 403, we conclude that the better performances of the models trained with only
four datapoints result from a larger range in the disorders trained. Indeed, in the
case of five disorders value trained, W = 15.0,15.75,16.5,17.25,18.0, the network
has difficulty in identifying disorder values beyond the trained disorders W = 15.0
and W = 18.0.
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Figure 6.15: (a) Average prediction curve obtained for regression according to |2,
L = 403 and W = 15.0,15.75,16.5,17.25,18.0 at the minimal lyrval. (b) Depen-
dence of losses ;. train and I, a1 averaged on the number of epochs € for regression
according to five disorder values. (c) Average prediction curve obtained for regres-
sion according to |¢|? trained for W = 14.0,16.0,17.75,19.0 at the minimal ;. y,).
(d) Dependence of losses Iy train and a1 averaged on the number of epochs e for

regression according to four disorder values.

6.11 Regression with disorders v with a ResNet

While training for the classification of states according to W in section 6.9, we
showed an increase in performance when training on v value compared to [1|?. We
therefore decide to implement a regression study similar to the one done in the
previous section but using v states as input. Following the protocol of the previous
section, we train two different system sizes L = 20% and L = 40° at five and four

disorder values.

92



2
1o |
* min(/,.y.y)
18 °°°° a 1.5+ T l};val B
17+ | + lr,traln
x| o~ 1
- I |
i 9 | | |8
15 °
00° - perfect 0.5r \“““ | B H “ 1
14} ¢ trained Wla 5 i:‘?‘l\wi‘i‘u“ﬂ“ 1
6  not trained %ens ! o | “‘“?33““?“3““
13 L L L L L 0 L L L L
13 14 15 17 18 19 0 10 20 30 40 50
(a) <) (b) €
19 | | 2
L § 1 ‘
‘ x  min(/,ya)
- |
181 1 157‘ C D ]
175 ° | + lr,train
% | °°° ] ~ ‘ ‘ J
o K
15r ) 1 ‘ w“
‘ —— perfect 0.5r ‘H ‘ N
141 ¢ trained | o \‘11 ;1% m}“ MMHN
©  not trained ey 331“‘&“““113"Hi”iﬂh“i
e
13 | | | | | 0 |
13 14 15 17 18 19 0 10 20 30 40 50
(c) (W) (d) €

Figure 6.16: (a) Average prediction curve obtained for regression according to 1,
L = 20° and trained at W = 15.0,15.75,16.5,17.25,18.0 at the minimal lyval- (D)
Dependence of losses Iy train and I, va averaged on the number of epochs € for re-
gression according to W. The dataset used is the test data 7y [14,19] and the models
used for predictions are those corresponding to a minimal I, a. (c) Average pre-
diction curve obtained for regression according to 1, for L = 203 and trained at
W =14.0,16.0,17.75,19.0 at the minimal I, v4. (d) Dependence of losses I, train and

Iy va1 averaged on the number of epochs e for regression according to W.

We begin by training the L = 203 system for W = 15.0, 15.75, 16.5, 17.25, 18.0
and 50 epochs. After training, we obtain a minimal validation loss min,[(l; va1)] =
0.082 + 0.003. The results of the prediction of the trained network are displayed in
figure 6.16(a). The curve obtained is similar to the plot in figure 6.14(a), with the
W-values out of the range of training diverging from the curve of perfect predictions.
Training for four disorder values allows us to obtain the curve seen in figure 6.14(c)

with an associated minimal validation loss of mine[(l, va1)] = 0.06240.004. Again, the
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curve of prediction is similar to the one obtained in figure 6.14(c), with the average
of the prediction remaining close to the curve of perfect prediction. The next step in
our study is to increase the size of the system and reproduce the same training on the
system of size L = 403. After training for 50 epochs at five disorder values we reach a
minimal validation of min[(l, va1)] = 0.023+£0.016. The curve of prediction displayed
in figure 6.17(a) is similar to the one obtained in figure 6.16(a), however, we note a
smaller spread of the distribution for the system L = 403. Unsurprisingly, training
on a larger system appears to improve and reduce the spreading in the predictions.
We perform one last training on the L = 40% system for the four disorder values
W =14.0,16.0,17.75,19.0 and reach a validation loss mine[(l, va1)] = 0.024 & 0.028.
As shown by figure 6.17(c), the predictions made by the network follow the curve
of perfect prediction. We do not observe significant differences in the results of the
predictions made for [)|> and 1. Nonetheless, in both cases, we observe an increase

in the quality of the predictions made by the network between L = 203 and L = 403.
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Figure 6.17: (a) Average prediction curve obtained for regression according to 1,
L = 40° and trained at W = 15.0,15.75,16.5,17.25,18.0 at the minimal lyval. (b)
Dependence of losses I train and [, va averaged on the number of epochs € for re-
gression according to W. The dataset used is the test data 7y [14,19] and the models
used for predictions are those corresponding to a minimal I, a. (c) Average pre-
diction curve obtained for regression according to v, for L = 40 and trained at
W =14.0,16.0,17.75,19.0 at the minimal I, v4. (d) Dependence of losses I, train and

Iy va1 averaged on the number of epochs e for regression according to W.
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Chapter 7
Summary and outlook

Throughout this thesis we proposed ML studies for two different models, the clas-
sical two-dimensional site percolation model and the quantum Anderson model of
localisation. By using standard image recognition tools such as CNN coupled with
supervised and unsupervised methods we were able to display the ability of ML to
correctly identify phases and the pitfalls that one might want to avoid.

In Chapter 2 we presented the well-known two-dimensional percolation model,
a model where sites are randomly occupied with a probability p and left empty with
a probability 1 —p. We gave several important quantities associated with the model.
In the second part of this chapter, we introduced our second model of interest, the
three-dimensional Anderson model, which is characterised by a transition from an
extended to a localised regime in the presence of high disorder. Chapter 3 allowed
us to provide a general introduction to machine learning and the main tasks, su-
pervised learning and unsupervised learning. We presented the two datasets used
during our study in chapter 4. Through several analyses of the parameters of our
percolation dataset, we showed the effect of finite size of the samples on parameters
such as p. or £. In the case of the Anderson model, we displayed a representation
of |1|? samples in the metal, insulator and transition regime.

In chapter 5 we displayed the results of our study for the two-dimensional
site percolation model. Three topics were studied, the density p, the correlation
length ¢ and the spanning/non-spanning property. In the case of density p, we
demonstrated that supervised and unsupervised learning methods permit us to ex-
tract the density in our lattices. Furthermore, the use of regression proved a deep
understanding of the task performed, as we show that the network was able to cor-
rectly predict p-values of samples with resolution smaller than the ones trained for.

However, when looking at parameters related to the connectivity in the lattices,
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these CNN methods fall short. We began by relabeling the 31 classes previously
used for image classification according to the average correlation length of the set
(€). After classification, we obtained the confusion matrix shown in figure 5.3. We
note that similarly to the confusion matrix obtained for the classification training
by density in figure 5.11 this matrix is heavily diagonal. Nonetheless, it is essential
to point out the spread of £-values in each (£) class. Following this observation we
proposed two reorganisations of the classes, taking into account the distribution of
£ in the dataset 7 U ). These new trainings highlighted the lack of recognition of
¢ by our network, which was further confirmed by a regression study of & where
the network was unable to provide a correct prediction. Through the classification
training of the spanning/ non-spanning, we cemented this hypothesis. Instead of
searching for connectivity, the network seemed to utilise the proxy of density to
identify the phases. From this observation, we attempted to remove the dependence
on the density by performing a training for the spanning/non-spanning property at
p = 0.585 ~ p.. Once again, the network struggled to identify the phases of the
model. The last step of our study was to reproduce an unsupervised study. Our
main finding is that the inefficiency of our ML method is due to the type of model
studied. The physics of percolation relies on the formation of large clusters which
is a long-range property of the system, while CNN are known to retain information
about short-range properties [17,20]. Some might argue that part of CNN methods
could be assimilated into a renormalisation process. As we saw in section 2.1.5,
renormalisation provides an efficient way to reduce short-range correlation in our
system while preserving long-range behaviour. However, the success of renormal-
isation can only be attributed to the prior knowledge of the form of a spanning
cluster. Both methods are coarse-graining but while renormalisation neglects short
correlation interaction and preserves long-range behaviour, CNN methods do the
opposite. As such, the CNN method cannot identify the spanning property in the
samples. We could argue about the possibility of improving the training by provid-
ing the cluster information through HK similar method, as it was performed in a
recent study [83]. However, one might think about the validity of this process as
this would require a two-step process being the pre-processing of the lattice coupled
with an ML training (through the application of the HK algorithm). Furthermore,
following labelling with the HK method, the phase transition can be easily identified
and a ML training would prove to be redundant. Although our study of the 2D site
percolation model provides a cautionary tale of the possible pitfalls of ML in the
study of phase transitions, it does not intend to negate the performance displayed

in previously published papers.
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Finally, in chapter 6 we presented a study of the Anderson model of localisa-
tion. We began by performing classification trainings on images and discovered that
at the same resolution, it was possible to increase the performance of the network by
increasing the size of the system presented. This result was valid in the cases of phase
and disorder classification. However, we saw the limitation of image classification
for disorders classification which led us to focus |t)|? and 1 states. While training for
phase classification of |¢|?, we successfully reproduced previous results [45] with a
simple six convolutional network as well as with the ResNet18. Nonetheless, despite
the success of the simple six layers CNN, we noticed that such architecture could
lead to remaining trapped in local minima and therefore concluded to the better
performance of the ResNet. While training for disorders classification, we identify a
weird behaviour of the network which seemingly provides better performance when
using 1 instead of |1|? as input. The last phase of our study of the Anderson model
was performed through regression to predict disorders from [t/|? states. Similarly
to classification, we noted an increase in the performance as the size of the system
increased. Despite the low number of disorder values trained by the network, our
model provides good predictions of untrained disorder values.

The main question remains, why is the ML study of the Anderson model
of localisation so successful while the percolation model fails? After all, for both
models, one observes the spreading of a cluster and wavefunctions. Again, this
relies on the very technique used to study these models. CNNs retains neighbouring
correlation in the receptive field. Therefore, we hypothesise that while a subset
of a percolation lattice cannot provide us with some knowledge on the spreading
of potential spanning clusters, a subset of an Anderson state can inform us of the
localisation of the wavefunction. In the case of the classification through images
of the Anderson model, a localised state would present a zone of high density with
several regions around, of low densities.

However, while we note an overall success of CNN tools in the phase classi-
fication of the Anderson model with images and [¢|? state, one might still wonder
about the failure of the disorder classification with |¢|?. To get some insight into
the reasons behind this peculiar result, further work needs to be performed on this
model. A possible lead to fix this issue might reside in looking at the feature maps
of the network, or even relaunching a hyperparameter search. Another important
point highlighted by our training of the Anderson model is the inability of classical
ML metrics such as the accuracy to convey a training that we could visually judge
reasonably successful, such as 6.13(a). Indeed, classification tasks were originally

used to identify very distinct classes of objects such as cars or planes. However, in
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our case, a misclassification between two neighbouring disorders already constitutes
a success. As such we need a metric conveying this result. Studying all these leads
would allow us to provide a solid review of the performance of supervised CNN

methods applied to the three-dimensional Anderson model.
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