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Abstract

In the last few years, we have witnessed a growing number of machine learning

publications in the field of condensed matter and statistical physics. In particular,

machine learning (ML) methods seem to perform well in tasks such as the identifi-

cation of phases of matter. In this thesis, we study machine learning through the

scope of two models. Our first model is the two-dimensional site percolation. In this

paradigmatic model, sites are randomly occupied with probability p; a second-order

phase transition from a non-percolating to a fully percolating phase appears at oc-

cupation density pc, called percolation threshold. Through supervised deep learning

approaches like classification and regression, we explore the ability of convolutional

neural networks (CNNs) to predict the density of occupation p of percolation states,

the correlation length ξ, as well as the presence of a spanning cluster. We find that

image recognition tools such as CNN, which are not naturally tailored for physics,

successfully identify p. However, when dealing with parameters like ξ or the presence

of a spanning cluster, these same techniques fail to provide quantitative results.

The second model is the three-dimensional Anderson model of localisation.

This model is characterised by a localisation of the wavefunctions above a critical

disorder Wc. We begin by reproducing previous work done on phase classification,

and perform several new studies with classification and regression methods, to iden-

tify individual disorders in both phases. Throughout our investigation, multiple

parameters such as the size of the system or the nature of the input are studied

to observe their influence on the performance of the model. Via the study of these

two models and the use of several ML methods, we will display the successes and

limitations that one might be confronted with when using ML for phase recognition.
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Abstract en français

Ces dernières années, nous avons vu l’émergence d’un grand nombre de publications

de machine learning (ML) dans les domaines de la physique de la matière condensée

et de la physique statistique. En particulier, les outils de ML apparaissent comme

des méthodes valides pour l’identification de phase. Dans cette thèse, nous étudions

le ML sous le spectre de deux modèles. Le premier est le modèle de percolation

de site en deux dimensions. Dans ce modèle paradigmatique, les sites sont occupés

avec une probabilité p; une transition de phase du second ordre d’une phase non-

percolante à une phase percolante apparait à une probabilité d’occupation pc, appelé

seuil de percolation. A l’aide de méthodes d’apprentissage supervisé telles que la

classification et la régression, nous explorons les capacités des réseau de neurones

convolutifs (CNNs) à prédire la densité d’occupation p, la longueur de corrélation ξ,

ainsi que la présence d’amas percolant. Nous constatons que les CNNs, qui ne sont

à la base pas pensés pour la physique arrivent à prédire p. Cependant pour ξ ou la

présence d’amas percolant, ces mêmes techniques ne parviennent pas à donner de

résultats satisfaisants. Le second modèle est le modèle de localisation d’Anderson en

trois dimensions. Ce modèle se caractérise par une localisation de la fonction d’onde

au-delà d’un désordre critique Wc. Nous commençons par reproduire des résultats

obtenus précédemment en classification de phase, et réalisons par la suite des études

dans le but d’identifier plusieurs valeurs de désordres dans les deux phases. Au

cours de nos recherches, nous étudions l’influences de la taille du système ou la

nature de l’entrée sur la performance du réseau. Au travers de l’étude de ces deux

modèles, nous montrons les points forts et les limitations auxquels il est possible

d’être confrontés en utilisant le ML pour la reconnaissance de phase.
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Chapter 1

Introduction

1.1 A brief history of machine learning

Throughout history, the concept of an object or machine being able to learn au-

tonomously has always fascinated philosophers and scientists. However, the foun-

dation of modern Machine Learning (ML) as we know it, dates back to the 40s. In

1943, McCulloch and Pitts proposed a mathematical model emulating the behaviour

of neurons in the brain: this is the artificial neuron, which is the building block of

our modern artificial neural network [3]. With this formalism established, a new

field emerged aiming at improving the learning capacity of machines by mimicking

the behaviour of neurons in the brain. F. Rosenblatt was the first to successfully

implement the model of McCulloch and Pitts and named it perceptron [4]. While

this discovery generated a lot of enthusiasm in the field, it was soon quelled by

the limitations of the perceptron. Indeed, by 1969 Minsky and Papert proved that

this first implementation was only able to distinguish simple patterns contrary to

Rosenblatt’s early claim [5]. This disillusion and the lack of practical application of

the perceptron led to a loss of interest from investors and marked the beginning of

what was later called the first Artificial Intelligence (AI) winter [6]. A new interest

grew in the 80s helped by two main events, through Hopfield who demonstrated

the ability of the simple network to calculate [7] and more importantly the research

of D. E. Rumelhart, G. E. Hinton and R. J. Williams [8] which were the first to

successfully implement the backpropagation algorithm on an artificial neural net-

work. However, these headways were not sufficient to relaunch sustained interest in

the field, which eventually led to a second AI winter by the end of the 80s. In the

decades that followed, we observed the publication of several important articles in

the field [9, 10] but interest only returned in the early 2000s.
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Input Hidden Layer Output

Figure 1.1: Artificial neural network with three layers, an input layer in blue, a
hidden layer in green and an output layer in yellow. Each layer comprises four
neurons stacked on top of each other. The layers are connected through weighted
connections. To emphasise this point, here, we draw connections with different
thicknesses. Connections with high weights appear thicker than connections with
lighter weights.

In the 2010s we have seen a boom in the field of AI, due to the development

of technologies such as Graphic Processing Units (GPUs) and the creation of tools

such as CUDA [11,12].

1.2 Artificial Neural Networks

It is important to emphasise the multidisciplinary effort that contributed to the rise

of machine learning. After all, AI was developed with the intent to imitate the

human mind. Thus, psychologists, biologists and computer scientists worked hand

in hand to further the understanding that scientists had about the functioning of

the human brain to replicate it in machines. Among the mist of articles that pave

the way to modern machine learning, are the articles of Hubel and Wiesel. Through

a series of publications, Hubel and Wiesel [13–15] studied the visual cortex of cats,

and made several discoveries that contributed to shaping the functioning of image

recognition tools. They found that individual neurons had receptive fields, the whole

vision being recovered through overlaps of the receptive fields of several neurons.

Nonetheless, a neuron would not always perform the same task as other neurons in

the visual cortex. Some neurons specialised in identifying certain patterns such as

lines, and different neurons would recognise different line orientations, i.e., horizontal

or vertical lines.

Artificial Neural Networks (ANNs) also simply called Neural Networks (NNs)
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Figure 1.2: Representation of an artificial neuron, on the left we see the layer l − 1
composed of n neurons. The yellow ellipse displays the operation undergone by the
jth neuron of layer l and the blue rectangle the activation function applied after
layer l.

are a type of model used during an ML training. They are composed of nodes called

neurons, which are stacked on top of one another in layers. Each layer is connected

to the next through vertices. In the cases where all the neurons from one layer are

connected to all the neurons of the subsequent, as shown in figure 1.1, we say that

we have a dense or fully connected layer. The first ANN was the extreme learning

machine introduced by Rosenblatt in his book Perceptron [4]. It was composed

of an input layer, a single hidden layer and an output layer. While this network

constituted a revolution in the field, it was later discovered that this type of network

was only able to identify simple patterns and was not able to perform complex tasks.

Further subsequent studies showed that adding several hidden layers contributed to

enhancing the performance of the model [16]. A neural network with more than one

hidden layer is then called a Deep Neural Network (DNN).

As we previously mentioned, ANNs are used for performing an ML task. The

training occurs after feeding an input to a network. Following this, the information

goes from layer to layer until it reaches the output where the performance is evalu-

ated. Let us consider a DNN with l = 1, 2, . . . ,M layers. Each neuron j in a given

layer l has a value called activation alj and each of the lines connecting one neuron

k from a layer l − 1 to the neuron j in layer l have a weight ωl
jk. The information

passes from one layer l− 1 to layer l through a linear combination of the activations
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Figure 1.3: In red the σReLU(z) activation function. In blue the σsigmoid(z) function,
we remark that this function saturates after z = 2 and has a maximum value of 1.

and the weights of the previous layer

alj = σ

 X

k

ωl
jka

l−1
k + blj

!
= σ

�
zlj

�
, (1.1)

where σ is called the activation function and blj is called the bias which essentially

allows to shift the activation function from the origin. Similarly to the behaviour of

neurons in the brain, all the neurons in a network are not firing at the same time,

the role of σ is to find a way to determine which neurons are active. Several dif-

ferent types of activation/non-linearity can be applied to layers, which in turn lead

to different training performances [17]. Some of the commonly used activation are

Rectified Linear Unit (ReLU) σReLU(z) = max(0, z) or sigmoid σsigmoid(z) = 1
1+e−z ,

shown in figure 1.3. We provide an example of the output of an artificial neu-

ron/perceptron in figure 1.2, here we use a step function, σstep(z) =





0, if z < 0

1, if z > 1

as activation function.

1.3 CNN methods for image recognition

In 1980, we see the first attempt at reproducing the behaviour of natural neurons

described by Hubel and Wiesel, this is the neocognitron [18]. The neocognitron

had two types of layers that we nowadays identify as a convolutional layer and

a downsampling layer. The neocognitron was only using feed-forward techniques

but was already able to identify patterns or characters. The first Deep Learning
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(DL) Convolutional Neural Network (CNN) was implemented several years later by

Yann Lecun et. al [19]. This network was using backpropagation as an optimisation

method and was able to identify hand-written ZIP numbers.

1.3.1 The convolutional layer

Now that we have provided a brief background on the timeline of the creation

of CNNs, let us look at its architecture in detail. A CNN is composed of two

main layers, the convolutional layer and the downsampling layer, also called the

pooling layer. The convolutional layer differs from the fully connected layer by

introducing the notion of receptive field [17]. Contrary to the dense layer shown in

figure 1.1, where neurons in a layer were connected to all neurons of the following

layer, here a neuron is only connected to neurons that are in its receptive field.

This receptive field, also called kernel, allows to retain local correlation between

neighbouring pixels. Similarly to the neurons in the visual cortex of animals, the full

image is retrieved through the overlap of the receptive field of several neurons. The

training occurs through convolution operation. When the kernel which is a weighted

matrix, convolves across the input image. To construct a convolutional layer five

parameters need to be defined. We begin by defining the width W , and the height

H of the receptive field of our network, which is called a kernel. Usually, the height

H is chosen as equal to W . Each layer applies a given number of kernels to the

input, this number is called the depth D. Now that we have defined the size of our

kernel/receptive field as W ×H, we need to define the stride S. This is the number

of neurons chosen between two consecutive translations of the kernel. Finally, as

the input goes through our network its dimensions might decrease. To remedy this

issue we define a parameter P called the padding, which adds zero around the input

to keep its dimension constant. After going through a convolutional layer with a

kernel of size W ×H, an input of size I × I has a new size Soutput defined as

Soutput =
I −W + 2P

S
+ 1, (1.2)

1.3.2 The pooling layer

The second layer in the CNN architecture is a downsampling layer, also called

the pooling layer [17, 20]. This is a coarse-graining layer which retains the spatial

structure of the input. A pooling layer does not modify the depth of the input,

pooling operations are applied to each of the filters taken in input. Similarly to

the convolutional layer, the pooling layer is not connected to all the neurons in the
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subsequent layer, only to neurons in their receptive field. A pooling layer is defined

by the size of the kernel WPool × HPool, and the stride S is usually taken to be

equal to W . Several types of pooling operations exist, the most popular being max

pooling and average pooling. Let us consider a WPool × HPool pooling kernel. In

a max pooling layer, the kernel analyses the value of each pixel in the receptive

field WPool ×HPool and replaces it with one value corresponding to the value of the

maximum pixel. In an average pooling layer, a WPool ×HPool replaces the pixel in

the receptive field with the average value of the pixels in the kernel window. Pooling

operations allow for a decrease in the computational load and in turn, allow to work

with deeper networks.

CNN methods are usually used for image recognition, they have been shown

to be performing well for image or video recognition, natural language processing,

and medical image analysis [21–24].

1.4 Types of learning

ML distinguishes itself from classical programming by the fact that no rule is given

to solve a task, instead, we expect the network to find a strategy to achieve the

task required according to the dataset given as input. Let us define the dataset

D = (xi, yi) where xi is a tensor of independent variables representing the input,

and yi is a tensor of dependent variables representing the label of input xi. This

dataset represents a general input that we would feed to our ML model. In our

case xi could be a percolation lattice ψi and yi the label associated, for instance

’spanning’. Before introducing the different kinds of tasks that could be performed

by an ML program we need to introduce the different types of learning. There are

three main types of learning, the first one is supervised learning. Supervised learning

aims at acquiring the optimal strategy to perform a task through the use of a labeled

dataset D = (xi, yi). Two types of supervised learning tasks can be distinguished,

classification and regression. For classification, an ML process learns how to separate

data in discrete classes. It is equivalent to finding an optimal representation of the

dataset that separates samples from each class. A famous example is the classic

Cat/Dog classification [25]. In the case of regression, the ML algorithms are trained

to learn the relationship between the input xi and the label yi to make continuous

predictions of new yj according to xj . Regression can be used to infer the price of a

car according to several parameters such as the brand, and year of release. In that

sense, regression differs from classification as it allows us to make predictions on

samples with labels never seen by the network during the training procedure. Both
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of these methods will be developed in section 3.10 with examples of applications.

The second type of learning is unsupervised learning. In this method unla-

beled data is fed to the ML algorithm, i.e. D = (xi). The network is then expected

to find an implicit correlation in the dataset without any other external input.

Unsupervised learning can be divided into three different categories, clustering, di-

mensionality reduction, and association learning. The clustering task intends to find

ways to group similar samples in the dataset. Dimensionality reduction methods

aim at finding ways to simplify representations of datapoints in a way that preserves

the main feature of the dataset, and association learning studies relations between

samples in the dataset. Applications of unsupervised learning techniques are wide.

It can serve as a preprocessing step to find structure in the dataset before a super-

vised learning training [26], or can be used to generate new samples with techniques

such as Variational Autoencoder (VAE) or Generative adversarial network (GAN).

Finally, the last type of learning is reinforcement learning. Contrarily to

the two previously presented techniques no dataset is employed during the learning

process. The learning occurs through an agent interacting with an environment, if

the agent performs the task as expected, it receives a bonus, and if the task is not

performed well the agent receives a penalty. Through a set of interactions with the

environment, the agent learns how to perform the task as expected.

1.5 Machine learning for phases recognition

As we have seen in the previous section, CNNs are a class of deep, i.e., multi-layered,

neural nets (DNNs) in which spatial locality of data values is retained during training

in an ML setting. When coupled with a form of residual learning [27], the resulting

residual networks (Residual Networks (ResNets)) have been shown to allow

astonishing precision when classifying images, e.g., of animals [28] and handwritten

characters [29], or when predicting numerical values, e.g., of market prices [30].

Residual networks are a specific type of network retaining memory through the use

of skip connections. We will present them in section 3.9. In recent years, we also

witnessed the emergence of DNN techniques in several fields of physics as a new

tool for data analysis [31–34]. In condensed matter physics in particular, DNN

and CNN proved to be efficient in learning the ground state of some many-body

system [35–38], and to speed up Monte Carlo sampling [39, 40]. ML has also been

shown to be performing well in identifying and classifying the phases of matter

or learning order parameters [41–44]. In a specific case, ML proved to be able to

reconstruct the phase diagram of site-type quantum percolation after performing
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Figure 1.4: Phase diagram of the three-dimension site quantum percolation obtained
through classification of the Anderson metal-insulator model reproduced with per-
mission from [45]. On the vertical axis, we show the site probability of occupa-
tion ps and on the horizontal axis, we display the eigenenergies E. The dashed
green line denotes the threshold for the classical three-dimensional site percolation
pclassicals = 0.3116 ± 0.0002 [46]. The dashed white line is the mobility edge.

a classification task on the two phases of the three-dimensional Anderson metal-

insulator model as shown in figure 1.4.

Despite all these studies, the ML process in itself tends to be somewhat of

a black box, and it is not yet known what is allowing a DNN to correctly identify

a phase. To gain further insight into this issue, we choose a well-known and well-

studied classical system that exhibits perhaps the simplest of all second-order phase

transitions, the site-percolation model in two spatial dimensions [47, 48]. In this

model, a cluster spanning throughout the system emerges at an occupation prob-

ability pc, leading to a non-spanning phase when p < pc while p ≥ pc corresponds

to the phase with at least one such spanning cluster [48]. Several ML studies on

the percolation model have been already published, mostly using supervised learn-

ing to identify the two phases via ML classification [26, 49]. An estimate of the

critical exponent, ν, of the percolation transition has also been given [26]. The

task of determining pc was further used to evaluate different ML regression tech-

niques in Ref. [50]. For unsupervised and generative learning, less work has been

done [26,49,51]. While some successes have been reported [51], other works show the
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complexities involved when trying to predict percolation states [49]. Through our

study of the percolation model, we will show that ML methods are able to identify

a parameter such as the density and struggle with parameters related to long-range

properties such as the spreading of a cluster or the correlation length.

We also introduce a second model, the three-dimensional Anderson model

of localisation which is characterised by a localisation of its wavefunction in the

strong disorder regime. Similarly to the percolation model, previous ML studies

were performed and concluded the success of classification methods to identify the

two phases of the system [45, 52, 53]. Here, we will show that supervised methods

are able to identify the phases of the Anderson model of localisation. Furthermore,

we show that ML methods can make close predictions on the disorder values W .

1.6 Outline of the thesis

In this thesis, we aim to understand the reasons that allow ML techniques to perform

so well in phase recognition tasks. Chapter 2 and 4 provides the theory on the models

used for our study and the specificity of our datasets. In Chapter 3 we dive into

the theory of machine learning and detail the process of training for classification,

regression and a variational autoencoder. Finally, in Chapter 5 and 6, respectively,

we present the results of our ML analysis for the two-dimensional percolation model

and the three-dimensional Anderson model.
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Chapter 2

Theory

2.1 The percolation model

The percolation problem is well-known with a rich history across the natural sciences

[47,48,54–57]. It provides the usual statistical characteristics across a second-order

transition such as, e.g., critical exponents, finite-size scaling, renormalisation and

universality [48].

Perhaps the simplest non-trivial implementation of percolation is provided

by the two-dimensional (2D) site percolation model [48] on a square lattice. In this

model a lattice of size L× L with individual lattice sites x⃗ = (x, y), x, y ∈ [1, L], is

randomly occupied with an occupation probability p such that the state ψ of site x⃗ is

ψ(x⃗) = 1 for occupied and ψ(x⃗) = 0 for unoccupied sites. We say that a connection

between neighbouring sites exists when these are side-to-side nearest-neighbours on

the square lattice, while diagonal sites can never be connected. A group of these

Figure 2.1: Example of percolation lattice of size L = 100 at p = 0.5. Occupied
sites are marked by small black dots while empty sites are left white.
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connected occupied sites is called a cluster. Such a cluster then percolates when it

spans the whole lattice either vertically from the top of the square to the bottom

or, equivalently, horizontally from the left to the right. Obviously, for p = 0, all

sites are unoccupied and no spanning cluster can exist while for p = 1 the spanning

cluster trivially extends throughout the lattice. In Figure 2.1, we show examples of

percolation lattice at p = 0.5.

The percolation threshold is at p = pc(L), such that for p < pc(L) most

clusters do not span while for p > pc(L) they do. In the case of an infinite lattice,

we observe the emergence of an infinite cluster spanning through the system at

pc = 0.59274605079210(2). This estimate has been determined numerically even

more precisely over the preceding decades [58] while no analytical value is yet known

[57]. An important quantity is the percolation strength which corresponds to the

probability of belonging to the infinite cluster P (p) = ⟨sp(p)/L2⟩, where sp(p) gives

the size of the percolating cluster for size L and ⟨·⟩ denotes an average over many

randomly generated realisations. Similarly, we can define the probability of not

belonging to the percolating cluster, Q(p) = ⟨(L2−sp(p))/L2⟩ and P (p)+Q(p) = 1.

Given the two very distinct phases of the system (spanning and non-spanning)

and the extended literature on this model, the percolation model provides an inter-

esting test case to study ML approaches which intend to predict phases of condensed

matter systems.

2.1.1 The cluster structure

In this section, we will define some important parameters related to the cluster

structure. As a first step, we will demonstrate these quantities in 1d. Let us define a

chain with occupied and unoccupied sites. We recall that according to the definition,

a cluster is defined as a grouping of s nearest neighbours occupied sites. In one

dimension this corresponds to having s nearest neighbour sites occupied and at

least two empty sites at the extremities of this cluster. From this observation, and

assuming that each site is independently occupied, we can define a quantity ns called

the cluster number, corresponding to the probability of a site belonging to a cluster

of size s

ns(p) = ps(1 − p)2, (2.1)

where p is the probability of having an occupied site and (1 − p) the probability to

have an empty site. In 1d, the percolating cluster appears only when all the sites in

the chain are occupied, i.e., pc = 1. Using this information and ps = exp(s(ln(p)),
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eq. (2.1) can then be rewritten as

ns(p) = (1 − p)2 exp(s ln(p)) = (pc − p)2 exp

�
− s

sξ

�
, (2.2)

where we define sξ = − 1
ln(p as the cutoff length. It corresponds to the size of the

largest cluster in the lattice. In order to generalise this formula to higher dimensions

we need to introduce the concept of perimeter. We define the perimeter t of a cluster

as the number of nearest neighbour empty sites to the cluster. This parameter t is

composed of the empty sites delimiting a cluster as well as the holes which might

exist in a cluster. In 1d the perimeter cluster t = 2 corresponds to the two empty

sites delimiting a cluster at the left and right border. We now redefine the cluster

number as

ns(p) =
X

t

gs,tp
s(1 − p)t, (2.3)

where gs,t is the number of possible cluster configurations. The probability of a site

to belong to any site in the cluster of size s is defined as
P

sns(p)

X

s

sns(p) =
X

s

sps(1 − p)2, (2.4)

= p(1 − p)2
X

s

dps

dp
, (2.5)

= p(1 − p)2
d
P

s p
s

dp
. (2.6)

Using the geometric series formula we obtain

X

s

sns(p) = p(1 − p)2
d(1/1 − p)

dp
= p. (2.7)

The result of eq. (2.7) can be easily understood as an occupied site is simply a cluster

of size s = 1. As we mentioned earlier, in 1d, the percolation threshold pc = 1. As

a consequence, the 1d case is particular as only one phase of the transition can be

observed p ≤ pc.

Another quantity of interest is the probability to have a spanning cluster at

a given density p, in the infinite system. It is defined as

Π(p) =





0, if p < pc

1, if p > pc.
(2.8)
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We also define a second probability κ(p), which corresponds to the probability of

having a non-spanning cluster at a given probability p

κ(p) =





1, if p < pc

0, if p > pc.
(2.9)

We remark that in a finite system, the transition from the non-spanning phase to the

spanning one is not instantaneous due to finite size effects. This leads to spanning

samples with a density p < pc and non-spanning samples for p > pc. As such, we

define the alternative probabilities ΠL and κL describing the behaviour of a finite

size system of size L.

2.1.2 The correlation function

The correlation function is defined as g(r) = ⟨ψ(x⃗)ψ(x⃗+ r⃗)⟩x⃗,x⃗+r⃗∈C,r=|r⃗|−P 2, where

the ⟨·⟩x⃗,x⃗+r⃗∈C,r=|r⃗| denotes the average over all x⃗, all distances r and all clusters {C}
with x⃗ and x⃗ + r⃗ belonging to the same cluster C. This quantity is often used to

characterise the formation of clusters in the lattice. It corresponds to the probability

of having two occupied sites separated by a distance r which belongs to the same

cluster. It is important to note that we exclude the contribution of points in the

infinite cluster from g(r) [48]. By definition of the correlation function g(0) = 1,

as the site is occupied. In 1d we find that g(r) = pr, i.e., in order to have a point

occupied at a distance r from the origin, every site in between must be occupied.

This can be reformulated as

g(r) = pr = exp(−r

ξ
), (2.10)

where

ξ = − 1

ln(p)
= − 1

ln[pc − (pc − p)]
. (2.11)

We recall that in 1d, the phase transition occurs at pc = 1. Using the expansion

ln(1 − x) ≈ −x, we obtain

ξ = − 1

ln(p)
≈ −1

−(pc − p)
= (pc − p)−1 −−−→

p→pc
∞. (2.12)

The quantity ξ is the correlation length, in a higher dimension, we find that ξ

diverges at pc as |pc − p|−ν where ν is called the critical exponent. This critical

exponent depends on the dimension of the system. In 2d it is equal to ν = 4/3 in

the 2d square lattice [48].
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2.1.3 The correlation length

The correlation length provides an estimation of the size of the cluster in the lattice.

Beyond the length ξ it is improbable to find two occupied sites belonging to the same

cluster, as such ξ can be seen as a cutoff length. The correlation length is defined

as

ξ =

sP
r r

2g(r)P
r g(r)

, (2.13)

where r is the distance between two occupied sites. For p < pc the correlation length

gives the scale of the largest cluster present in the lattice. Around p ≈ pc we see the

emergence of an infinite cluster, ξ = ∞. Above pc, when we see the appearance of

the infinite cluster, the contribution of points belonging to this cluster is subtracted

from g(r) as shown in the previous section. The correlation ξ can then be interpreted

as an indication of the size of the holes in the lattice. Let us now compute the value

of the prefactor C

Cξ2 =

P
r r

2g(r)P
r g(r)

→
R
r2 g(r)R
g(r)

. (2.14)

As we seen in the previous section g(r) ∝ e
− r

ξ provides a good estimation of g(r).

Let us now compute the numerator

Z 2π

0

Z ∞

0
r2 g(r) r dr dθ = 2π

��
−ξr3 e

− r
ξ
�∞
0

+ 3 ξ

Z ∞

0
r2e

− r
ξ dr

�
, (2.15)

= 2π

�
3
�
−ξ2r2 e

− r
ξ
�
− 6

Z ∞

0
ξ2r e

− r
ξ dr

�
, (2.16)

= 12πξ4. (2.17)

We now look at the denominator

Z 2π

0

Z ∞

0
g(r) r dr dθ = 2π

�Z ∞

0
r e

− r
ξ dr

�
, (2.18)

= 2π

��
−ξr e

− r
ξ
�∞
0

− ξ

Z ∞

0
e
− r

ξ dr

�
, (2.19)

= 2π
�
ξ2e

− r
ξ
�∞
0
, (2.20)

= 2πξ2. (2.21)

Combining eqs. (2.17) and (2.21) we find

⇒ Cξ2 =

R 2π
0

R∞
0 r2 g(r) r dr dθ

R 2π
0

R∞
0 r g(r) r dr dθ

∝ 12πξ4

2πξ2
∝ 6ξ2. (2.22)
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(a) (b)

Figure 2.2: (a) Percolation lattice at p = 0.4 before the HK labelling, occupied sites
shaded in grey and unoccupied sites are coloured in white. (b) Percolation lattice
after HK labelling. The five different clusters are coloured with different colours.

From equation eq. (2.22) we note the presence of a pre-factor C = 6, that we will

need to remove to obtain the normalised value of ξ.

2.1.4 The Hoshen-Kopelman algorithm

Earlier in section, 2.1 we introduced the notion of clusters as a group of nearest

neighbours occupied site. We now present an algorithm able to identify such clusters,

the Hoshen-Kopelman (HK) algorithm. The HK algorithm, based on the union-find

algorithm, was first discussed in 1976 by J. Hoshen and R. Kopelman [59]. Given

a set of points with possible interconnections, the union-find algorithm provides an

effective way to find an equivalence relationship between these points. In percolation,

the HK algorithm applies this principle in order to find and identify each cluster in a

lattice. Let us define a grid of size L×L, where sites are occupied with a probability

p and unoccupied with a probability 1 − p. The first step of the HK algorithm is

to scan the lattice in search of occupied sites, once an occupied site a is identified

the second step is to check if this site has occupied neighbouring sites. This is the

find portion of the algorithm. In the case where a site a has an occupied neighbour

b and this site was previously labelled, the site a joins the equivalence class of site b

and is assigned the same label. This corresponds to the union part of the algorithm.

Finally, if the site a does not have any occupied neighbours, a new label is assigned

to the site a.

In figure 2.2(a) we show a two-dimensional percolation lattice of size 5 × 5

occupied at density p = 0.4. In the rest of this section, we will provide a detailed

application of the HK algorithm on this lattice. For the sake of clarity, we denote

each site with the notation s(i, j) where i is the row number and j is the column

number. We begin the algorithm at the top left corner of the lattice at site s(0, 0).

The site is occupied, and does not have any occupied neighbours above or on the left,

15



we assign the label 1 to this site. The two consecutive sites s(0, 1) and s(0, 2) are

unoccupied, we skip them. Site s(0, 3) is occupied without any neighbour above or

on the left, we relabel this site with label 2. The next occupied site is on the second

row, site s(1, 1), again, without neighbouring occupied sites on the left or above,

we assign it the label 3. The site s(1, 2) is occupied and has a nearest neighbour

occupied on the left, we relabel it as 3 with the same label as site s(1, 1). The next

occupied sites, s(1, 3) has two occupied neighbours, site s(1, 2) labeled as 3 and site

s(0, 3) with label 2. We join the two cluster and relabel sites s(1, 1), s(1, 2) and

s(1, 3) with label 2. We scan the remaining sites in the lattice in the same manner

and assign label 3 to site s(2, 0), label 4 to site s(2, 4) and label 5 to the cluster

of sites s(3, 1), s(3, 2), s(3, 3). In figure 2.2(b) we show the relabeled lattice, where

each cluster is assigned different colours.

2.1.5 Real space renormalisation

Let us consider a lattice with n sites, this amounts to having 2n configurations

possible as a site can be in two states, either occupied or unoccupied. Thus, it

becomes more and more difficult to perform operations on the lattice as the number

of sites increases. An important factor is that the physics of the percolation model

depends on a long-range behaviour, i.e. the spreading of the cluster. Therefore, the

need arises for a method that would neglect short-range correlation while preserving

long-range behaviour. Real space renormalisation, also called block spin technique

was introduced by Leo Kadanoff in 1965 [60]. This is a coarse-graining process

operating over microscopic degrees of freedom. It allows us to observe the large-

scale behaviour of the system by overlooking correlation on a scale smaller than

a certain length b that is smaller than the characteristic length of the system ξ.

Applied to percolation, real space renormalisation relies on the self-similarity of ξ at

p = pc, which means that each cluster of size inferior to ξ is all similar. The first step

is to divide the lattice in super-site of linear size b, smaller than ξ. Following this,

the bd sites in the new super-site regions are replaced by a unique site according to

a predefined rule (for example majority rule on spanning/non-spanning). This leads

to an increase in the lattice spacing by a lattice spacing b. After renormalisation,

the occupation p′ of the new lattice of size can differ from p except at the transition

where p = p′ = pc. This also applies to ξ, we obtain a new ξ′ which can differ from

ξ while following the same behaviour

ξ′ =
ξ

b
. (2.23)
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(a) (b)

Figure 2.3: Example of renormalisation process on a 8 × 8 lattice with b = 2

We recall that at the transition ξ ∝ |p− pc|−ν ,

ξ′ ∝ |p′ − pc|−ν , (2.24)

ξ′ ∝ |p− pc|−ν

b
. (2.25)

We know that an import property of the renormalisation process is that ξ′ behaves

similarly to ξ at the transition

|p− pc|−ν

b
= |p′ − pc|−ν , (2.26)

ν ln
����p

′ − pc
p− pc

���
�

= ln(b). (2.27)

By reorganising eq. (2.27) we retrieve a new expression of ν,

ν =
ln(b)

ln
����dp′dp

���
�
p=pc

. (2.28)

To illustrate this process, let us define a lattice of size 8 × 8 at p = 0.5, we

choose to rescale it with b = 2. As an averaging rule, we decide to apply a spanning

rule, if sites in the cell of size 22 are spanning vertically, then the new super-site is

occupied. After renormalisation, we obtain p′

p′ = p4 + 4p3(1 − p) + 2p2(1 − p)2. (2.29)
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We solve the fourth-degree equation to find the fixed points

⇒p4 + 4p3(1 − p) + 2p2(1 − p)2 − p = 0, (2.30)

⇒p(−p3 + 2p− 1) = 0, (2.31)

p∗ =





0

1

0.618

(2.32)

The solutions p∗ = 0 and p∗ = 1 are trivial fixed points, while p∗ = 0.618 is the

non-trivial fixed point. We know from previous studies of the two-dimensional per-

colation model that pc ≈ 0.5927, this means that despite a relatively small system,

renormalisation provides a good estimation of pc. The next step is to compute the

value of ν. Using eqs. (2.28) and (2.29) we find

ν =
ln(b)

ln
����dp′dp

���
�
p=p∗

, (2.33)

=
ln(2)

ln(|− 4p3 + 4p|)p=p∗
, (2.34)

= 1.5278838. (2.35)

From the literature on percolation, we know that in the two-dimensional square

lattice ν = 4/3 ∼ 1.3333. The result obtained through renormalisation is slightly

above the result expected. However, given the small size of the observed system,

we accept this result as a good approximation. As such, renormalisation appears as

a valid solution to reduce the computation load of large percolation lattices while

keeping information about the phase transition.

Through this first section, we presented the percolation model as our first

model of interest. Given the extensive studies carried out on this model, it appears

as a perfect test candidate for our ML study.

2.2 The Anderson Metal-Insulator model

In the first section, we introduced the percolation model which is the first model

that we will use for our ML study. Here, we present our second model of interest,

the Anderson model of localisation, and provide some important properties.

An ideal metal is usually represented as a periodic ion lattice immersed in
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a free electron gas. However, in real life materials are rarely devoid of defects

which contribute to hindering the way that electrons move in the system. The

first approach to this issue is the Drude model [61, 62]. It introduces disorder in

the model and states that the conductivity in a metal depends on the distance

between two collisions which is called the mean free path. As such, a high mean

free path implies a long distance between successive collisions and therefore a high

conductivity. Therefore, when increasing the disorder in the lattice, we observe a

slow decrease in conductivity. However, while the Drude model provides an answer

to the behaviour of electrons in an imperfect lattice, it does not explicitly account

for the high disorder regime. In 1958, Philip W. Anderson in his paper ”Absence of

Diffusion in certain random lattices” [63] proposed a model to test the validity of the

Drude model for a strong disorder. He proved that increasing the disorder indeed

contributed to a decrease in conductivity, but furthermore, in three dimensions

above a critical disorder, electrons were completely stopped in their motion, this

is the Anderson localisation. In the following section, we will develop the main

properties of the Anderson model.

2.2.1 Weak localisation

The weak localisation model provides a correction to the model of the ideal metal

by introducing disorder in the medium. The conductance G, provides us with an

insight into how easily electrons can propagate in a medium, it is defined as the

inverse of the resistance R

G =
1

R
=

1

ρL2−d
= σLd−2, (2.36)

where L is the linear size of the system, ρ is the electrical resistivity, σ is the

conductivity of the medium and d is the dimension of the system. In the presence of

disorder, the trajectory of electrons is disturbed and they cannot propagate freely.

The Drude model states that an electron propagates freely until encountering the

first impurity, therefore the conductivity depends on the distance between collisions.

This distance between two collisions is called the mean free path and is defined as

ℓmfp = vτ, (2.37)

where v is the average speed of electrons in the medium and τ is the average time

between collisions. Consequently, a correlation exists between the disorder in our

medium and the conductivity.
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(a) (b)

Figure 2.4: (a) Two possible paths taken by electrons to propagate from path A to
path B. (b) Several paths displaying the propagation of electrons in the medium. We
observe that the red and green paths form a loop travelling in opposite directions,
as this doubles the odds of the electron returning to its origin.

A second important length appears due to the quantum nature of electrons,

the de Broglie wavelength λ, which dictates the scale at which quantum interference

can occur. When ℓmfp > λ we are in the framework of the Drude model and no

quantum interference can take place. However, if ℓmfp < λ we enter a new regime

where electrons can be strongly localised due to the wave interference effect. As

we mentioned before, in the weak localisation regime, a wave propagates through

the medium until encountering the first impurity. Following this event part of the

wave is scattered. The main wave and the scattered wave keep propagating freely in

the medium until encountering the next impurity which will create new scattering

waves. Assuming that the scattering events are elastic, the main wave and the

scattered waves can interfere. Let us consider the propagation of a particle in a two-

dimensional disordered medium. The propagation of the electrons follows a random

path pattern, where the electrons undergo diffusive events. We can therefore define

the mean square displacement as

∆x2 ≈ Dt with t ≫ τ, (2.38)

with D = L2/τ the diffusion coefficient for a system of size L.

In this framework, we define a probability p(t,0) as the probability of return.

This probability provides the odds of a particle returning to its origin after a series

of diffusive events.

Let us now look at two examples of diffusion of electrons. In figure 2.4(a)

we see two possible trajectories taken by electrons departing from a point A to
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reach point B. In the presence of elastic scattering, the main wave and the wavelets

maintain similar energy and can be summed. As we can see in figure 2.4(a) several

paths exist to connect points A to B, each with different lengths and different

phases acquired as a result of diffusive events. In this configuration the addition of

the contributions of each path cancel out and the model of Drude still holds. We

define the probability of going from a point A to a point B as

p(B|A) = |
X

Ai(B|A)|, (2.39)

=
X

i

|Ai(B|A)| +
X

i̸=j

A∗
iAj , (2.40)

where Ai designates the amplitude of the paths. The probability of travelling from

A to B depends on the coherent and incoherent contributions of the paths. A

second kind of path can appear in the system, a closed path which appears when

the electron comes back to its point of origin as depicted in 2.4(b). In this case,

interference effect emerges as two electrons could follow this loop path in opposite

directions. Let us consider such two electrons, with amplitudes A1, A2 and phase

φ1 ≡ φ2. The return probability p(A|A) is then defined as

pt(A|A) = |A1 + A2|2, (2.41)

= |A1|2 + |A2|2 + A∗
1A2 + A∗

2A1, (2.42)

= 4|A|2, (2.43)

where A∗
1A2 and A∗

2A1 are interference contributions. Without the contribution of

the external field, the two electrons travel the same path in opposite directions,

implying A1 ≡ A2 ≡ A and φ1 ≡ φ2. From eq. (2.43) we observe that having

electrons in a closed loop increases the probability of backscattering, which in turn

reduces the conductivity. This phenomenon is called weak localisation.

2.2.2 The three-dimensional Anderson Model

Now that we have introduced the concept of weak localisation in the previous chap-

ter, let us introduce the strong disorder regime and the Anderson model of locali-

sation. The model proposed by Anderson is a tight binding model with a random

onsite disorder εi ∈ [−W/2,W/2], where the variable W is the amplitude of the

disorder. In 1d and 2d, there is always localisation of the wavefunctions. However,

in 3d it was shown that above a certain disorder Wc = 16.57, a phase transition

occurs from a metal state, with an extended wavefunction, to an insulated state
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with a localised wavefunction. The Hamiltonian associated with this model is

H = H0 + V, (2.44)

=
X

i

εi|i⟩⟨i| +
X

⟨i,j⟩
Ji,j |i⟩⟨j|, (2.45)

where Ji,j is a hopping matrix element acting on nearest neighbours, here the ratio
J
W gives the probability of hopping. An important quantity to monitor is the return

probability density, which provides the odds of an electron departing from a position

0 to return to its origin,

p(t) = |ψ(t, 0)|2. (2.46)

We will now study this model in the disorder-free regime and in the infinite disorder

case. The disorder-free regime corresponds to the model of the ideal metal and

J/W → ∞, an electron can move freely and all the onsite energies are identical.

The eigenstates of a system of size L with periodic boundary conditions are then

given by

ψk(j) =
eikj√
Ld

, (2.47)

where j = 1, 2, . . . , N denotes the number of sites and k = 2πn
L is the wave vector

with n = 0, . . . , L− 1. We obtain the energy associated as

E = −2J

dX

a=1

cos(ka). (2.48)

This allows us to obtain the time-evolved solution of the Anderson model

ψ(j, t) =
1√
Ld

X

k

eikj+2itJ
P

a cos(ka). (2.49)

In the thermodynamic limit, there is a convergence of the solution to

ψ(j, t) =

Z

k∈[0,2π]d
ddk

(2π)d
e[ikj+2itJ

P
a cos(ka)] = id

dY

a=1

Jja(2tJ), (2.50)

where Jn corresponds to a Bessel function of the first kind. From this expression,

it is possible to retrieve a convergence of the return probability

|ψ(0, t)|2 ∼ 1

td
. (2.51)
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At the t → ∞ we observe a decay of the particle return probability. There is no

localisation.

For the infinite disorder case, the hopping probability J/W → 0, the kinetic

part of the Hamiltonian is negligible

H =
X

i

εi|i⟩⟨i|. (2.52)

We obtain the trivial solution

ψ(j, t) = eiεt|0⟩ (2.53)

In this configuration, the wave packet is perfectly localised and the proba-

bility of return is constant and equal to 1.

2.2.3 Scaling theory of localisation

After studying weak and strong localisation, a need arises to find a bridge between

these two regimes. Furthermore, an important question remains, how would a metal

or insulator evolve under a change of size? These important issues were studied by

the so-called ”Gang of Four” in their paper ”Scaling theory of localisation” [64].

They theorised that in the case of a system of size L, only one parameter g(L) was

needed to describe the behaviour of the system in both phases. Let us consider a

d-dimensional block of size Ld.The density of states ν(E) provides us with all the

eigenstates ψα of energy Eα and is defined as,

ν(E) =
X

α

δ(E − Eα). (2.54)

We define τesc as the average time that an electron would take to reach the boundary

and escape the system

τesc =
L2

D
, (2.55)

where D = σ/e2ν is the diffusion coefficient. The Thouless energy is the energy

associated with this diffusion event and is defined as

ET =
h

τesc
=

hD

L2
. (2.56)

We define the dimensionless conductance g, as the ratio of this energy with
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the mean level spacing ∆

g =
ET

∆
=

h

e2
σLd−2 =

h

e2
G. (2.57)

According to the scaling theory, the change in conductance can be described through

a function β defined as

β(g) =
d ln g

d lnL
. (2.58)

In the weak disorder limit, the Thouless energy is larger than the mean level spacing.

Several energy levels overlap leading to the presence of extended states

g ≫ 1 ⇒ g ∼ σLd−2. (2.59)

We now compute the value of β(g) associated to this g

β(g) =
d lnLd−2

d lnL
, (2.60)

= d− 2. (2.61)

We find that β(g) is always negative for d ≤ 2. This result confirms the finding of

Anderson, that a phase transition only occurs in the three-dimensional model.

In the strong disorder limit, the mean level spacing is larger than the Thouless

energy. Electrons cannot travel easily from one energy level to the next, this leads

to a localisation of states. In this setting, the characteristic length of the system is

the localisation length λ, and the conductance is expected to decrease exponentially

as

g ≪ 1 ⇒ g ∼ g0 exp(−L/λ) ⇒ ln g ∼ ln g0 −
L

λ
. (2.62)

We proceed to a change of variable α = −1/λ and we find the new value of β

β(g) =
d(−αL)

dln(L)
, (2.63)

=
d(−αex)

dx
, (2.64)

= −L

λ
, (2.65)

= −αex, (2.66)

using eq. (2.62) we obtain

β(g) = −αex = ln g − ln g0. (2.67)
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Figure 2.5: Scaling function β(g) as a function of ln(β) for the weak and strong
disorder regimes in d = 1, d = 2 and d = 3, reproduced with permission from [64].
In d = 1 and d = 2, β(g) is always negative. In d = 3, β(g) is negative for β(g) < 0
and positive for β(g) > 0.

Therefore β(g) is always negative in the strong disorder limit. In both regimes, we

observe that β(g) is independent of the material, and only depends on the dimension

d. Now that we established the behaviour of β(g) in the two regimes, we can draw

β(g) by assuming that β is a monotonous smooth function. In figure 2.5 we display

the plot of β(g) for d = 1, 2 and 3. Equation (2.61) tells us that for d < 2 the scaling

function is always negative in the weak disorder regime. For the three-dimensional

case β(g) is positive (respectively, negative) for g > 1 (g < 1). This implies the

existence of a critical point at β(gc) = 0 corresponding to the metal-insulator phase

transition.

2.3 Conclusion

In this chapter, we have presented the two models that will be studied with ML

methods in chapter 5 and 6. The classical two-dimensional site percolation consti-

tutes the perfect test case for our study as this model is well-known and studied.

Several concepts introduced here will be used in later chapters. For instance, the

percolation dataset that we created was labelled by identifying the cluster through

the HK algorithm. The quantum Anderson model of localisation was chosen as our

second model, due to a previous study displaying the performance of ML methods

to identify its phases. In chapter 6 we will train our ML network to identify the

Anderson Metal-Insulator Transition (MIT) and W -values.
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Chapter 3

Theory of Machine Learning

3.1 Polynomial regression

When dealing with a machine learning task, the first step even before training is

to randomly split the dataset in two parts. The first part is the training set and

the second is the so-called validation set. Generally, we reserve 90% of the dataset

for the training dataset and the 10% remaining for the validation set. A separate

test set is also generally created to analyse the performance of the network after

training. At the heart of machine learning resides the notion of generalisation. We

train a model on a dataset, but we also want this model to make correct predictions

on a dataset unseen during the training process. Thus, by having a validation set,

we can monitor the capacity of prediction of our model on a test set during the

training. It is important to note that while a model can be performing very well on

the training set it may fail on the validation and test set. This phenomenon is called

overfitting. Many factors could be at cause, but this often occurs in the presence

of a model that would be too complex for the dataset that it is training on. To

illustrate this idea we will use the example of polynomial regression. Let us define

a function y = f(xi) + η from which samples are taken, where f(xi) is an unknown

function and η an uncorrelated noise variable i.e ⟨η⟩ = 0 and ⟨ηiηj⟩ = δijσ
2, where

σ is the noise strength. We define fα(x; θα) as a family of functions that we use

as a model to reproduce the behaviour of the samples in our dataset. Here, the

quantity θα represents the internal parameters of the model. We train four different

polynomial orders f1(x; θ1), f3(x; θ3), f10(x; θ10) and f50(x; θ50), each of them with

α + 1 parameters. The different orders represent the degree of complexity of the

models.

In figure 3.1(a) we show a random sampling of N = 10 datapoints with

26



(a)
0.0 0.2 0.4 0.6 0.8 1.0

x

−6

−4

−2

0

2

4

6
y

N=10, σ = 1.00 (train)

Training

Linear

Poly 3

Poly 10

Poly 50

(b)
0.0 0.2 0.4 0.6 0.8 1.0

x

−6

−4

−2

0

2

4

6

y

N=100, σ = 1.00 (train)

Training

Linear

Poly 3

Poly 10

Poly 50

Figure 3.1: (a) Polynomial regression training for N = 10 datapoints. We observe
that the families of functions f10(x; θ10) and f50(x; θ50) fit perfectly the datapoints.
(b) Polynomial regression training for N = 100 datapoints. This time, none of the
functions perfectly fit the datapoints, but the function f50(x; θ50) seems to follow
more the trend of the datapoints.

σ = 1 and the associated fitting by the four families of functions f1(x; θ1), f3(x; θ3),

f10(x; θ10) and f50(x; θ50). Figure 3.1(b) shows a random sampling of N = 100

datapoints with σ = 1. As we can see, higher-order functions are better suited to

perfectly fit points in the dataset while the linear function is only able to give the

general tendency of the dataset. This is due to the so-called bias of the function: a

linear function cannot accurately represent a non-linear function as it cannot bend.

In this case, we say that the f1(x; θ1) function has a high bias while f10(x; θ10)

and f50(x; θ50) have low bias. Therefore, one might conclude that using a high-

order function, which here equates to an ML model with high complexity, would

be the solution to having a good predictor. However, we now need to evaluate the

prediction of such a polynomial function on a test set.

Let us look at the prediction made on a test set, in figure 3.2(a) and (b) we

notice that the functions f10(x; θ10) and f50(x; θ50) which previously fitted points

in the training dataset are now failing on the test dataset. This example perfectly

illustrates the phenomenon of overfitting mentioned in the previous section: the

function learned the noise in the training set and is now unable to make predictions

on the test set. Hence, the selection of the model requires finding a good equilibrium

between variance and the bias of the function. This is what is known in the field of

ML as the bias-variance trade-off.
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Figure 3.2: (a) Polynomial regression predictions for N = 10 datapoints. The
families of functions f10(x; θ10), f50(x; θ50), that fit the datapoints so perfectly in
figure 3.1(a) are now struggling to make an accurate prediction on the test set. The
linear function seems the best suited for the prediction. (b) Polynomial regression
predictions for N = 100 datapoints. Similarly to (a) the higher order polynomial
fails to make a decent prediction on the test set, the lower order polynomial gives
the best prediction

3.2 The bias-variance trade off

In this section, we will formalise the concepts of bias-variance briefly introduced

in the previous section. Let us again consider a dataset defined as y = f(x) + η

where η is some Gaussian noise with mean zero and variance ση. Similarly to the

previous section the aim of our training is to find a family of functions f(x; θD)),

also called model, capable of fitting the data. We use regression techniques to do

so. During the regression process, we monitor the progress of our training through

a cost function C(y, f(x; θD). We choose to employ the Mean Squared-Error (MSE)

defined as

C(y, f(θD)MSE) =
1

n

X

i

[yi − f(x; θD)]2 , (3.1)
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where n is the number of samples in the dataset. Let us look at the expected value

of the cost function

ED,η[C(y, f(θD))] = ED,η

"X

i

(yi − f(xi; θD))2

#
, (3.2)

= ED,η

"X

i

(f(xi) + η − f(xi; θD))2

#
, (3.3)

=
X

i

ED,η[(f(xi) − f(xi; θD))2] + ED,η[2η(f(xi) − f(xi; θD))] + E[η2].

(3.4)

Using the independent random variable property E[AB] = E[A]E[B], the first term

can be expanded as

ED,η[(f(xi) − f(xi; θD))2] = E[f(xi)
2] − 2E[η]E[(f(xi)]E[f(xi; θD)] + E[f(xi; θD)2].

(3.5)

Similarly, the second term of eq. (3.4) can be expanded as

ED,η[2η(f(xi) − f(xi; θD)] = 2E[η]E[f(xi) − f(xi; θD)] = 0. (3.6)

We recall that the random noise η has a mean of zero, therefore E[f(xi)
2] = f(xi)

2.

Now by adding and subtracting E[f(xi; θD)]E[f(xi; θD)] we obtain

ED,η[C(y, f(θD))] =
X

i

(E[(f(xi; θD)] − f(xi))
2 + E[f(xi; θD)2] − E[f(xi; θD)]E[f(xi; θD)] + E[η2].

(3.7)

ED,η[C(y, f(θD)) =
X

i

Bias2 + Variance + E[η2] (3.8)

The first term of the equation is the squared bias

Bias2 = (E[(f(xi; θD)] − f(xi))
2, (3.9)

it gives an estimation of the deviation of the prediction from the true value. The

second term is the variance

Variance = E[f(xi; θD)2] − E[f(xi; θD)]E[f(xi; θD)], (3.10)

which measures the fluctuation in the prediction due to finite size effect. The average

error of our model is a function of the bias, the variance and some noise. By
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increasing the complexity of the function of the network f(xi; θD) we reduce its

bias. However, this leads to a higher variance as f(xi; θD) will fit accurately points

in the datasets. While a network able to fit every point in the training dataset

appears appealing, we saw in the previous section that this leads to overfitting, i.e

a network learning the noise in the training dataset which is then unable of making

correct predictions on a test dataset. Therefore, an optimal network should be

complex enough to reduce the bias, and not too complex to avoid overfitting. This

is the so-called bias-variance trade-off.

3.3 Machine Learning as an optimisation problem

In this part, we are going to describe fundamental machine learning concepts and

the steps involved in the training process. In section 1.4 we previously defined the

dataset D = {(xi, yi)}Ni=1, where xi is an input and yi the label associated to the

input xi. In the case of supervised learning the labelled dataset D = {(xi, yi)}Ni=1

is given as input to our network. Let us define f(x, θD) the function associated

with the network that we train, where θD is a parameter of our network also called

hyperparameter. The information flows in the network from one layer to the next

through the different activation functions as defined in eq. (1.1). Once the last layer,

the output layer, is reached, we evaluate the performance of the prediction of the

network and compare it to the label fed in input. This is performed through a

cost function C(y, f(x, θD)). Several types of cost functions can be used, depending

on the task. For instance, regression provides us with continuous predictions while

classification gives categorical predictions, as a result, these two methods need two

different types of cost functions. Let us look at the case of regression, a popular

cost function (also called error or loss functions) is the MSE as in eq. (3.1), which

provides a direct estimation of the distance between the target and the predictions

made by the network. However, as stated above a loss function such as the MSE is

not suited for a classification task, we need a loss adapted to categorical predictions.

Before introducing this new loss function it is necessary for us to define a concept

from information theory, the Shannon entropy. Given a multiple outcome event with

an associated distribution p, the Shannon entropy is defined as the average optimised

number of bits required to communicate information about the outcome [65]

H(p) = −
nX

i

pi log(pi). (3.11)
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In case of prior knowledge or prediction of the outcome, the encoding of this infor-

mation might be optimised to minimise H(p). Thus, we define the Cross Entropy

(CE) as the actual number of bits sent per option. The CE is defined as

H(p, q) = −
nX

i

pi log(qi), (3.12)

where p is the distribution of the true event and q is the distribution of the predicted

outcomes.

If our prerequisite about the outcome ends up being correct, H(p) = H(p, q)

otherwise the CE will differ from the entropy by an amount called the Kullback

Leibler (KL) divergence denoted by DKL. The KL divergence DKL(p||q) measures

how a probability distribution p differs from a probability distribution q and is

defined by

DKL(p||q) = H(p, q) −H(p), (3.13)

=

nX

i

�
−pi log(qi) + pi log(pi)

�
, (3.14)

=

nX

i

pi log
�pi
qi

�
. (3.15)

DKL(p||q) is not a metric as it is not symmetric and does not satisfy the triangular

inequality, however, we note that the KL is non-negative.

The cross-entropy allows us to define two important losses for tasks employing

categorical labels such as classification. When dealing with multi-class classification,

a pre-processing is generally performed to encode the labels, it is called one-hot

encoding. Suppose a classification with C-classes denoted by classes index c =

0, 1, . . . , C − 1, the label are encoded in a new label χic such as χic = 1 if χi = c

and χic = 0 otherwise. The loss function associated to this C-classes classification

is the Categorical Cross-Entropy (CCE) , defined as:

LCCE = − 1

n

nX

i=1

CX

c=1

χiclog(f(xi)) + (1 − χic)log(1 − f(xi)). (3.16)

Once an estimation of the error is performed through the appropriate loss function,

we need to find an optimal way to decrease it by varying the parameters of the

network. As physicists, an intuitive way to see this cost function is to assimilate it

to the energy E of a system that we want to minimise.
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3.4 Gradient Descent

The essence of an ML training resides in the optimisation of a cost function. For us

physicists, it is easy to visualise this cost function as the energy of a system that

we wish to minimise. A popular optimisation technique is the gradient-descent.

This method allows a decrease in the cost function by following the direction of the

gradient. Gradient-based methods are a set of optimisation methods, used to find the

optimal solutions for a wide range of problems. Let us define E(θ) ≡ C(y, f(x, θ))

as the function that we want to minimise. This cost function can be reformulated

as

C(y, f(x, θ)) = E(θ) =
n−1X

i=0

ei(xi; θ), (3.17)

where ei is the error on the sample i. At the start of the optimisation process we

are usually at a random point θ0 on the cost function landscape. After computing

the gradient of the cost function ∇θE(θ), we update the value of θ to move in

the direction of the minimum of E(θ). This is done iteratively by changing the

hyperparameter θ of the model,

θt+1 = θt − η∇θE(θ), (3.18)

where η is a parameter called the learning rate which controls the steps taken in the

direction of the minimum. We update the value of θt as long as the minimum is not

reached.

While the gradient descent method provides a nice solution for some opti-

misation problems, its application for a machine learning scheme is revealed to be

quasi-impossible. The main issue remains that gradients are computationally ex-

pensive. For a cost function like the mean squared error, the computation of the

gradient requires a sum over all the n datapoints in the system. The second issue

resides in the non-adaptive nature of η. The cost function landscape is generally

rugged, and a constant learning rate would lead to being stuck on a saddle point

or completely diverging. A learning rate capable of taking into account the curva-

ture of the landscape would be more adapted. Finally, the gradient descent method

inherently depends on the initial conditions and tends to converge to a local mini-

mum without being able to escape it, which implies that good optimisation is highly

dependent on the initial point in the cost function landscape.
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3.5 Newton’s Method

Newton’s method operates in a similar way to gradient descent, however, it makes

use of the second-order Taylor’s expansion

E(θ + v) ≈ E(θ) + ∇θE(θ)v +
1

2
H(θ)v2. (3.19)

Newton’s method aims to find an optimal η to iterate on, to minimise the second-

order Taylor expansion. Let us now look at the gradient of the Taylor expansion

∇θE(θ) + H(θ)vopt = 0, (3.20)

by rearranging this expression we obtain

vt = H−1(θt)∇θE(θt), (3.21)

θt+1 = θt − vt. (3.22)

This expression is similar to the eq. (3.18), however, we remark that while η is

constant in the gradient method it now depends on the Hessian in Newton meth-

ods. This allows an adaptation of the steps taken toward the minimum in real-time

according to our position in the cost function landscape. While Newton’s method

helps us to gain insight into the role of learning rate η and possible improvement,

it is most of the time impractical. The main issue resides in the computation of the

Hessian matrix that scales badly with an increasing number of parameters. Fur-

thermore, inverting a n×n Hessian matrix at each iteration of η is computationally

expensive.

3.6 Stochastic gradient descent

In section 3.4 we introduced the gradient descent as an optimisation tool. However,

as we have seen previously this method suffers from many drawbacks that make it

impractical for machine learning. One of the issues resides in the deterministic na-

ture of the Gradient Descent (GD) that makes it impossible to escape local minima.

A solution to this issue is the introduction of stochasticity. The dataset is divided

into so-called mini-batches and the gradient is computed on each of these subsets.

We choose the mini-batches to be smaller than the total dataset. For a dataset

composed of n datapoints and a mini-batch of size ω, there are n/ω mini-batches in

the dataset. We denote each mini-batch by Bk where k = 0, . . . , n/ω. The gradient
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of the cost function can then be reformulated as

∇θE
MB(θ) =

X

i∈Bk

∇θei(xi, θ). (3.23)

An iteration of the optimisation process is complete when the gradient of each of

the mini-batches has been computed, this is what we call an epoch. The eq. (3.18)

can be rewritten as

θt+1 = θt − ηt∇θE
MB(θ). (3.24)

The Stochastic Gradient Descent (SGD) method gives a solution to the expensive

computation of the gradient by dividing the task through the mini-batches. It is

less costly to compute n/ω times a gradient of ω point than a gradient on the full

dataset which comprises n samples. Furthermore, computing the gradient on each

of the mini-batches contributes to adding stochasticity and allows to escape local

minima in a rugged cost function landscape.

3.7 Back propagation

The optimisation process described in the previous sections relies heavily on the

computation of the derivative of the cost function with respect to the parameters

of the network θ. Nevertheless, the computation of the derivative can prove to be a

tedious task, as it requires to compute as many gradients as parameters at each step

of the optimisation process. The backpropagation algorithm [8] takes into account

the layered architecture of the network and provides us with a straightforward way

to compute the gradient by making use of the chain rule. We recall the activation

function aLj of neuron j in a layer L

aLj = σ

 X

k

ωL
jka

L−1
k + bLj

!
= σ(zLj ), (3.25)

where k is the index of a neuron from the previous layer, which has a connection with

the neuron j. Therefore at layer L + 1 we obtain the following activation function

aL+1
j = σ

 X

k

ωL+1
jk aLk + bL+1

j

!
= σ(zL+1

j ). (3.26)
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As the cost function E depends on the behaviour of all the layers connected to the

output, the change in layer L according to the activation zLj is defined by

∆L
j =

∂E

∂zLj
, (3.27)

Chain rule coupled with the dependence of E on aLj and bL allow us to obtain

∆L
j =

∂E

∂zLj
=

∂E

∂aLj

∂aLj

∂zLj
=

∂E

∂aLj
σ′(zLj ), (3.28)

∆L
j =

∂E

∂zLj
=

∂E

∂bL
∂bL

∂zLj
=

∂E

∂bL
. (3.29)

One can also find the dependence of E on ωl
kj , by applying chain rule and using the

layer L + 1

∆L
j =

∂E

∂zLj
=
X

k

∂E

∂zL+1
k

∂zL+1
k

∂zLj
=
X

k

∆L+1
k

∂zL+1
k

∂aLj

∂aLj

∂zLj
(3.30)

=
X

k

∆L+1
k

∂zL+1
k

∂aLj
σ′(zLj ) =

X

k

∆L+1
k ωL+1

kj σ′(zLj ). (3.31)

Finally, we derive E by the weight ωL
jk

∂E

∂ωL
jk

=
∂E

∂zLj

∂zLj

∂ωL
jk

= ∆L
j a

L−1
j . (3.32)

The eq. (3.31) summarises quite well the backpropagation process. While the feed-

forward step described by the activation function aLk in eq. (3.25) was computed

through the activation of the previous layer aL−1
k , here we notice that the change in

layer ∆L
k depends on the change in layer ∆L+1

k .

3.8 Overfitting, vanishing gradients

Now that we introduced the main steps of the training of an ANN, we need to also

explore the different issues that one can encounter during the process. In section

3.1, we briefly introduce the idea of generalisation. We recall that the aim of the

training is to obtain a network able to make correct predictions on a dataset never

seen before. This ability is called generalisation and is one of the most sought-after

capacities of a network in DL. Nonetheless, two main types of issues can arise and

35



hinder this ability, underfitting and overfitting. Underfitting occurs when a network

is not performing enough and overfitting occurs when the network is overperforming

and is learning the noise in the training dataset. The main drawback of overfitting is

that while the network performs perfectly on the training data, it is unable to make

correct predictions on unseen data as depicted in figure 3.2(a). Knowing this, several

techniques have been developed to avoid the pitfall of overfitting/underfitting. The

first step is to optimise the size of the network according to the task performed. A

complex network used for a simple task will lead to overfitting, as the network is

too powerful and vice versa. Furthermore, another problem can occur when using

a DNN, the so-called vanishing gradient. This phenomenon is characterised by a

rapid decrease in performance as the depth of the network increases. We recall

that the training process involves an optimisation of the parameters of the network

performed through backpropagation. The backpropagation step relies heavily on

the chain rule derived from the gradient of the cost function as we showed in the

eqs. (3.27) to (3.29) and (3.32). However certain types of activation functions such

as the sigmoid shown in figure 1.3(b) can contribute to the disappearance of the

gradients as
∂σsigmoid

∂z −→ 0 leading to ∆L
j = 0. Residual learning comes as a solution

to this specific issue, it makes use of ”skip-connections” which bypass several layers

to merge the information with an output further down in the network. By feeding the

activation several layers down, we avoid the vanishing of the information in a deep

neural network. In figure 3.3 (a) we show a representation of the skip-connection

operation. Usually, the number of layers skipped is between two or three, and this

unit constitutes what we call a residual block. Let us define an input x and an

output F (x) several layers down in the network. This input x merge with F (x)

through a skip connection such as,

y = x + F(x). (3.33)

While some models preserve the size of the input x, in other networks the input

could also see a change in dimension and increase. In this case, the activation x

passed several layers down must have the same dimension as the activation F(x), of

the layer that we are trying to merge with. One way to solve this issue is to add a

padding of zero around the input x, to increase the dimension before merging with

the output F(x).
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(a)

(b)

Figure 3.3: (a) Representation of a residual block with two layers (b) Architecture
of the ResNet18 [27]. This network is composed of eight residual blocks stacked on
top of each other, to which we had one layer in input and a fully connected layer
in output. The solid lines show skipped-connection operations where the input x
and the output F(x) have the same dimensions. Meanwhile, the dotted lines show
skipped-connection operations where the output F(x) has a larger dimension than
x. In the second case, a padding of zeros is added to the input x before merging
with the output F(x).

3.9 The ResNet18

The ResNet [27] is a deep neural network using the skip connection method, it is

composed of several residual blocks stacked on top of each other. Several depths of

ResNet can be achieved, but we will focus our attention on the ResNet18 shown in

figure 3.3 (b). The network is organised in 8 residual blocks of two convolutional

layers staked on top of each other, to which we add a convolutional layer as input

and a fully connected one as output. This network proved to be performing well in

image recognition and won the ImageNet competition in 2015. Furthermore, it is

easily adaptable by replacing the last layer with the desired number of outputs. The

original network was constructed for two-dimensional images, but in 2018 a three-

dimensional version was implemented for training on video [66]. The structure of this

ResNet for three-dimensional inputs only differs in the use of three-dimensional con-

volutional layers instead of the usual two-dimensional ones. Therefore the ResNets

architecture appears as a perfect candidate for a deep neural network.
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3.10 An example of classification

Now that we have given a brief overview of key concepts and methods to know

when training a ML process, we will provide a thorough example of training for

phase classification with CNN. This classification aims to obtain a network capable

of predicting the two phases of the percolation model. Our dataset is composed of

310000 percolation lattices labelled as spanning or non-spanning, i.e. spanning and

non-spanning denoted by S and N , respectively. We randomly split this dataset

using a 90%/10% training/validation split. We recall that during the training each

of the samples of the training dataset is presented to the network. The performance

of the network is checked after each epoch on the validation set. As such, using a

validation set provides a way to perform a dynamic test during the training phase.

Once the splitting is performed, the labels are encoded using the one-hot encoding

method mentioned in section 3.3. For our training, we employ the ResNet18 network,

presented in the previous section. We modify the last layer of this network to have

two outputs corresponding to the two possible predictions. A softmax activation is

added to the last layer and acts as a normalisation function for the predictions of

the network. The softmax function is defined as

σsoftmax(y)i =
eyi

PK
j=1 e

yj
, (3.34)

where yi is the output of node i. As we have seen in section 1.4, classification

tasks deal with categorical data. The label seen by the network during the training

is encoded. We therefore need a loss function adapted to this type of problem. In

section 3.3, we introduce the CCE, a cost function tailored for categorical data. This

is the cost function that we employ for our example. We recall that a ML training

is an optimisation problem. However, as we have seen in sections 3.3, eqs. (3.18)

and (3.24), employing gradients-based methods on large datasets is computationally

expensive. To reduce the computational load, it is customary to divide the dataset

into mini-batches, which in turn allows us to add stochasticity to our optimisation

process. We choose to use a mini-batch of size 256. We call an epoch a full passing

of the dataset through the network. For this example and the rest of the trainings

in this thesis, we launch ten trainings with the same network but different random

seeds. As we have seen in section 3.3, in some cases the performances of the network

after training might depend on the initial point in the cost function landscape. As

such, by repeating the trainings with different initial random seeds, we ensure that

the results obtained are not dependent on a specific initial position in the cost
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Figure 3.4: (a) Average confusion matrix for classification according to
spanning/non-spanning. The dataset used is the test data τ and the models used
for predictions are those corresponding with a minimal lc,val. The true labels for N
and S, are indicated on the horizontal axis while the predicted labels are given on
the vertical axis. (b) Dependence of losses lc,train and lc,val on the number of epochs
ϵ for classification according to spanning/non-spanning.

function landscape. The implementation is done with the PyTorch [67] library.

During the training, we track the performance of the network through the evolution

of the validation and training loss functions denoted by lc,train and lc,val, respectively.

The curves associated with our example are shown in figure 3.4(b), and correspond

to an averaging of the ten differents lc,train and lc,val obtained.

After training, we evaluate the efficiency of the model on a test set τ . A

confusion matrix is an efficient way to summarise the performances of a model after

training. The horizontal axis of the matrix corresponds to the true labels while the

vertical relates to the labels predicted by the network. As a result, we expect that

a well-trained model produces a heavily diagonal confusion matrix and a poorly

trained model a confusion matrix with several off-diagonal elements. The confusion

matrix obtained after the training of the two phases is shown in figure 3.4(a). This

matrix is an average of the ten confusion matrices obtained from the ten different

random seed-initiated trainings. We observe that the network is overall able to

distinguish the two phases in most cases. However, we note that 7% of the samples

were wrongly predicted. This result will be discussed further in the section 5.5.
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Figure 3.5: (a) Average prediction curve obtained for regression according to p
at the minimal lr,val. The dataset used is the test data τ and the models used for
predictions are those corresponding with a minimal lr,val. The blue open squares
denote p-values that have been used during the training and the green open circle
shows p-values that were not trained. (b) Dependence of losses lr,train and lr,val
averaged on the number of epochs ϵ for regression according to p. The squares (blue
open) denote lr,train while the circles (red solid) show lr,val. The green crosses show
the minimal lr,val for each of the ten trainings.

3.11 An example of regression

Still using the same percolation dataset, we want to obtain a network capable of

making predictions on the density p. This can be achieved by training our network

for a regression task [17]. Instead of separating samples into predefined classes, the

network then makes continuously ranging predictions. While we previously used the

full dataset in the classification example in section 3.10, here we choose to train the

network for a subset of the dataset with density p = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8

with 10000 samples per classes. Similarly to the previous section, we perform a

90%/10% training/validation split. The key difference between classification train-

ing and regression training is the lack of encoding of the label. In the case of the

classification training shown in the previous section, an encoding of the label was

performed. Here, we recall the existence of a direct correlation between the label y

and the inputs x. Therefore, the labels are not encoded. We again use the ResNet18

network and modify the last layer to only include one neuron as output. While in

classification the output layer was giving us the probability of belonging to a given

class, here the unique output neuron is generating continuous predictions on the

density. The cost function chosen for this task is the MSE loss, which allows us
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to directly monitor the deviation between the predictions of the network and the

actual labels of the samples. Again, during the training the quality of the prediction

of our network can be tracked through the evolution of validation lr,val and training

loss lr,train, as shown in figure 3.5(b).

Once the training is done, we challenge the performance of the network on a

test set composed of percolation lattices with densities p = 0.55, 0.555, 0.56, 0.565, . . . ,

0.655, 0.66. We average the predictions made on the test set and plot the average

prediction curve in figure 3.5. The plot obtained follows the red line correspond-

ing to the perfect prediction. This leads us to conclude that the training was well

implemented. We will expand more on the result of this training in section 5.2.

3.12 Variational Autoencoder

In the previous sections, we gave two examples of the application of supervised

learning tasks, classification and regression. While supervised learning methods

provide nice applications tasks like classification or regression, unsupervised learning

can provide useful insight into the dataset. In this section, we give the general

background of one specific unsupervised learning task, the VAE.

Before invoking VAEs, it is instructive to introduce the classical autoen-

coders. Autoencoders are networks used for unsupervised training; their task is to

encode an input xi in a way that allows the reconstruction of the input xi after

decoding [17]. They are composed of two main building blocks, an encoder and a

decoder. One might think about the simplicity of this task as it would be equivalent

to learning the identity matrix. However, this is made impossible by an intermedi-

ate hidden layer. Two main different kinds of autoencoders exist, the undercomplete

and the overcomplete. The undercomplete autoencoder is perhaps the most intuitive

of the two. In this network, the hidden layer is smaller than the encoder and decoder

and acts as a bottleneck. An analogy of this process would be image compression,

where the aim is to compress the image in a way that would preserve it after uncom-

pression. The overcomplete autoencoder has a larger intermediate layer between the

encoder and the decoder. As a result, the intermediate layer contains more neurons

than the encoder and decoder layers, which might lead to a network inclined to copy

the input to the output. To circumvent this issue, several techniques exist, one of the

most popular is the denoising autoencoder (DAE). Let us consider a dataset com-

posed of N independent and identically distributed datapoints D = {xi}Ni=1. Each

datapoint in the dataset follows a distribution p∗(x) and lives on the manifold of

the dataset D. The denoising autoencoder operates by displacing these points away
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(a) Undercomplete AE (b) Overcomplete AE

Encoder Hidden LayerDecoder Encoder Hidden LayerDecoder

Figure 3.6: (a) Architecture of a fully connected undercomplete autoencoder, the
hidden layer contains fewer neurons than the encoder or decoder layers. (b) Archi-
tecture of a dense overcomplete autoencoder, this time the hidden layer has more
neurons than the encoder or decoder layers.

from the manifold through the addition of noise, the training then aims at moving

them back on the manifold. Through this process, the network is forced to learn

a vector field mapping each displaced point to the manifold. As such, the trained

network knows implicitly the structure of the manifold representing the samples of

the dataset, and can reconstruct the input.

Autoencoders are useful tools with many applications such as phase detec-

tion [68–70] or anomaly detection in high energy physics [71, 72]. However, we are

interested in an even more powerful tool: VAE. While a classical autoencoder aims

at reconstructing a compressed representation of the input data, VAEs are gener-

ative networks, i.e. they create new samples similar to samples of the dataset D

through a probabilistic procedure. We wish to have a network able to produce new

samples following a distribution pθ(x) such that

pθ(x) ≈ p∗(x). (3.35)

Here θ denotes the parameters of the network. As we suppose that the samples

are independent and identically distributed, the total probability distribution of the

model can be written as a product of distribution. It is then possible to define the

log-probability of the model as

log pθ(D) =
X

x∈D
log pθ(x). (3.36)

This function acts as a cost function for generative models.
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The training of a VAE is performed through the introduction of a latent vari-

able z. A latent or hidden variable is a parameter of the model that is not typically

observed. When dealing with marginal distributions in physics, it is customary to

integrate out some variables. However, this often contributes to inducing complex

correlations between the remaining variables. Here, we apply the reverse idea, by

introducing a latent variable z we aim at simplifying correlations between observ-

ables in the system. Thus, the distribution function of the model can be rewritten

as a marginal distribution over the samples x and the latent variable z

pθ(x) =

Z
pθ(x, z)dz. (3.37)

This distribution is also referred to as the marginal likelihood [73]. According to

the general product rule we have,

pθ(x, z) = pθ(x|z)pθ(z), (3.38)

where pθ(z) is the distribution of the latent space, also called prior distribution.

Similarly to a classical autoencoder, a VAE is composed of an encoder, where the

distribution of the dataset is coded, and a decoder, which this time generates new

samples. The hidden block between the encoder and decoder is a probabilistic

sampler. The distribution pθ(x|z) represents the mapping from the latent space to

the new sample that we generate. This distribution is often called stochastic decoder.

The inverse distribution pθ(z|x) maps the distribution of the input sample to the

latent space and is often called stochastic encoder. However, one problem arises, the

marginal likelihood displayed in eq. (3.37) is not tractable as it would require to sum

over all the configurations of the latent variables. To solve this issue we introduce an

infer distribution qϕ(z|x) which acts as an approximation of the distribution pθ(z|x).

Usually, this distribution is chosen as a Gaussian multivariate [17,74]. From this, it

is possible to rewrite the log-likelihood as

log pθ(x) = Eqϕ(z|x)[log pθ(x)], (3.39)

= Eqϕ(z|x)

�
log

�
pθ(x, z)

pθ(z|x)

��
, (3.40)

= Eqϕ(z|x)

�
log

�
pθ(x, z)

qϕ(z|x)

qϕ(z|x)

pθ(z|x)

��
, (3.41)

= Eqϕ(z|x)

�
log

�
pθ(x, z)

qϕ(z|x)

��
+ Eqϕ(z|x)

�
log

�
qϕ(z|x)

pθ(z|x)

��
, (3.42)

= Lθ,ϕ(x) + DKL(qϕ(z|x)||pθ(z|x)), (3.43)
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Figure 3.7: Diagram of the mappings between the x-space of the dataset D and
the z-space of the latent space for a VAE [75]. The distribution pθ(x|z) gives the
mapping of the z-space to the x-space and is usually refered as stochastic decoder.
The probability qϕ(z|x) is called stochastic encoder, and is the infer distribution,
usually a multivariate Gaussian which approximates the intractable distribution
pθ(z|x).

where Lθ,ϕ(x) is the reconstruction error and DKL(qϕ(z|x)||pθ(z|x)) is the KL di-

vergence. By reorganising the term in 3.43 we obtain,

log pθ(xi) − Lθ,ϕ(xi) = DKL(qϕ(z|x)||pθ(z|x)), (3.44)

We recall the non-negativity of the KL divergence defined in section 3.3. As such,

Lθ,ϕ(x) is also called the Evidence Lower BOund (ELBO) and corresponds to the

lower bound of the log-likelihood. From this, we deduce that maximising the ELBO

contributes to maximising the log-likelihood and decreasing the KL divergence.

As we previously mentioned, ML trainings are equivalent to solving optimi-

sation problems, i.e. minimise the cost function. Therefore, we compute the gradient

of the reconstruction error with respect to the parameter θ

∇θLθ,ϕ(x) = ∇θEqϕ(z|x)[log pθ(x, z) − log qϕ(z|x)], (3.45)

= Eqϕ(z|x)[∇θ( log pθ(x, z) − log qϕ(z|x))], (3.46)

= Eqϕ(z|x)[∇θlog pθ(x, z)]. (3.47)
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Let us now look at the gradient with respect to ϕ

∇ϕLθ,ϕ(x) = ∇ϕEqϕ(z|x)[log pθ(x, z) − log qϕ(z|x)]. (3.48)

While in eq. (3.47) we could easily move the gradient ∇θ inside the expected value

Eqϕ(z|x), here we cannot as the expected value Eqϕ(z|x) depends on the same pa-

rameter as our gradient ∇ϕ. Therefore, the backpropagation method described in

section 3.7 cannot be directly applied here. To bypass this issue, we make use of the

reparametrization trick [75]. We recall that z is sampled from the infer distribution

and can be expressed as z ∼ qϕ(z|x). Usually, it is not easy to sample from this

distribution. A solution is to define z as a differentiable deterministic function of

several parameters

z = g(ϵ,ϕ, x), (3.49)

where ϵ ∼ p(ϵ) is a random noise sampled from a simple probability distribution,

independent of ϕ and x. Usually, we choose ϵ such as ϵ ∼ N (0, 1), given that qϕ(z|x)

is a multivariate Gaussian distribution, eq. (3.49) can be expressed as

z = µ + σ ⊙ ϵ. (3.50)

According to the Law of The Unconscious Statistician (LOTUS), when dealing with

a function g(X) of a random variable X, the expected value Ep(ϵ)[g(X)] is

Ep(ϵ)[g(X)] =

Z
g(x)p(ϵ)dϵ (3.51)

Using the change of variable in eq. (3.49) and the LOTUS it is then possible to

rewrite eq. (3.48)

∇ϕLθ,ϕ(x) = ∇ϕEp(ϵ)[log pθ(x, z) − log qϕ(z|x)], (3.52)

= Ep(ϵ)[−∇ϕlog qϕ(z|x)], (3.53)

≈ −∇ϕ log qϕ(z|x)], (3.54)

The reparametrisation trick provides us with a simple way to optimise the param-

eters of the network. While backpropagation cannot happen through the random

variable z, it can occur through the change of variables z = g(ϕ, x, ϵ).
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Figure 3.8: Architecture of the VAE used during the training of percolation states.

3.12.1 An example of application of the VAE

We will now provide a detailed example of the training of a VAE. The goal of

this training is to obtain a network able to generate new percolation samples. For

our study, we use a similar network as the one described in the article of Cheng et

al. [76], which is composed of two convolutional layers, a bottleneck with z = 400 for

the dimension of the latent space and two deconvolutional layers. Our training set

is composed of percolation states at densities p = [0.4, 0.41, 0.42 . . . , 0.79, 0.8] with

1000 samples per class. Again, following the strategy employed for the classification

and the regression, we split our dataset following a 90%/10% training/split. As

this is an unsupervised method we simply feed these configurations to the network

without label. For the reconstruction loss, we choose the Binary Cross-Entropy

(BCE) defined as

LBCE = − 1

n

nX

i=1

yi log[f(xi)] + (1 − yi) log[1 − f(xi)], (3.55)

where f(xi) is the prediction made by the network on the input xi.

We set the dimension of our latent space to z = 400 and train for 20 epochs.

After completing a training cycle we obtain the following outputs In figure 3.9 we

display the output of the trained VAE. The network seems to perform the task of

reproducing the image, however, the high similarity of the image might lead us to

think that the VAE process did not work as it was supposed to. We will discuss the
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Figure 3.9: On the top row we see the input fed by the network, on the second
row, we see the reproduction made by the network after training. As we can see the
network is able to reproduce the inputs after training.

result of this training in section 5.10 in more detail.

3.13 Conclusion

In this chapter, we gave a brief introduction to some essential ML concepts. We

presented ML trainings as optimisation problems and provided several methods such

as Newton’s method or SGD to solve it. We introduced the concept of generalisation,

at the centre of the ML philosophy. More than being able to perform well on our

training set, we aim at performing well on unseen data. Finally, we provided detailed

examples of the training processes for classification, regression and VAE.
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Chapter 4

The datasets

When training a ML, the most important criterion is the quality of the data fed

to our network. A bad dataset can lead to a biased network unable to generalise

on a test set. As such, one should worry about the quality of the dataset used for

training. In general, when training a ML task, we observe that small inputs tend

to be used. In condensed matter and statistical physics, small systems might see a

change in the behaviour of some parameters of the systems due to finite size effect.

These changes need to be taken into account when proceeding with our ML analysis.

For our studies, we generated our own datasets with sizes similar to those observed

in the literature. In this part, we will present these two datasets, the percolation

dataset and the Anderson dataset.

4.1 The percolation dataset

4.1.1 Training/Validation datasets

To facilitate the recognition of percolation with image recognition tools of ML,

we have generated finite-sized L × L, with L = 100, percolation states, denoted

as ψi(p), for the 31 p-values 0.1, 0.2, . . ., 0.5, 0.55, 0.555, 0.556, . . . , 0.655, 0.66, 0.7,

. . . , 0.9. For each such p, N = 10000 different random ψi(p) have been generated.

Each state ψi(p), i = 1, . . . , N , is of course just an array of numbers with 0 denoting

unoccupied and 1 occupied sites. Nevertheless, we occasionally use for convenience

the term “image” to denote ψi(p). When training, we split this dataset according

to a 90%/10% training validation split. In the rest of this thesis, we will use the

notation T ∪ V to qualify this dataset.

In Figure 4.1 we have shown examples of percolation states generated for

various p values. The different grey scales used in Figure 4.1 mark the different
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(a) (b) (c) (d)

Figure 4.1: Examples of four percolation clusters of size L2 = 1002, obtained for
(a) p = 0.2 < pc, (b) p = 0.6 > pc and (c) p = 0.5, i.e. just below pc. Occupied sites
are marked by small dots while empty sites are left white. Each cluster of connected
sites has been identified through the HK algorithm. While individual clusters have
been highlighted with different grey scales for the first three images, image (d) with
p = 0.5 shows all occupied sites in black only, irrespective of cluster identity. This
latter representation is used below for the ML approach.

connected clusters. However, for the ML approach below, we shall only use the

numerical values 0 and 1 corresponding to the state ψi(p). This is visualized as the

simple black and white version shown, e.g., for p = 0.5 in figure 4.1(d).

We emphasise that in this construction, we took care to only construct states

such that for each p, the number of occupied sites is exactly Nocc = p×L2, and hence

p can be used as an exact label for the supervised learning approach. Indeed, using

the preexisting binomial function in Python led to the creation of lattices of densities

p± δp. This would have resulted in several samples labeled with p which would in

reality have slightly different densities which in turn could have affected the quality

of the training. We note that with our construction p = Nocc/L
2 can therefore

also be called the percolation density. For the ML results discussed below, it will

be important to note that the spacing between p values reduces when p reaches

0.5 with the next p value given by 0.55 and then 0.555. Similarly, the p spacing

increases as 0.655, 0.66, 0.7. This smaller spacing allows us to have more samples

in the transition region. We will later see that this results in some deviations from

perfect classification/regression. Last, we have also generated a similar training set

with L = 200 for 20 p-values 0.1, 0.2, . . . , 0.5, 0.56, . . . , 0.66, 0.7, 0.8, 0.9. We find

that our results do not change significantly when using this much larger data set.

To prove our point, we will present the result of a classification training to identify

the presence of spanning/non-spanning for L = 200.

4.1.2 The spanning/non spanning property of the lattices

For our study we choose to focus on three parameters of interest, the density p (i), the

correlation function g(r) (ii), and the presence or absence of a spanning cluster (iii).
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N S

p # κ # Π

0.1 10 000 1.0 0.0 0.0
0.2 10 000 1.0 0.0 0.0
0.3 10 000 1.0 0.0 0.0
0.4 10 000 1.0 0.0 0.0
0.5 10 000 1.0 0.0 0.0
0.55 9889 0.9889 111 0.0111
0.56 9778 0.9778 222 0.0222
0.565 9555 0.9555 445 0.0445
0.57 9171 0.9171 829 0.0829
0.575 8541 0.8541 1459 0.1459
0.58 7731 0.7731 2269 0.2269

Table 4.1: Distribution of spanning/non-spanning in the full dataset T ∪ V for
p ∈ [0.1, 0.58]. We notice the presence of several percolating samples from p = 0.55,
which is below pc ≈ 0.585. The inverse trend is observed above pc, where several
non-percolating samples remain.

As a first step to identify g(r) and the presence of spanning clusters, we label each of

the clusters in each of ψi(p) the states. This labelling is performed through the HK

algorithm described in section 2.1.4. After the complete labelling of the dataset, we

can give the precise distribution of spanning (non-spanning) samples in the dataset.

As a first step to our analysis of our dataset we retrieve the finite size version of the

parameters Π and κ defined in section 2.1.1. In figure 4.2(a) we observe the extracted

Π100, κ100 and pc(100), the latter obtained through the crossing of Π100 and κ100.

We note that Π(p) behaves qualitatively as expected [48]. Due to finite size effect,

close to pc, we find samples which are already spanning for p < pc as well as samples

for p > pc which are not spanning. Clearly, pc(L = 100) ∼ 0.585(5) < pc. This latter

behaviour is as expected since sL(p) ≤ s∞(p), i.e., a cluster that seemingly spans an

L×L finite square might still not span on an infinite system. For reference, we now

have 12 values p = 0.1, . . . , 0.58 < pc(100) and 18 values p = 0.59, . . . , 0.9 > pc(100).

We also note that the training set contains 92.7% of states without a spanning cluster

below pc and 94.8% are spanning above pc. The detailed analysis of the proportion

of spanning and non-spanning samples is given in table 4.1 and 4.2. We observe that

the first percolating states appear earlier than pc(100) ∼ 0.585. The inverse trend

also occurs for p > pc(100) ∼ 0.585 where non-percolating samples remain until

reaching p = 0.635. A training set with L = 2002 was also generated in figure 4.3.

Similarly to the dataset with L = 100, the HK cluster labelling algorithm was applied

to each of the samples. After performing the labelling, we find a new percolation
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N S

p # κ # Π

0.585 6577 0.6577 3423 0.3423

0.59 3841 0.3841 6159 0.6159
0.595 2501 0.2501 7499 0.7499
0.6 1547 0.1547 8453 0.8453
0.605 827 0.827 9173 0.9173
0.61 373 0.0373 9627 0.9627
0.615 162 0.0162 9838 0.9838
0.62 70 0.007 9979 0.9979
0.625 21 0.0021 9993 0.9993
0.63 7 0.0007 9997 0.9997
0.635 3 0.0003 10 000 1.0
0.64 0 0.0 10 000 1.0
0.645 0 0.0 10 000 1.0
0.65 0 0.0 10 000 1.0
0.655 0 0.0 10 000 1.0
0.66 0 0.0 10 000 1.0
0.7 0 0.0 10 000 1.0
0.8 0 0.0 10 000 1.0
0.9 0 0.0 10 000 1.0

Table 4.2: Distribution of spanning/non-spanning in the full dataset T ∪ V for
p ∈ [0.585, 0.9]. We notice the presence of several percolating samples from p = 0.55,
which is below pc ≈ 0.585. The inverse trend is observed above pc, where several
non-percolating samples remain.

threshold pc(L = 200) ∼ 0.588(6) < pc. While pc(L = 200) remains lower than pc,

we notice that pc(L = 100) < pc(L = 200) < pc. As the size L of the lattice increases

pc(L) −−−−→
L→∞

pc, therefore, it appears logical that pc(L = 100) < pc(L = 200).

4.1.3 The correlation function and correlation length

The correlation function g(r) was computed for each of the 31000 samples in the

dataset with periodic boundary conditions. Let us consider an occupied site i in a

lattice ψi(p), the computation of g(r) involves visiting each of the other sites in the

lattice and checking first if they are occupied and secondly, in the case where they

are occupied if they belong to the same cluster as the original site i. For each of the

pair of sites i and i′ controlled, we keep in memory the distance r separating them,

in a list and if they belong to the same cluster or not by appending 1 or 0 to a list.

Once all of the sites of the lattice are checked we normalise the numbers obtained

by dividing by the number of sites visited. It is useful to note that we subtract
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Figure 4.2: (a) Probabilities Π(p) and κ(p) of having a spanning cluster (S, blue open
squares)/ or not (N , red open circles) close to the percolation threshold for dataset
T ∪V, respectively. Similarly, Nτ (orange +) and Sτ (cyan ×) for probabilities Π(p),
κ(p) obtained for the test data set τ . The vertical lines denote pc(L) (dashed) and pc
(dotted). (b) Average correlation length ⟨ξ⟩ with respect to p. Each of the red open
circles designates the average ξ over 10000 samples. The green dotted and black
dashed lines indicate respectively pc ≈ 0.5927 and the pc(100) = 0.585 associated
with our dataset.

the probability of belonging to the largest cluster from the correlation function, the

correlation retained is therefore

g′(r) = g(r) − Plargest. (4.1)

In figure 4.4 we display several correlations associated with random samples in our

dataset taken at p = 0.4 < pc, p = 0.585 ≈ pc and at p = 0.7 > pc. On the top

row, we show plots of g and g′ at these three p-values on a linear scale. On the

bottom row, we plot g and g′ on a logarithmic scale. In each figure we provide the

decay g ∼ exp(−r/ξ), found in section 2.1.2. For every plot, we notice that while

exp(−r/ξ) is close to g(r) and g′(r) the slope does not coincide perfectly. This could

be attributed to a normalisation issue. The curves shown in figure 4.4(a) display a

common behaviour of g and g′. At low p-values the largest cluster remains small

and the probability of belonging to it is negligible. However, when entering the

transition region we observe a divergence of the behaviour of g and g′. In figure

4.4(b), we clearly see a convergence of g′ −→ 0 while g −→ 0.1. The same behaviour

is observed in figure 4.4(c), where g′ −→ 0 while g −→ 0.55. As the value p increases,
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Figure 4.3: (a) Probabilities Π(p) and κ(p) of having a spanning cluster (S, blue
open squares)/ or not (N , red open circles) close to the percolation threshold for
dataset T ∪ V200, respectively. Following the same convention as figure 4.2 the
vertical lines denote pc(L = 200) ∼ 0.588(6) (dashed) and pc (dotted).

the probability of a point belonging to the largest cluster increases, leading to a

saturation of the correlation function. Therefore, we adopted g′ as the correlation

function of our system.

From these correlation functions we compute the correlation lengths ξ fol-

lowing eq. (2.13). While theory predicts a diverging ξ at p ≈ pc, the correlation

length obtained for our dataset does not diverge due to the finite size effect. This

finite size effect is also observed through the shift of pc(100) from pc.

We recall the presence of the normalisation factor in ξ as seen in eq. (2.22).

As such, ξ presented in figure 4.2 is normalised.

4.1.4 The test datasets: τ , τsl, τrw and τfb

As stated throughout chapter 3, one of the most sought qualities of a ML network

is the generalisation. Therefore, to test the ability of prediction of our network we

need a test set never seen by the network during the training phase. We generate a

test data set, τ , of 1000 states for each of the 31 p-values, such that in total we have

Nτ = 31000. This test set is used to make all the confusion matrices given below.

By doing this, we ensure that the performance of the trained DL networks is always

measured on unseen data [20].

In addition, we generate three special test data sets. These data sets have

been constructed to allow testing for the existence of the spanning cluster. The
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Figure 4.4: On the first row correlation function for (a) p = 0.4, (b) p = 0.585 and
(c) p = 0.7 on a decimal scale. On the bottom row correlation function for (d)
p = 0.4, (e) p = 0.585 and (f) p = 0.7 on a logarithmic scale. In each plot, the
red solid line denotes the decay exp(−r/ξ). We note that for p < pc(100) ≈ 0.585
g(r) ≈ g′(r).

first special data set, τsl, is made for the 27 p-values 0.5, 0.55, 0.555, . . . , 0.66, 0.7

close to pc and again consists of 1000 states ψi(p) for each p. After generating each

ψi(p), we add a straight line of occupied sites from top to bottom, while keeping p

constant by removing other sites at random positions. Obviously, every ψi(p) in τsl,

therefore, contains at least one spanning cluster by construction. As a consistency

check to the performance of the ML networks, we also add two more ψi without

any connecting path for p = 0.1 and 0.2. In the next set, τrw, we start with the

same 27 p-values for a new set of 27000 ψi(p), but instead of the straight line, we

add a directed random walk from top to bottom. As before, we conserve the overall

density p of occupied sites. Hence, every sample in τrw is spanning. We again add

two ψi for p = 0.1 and 0.2 without the connected random path. Finally, the third

special data set, τfb, again contains 27000 lattices for the same previously mentioned

27 p-values, but in each of the states, we apply random firebreak paths, horizontally
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(a) (b) (c)

Figure 4.5: Examples of percolation images from the three special test sets with (a)
τsl, a percolating straight line from top to bottom, (b) τrw, a percolating random
path from top to bottom and (c) τfb, a ”firebreak”-like cross of empty sites preventing
percolation. For the sake of visibility, in (a+b) the connected path is highlighted in
red. In all three cases, p = 0.5.

and vertically, of unoccupied sites. This set is clearly non-spanning. Following the

same logic as for τsl and τrw, we add two spanning test samples above pc without the

firebreak, namely, for p = 0.8 and 0.9. In all three cases, despite the modification

in the lattices, we ensure that Nocc = p×L2 and hence the occupation density is p.

Examples of the three sets can be seen in figure 4.5.

4.2 The Anderson dataset

4.2.1 Training/Validation datasets

For the sake of clarity, we choose to make use of the same notation introduced for the

study of the percolation model. As such, we will denote the training/validation sets

as T ∪V and the test sets as τ . To conduct our study we generated a primary dataset

T ∪ V[15,18] composed of eigenstates for 17 disorders W = 15, 15.25, . . . , 17.75, 18

across the Anderson transition in the centre of the band close to E = 0. The

computation of the states ψ =
P

i ψi|i⟩ were performed with the JADAMILU library

[77–79]. For each disorder, N = 5000 independent samples were created for three

system sizes, L = 203, L = 403 and L = 1003. An associated test set τ[15,18] was

created for these three system sizes with 17 disorders W = 15, 15.25, . . . , 17.75, 18

and Ntest = 500. To compare our results to the previous work of Ohtsuki et al. [45],

several disorders W = 14, 14.25, 14.5, 14.75 and W = 18.25, 18.5, 18.75, 19, also with

N = 5000 independent samples were added to the original dataset to create the

second set T ∪V[14,19]. The aim is to allow us to observe the difference in performance

between the simple network described by Ohtsuki and the ResNet18. Similarly to

the first dataset, we also generate an associated test set τ[14,19] for the three system
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(a) (b) (c)

Figure 4.6: (a) Extended, (b) critical and localised (c) wave function probabilities
|ψ(r⃗)|2 for the 3D Anderson model with periodic boundary conditions at E = 0
with N = 1003 and W = 14, 16.5 and 19, respectively. Every site with prob-
ability |ψ(x, y, z)|2 larger than the average 1/N3 is shown as a box with volume
N |ψE=0(x, y, z)|2. Boxes with N |ψ(x, y, z)|2 >

√
1000 are plotted with black edges.

The colour scale distinguishes between different slices of the system along the axis
into the page. In each panel, the left half is the originally constructed image while
the right half shows the image in its converted PNG form with 500 × 500 pixel res-
olution. Obviously, upon conversion, the black boxes around the large |ψ(x, y, z)|2
become less prominent and the outside black frames are also removed.

sizes, with Ntest = 500.

During our study, two types of training were performed. One was performed

on images created from the eigenstates and the second one directly on the eigen-

states. For each dataset T ∪V[15,18], T ∪V[14,19] and each system size, for the system

size L = 203, 403 and 1003, two size of images were created, s = 1002, s = 2002.

We generated a supplementary size of images s = 5002 for the system L = 1003.

The aim is to compare the performance of the trainings realised with images of

three-dimensional eigenstates and directly of the eigenstates. To avoid confusion,

we will denote the training on images as T ∪ Vi,[t,u], and the training on ψ and |ψ|2
respectively as T ∪ Vψ,[t,u] and T ∪ V|ψ|2,[t,u]. Here, t and u represent the range of

disorders in the dataset.
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Chapter 5

Machine Learning study of the

Percolation Problem

5.1 Classification of states labeled with density p

We use the density p-values as labels for the ML task of image recognition with the

ResNet-based DL implementation outlined in section 3.10. After ten trainings with

all 310000 images for 20 epochs, we find on average a validation loss of ⟨lc,val⟩ =

0.052 ± 0.009 (corresponding to an accuracy of ⟨ac,val⟩ = 99.323% ± 0.003). This

is comparable to the very good image classification results shown on Kaggle [25].

Figure 5.1(a) gives the resulting averaged confusion matrix. The dependence of the

training and validation losses, ⟨lc,train⟩ and ⟨lc,val⟩, respectively, on the number of

epochs, ϵ, is shown in figure 5.1(b). From the behaviour of the loss functions, we

can see that ⟨lc,val⟩ ≥ ⟨lc,train⟩ until ϵ = 15 after which both losses remain similar.

This suggests that ϵmax = 20 for our DL approach is indeed sufficient and avoids

over-fitting. Similarly, the confusion matrix is mostly diagonal with the exception

of very few samples around the change of resolution in density, at p ∼ 0.555 and

0.655, as commented before in section 4.1.

5.2 Prediction of densities p via regression

For the regression problem, we train the ResNet18 only for the nine evenly spaced

densities p = 0.1, 0.2, . . . , 0.9. After training and validation with T and V, respec-

tively, we examine the states in τ and predict their p values. In figure 5.2, we present

the results with (a) indicating the fidelity of the predictions for each p-value and

(b) showing good convergence of the losses lr,train and lr,val. Clearly, the regression
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Figure 5.1: (a) Average confusion matrix for classification according to p. The
dataset used is the test data τ and the models used for predictions are those corre-
sponding to a minimal lc,val. True labels for p are indicated on the horizontal axis
while the predicted labels are given on the vertical axis. The colour scale represents
the number of samples in each matrix entry. (b) Dependence of losses lc,train and
lc,val averaged over ten independent training seeds, on the number of epochs ϵ for
classification according to p. The circles (red solid) denote lc,train while the squares
(blue open) show lc,val. The green crosses indicate the minimal lc,val for each of the
ten trainings.

works very well for the nine trained p-values p = 0.1, . . . , 0.9 as well as the untrained

values 0.55, 0.555, . . . , 0.0.655, 0.66 close to pc(100). After reaching ϵ = 20, we find

that minϵ[⟨lr,train⟩] = 0.0003±0.0002 and minϵ[⟨lr,val⟩] = (6.2±1.2)×10−5. In other

terms, the best model provides predictions on p with a variance δp = 0.008.

Overall, we can conclude that our CNN performs well for classification and

regression tasks while T , V, and τ present appropriately structured data sets for

these ML tasks in terms of data size.

5.3 Classification with correlation length ξ

We now turn our attention to studying image recognition when using the correlation

lengths ξ, instead of p, as labels for the ψi(p) states. One way to do this is to use

⟨ξ(p)⟩ as label. While for the classification by p the label value was identical to the

actual density p of a given state, now each state is labeled by ⟨ξ(p)⟩. This means

that the actual ξ of the state might be different from the label assigned. Since

⟨ξ(p)⟩ can be uniquely identified by p, this strategy in fact should be equivalent

to the previous situation and the CNN should give us similar classification results.
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Figure 5.2: (a) Average prediction ⟨p′⟩ obtained for regression according to p. The
dataset used is the test data τ and the models used for predictions are those cor-
responding to a minimal lr,val. The ⟨p′⟩ on the solid p = p′ line corresponds to the
solid bottom and left axes, while the same ⟨p′⟩ data lying in the dashed p = p′

line is associated with the dashed top and right axes. The latter corresponds to a
detailed representation of the region around pc(L). For both data representations,
the blue open diamonds denote p-values that have been used during the training
and the green open circles show p-values that were not trained. The vertical cloud
of small orange dots shows the spread of (p, p′) values for 1000 individual samples
at p = 0.56 with average (p, ⟨p′⟩) indicated by an orange circle. In the same fashion,
the magenta dots give (p, p′) for p = 0.65 with the average denoted by the magenta
circle. (b) Dependence of losses lr,train and lr,val averaged as in Fig. 5.1 on the num-
ber of epochs ϵ for regression according to p. The circles (red solid) denote lr,train
while the squares (blue open) show lr,val. The green crosses show the minimal lr,val
for each of the ten trainings. Both plots were used previously in figure 3.5 as an
example of regression training.

The results of such a classification are shown in figure 5.3 where similarly to figure

5.1 we present in (a) the average confusion matrix for the 31 ⟨ξ(p)⟩ values (cf.

also figure 4.2(b) and in (b) the evolution of losses during the training. We find a

validation loss of minϵ[⟨lc,val⟩] = 0.38 ± 0.07 (corresponding to a maximal accuracy

of maxϵ[⟨ac,val⟩] = 87.12%±0.05) and a highly diagonal confusion matrix, with only

a small deviation that can be linked to the change in resolution in our data set above

p = 0.5.

One might wish to interpret the above classification with ⟨ξ(p)⟩ as a success of

the ML approach. However, let us reemphasize that it is fundamentally equivalent

to simply changing labels while keeping the direct connection of the labels with

p unaltered. We now wish to obtain a classification of states via their ξ’s which
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Figure 5.3: (a) Average confusion matrix for classification according to ⟨ξ⟩. The
dataset used is the test data τ and the models used for predictions are those corre-
sponding to a minimal lc,val. (b) Dependence of losses lc,train and lc,val on the number
of epochs ϵ for classification according to ⟨ξ⟩. We follow the same convention as in
figure 5.1 and figure 5.2.

is independent of the p’s. In figure 5.4 we show the distribution Ξ of the ξ’s in

T ∪ V . Clearly, the number of small ξ values is larger than the number of ξ values

close to the maximal value of max[ξ] = 15.771 (cp. figure 4.1(c)). Hence simply

using each ξ as label for the corresponding ψi would result in a biased dataset. We

therefore reorganise the T ∪ V data set. This can be done in two ways. For the

first reorganisation, we create bins with a constant number of 10000 samples in each

bin. We call this dataset Ξn. This results in a varying bin width. The second way

to reorganise the data set is to keep the bin width constant while restricting the

number of samples in each bin. We shall denote this reorganisation as Ξw. Since

ξ(p) is non-monotonic in p, we split the reorganisation into the case (i) p < pc with

and (ii) p > pc. We emphasise that the reorganised data sets consist of the same

states as in T ∪ V but now have different labels according to the bin labels for Ξn

and Ξw. Furthermore, there is now no longer any direct connection of the new labels

to the original p densities.

In figure 5.5 and 5.6, we plot the resulting confusion matrices and losses. We

see that the classification for Ξn and Ξw only results in large diagonal entries in the

confusion matrices for small correlation lengths labels ξ. Overall, the classification

for Ξw is somewhat better than for Ξn when away from pc(L). We attribute this to

the uneven spread of ξ values for the Ξn.

Still, with overall 52.4% and 59.6% of states misclassified for Ξw and Ξn,
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Figure 5.4: Probability distributions for correlation lengths ξ when (a) p < pc
(with 12 p-values) and p > pc (18 p-values) with unbalanced Ξ and the balanced
counterparts Ξn and Ξw denoted by yellow, magenta and green, respectively. In
each case, the distributions are normalised relative to the total number of ξ’s in
each set, i.e. for (a) 120000 in Ξ and Ξn and 6 × 3560 = 21360 in Ξw while for (b)
there are 180000 in Ξ and Ξn and 5 × 3077 = 15385 in Ξw.

respectively, it seems clear that classification for correlation lengths must be consid-

ered unsatisfactory.

5.4 Regression with correlation length ξ

For the regression task with ξ, we proceed analogously to section 5.2. Again, we

train the CNN for the individual correlation length ξi(p) corresponding to each

ψi ∈ T for the nine densities p = 0.1, . . . , 0.9. We then compute the predictions of

ξi(p) for all 31 densities in τ . The results are shown in figure 5.7. We find that the

network architecture which previously predicted the density quite accurately is now

struggling to correctly predict ξ.

A structure seems to exist in the predictions. By looking closely we notice

that the network makes use of the density for its predictions: although the individ-

ual true ξi(p) values have a large spread for the untrained p-values, the regression

reassigns them all a predicted ⟨ξ′⟩ value similar to the average of the ξ′ from the

two neighbouring p values. Furthermore, by plotting the correlation length ⟨ξ′⟩(p)

for p = 0.1, . . . , 0.9 we retrieve the plot of ξ(p) as seen in figure 5.8. We have de-

tailed the case p = 0.56 in Fig. 5.7(a). We find that while the spread of ξ values

is rather large, reflecting the fluctuations inherent when calculating ξ close to pc,

61



Ξn, p < pc(L)

(a)
0.
18

0.
64

3.
16

5.
51

6.
36

7.
25

Ξn

0.18

0.64

3.16

5.51

6.36

7.25
Ξ
� n

0

100

200

300

400

500

(b)

min(lc,val)
lc,train
lc,val

l c

1

1.2

1.4

1.6

1.8

2

ε
0 5 10 15 20

Ξn, p > pc(L)

(c)

0.
02

0.
23

0.
50

0.
71

0.
97

1.
31

1.
84

2.
73

4.
62

Ξn

0.02

0.23

0.50

0.71

0.97

1.31

1.84

2.73

4.62

Ξ
� n

0

100

200

300

400

(d)

min(lc,val)
lc,train
lc,val

l c
1.75

2

2.25

2.5

2.75

3

ε
0 5 10 15 20

Figure 5.5:
(a+c) Confusion matrices on τ set for the classification when using the
correlation-function-relabeled Ξn data sets for p < pc(L) and p > pc(L),

respectively. (b+d) Dependence of losses lc,train and lc,val on the number of epochs
ϵ for classification according to Ξn for p < pc(L) and p > pc(L), respectively. The

model used for prediction in (a) was trained with 12 classes and the model (b) was
trained with 18 classes. For (a) and (b) we used 10000 samples per class.

the spread of ξ′ is much less, and ⟨ξ′(0.56)⟩ = 3.48 is close to the average of the

trained ⟨ξ′(0.5)⟩ and ⟨ξ′(0.6)⟩, namely 3.46. Similarly, the prediction at p = 0.65 is

2.14 and hence close to the average of ⟨ξ′(0.6)⟩ and ⟨ξ′(0.7)⟩, namely 1.91. We note

that in obtaining these results, we have taken care to avoid unintentional feature

leakage [80,81] by removing information about p in the τ data set.

5.5 Classification with the spanning or non-spanning

properties with L = 100

As discussed earlier, the hallmark of the percolation transition is the existence of

a spanning cluster which determines whether the system is percolating or not [48].

In the previous section, our DL approach has classified according to p or ξ values

without testing whether spanning clusters actually exist. We now want to check
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Figure 5.6:
(a+c) Confusion matrices on τ set for the classification when using the
correlation-function-relabeled Ξw data sets for p < pc(L) and p > pc(L),

respectively. (b+d) Dependence of losses lc,train and lc,val on the number of epochs
ϵ for classification according to Ξw for p < pc(L) and p > pc(L), respectively. The

model used for prediction in (a) was trained with 5 classes and 3560 states per
class. For (b), 6 classes were trained with 3077 states per class.

this and label all states according to whether they are spanning or non-spanning.

From figure 4.2(a), it is immediately clear that for finite-sized systems considered

here, there are a non-negligible number of states which appear already spanning

even when p < pc and, vice versa, are still non-spanning when p > pc. Furthermore,

we note that for such L, the difference between pc and pc(L) is large enough to be

important and we hence use pc(100) ∼ 0.585 as the appropriate value to distinguish

the two phases.

Figure 5.9 shows the average results after ϵ = 20 with a validation loss

of minϵ[⟨lc,val⟩] = 0.165 ± 0.001 (corresponding to a maximal validation accuracy

maxϵ[⟨ac,val⟩] = 92.702% ± 0.001). At first glance, the figure seems to indicate

a great success: from the 31000 states present in τ , 11510.6 have been correctly

classified as non-spanning (i.e., N → N ′), and 17206.9 as spanning (S → S′) while

only 1223.1 are wrongly labeled as non-spanning (S → N ′) and 1059.41 as spanning
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Figure 5.7: (a) Average predictions for regression according to ξ. The dataset used
is the test data τ and the models used for predictions are those corresponding to a
minimal lr,val. The cloud of small purple dots shows the distribution of the individual
samples predictions for the purple circle, in the same fashion, the orange cloud shows
the distribution of predictions for the orange circle. (b) Dependence of losses lr,train
and lr,val on the number of epochs ϵ for regression according to ξ. We follow the
same convention as in figure 5.2.

(N → S′) 1. Overall, we would conclude that 92.6% of all test states are correctly

classified while 7.4% are wrong. However, from the full percolation analysis for

τ , we can compute that there are 11127 states (92.7%) without a spanning cluster

below pc(L) while 873 states (7.3%) already contain a spanning cluster. Similarly, for

p > pc(L), 94.9% of states, equivalent to 17075 states, are spanning and 5.1% are not

corresponding to 925 states. At pc(L) = 0.585, we furthermore have 482 spanning

and 518 non-spanning states. Hence in total, we expect 2280 wrongly classified

states. Since the last number is decisively close to the actual number of 2282.5 of

misclassified states, this suggests that it is precisely the spanning states below pc(L)

and the non-spanning ones above pc(L) which the DL network is unable to recognise.

Let us rephrase for clarity: it seems that the DL CNN, when trained in whether a

cluster is spanning or non-spanning, completely disregards this information in its

classification outputs.

1We note that these numbers are not integers since they are computed as averages over the 10
independent training runs as mentioned in section 3.10
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Figure 5.8: (a) Average predictions for regression according to ξ. For each of the
trained ξ(p) we give the distribution for 1000 datapoints. The horizontal line denotes
⟨ξ(p)⟩ for each p. (b) Plot of the prediction of the trained ξ(p) according to p. We
observe that the predictions allow us to retrieve the ξ(p) (cf. figure 4.2(b)) from the
T ∪ V dataset.

5.6 Classification with the spanning or non-spanning

properties with L = 200

In the previous section, we presented the result of the classification of percolation

lattice according to the presence of a spanning cluster. We raised the hypothesis that

our network failed to identify spanning samples below the percolation threshold.

To see if this trend is confirmed in larger system sizes we propose to study one

classification training for spanning/non-spanning with L = 200. In figure 5.10 we

display the result of one training after 20 epochs.

5.7 Density-resolved study of spanning/non-spanning

close to pc(L)

In order to understand the behaviour observed in the last section, we now reexam-

ine the result of figure 5.9 by analysing the ML-predicted probabilities, ΠML(p). In

figure 5.11, we show both ΠML(p) as well as Π(p); the latter having been obtained

by the HK algorithm, cf. figure 4.1(a). While the Π(p) and ΠML(p) curves — and

of course also the corresponding κ(p) and κML(p) — appear qualitatively similar,

they are nevertheless not identical and the slopes of ΠML(p), κML(p) are different.

We emphasise that the slopes are important for determining the universality class
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Figure 5.9: (a) Average confusion matrix for classification according to
spanning/non-spanning. The dataset used is the test data τ and the models used
for predictions are those corresponding to a minimal lc,val. The true labels for N
and S, are indicated on the horizontal axis while the predicted labels are given on
the vertical axis. (b) Dependence of losses lc,train and lc,val on the number of epochs
ϵ for classification according to spanning/non-spanning. Both figures were used pre-
viously in figure 3.4 as an example of classification training. Again, we follow the
same convention as for figures 5.1, 5.3, 5.5 and 5.6

of a second-order phase transition via finite-size scaling [82]. Since we know for

each image whether it percolates or not, we can also check how well the ML pre-

dictions worked by considering the covariance. Let ζ(ψi(p)) = 0 when there is no

percolating cluster in the state ψi(p) while ζ(ψi(p)) = 1 if there is. Similarly, we

define ζML(ψi(p)) for the prediction by the DL network. Then cov(ζ, ζML)(p) mea-

sures the covariance of states being found to span by percolation and by ML for

given p. In figure 5.11(b) we show the normalised result, i.e., the Pearson coeffi-

cient rζ,ζML
(p) = cov(ζ, ζML)(p)/[σζ(p)σζML

(p)], where σζ and σζML
are the standard

deviations of the percolation results and the ML predictions. We see that in the

transition region, rζ,ζML
≲ 0.12 which is very far from the maximally possible value

1. This suggests that while the ML predictions are not simply random, they are

also not very much better than random. Furthermore, we explain the null value

rζ,ζML
(p) for p < 0.57 and p > 0.6 by the trivial character of the phases in these two

regions. Indeed, for p < 0.57, we are far away from the transition region and most

of the samples are labeled and predicted as non-spanning. The same could be said

for p > 0.6, most of the samples are labeled and predicted as spanning. As such,

cov(ζ, ζML)(p) ∼ 0 in both of these regions and rζ,ζML
(p) is only non-negative in the

region where true decisions happen, i.e the transition region.
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Figure 5.10: (a) Confusion matrix for classification according to spanning/non-
spanning and L = 200. The validation set V was used for predictions and the
models are those corresponding to a minimal lc,val. The true labels for N and S,
are indicated on the horizontal axis while the predicted labels are given on the
vertical axis. (b) Dependence of losses lc,train and lc,val on the number of epochs ϵ
for classification according to spanning/non-spanning.

Let us now study the classification into spanning/non-spanning states in

detail for each p. Figure 5.12 and Table 5.1 show a comparison of the classification

for the ten p values 0.56 to 0.605. We see, e.g., that for p = 0.56, 0.565, 0.57, 0.575 <

pc(L) ∼ 0.58, 0.585, 485 (= 48 + 87 + 126.5 + 223.5) of 492 (= 48 + 87 + 127 +

230) samples, which are already spanning, have been misclassified as non-spanning.

Similarly, for p = 0.59, 0.595, 0.6, 0.605 > pc(L), 745.9 of in total 864 still non-

spanning samples are classified as spanning. These results are similar whether one

considers a typical sample or the averaged result. Hence, contrary to the supposed

success of figure 5.9, we now find that the seemingly few misclassified states of

figure 5.9 are indeed precisely those which represent the correct physics. Saying it

differently, the ML process seems to have led to a DL network that largely disregards

the characteristic of spanning clusters and just uses the overall density of occupied

vs. non-occupied sites to ascertain the phases. Of course, this is the wrong physics

when considering percolation.

5.8 Testing the accuracy of the DL network

The difficulties that the trained DL network has with recognising whether a state

contains a percolating cluster or not can be made more explicit. In section 4.1.4,

we generated three test sets for this purpose. Namely, percolating states even for
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Figure 5.11: (a) The blue curve (red curve) shows the probability of having a span-
ning (non-spanning) sample in the training dataset. The cyan (orange) curve gives
us the prediction of the probability of having a spanning (non-spanning) sample,
according to the trained network. (b) Dependence of the Pearson correlation coeffi-
cient r on the density p for classification according to spanning/non-spanning. The
confidence interval is indicated in grey. In both (a) and (b), The lines connecting
the symbols are only a guide to the eye.

p < pc(L) by adding (i) a straight line, τsl, and (ii) a random walk, τrw, of connecting

sites as well as for p > pc(L) (iii) the firebreak states, τfb, of percolation-prohibiting

random unoccupied sites. We now use these sets and feed them independently as

test sets to the DL network. Figure 5.13 shows the three confusion matrices obtained

when classifying for spanning vs. non-spanning. In figure 5.13(a+b), we see that

the network completely misclassifies the spanning datasets τsl and τrw. The two

correctly identified non-spanning images are just the two such states added to each

of the data sets to show that the network is still performing. Similarly, in figure

5.13(c), we see that this time the network cannot correctly identify the non-spanning

samples in τfb. Again, the two samples correctly identified are the ones without the

firebreak.

5.9 Training of the Spanning/Non-spanning at p = 0.585

In the previous sections, we found out that CNN methods were struggling to un-

derstand the concept of connectivity in the lattice and were instead relying on

the density as a proxy. However, one could think about improving the quality

of the training by removing the involuntary intake of the density. For this purpose,

we performed a final training on a dataset composed of 30000 lattices labelled as

spanning/non-spanning at p = 0.585, close to the percolation threshold. Following

the same protocol as the previous sections, we performed ten independent runs with
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N S S → S′ S → N ′ N → S′ N → N ′

p # % # % ⟨#⟩ ⟨%⟩ ⟨#⟩ ⟨%⟩ ⟨#⟩ ⟨%⟩ ⟨#⟩ ⟨%⟩
0.56 952 95.2 48 4.8 0.0 0.0 48.0 4.8 0.0 0.0 952.0 95.2
0.565 913 91.3 87 8.7 0.0 0.0 87.0 8.7 0.4 0.0 912.6 91.3
0.57 873 87.3 127 12.7 0.5 0.1 126.5 12.7 1.8 0.2 871.2 87.1
0.575 770 77.0 230 23.0 6.5 0.7 223.5 22.4 13.1 1.3 756.9 75.7
0.58 646 64.6 354 35.4 51.0 5.1 303.0 30.3 55.7 5.6 590.3 59.0
0.585 518 51.8 482 48.2 218.8 21.9 263.2 26.3 181.5 18.2 336.5 33.6
0.59 380 38.0 620 62.0 512.8 51.3 107.2 10.7 279.0 27.9 101.0 10.1
0.595 232 23.2 768 76.8 737.1 73.7 30.9 3.1 217.0 21.7 15.0 1.5
0.60 169 16.9 831 83.1 824.9 82.5 6.1 0.6 167.0 16.7 2.0 0.2
0.605 83 8.3 917 91.7 916.3 91.6 0.7 0.1 82.9 8.3 0.1 0.0

Table 5.1: Predictions of the trained network on the test data set τ with n = 1000
for p ∈ [0.56, 0.605]. N and S denote, respectively, the number of non-spanning and
the number of spanning samples in τ . The four following columns S → S′, S → N ′,
N → S′, and N → N ′ give the averaged results of 10 independent prediction runs.

a pre-trained ResNet18 and tested the performance on a test set τ0.585 composed

of 3000 samples. In figure 5.14(a) we give the confusion matrix obtained after ten

independent trainings. We clearly observe that the network fails to systematically

identify the two phases and produces 47% of misclassification. Additionally, we no-

tice that the network struggles more to identify the spanning samples with 78.7% of

the misclassification being spanning samples misclassified as non-spanning. Looking

at 5.14(b) we obtain a minϵ[⟨lc,val⟩] = 0.6864285±0.000686 corresponding to a max-

imal validation accuracy maxϵ[⟨lc,val⟩] = 54.3% ± 0.004031. These results confirm

the shortcomings of classical CNN techniques in understanding the importance of

connectivity in our percolation samples. Despite removing the input of density the

network was not able to understand on its own the global property in our dataset.

We emphasise that this training was also performed for several different learning

rates and another optimizer, Adam. In all such combinations, we were not able to

obtain a network able to predict the phases with an accuracy higher than 55%.

5.10 VAE for percolation

Until this point, our study of the percolation model was performed through the lens

of supervised learning. However, unsupervised learning could give us some insight

into special structures in the dataset which would give an indication of the phase.

As such we wish to test how unsupervised learning deals with a model such as

percolation. This study was motivated by previous results, claiming the ability of
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unsupervised learning and in particular VAE to reconstruct percolation states [76].

In this section, we aim at reproducing and analyse the performance of the model

described in the article. We construct a Convolution VAE with two convolution

layers in the encoder, the first layer comprised of 32 filters and the second with 64

filters. At the output of each convolutional layer, we apply a ReLU activation. The

decoder follows the same parameters but uses transposed convolutional layers. For

the hidden layer, we choose a latent space dimension z = 400. The training process

follows the procedure described in section 3.12. After training we obtain percolation

states highly similar to the one fed in input. Subtracting the input from the output

allows us to notice the high similarity of the two samples. Observing this leads us

to hypothesise that the output presented might be a close copy of the input. The

copying could be explained by the large dimension of the latent space, we recall that

our dataset is composed of percolation states of size L = 282. Therefore a latent

space z = 400 cannot act as a bottleneck for our dataset, too much information

passes through the hidden block. In figure 5.15(a) we present samples generated by

our VAE after training. While the new samples on the bottom, are not fidele copies

of the input on top, we notice the presence of common cluster architectures in the

input and the output.
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Figure 5.12: Confusion matrices showing the predictions of the trained network fig-
ure 5.9 in a region p = [0.56, 0.605] comprising pc, with (a) for predictions made
before the percolation threshold, (b) in the threshold region and (c) after the per-
colation threshold. Each confusion matrix is an average of the predictions made by
the 10 trained models shown in figure 5.9(b).
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Figure 5.13: Sample states for the three special test sets (a) τsl with added straight
spanning lines, (b) τrw with spanning random walks and (c) τfb with the firebreaks.
In each case, the bottom plots gives the confusions matrices obtained from the DL
model previously trained in a spanning vs. non-spanning classification. In all cases,
the density is strictly p = 0.5. The states shown above each confusion matrix are
taken from figure 4.5.
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Figure 5.14: (a) Average confusion matrix for classification according to
spanning/non-spanning at p = 0.585. The dataset used is the test data τ0.585 and
the models used for predictions are those corresponding to a minimal lc,val. The
true labels for N and S, are indicated on the horizontal axis while the predicted
labels are given on the vertical axis. (b) Dependence of losses lc,train and lc,val on the
number of epochs ϵ for classification according to spanning/non-spanning. Again,
we follow the same convention as for figures 5.1, 5.3 and 5.5
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Figure 5.15: (a) Output of the VAE training, on the top row we see the input fed
by the network, on the second row, we see the reproduction made by the network
after training. (b) Dependence of losses lv,train and lv,val on the number of epochs ϵ
for one VAE training. The circles (red solid) denote lv,train while the squares (blue
open) show lv,val. Figure (a) was used previously in figure 3.9 as an example of
training of a VAE.
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Chapter 6

ML study of the Anderson

model of localisation

In this section, we will study our second model. Contrary to the study of the

percolation model where we worked directly with the arrays, here, we will present

the result of our study on three different types of input. We will begin by realising

several classifications on image representation of |ψ|2 states for phases and disorder

classifications. Following this, we will reproduce similar training on |ψ|2 and ψ

states. The aim of the study is to evaluate how different types of input can influence

the quality of our training. Initial scoping work was performed by a student of our

group, Quangminh Bui-Le, as part of his master’s project.

6.1 Image classification of phases from |ψ|2 at E = 0

In the first part of this study, we intend to discover if standard ML classification

methods applied to images of |ψ|2 states can accurately predict the two phases of

the three-dimensional Anderson model. The training was performed on the dataset

T ∪ Vi,[15,18], with images of |ψ|2 at two disorder values, W = 15 ≪ Wc for the

extended phase and W = 18 ≫ Wc for the localised one. We choose to use 5000

samples per class. In order to observe how different parameters such as the size

of the system or the size of the images could influence the performance of our net-

work, several trainings were implemented. The phase classification was done for the

sizes L = 203, L = 403, L = 1003, and a fixed image size of s = 1002. For each

of these systems, the dataset T ∪ Vi,[15,18] was split according to a 90%/10% train-

ing/validation split and we train the ResNet18 DL architecture previously described

in section 3.9 for 50 epochs with 10 different seeds. After completing a full training
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Figure 6.1: (a) Average confusion matrix for image classification according to ex-
tended/localised on system size L = 203 and s = 1002. The dataset used is the test
data τi,[15,18] and the predictions are made with models corresponding to a minimal
lc,val. The true labels for W = 15.0 and W = 18.0, are indicated on the horizontal
axis while the predicted labels are given on the vertical axis. In (b) dependence of
losses lc,train and lc,val on the number of epochs ϵ for this training.

cycle, the generalisation capacity of the ten models was tested on the dataset τi,[15,18]

and summarised in average confusion matrices.

The first training was performed for the system size L = 203. After a full

training cycle we achieved a minimal validation loss minϵ[⟨lc,val⟩] = 0.06± 0.01 (cor-

responding to a maximal validation accuracy maxϵ[⟨lc,val⟩] = 98.3%±0.22). Looking

at the confusion matrix in figure 6.1(a), we notice the heavy diagonal character of

the matrix with a misclassification rate of 2.7%. This training shows us that even

for a relatively small system size such as L = 203, ML image recognition tools are

able to identify reasonably well the localised and extended phases of the Anderson

MIT model.

We are now interested in knowing if an increase in the size of the system,

while keeping the size of the image constant, could contribute to an increase in the

performance of our model. We reproduce the same training process with now L =

403 and s = 1002. Following the training we obtain minϵ[⟨lc,val⟩] = (5.2±3.4)×10−4

(corresponding to a maximal validation accuracy maxϵ[⟨ac,val⟩] = 100% ± 0.02).

In figure 6.2(a) we display the average confusion matrix of the predictions on the

dataset τi,[15,18].
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Figure 6.2: (a+c) Average confusion matrices for image classification according

to extended/localised on system size L = 403,s = 1002 and L = 1003, s = 1002

respectively. The dataset used is the test data τi,[15,18] and the models used for

predictions are those corresponding to a minimal lc,val. The true labels for W = 15.0

and W = 18.0, are indicated on the horizontal axis while the predicted labels are

given on the vertical axis. In (b+d) dependence of losses lc,train and lc,val on the

number of epochs ϵ for classification according to extended/localised on L = 203,

L = 403 and s = 1002, respectively.

Similarly to 6.1(a) we obtain a highly diagonal matrix. Concerning the mis-

classification, only 0.2% of the samples are incorrectly predicted which is a drop of

more than 10% compared to the misclassification previously obtained for L = 203.

This suggests that an increase in L contributes to increasing the classification per-

formance of the network. The last system that we study is L = 1003, again we

perform ten independent iterations and obtain the confusion matrix shown in fig-

ure 6.2(c). We rapidly notice that this matrix is fully diagonal, implying a perfect
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prediction on the test set. This result is confirmed by the minimal validation loss

minϵ[⟨lc,val⟩] = (1± 8)× 10−6 which here corresponds to a maximal validation accu-

racy maxϵ[⟨lc,val⟩] = 100%± 0.0. The misclassification rate is 0.4%, which is slightly

above the one obtained for L = 403 while remaining a good training. These three

trainings clearly confirm the idea that while conserving the same image sizes, an

enhancement of the prediction of our model can be achieved through an increase in

the size of the system L.

6.2 Size dependent image classification of phases from

|ψ|2 at E = 0

Now that we tested the impact of the size of the system on the performance of our

network, one might like to know how the size of the image input could influence the

performance. To do so, we train the network for the system of size L = 1003 at two

additional image sizes, s = 2002 and s = 5002. We begin by training on the L = 1003

with image size s = 2002. After 50 epochs we obtain minϵ[⟨lc,val⟩] = (2 ± 3) × 10−6

(corresponding to a maximal validation accuracy maxϵ[⟨ac,val⟩] = 100%±0.0) which

is comparable to the results obtained for the L = 1003 with image size s = 1002.

As we can see from the averaged confusion matrix in figure 6.3(a), 0.14% of the

test samples are misclassified. This is more than the misclassification obtained with

image size s = 1002 but it is not significant. Finally, we perform the training

with images of size s = 5002. The training produce a minimal validation loss

minϵ[⟨lc,val⟩] = (4 ± 2) × 10−7 (corresponding to a maximal validation accuracy

maxϵ[⟨ac,val⟩] = 100% ± 0.0). Again, similarly to the previous training with L =

1003 and image size s = 2002, we observe in figure 6.3(c) that the performances

of the network do not increase compared to the performance of L = 1003 with

image size s = 1002. Furthermore, by looking at the confusion matrix we notice

that the percentage of misclassification is slightly higher than the previous one at

0.16%. However, it is important to note that training a system with s = 5002

induces a higher training time. Therefore, the training of L = 1003 and s = 1002

appears as the better-suited option, which provides good performance while keeping

a reasonable training time.
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Figure 6.3: In (a+c) confusion matrices for imagesclassification according to ex-

tended/localised for L = 1003, s = 2002 and L = 1003, s = 5002, respectively. The

dataset used is the test data τi,[15,18]] and the models are the ones corresponding to

minimal lc,val for L = 1003 and respectively image size s = 2002 and s = 5002. The

true labels for W = 15.0 and W = 18.0, are indicated on the horizontal axis while

the predicted labels are given on the vertical axis. In (b+d) dependence of losses

lc,train and lc,val on the number of epochs ϵ for the associated training.

6.3 Image classification of disorders from |ψ|2

Now that we have established the capacity of CNN methods to identify phases of

the Anderson model from images of |ψ|2, we would like to determine if these same

CNN methods are able to identify |ψ|2 at different (more than two) disorder values.

For that purpose we train the ResNet18 on the dataset T ∪ Vi,[15,18] with images of

|ψ|2 at 17 disorder values W = 15.0, 15.25, . . . , 17.25, 17.5, 17.75, 18 and s = 1002.

As for all the previous trainings, each training process is repeated ten times with

78



(a)

W
15
.0

W
15
.5

W
16
.0

W
16
.3

W
16
.5

W
16
.7

W
17
.0

W
17
.5

W
18
.0

W

W15.0

W15.5

W16.0

W16.3

W16.5

W16.7

W17.0

W17.5

W18.0

W
�

0

50

100

150

200

250

300

(b)

min(lc,val)
lc,val
lc,train

ε

2.4

2.42

2.44

2.46

2.48

2.5

lc
0 10 20 30 40 50

Figure 6.4: In (a) average confusion matrix for image classification according to 17
disorders on L = 203 and s = 1002. The dataset used is the test data τi,[15,18] and
the models used for predictions are those corresponding to a minimal lc,val. The true
labels for W = 15.0, 15.25, . . . , 17.5, 18 are indicated on the horizontal axis while the
predicted labels are given on the vertical axis. In (b) dependence of losses lc,train
and lc,val on the number of epochs ϵ for the associated training.

ten independent seeds. Three system sizes were trained, L = 203, L = 403 and

L = 1003.

The first system that we train is L = 203. After 50 epochs we obtain a

minimal validation loss minϵ[⟨lc,val⟩] = 2.408 ± 0.003 (corresponding to a maximal

validation accuracy maxϵ[⟨lc,val⟩] = 15.9%± 0.13) which is relatively high compared

to loss values obtained in the previous section. As we can see from the averaged

confusion matrix in fig 6.4 (a), we can guess the hint of the beginning of a diagonal

matrix. Nevertheless, correct predictions remain rare and seem to concern disorder

values at the edge of the disorder spectrum such as W = 15 and W = 18. Following

the logic of section 6.1 we hope to increase the number of correct predictions of the

network by training for a larger system size.
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Figure 6.5: In (a+c) average confusion matrices for image classification according

to 17 disorders for L = 403, s = 1002 and L = 1003 s = 1002, respectively. The

dataset used is the test data τi,[15,18] and the models used for predictions are those

corresponding to a minimal lc,val. The true labels for W = 15.0, 15.25, . . . , 17.5, 18

are indicated on the horizontal axis while the predicted labels are given on the

vertical axis. In (b+d) dependence of losses lc,train and lc,val on the number of

epochs ϵ for classification according to 17 disorders for the corresponding trainings.

The second training is conducted on L = 403. Once the training completed

we obtain a minimal validation accuracy minϵ[⟨lc,val⟩] = 1.951±0.004 (corresponding

to a maximal validation accuracy maxϵ[⟨ac,val⟩] = 25.7% ± 0.19). As expected, we

observe an increase in the accuracy of the network, as shown by the confusion

matrix in figure 6.5(a). We perform a final training for L = 1003 and s = 1002.

The minimal accuracy obtained is minϵ[⟨lc,val⟩] = 1.327 ± 0.006 (corresponding to a

maximal validation accuracy maxϵ[⟨ac,val⟩] = 43.9%±0.22), which is an improvement

compared to maxϵ[⟨ac,val⟩] = 25.7% ± 0.19) obtained for the training with L = 403.
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Figure 6.6: In (a) average confusion matrix for image classification according to 17
disorders for L = 1003, and s = 2002. The dataset used is the test data τ and
the models used for predictions are those corresponding to a minimal. The true
labels for W = 15.0, 15.25, . . . , 17.5, 18 are indicated on the horizontal axis while
the predicted labels are given on the vertical axis. In (b) dependence of losses lc,train
and lc,val on the number of epochs ϵ for the associated training.

By observing the confusion matrix displayed in figure 6.5(c) we notice that the

predictions appear to follow closely the diagonal. Thus, while the accuracy of this

trained network remains below 50%, we conclude here that the network performs

reasonably well. Indeed, in our setting classes are not totally independent from one

another. Therefore, a network identifying disorder values close to the true label is

an improvement.

6.4 Size dependent image classification of disorders from

|ψ|2 at E = 0

The last step is to attempt to enhance the performance of the network by increasing

the resolution of the images. We trained the system L = 100 at size s = 2002.

After training, we obtain the average confusion matrix shown in figure 6.6(a). This

confusion matrix is highly similar to the one obtained in figure 6.5(c), the increase

in the size of the input did not seem to affect the prediction significantly. This is

confirmed by the metrics, we obtain a minϵ[⟨lc,val⟩] = 1.22±0.003 (corresponding to

a maximal validation accuracy maxϵ[⟨ac,val⟩] = 47.0% ± 0.22).

Overall, we conclude that working with a large system size such as L = 1003

increase drastically the quality of the predictions. In figure 6.7(a) we present a

comparison of the losses according to the system size. We notice that L = 1003 has

81



(a)

〈lc,val〉,	L=20

〈lc,train〉,	L=20

〈lc,val〉,	L=40

〈lc,train〉,	L=40

〈lc,val〉,	L=100

〈lc,train〉,	L=100
ε

1.5

2

2.5

3

lc
0 10 20 30 40 50

(b)

lc,val,	s=200
2

lc,train,	s=200
2

lc,val,	s=500
2

lc,train,	s=500
2

ε

1

1.5

2

3

3.5

4

lc
0 10 20 30 40 50

Figure 6.7: In (a) dependence of losses lc,train and lc,val on the number of epochs
ϵ for classification according to 17 disorder values for L = 203, 403 and 1003 and
s = 1002. In (b) dependence of losses lc,train and lc,val on the number of epochs ϵ for
classification according to 17 disorder values for L = 1003 for image size s = 1002

and s = 2002.

much lower metrics than L = 203 and L = 403. Nonetheless, looking at the figure

6.7(b), we do not observe important differences between the losses of the training

s = 2002 and s = 5003. Therefore, good trainings could be achieved with a large

system size and a reasonable image size such as s = 1002.

6.5 State classification of phases from |ψ|2 with a six

layers CNN

In the two previous sections, we showed that image classification of |ψ|2 was suc-

cessful in predicting the localised and extended phase of the Anderson. However,

we saw the shortcomings of image classification when trying to predict several dis-

order values. In this section, we explore the idea of directly using the |ψ|2 states

to improve the accuracy of the CNN method. Again, we train the three sizes of

systems used in the previous sections, L = 203, 403, and 1003 to identify the two

phases. To compare our results to previously published work [45], we use the dataset

T ∪ V[|ψ|2,[14,19] and choose 5000 |ψ|2-values with W ∈ [14, 16] labeled as extended

and 5000 |ψ|2-values with W ∈ [17, 19] labeled as localised. As a first step, we choose

to use the same network architecture as the one described in a previous study of the

same model, i.e., three blocks of two convolutional layers separated by max-pooling

layers followed by two fully connected layers [45]. For the sake of clarity, we choose

to call this network the Ohtsuki network.
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Figure 6.8: (a) Average confusion matrices for state classification of |ψ|2 according

to extended/localised for the Ohtsuki network. The dataset used is the test data

τ[|ψ|2,[14,19] and the models used for predictions are those corresponding to a minimal

lc,val for L = 203. The true labels for W< ∈ [14.0, 16.0] and W> ∈ [17.0, 19.0], are

indicated on the horizontal axis while the predicted labels are given on the vertical

axis. (b) Dependence of losses lc,train and lc,val on the number of epochs ϵ for

classification according to extended/localised for L = 203.

Following the training of system size L = 203 we obtain the confusion ma-

trix shown in figure 6.8(a). We observe that 3.3% of the samples are misclassi-

fied. Through the training of |ψ|2 we manage to achieve a minimal validation accu-

racy minϵ[⟨lc,val⟩] = 0.080 ± 0.006 (corresponding to a maximal validation accuracy

maxϵ[⟨ac,val⟩] = 97.3% ± 0.21). We notice a decrease in accuracy compared to the

image classification training implemented in section 6.1 but the present result still

constitutes a good training. Our second training is done for the size L = 403. The

confusion matrix shown in figure 6.9(a) allows us to see a 5.4% misclassification

rate. Through a study of the ten independent trainings, we notice the existence of

several trainings which appear to get stuck in local minimal on the cost function

landscape. This is confirmed by the plot in figure 6.9(b) displaying an almost con-

stant confidence interval of ⟨lc,val⟩ and ⟨lc,train⟩. This training allowed us to reach a

minimal validation accuracy minϵ[⟨lc,val⟩] = 0.035 ± 0.066 (corresponding to a max-

imal validation accuracy maxϵ[⟨ac,val⟩] = 99.0% ± 4.2). We deduce that while eight

of our trainings seem to provide low accuracy the network is not complex enough

to avoid falling into a local minima for two of our trainings.
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Figure 6.9: In (a) average confusion matrices for state classification of |ψ|2 according

to extended/localised for the Ohtsuki network. The dataset used is the test data

τ[|ψ|2,[14,19] and the models used for predictions are those corresponding to a minimal

lc,val for L = 403. The true labels for W< ∈ [14.0, 16.0] and W> ∈ [17.0, 19.0], are

indicated on the horizontal axis while the predicted labels are given on the vertical

axis. In (b) dependence of losses lc,train and lc,val on the number of epochs ϵ for

classification according to extended/localised for L = 403.

6.6 State classification of phases from |ψ|2 with a ResNet

In the previous section, we confirmed the phase prediction ability of a simple network

composed of six convolutional layers, for the MIT while highlighting the possible

shortcomings of this network [45]. We now would like to challenge CNN methods to

identify |ψ|2 at several different disorder values. Given the complex nature of this

task, we decide to employ a deeper network, i.e. the 3D ResNet18 architecture [66].

As a first step in our study, we aim to emulate the result obtained in the previous

section for phase classification with the Ohtsuki network. We trained |ψ|2 states for

system size L = 203, 403 and 1003. Following ten independent training on system

size L = 203 we achieve minimal validation accuracy minϵ[⟨lc,val⟩] = 0.066 ± 0.009

(corresponding to a maximal validation accuracy maxϵ[⟨ac,val⟩] = 97.9% ± 0.437).

The average confusion matrix computed after training is shown in figure 6.10(a).

We observe that 3.9% of the samples are misclassified. The validation accuracy is

slightly worse than the one previously obtained in the case of image classification for

L = 203. However, one could argue about the difference in the task, a classification of

|ψ|2 states appears as much more complex than the classification of their associated

image representation.
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Figure 6.10: (a+c) Average confusion matrices for state classification of |ψ|2 ac-

cording to extended/localised with the ResNet18 network and L = 203, L = 403,

respectively. The dataset used is the test data τ|ψ|2,[14,19] and the models used for

predictions are those corresponding to a minimal lc,val for L = 203 and L = 403,

respectively. The true labels for W< ∈ [14.0, 16.0] and W> ∈ [17.0, 19.0], are in-

dicated on the horizontal axis while the predicted labels are given on the vertical

axis. (b+d) Dependence of losses lc,train and lc,val on the number of epochs ϵ for

classification according to extended/localised for L = 203 and L = 403, respectively.

Overall, the quality of the predictions remains satisfactory. We increase

the system size to L = 403 and perform the same training. After 50 epochs we

reach a minimal validation loss minϵ[⟨lc,val⟩] = 0.0123 ± 0.003 (corresponding to

a maximal validation accuracy maxϵ[⟨ac,val⟩] = 99.7% ± 0.088). Looking at the

confusion matrix we observe a drop in misclassification compared to the training

on system L = 203, only 1.8% of the samples end up being misclassified. These
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results lead us to conclude about the similar performance of the deep ResNet18 and

a simple six layers CNN architecture in the case of phase prediction.

6.7 State classification of disorders from |ψ|2 with a ResNet

We now train our network directly with the |ψ|2 eigenstates to predict 17 disorder

values. Given the time taken to train L = 203, we will only be able to show the result

obtained for one system size. Furthermore, we note that the result displayed here

corresponds to a reduced number of epochs, ε = 30. Looking at the figure 6.11(b),

we see that the network quickly overfits and lc,val diverges from lc,train. After training

for ε = 30 epochs we barely rich minϵ[⟨lc,val⟩] = 3.414 ± 1.436 (corresponding to a

maximal validation accuracy maxϵ[⟨ac,val⟩] = 15.75%±0.967). This result is further

confirmed by the confusion matrix shown in figure 6.11(a). The network completely

fails to make any meaningful predictions and predicts every disorder as W = 15.0.

It appears that our network is unable to identify disorders from |ψ|2 states.
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Figure 6.11: (a) Average confusion matrices for state classification of |ψ|2 according

to 17 disorder values for the ResNet18 network. The dataset used is the test data

τ|ψ|2,[15,18] and the models used for predictions are those corresponding to a minimal

lc,val for L = 203. The true labels for W = 15.0, 15.25, . . . , 18.0, are indicated on

the horizontal axis while the predicted labels are given on the vertical axis. (b)

Dependence of losses lc,train and lc,val on the number of epochs ϵ for classification

according to extended/localised for L = 203.
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6.8 State classification of phases from ψ with a ResNet

Now that we have compared the performance of the ResNet for images and state

recognition with |ψ|2, we would like to test the possibility of simply feeding the ψ

states as input to our ML process.
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Figure 6.12: In (a+c) average confusion matrices for state classification of ψ accord-

ing to extended/localised. The dataset used is the test data τ|ψ|,[14,19] and the mod-

els used for predictions are those corresponding to a minimal lc,val for L = 203 and

L = 403, respectively. The true labels for W< ∈ [14.0, 16.0] and W> ∈ [17.0, 19.0],

are indicated on the horizontal axis while the predicted labels are given on the ver-

tical axis. In (b+d) dependence of losses lc,train and lc,val on the number of epochs ϵ

for classification according to extended/localised for L = 203 and L = 403, respec-

tively.
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If the classification with ψ provides satisfying results, this could contribute

to reducing the preprocessing steps (squaring of the ψ states) taken before the ML

training. For the phase recognition we train the same classes as the one mentioned in

section 6.6 with 5000 |ψ|2-values ∈ [14, 16] label as W< and 5000 |ψ|2-values ∈ [17, 19]

that we label as W>. The training L = 203 results in a minϵ[⟨lc,val⟩] = 0.015± 0.002

which corresponds to a maximal validation accuracy maxϵ[⟨ac,val⟩] = 99.8%±0.092).

Thus, by training on ψ we gain almost 1% in terms of the maximal validation

accuracy compared to the training performed on the same system with |ψ|2. This

result is confirmed by the confusion matrix given in figure 6.12(a), which shows that

only 1.2% of the sample ends up misclassified.

We once again increase the system to size L = 403 and train the network.

This time we obtain minϵ[⟨lc,val⟩] = 0.002 ± 0.001 which corresponds to a maxi-

mal validation accuracy maxϵ[⟨ac,val⟩] = 100% ± 0.0154). This result might appear

counter-intuitive by looking at the confusion matrix obtained in figure 6.12(c), as the

misclassification appears higher than the one obtained in figure 6.12(a). However,

we recall that each confusion matrix corresponds to an average over ten prediction

runs. To conclude, our ResNet appears to be able to identify the two phases of the

Anderson model by training on ψ.

6.9 State classification of disorders from ψ with a ResNet

We again aim at predicting 17 disorder values. Here, we choose ψ as input. Similarly

to section 6.7 we only present L = 203 due to the long running time of the training.

Surprisingly, we see that the training which previously failed to give meaningful

results in section 6.7, now provides good results. Looking at lc,val and lc, train in

figure 6.13(b), we immediately notice drastic change from 6.11(b). After 45 epochs

we reach a minϵ[⟨lc,val⟩] = 0.907 ± 0.014 which corresponds to a maximal validation

accuracy maxϵ[⟨ac,val⟩] = 64.1% ± 0.497). This low validation accuracy might lead

us to deduce a complete failure of our training. However, looking at 6.13(a), we

observe that we obtain a heavily diagonal confusion matrix with misclassification

remaining close to the true disorder value. We hypothesise that the use of the larger

system might contribute to refining the result obtained. An explanation for the

success of the training with ψ compared to the failed training of |ψ|2 might reside

in the nature of these two inputs. Indeed, ψ-states are complex while |ψ|2-states

are real. Thus, we hypothesise that our network finds meaningful information in

ψ-states that are not in |ψ|2-states.
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Figure 6.13: (a) Average confusion matrices for ψ classification according to 17

disorder values using the ResNet18 network. The dataset used is the test data

τψ,[15,18] and the models used for predictions are those corresponding to a minimal

lc,val for L = 203. The true labels for W = 15.0, 15.25, . . . , 18.0, are indicated on

the horizontal axis while the predicted labels are given on the vertical axis. (b)

Dependence of losses lc,train and lc,val on the number of epochs ϵ for classification

according to extended/localised for L = 203.

6.10 Regression with disorders |ψ|2 with a ResNet

Now that we have explored classification methods to identify the phases and states

of the three-dimensional Anderson model, we would like to train a network to make

continuous predictions on the disorders from |ψ|2 states. This is done through

the use of the regression method. We use the 3D ResNet network architecture

employed in section 6.5-6.9 and modify the last layer to have one output neuron

making continuous predictions. Following the scheme of the previous sections we

train two different system sizes L = 203 and L = 403. For each of these systems, we

train two sets of |ψ|2. The first series of training is done at five different disorder

values W = 15.0, 15.75, 16.5, 17.25, 18.0 and the second one for 4 disorder values

W = 14.0, 16.0, 17.75, 19.0. In each case, ten independent networks are trained for

50 epochs. Once the trainings are performed, we evaluate their prediction abilities

on 24 disorder value W = [14.0, 14.25, . . . , 18.25, 18.5, 18.75, 19.0].
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Figure 6.14: (a) Average prediction curve obtained for regression according to |ψ|2,
L = 203 and W = 15.0, 15.75, 16.5, 17.25, 18.0 at the minimal lr,val. (b) Dependence

of losses lr,train and lr,val averaged on the number of epochs ϵ for associated to training

(a). (c) Average prediction curve obtained for regression according to |ψ|2 trained

for W = 14.0, 16.0, 17.75, 19.0 at the minimal lr,val. (d) Dependence of losses lr,train

and lr,val averaged on the number of epochs ϵ for regression according to W . For

both training, the dataset used is the test data τ[|ψ|2,[14,19] and the models used for

predictions are those corresponding to a minimal lr,val.

In figure 6.14(a) we show the prediction curve obtained after training the sys-

tem L = 203. After 50 epochs we obtain a minimal validation loss of minϵ[⟨lr,val⟩] =

0.087 ± 0.002. Overall, the network seems to understand the task at hand. Despite

a spread in prediction, the mean associated with samples with disorder W ∈]15, 18[

follows the line of perfect predictions. We however notice that the network struggles

to correctly identify samples with disorder values out of the range of the training. For

the training with 4 disorder values, we reach a minimal minϵ[⟨lr,val⟩] = 0.062±0.006.
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In figure 6.14(c) we display the result of the training for |ψ|2-states trained for four

disorder values, W ∈ [14.0, 16.0, 17.75, 19.0]. The general trend of the predictions

seems to follow the curve of perfect prediction despite the small number of W val-

ues trained. We repeat the same process for the L = 403 system. For the five

disorders, we observe a similar result as the one obtained for L = 203, with the

out-of-range value deviating from the line of perfect prediction. This training allows

us to reach a minimal validation loss of minϵ[⟨lr,val⟩] = 0.022 ± 0.024. Finally, we

train the L = 403 for four disorder values. In figure 6.15(c) we show the results

of the predictions. We observe a clear improvement of the prediction compared to

the 4-disorders training of the L = 203. This training allows us to reach a minimal

minϵ[⟨lr,val⟩] = 0.032±0.033. We notice this time that the confidence interval of this

training is of the same order of magnitude as the minimal loss. For L = 203 and

L = 403, we conclude that the better performances of the models trained with only

four datapoints result from a larger range in the disorders trained. Indeed, in the

case of five disorders value trained, W = 15.0, 15.75, 16.5, 17.25, 18.0, the network

has difficulty in identifying disorder values beyond the trained disorders W = 15.0

and W = 18.0.
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Figure 6.15: (a) Average prediction curve obtained for regression according to |ψ|2,
L = 403 and W = 15.0, 15.75, 16.5, 17.25, 18.0 at the minimal lr,val. (b) Depen-

dence of losses lr,train and lr,val averaged on the number of epochs ϵ for regression

according to five disorder values. (c) Average prediction curve obtained for regres-

sion according to |ψ|2 trained for W = 14.0, 16.0, 17.75, 19.0 at the minimal lr,val.

(d) Dependence of losses lr,train and lr,val averaged on the number of epochs ϵ for

regression according to four disorder values.

6.11 Regression with disorders ψ with a ResNet

While training for the classification of states according to W in section 6.9, we

showed an increase in performance when training on ψ value compared to |ψ|2. We

therefore decide to implement a regression study similar to the one done in the

previous section but using ψ states as input. Following the protocol of the previous

section, we train two different system sizes L = 203 and L = 403 at five and four

disorder values.
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Figure 6.16: (a) Average prediction curve obtained for regression according to ψ,

L = 203 and trained at W = 15.0, 15.75, 16.5, 17.25, 18.0 at the minimal lr,val. (b)

Dependence of losses lr,train and lr,val averaged on the number of epochs ϵ for re-

gression according to W . The dataset used is the test data τ[ψ,[14,19] and the models

used for predictions are those corresponding to a minimal lr,val. (c) Average pre-

diction curve obtained for regression according to ψ, for L = 203 and trained at

W = 14.0, 16.0, 17.75, 19.0 at the minimal lr,val. (d) Dependence of losses lr,train and

lr,val averaged on the number of epochs ϵ for regression according to W .

We begin by training the L = 203 system for W = 15.0, 15.75, 16.5, 17.25, 18.0

and 50 epochs. After training, we obtain a minimal validation loss minϵ[⟨lr,val⟩] =

0.082 ± 0.003. The results of the prediction of the trained network are displayed in

figure 6.16(a). The curve obtained is similar to the plot in figure 6.14(a), with the

W -values out of the range of training diverging from the curve of perfect predictions.

Training for four disorder values allows us to obtain the curve seen in figure 6.14(c)

with an associated minimal validation loss of minϵ[⟨lr,val⟩] = 0.062±0.004. Again, the
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curve of prediction is similar to the one obtained in figure 6.14(c), with the average

of the prediction remaining close to the curve of perfect prediction. The next step in

our study is to increase the size of the system and reproduce the same training on the

system of size L = 403. After training for 50 epochs at five disorder values we reach a

minimal validation of minϵ[⟨lr,val⟩] = 0.023±0.016. The curve of prediction displayed

in figure 6.17(a) is similar to the one obtained in figure 6.16(a), however, we note a

smaller spread of the distribution for the system L = 403. Unsurprisingly, training

on a larger system appears to improve and reduce the spreading in the predictions.

We perform one last training on the L = 403 system for the four disorder values

W = 14.0, 16.0, 17.75, 19.0 and reach a validation loss minϵ[⟨lr,val⟩] = 0.024 ± 0.028.

As shown by figure 6.17(c), the predictions made by the network follow the curve

of perfect prediction. We do not observe significant differences in the results of the

predictions made for |ψ|2 and ψ. Nonetheless, in both cases, we observe an increase

in the quality of the predictions made by the network between L = 203 and L = 403.
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Figure 6.17: (a) Average prediction curve obtained for regression according to ψ,

L = 403 and trained at W = 15.0, 15.75, 16.5, 17.25, 18.0 at the minimal lr,val. (b)

Dependence of losses lr,train and lr,val averaged on the number of epochs ϵ for re-

gression according to W . The dataset used is the test data τ[ψ,[14,19] and the models

used for predictions are those corresponding to a minimal lr,val. (c) Average pre-

diction curve obtained for regression according to ψ, for L = 403 and trained at

W = 14.0, 16.0, 17.75, 19.0 at the minimal lr,val. (d) Dependence of losses lr,train and

lr,val averaged on the number of epochs ϵ for regression according to W .
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Chapter 7

Summary and outlook

Throughout this thesis we proposed ML studies for two different models, the clas-

sical two-dimensional site percolation model and the quantum Anderson model of

localisation. By using standard image recognition tools such as CNN coupled with

supervised and unsupervised methods we were able to display the ability of ML to

correctly identify phases and the pitfalls that one might want to avoid.

In Chapter 2 we presented the well-known two-dimensional percolation model,

a model where sites are randomly occupied with a probability p and left empty with

a probability 1−p. We gave several important quantities associated with the model.

In the second part of this chapter, we introduced our second model of interest, the

three-dimensional Anderson model, which is characterised by a transition from an

extended to a localised regime in the presence of high disorder. Chapter 3 allowed

us to provide a general introduction to machine learning and the main tasks, su-

pervised learning and unsupervised learning. We presented the two datasets used

during our study in chapter 4. Through several analyses of the parameters of our

percolation dataset, we showed the effect of finite size of the samples on parameters

such as pc or ξ. In the case of the Anderson model, we displayed a representation

of |ψ|2 samples in the metal, insulator and transition regime.

In chapter 5 we displayed the results of our study for the two-dimensional

site percolation model. Three topics were studied, the density p, the correlation

length ξ and the spanning/non-spanning property. In the case of density p, we

demonstrated that supervised and unsupervised learning methods permit us to ex-

tract the density in our lattices. Furthermore, the use of regression proved a deep

understanding of the task performed, as we show that the network was able to cor-

rectly predict p-values of samples with resolution smaller than the ones trained for.

However, when looking at parameters related to the connectivity in the lattices,
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these CNN methods fall short. We began by relabeling the 31 classes previously

used for image classification according to the average correlation length of the set

⟨ξ⟩. After classification, we obtained the confusion matrix shown in figure 5.3. We

note that similarly to the confusion matrix obtained for the classification training

by density in figure 5.11 this matrix is heavily diagonal. Nonetheless, it is essential

to point out the spread of ξ-values in each ⟨ξ⟩ class. Following this observation we

proposed two reorganisations of the classes, taking into account the distribution of

ξ in the dataset T ∪ V. These new trainings highlighted the lack of recognition of

ξ by our network, which was further confirmed by a regression study of ξ where

the network was unable to provide a correct prediction. Through the classification

training of the spanning/ non-spanning, we cemented this hypothesis. Instead of

searching for connectivity, the network seemed to utilise the proxy of density to

identify the phases. From this observation, we attempted to remove the dependence

on the density by performing a training for the spanning/non-spanning property at

p = 0.585 ≈ pc. Once again, the network struggled to identify the phases of the

model. The last step of our study was to reproduce an unsupervised study. Our

main finding is that the inefficiency of our ML method is due to the type of model

studied. The physics of percolation relies on the formation of large clusters which

is a long-range property of the system, while CNN are known to retain information

about short-range properties [17,20]. Some might argue that part of CNN methods

could be assimilated into a renormalisation process. As we saw in section 2.1.5,

renormalisation provides an efficient way to reduce short-range correlation in our

system while preserving long-range behaviour. However, the success of renormal-

isation can only be attributed to the prior knowledge of the form of a spanning

cluster. Both methods are coarse-graining but while renormalisation neglects short

correlation interaction and preserves long-range behaviour, CNN methods do the

opposite. As such, the CNN method cannot identify the spanning property in the

samples. We could argue about the possibility of improving the training by provid-

ing the cluster information through HK similar method, as it was performed in a

recent study [83]. However, one might think about the validity of this process as

this would require a two-step process being the pre-processing of the lattice coupled

with an ML training (through the application of the HK algorithm). Furthermore,

following labelling with the HK method, the phase transition can be easily identified

and a ML training would prove to be redundant. Although our study of the 2D site

percolation model provides a cautionary tale of the possible pitfalls of ML in the

study of phase transitions, it does not intend to negate the performance displayed

in previously published papers.
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Finally, in chapter 6 we presented a study of the Anderson model of localisa-

tion. We began by performing classification trainings on images and discovered that

at the same resolution, it was possible to increase the performance of the network by

increasing the size of the system presented. This result was valid in the cases of phase

and disorder classification. However, we saw the limitation of image classification

for disorders classification which led us to focus |ψ|2 and ψ states. While training for

phase classification of |ψ|2, we successfully reproduced previous results [45] with a

simple six convolutional network as well as with the ResNet18. Nonetheless, despite

the success of the simple six layers CNN, we noticed that such architecture could

lead to remaining trapped in local minima and therefore concluded to the better

performance of the ResNet. While training for disorders classification, we identify a

weird behaviour of the network which seemingly provides better performance when

using ψ instead of |ψ|2 as input. The last phase of our study of the Anderson model

was performed through regression to predict disorders from |ψ|2 states. Similarly

to classification, we noted an increase in the performance as the size of the system

increased. Despite the low number of disorder values trained by the network, our

model provides good predictions of untrained disorder values.

The main question remains, why is the ML study of the Anderson model

of localisation so successful while the percolation model fails? After all, for both

models, one observes the spreading of a cluster and wavefunctions. Again, this

relies on the very technique used to study these models. CNNs retains neighbouring

correlation in the receptive field. Therefore, we hypothesise that while a subset

of a percolation lattice cannot provide us with some knowledge on the spreading

of potential spanning clusters, a subset of an Anderson state can inform us of the

localisation of the wavefunction. In the case of the classification through images

of the Anderson model, a localised state would present a zone of high density with

several regions around, of low densities.

However, while we note an overall success of CNN tools in the phase classi-

fication of the Anderson model with images and |ψ|2 state, one might still wonder

about the failure of the disorder classification with |ψ|2. To get some insight into

the reasons behind this peculiar result, further work needs to be performed on this

model. A possible lead to fix this issue might reside in looking at the feature maps

of the network, or even relaunching a hyperparameter search. Another important

point highlighted by our training of the Anderson model is the inability of classical

ML metrics such as the accuracy to convey a training that we could visually judge

reasonably successful, such as 6.13(a). Indeed, classification tasks were originally

used to identify very distinct classes of objects such as cars or planes. However, in
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our case, a misclassification between two neighbouring disorders already constitutes

a success. As such we need a metric conveying this result. Studying all these leads

would allow us to provide a solid review of the performance of supervised CNN

methods applied to the three-dimensional Anderson model.

99



Bibliography

[1] D. Bayo, A. Honecker, and R. A. Römer, “Machine learning the 2D
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