
NNT/NL : 2023AIXM0107/003ED184

THÈSE DE DOCTORAT
Soutenue à Aix-Marseille Université
le 10 mars 2023, par

François HAMONIC

Algorithmes pour la conservation et la restauration des habitats
et paysages écologiques

Discipline
Informatique

École doctorale
ED 184 MATHÉMATIQUES ET INFORMATIQUE

Laboratoire/Partenaires de recherche
Laboratoire d’Informatique & Systèmes, LIS
Institut Méditerranéen de Biodiversité et
d’Ecologie marine et continentale, IMBE

Composition du jury

François MUNOZ Rapporteur
LIPhy

Gautier STAUFFER Rapporteur
HEC Lausanne

Laurent VIENNOT Président du jury
INRIA, IRIF

Stéphanie MANEL Examinatrice
CEFE

Benoit GESLIN Examinateur
IMBE

Cécile ALBERT Co-encadrante
IMBE

Basile COUËTOUX Co-encadrant
LIS

Yann VAXÈS Directeur de thèse
LIS

Affidavit
I, undersigned, François Hamonic, hereby declare that the work presented in this
manuscript is my own work, carried out under the scientific direction of Cécile Albert,
Basile Couëtoux and Yann Vaxès, in accordance with the principles of honesty, integrity
and responsibility inherent to the research mission. The research work and the writing
of this manuscript have been carried out in compliance with both the french national
charter for Research Integrity and the Aix-Marseille University charter on the fight
against plagiarism.

This work has not been submitted previously either in this country or in another
country in the same or in a similar version to any other examination body.

Marseille, April 8, 2023

This work is made available under the terms of the Licence Creative Commons
Attribution - Non Commercial - No Derivatives 4.0 International.

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.fr
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.fr

Publication list and participation in conferences

List of publications realised as part of the PhD thesis:
1. Hamonic, François, Albert, Cécile, Couëtoux, Basile, and Vaxès, Yann. “Opti-

mizing the ecological connectivity of landscapes”. In: Networks (2022). DOI:
10.1002/net.22131 [59]

2. François Hamonic, Cécile Albert, Basile Couëtoux, Yann Vaxès : Cumulative
effects on habitat networks : How greedy should we be? Biological Conservation
2022 (Submitted)

3. Open source code repositories :

• https://gitlab.lis-lab.fr/francois.hamonic/landscape_opt_networks_
submission.git

• https://github.com/fhamonic/melon

• https://github.com/fhamonic/mippp

• https://github.com/fhamonic/landscape_opt

Participation to conferences and summer schools throughout
the duration of the thesis:

1. Congrès national de la ROADEF : Association Française de Recherche Opéra-
tionnelle et d’Aide à la Décision, Montpelier, 2020 (participation + presentation)

2. Ecole Jeunes Chercheurs en Informatique et Mathématiques, En Ligne, 2020
(participation)

3. Metric Graph Theory and Related Topics, Marseille, 2021 (participation)

4. Journées Algorithmiques et Graphes, Online, 2021 (participation + presentation)

5. Ecole Jeunes Chercheurs du GRD RO : Ordonnancement, Planification & Appli-
cations, Paris, 2021 (participation)

6. Congrès national de la ROADEF : Association Française de Recherche Opéra-
tionnelle et d’Aide à la Décision, Lyon, 2022 (participation + presentation)

3

https://doi.org/10.1002/net.22131
https://gitlab.lis-lab.fr/francois.hamonic/landscape_opt_networks_submission.git
https://gitlab.lis-lab.fr/francois.hamonic/landscape_opt_networks_submission.git
https://github.com/fhamonic/melon
https://github.com/fhamonic/mippp
https://github.com/fhamonic/landscape_opt

Résumé
La connectivité est une caractéristique importante des paysages écologiques qui est
devenue un outil essentiel pour la conservation et la restauration de la biodiversité au
cours des deux dernières décennies. Définie comme le degré selon lequel un paysage
facilite le mouvement des organismes entre les zones d’habitat, la connectivité des
paysages joue un rôle crucial dans la survie à long terme des espèces en facilitant
l’accès aux ressources vitales, le flux génétique entre les populations et même l’adapta-
bilité au changement climatique. Un paysage écologique peut être considéré comme
un graphe dirigé dont les n sommets représentent les zones d’habitat du paysage et
les m arcs représentent les connexions entre ces zones. Chaque sommet est associé à
un poids correspondant à la qualité écologique de la zone qu’il représente et chaque
arc est associé à une longueur qui représente la difficulté pour un individu d’effectuer
le déplacement correspondant. La Probabilité de Connectivité du graphe est alors
calculée à partir des distances de plus court chemin dans ce graphe pondéré et est
souvent utilisée par les écologues pour évaluer la connectivité du paysage et identifier
les zones à prioriser pour la conservation ou la restauration.

Dans cette thèse, nous nous intéressons au problème de la maximisation de la Proba-
bilité de Connectivité d’un paysage sous contrainte budgétaire. Ce problème consiste
à choisir parmi un ensemble d’améliorations du paysage qui modifient les poids du
graphe, un sous-ensemble dont le coût ne dépasse pas le budget et qui augmente
autant que possible la Probabilité de Connectivité. Nous donnons une formalisation
pour ce problème et montrons qu’elle peut exprimer de nombreuses problématiques
de conservation et de restauration. Nous proposons une formalisation en programma-
tion linéaire en nombres entiers basée sur la notion de flot avec multiplicateur ainsi
qu’une technique de prétraitement qui permet de réduire de manière significative la
taille des programmes linéaires à résoudre. Pour mettre en œuvre ce prétraitement de
manière efficace, nous donnons un algorithme en temps O(m+n logn) pour résoudre
le problème suivant : étant donné un ensemble de scénarios caractérisés par le choix
des longueurs des arcs et un arc (u, v) , calculer l’ensemble des sommets t tel que (u, v)
est sur un plus court chemin de u à t pour tout scénario. Nous appliquons ensuite
notre formalisation à divers cas d’étude afin de comparer la solution optimale obtenue
avec notre méthode aux solutions sous-optimales obtenues avec les algorithmes plus
simples utilisés en pratique par les écologues.

Mots clés : connectivité écologique; conservation; restauration; biodiversité ; op-
timisation combinatoire ; programmation linéaire ; graphe; algorithme; plus court
chemin; intervales de longueurs

4

Abstract
Landscape connectivity is an important feature of ecological landscapes that has
become an essential tool for biodiversity conservation and restoration over the past
two decades. Defined as the degree to which a landscape facilitates the movement of
organisms between habitat areas, landscape connectivity plays a crucial role in the
long-term survival of species by facilitating access to vital resources, gene flow between
populations and even adaptability to climate change. An ecological landscape can
be viewed as a directed graph with n vertices representing the habitat areas of the
landscape and m arcs representing the connections between these areas. Each vertex
is associated with a weight corresponding to the ecological quality of the area it
represents, and each arc is associated with a length that represents the difficulty for
an individual to make the corresponding travel. The Probability of Connectivity is
then calculated from the shortest path distances in this weighted graph and is often
used by ecologists to assess landscape connectivity and identify areas to prioritize for
conservation or restoration.

In this thesis, we are interested in the problem of maximizing the Probability of
Connectivity of a landscape under a budget constraint. This problem consists in
choosing among a set of landscape improvements that modify the weights of the
graph, a subset whose cost does not exceed the budget and which increases as much
as possible the Probability of Connectivity. We give a formalization for this problem
and show that it can express many conservation and restoration problems. We propose
a formalization in mixed integer linear programming based on the notion of flow with
multipliers as well as a preprocessing technique that allows to significantly reduce the
size of the linear programs to be solved. To implement this preprocessing efficiently,
we give a O(m +n logn) time algorithm to solve the following problem: given a set of
scenarios characterized by the choice of arc lengths and an arc (u, v) , compute the
set of vertices t such that (u, v) is on a shortest path from u to t for any scenario. We
then apply our formalization to various case studies in order to compare the optimal
solution obtained with our method to the suboptimal solutions obtained with the
simpler algorithms used in practice by ecologists.

Keywords: landscape connectivity ; biological conservation; probability of connec-
tivity ; combinatorial optimization ; linear programming ; graph ; algorithm ; shortest
path ; interval data

5

Remerciements
Arrivé au bout de ce travail à la saveur d’accomplissement, le temps est enfin venu
d’utiliser trop peu de mots pour exprimer tant de gratitude aux nombreuses personnes
qui ont été amenées à influencer le cours de cette aventure doctorale.

Mes premiers mots vont évidemment à Cécile Albert, Basile Couëtoux et Yann Vaxès
pour leur encadrement sans faille ainsi que pour l’amitié et la bienveillance qui ont su
nous lier pendant ces années de thèse et auront définitivement coloré cette expérience
en me permettant de progresser tant sur le plan scientifique que d’un point de vue
personnel et humain.

Je souhaite également faire part de ma gratitude envers les membres du jury pour
l’attention qu’ils ont pu porter à mon travail, pour leurs retours constructifs, leurs
questions stimulantes et leur approbation.

Merci également à la Région SUD et à Natural Solutions pour avoir financé ce projet.
Merci à tout le personnel du LIS, de l’IMBE, du LIEU et autres laboratoires, que j’ai

eu la chance de côtoyer et m’ont permis d’avancer. Merci également à la sacrosainte
machine à café qui, même en n’en consommant que rarement le fruit, possède un
indéniable pouvoir sociabilisant.

De manière générale, merci à tous ceux que j’ai la chance de pouvoir appeler mes
amis, qui par leur présence, leur soutien, leurs conseils et parfois leur humour ont
quelque part tous contribué à une fraction non nulle de ce travail. Merci aux docto-
rants de Luminy, passés et présents, auxquels je n’envisage toujours pas de refuser la
moindre pause café/partie de cartes. Merci particulier à Alexandre D’Ambra pour son
amitié et, entre autres, son accompagnement dans mes projets de bricolage loufoques.

Et enfin, Merci à ma maman, Maryvonne Hamonic, pour son soutien, sa patience et
son amour sans limites.

6

Contents
Front Matter 2

Affidavit . 2
Publication list and participation in conferences 3
Résumé . 4
Abstract . 5
Remerciements . 6

Contents . 7
List of Definition Boxes . 9
List of Figures . 9
List of Tables . 10
Glossary . 10

1 Introduction 12
1.1 Nature crises and landscape connectivity 12
1.2 Connectivity optimization . 13
1.3 Shortest path problems with interval data 14
1.4 Contributions and organization of the thesis 15

2 Prerequisites 17
2.1 Set theory basics . 17
2.2 Graph theory . 18
2.3 Complexity of algorithms . 20

3 Quantify landscape connectivity 23
3.1 State of the art . 23
3.2 The Probability of Connectivity (PC) indicator 27

3.2.1 Definition . 27
3.2.2 Properties . 29
3.2.3 Interpretation . 30
3.2.4 Empirical support and limitations 31

3.3 Modelling landscapes for the PC indicator 32
3.3.1 Raster-based models . 32
3.3.2 Patch-based models . 36
3.3.3 Discussion . 38

4 A MILP approach for optimizing PC 40
4.1 Problem Statement . 40
4.2 State of the art . 42
4.3 Complexity results . 44

4.3.1 NP-hardness . 46
4.3.2 Inapproximability . 48

7

4.4 A MILP formulation for solving BC-PC-Opt 51
4.4.1 A Linear Program to compute PC 51
4.4.2 MILP formulation for SAO-BC-PC-Opt 55
4.4.3 Extension to BC-PC-Opt . 56

4.5 Preprocessing the MILP formulation . 57
4.5.1 Reducing the size of the graph . 57
4.5.2 Improving linear relaxation bounds 63

5 A Preprocessing algorithm for shortest paths problems with interval
data 67
5.1 Introduction and state of the art . 67
5.2 Definitions . 69
5.3 Computing F (u, v) . 70
5.4 Extension to the computation of t-useless arcs 72
5.5 Extension to constrained shortest path problems 74

6 Greedy Algorithms 81
6.1 Definition of the algorithms . 81
6.2 Arbitrary bad cases . 84
6.3 Incremental Greedy with dynamic update 86
6.4 A bound for improving IG on SAO-BC-PC-Opt 89

7 Software and numerical experiments 91
7.1 Software production . 91
7.2 Case studies . 92
7.3 Numerical experiments . 94

7.3.1 Scalability and benefits of the preprocessing 95
7.3.2 Quality of the solutions . 98
7.3.3 Execution Times . 99

7.4 Discussion . 101

Conclusion 104

Bibliography 106

8

List of Definition Boxes

Definition Boxes . 17
Single-source shortest path problem . 21
Habitat patch . 24
Most reliable path . 28
Spanner graph . 34
Geometric spanners . 37
NP-Hardness . 44
Polynomial time approximation algorithms 45
Densest-k-Subgraph . 46
Max-Coverage . 49
Linear Programming . 52
Generalized flow problems . 53
Mixed Integer Linear Programming . 55
Branch and Bound algorithms . 63
Constrained shortest path and lagragian relaxation 74
Greedy algorithm . 81

List of Figures
2.1 Interpretation of the set-builder notation of S ∩T 18
2.2 Topologically equivalent undirected (a) and directed (b) graphs. 19
2.3 Common functions used for big O notations. 21

3.1 Aerial photographs of a region of Normandy, France 24
3.2 Modelisation of an ecological landscape by a graph. 26
3.3 Increasing the probability of an arc may not increase PC 30
3.4 Stretch factor of grids . 33
3.5 Stretch factor of raster graphs . 35
3.6 Probability distortion in rasters . 35

4.1 Examples of cumulative effects . 43
4.2 Euler diagram for P , N P , N P-Complete and N P-Hard 45
4.3 Polynomial reduction from Densest-k-Subgraph to SVO-BC-PC-Opt . 47
4.4 Reduction of the analogous problem on edges to SAO-BC-PC-Opt . . . 49
4.5 Polynomial reduction from Max-Coverage to SAO-BC-PC-Opt 51
4.6 Connected component contraction . 58
4.7 Examples of useless and strong arcs . 59

9

4.8 Vertex split . 61

6.1 An instance on which Incremental Greedy fails. (a) the graph of the IG
bad case with k = 4, (b) ratio of the increase in PC between the solutions
returned by IG and DG and an optimal solution for several budgets. . 84

6.2 An instance on which Decremental Greedy fails. (a) the graph of the DG
bad case with k = 5, (b) ratio of the increase in PC between the solutions
returned by IG and DG and an optimal solution for several budgets. . 85

6.3 An instance on which both Incremental and Decremental Greedy algo-
rithms fail. (a) the graph of the IG and DG bad case with k = 5, (b) ratio
of the increase in PC between the solutions returned by IG and DG and
an optimal solution for several budgets. 86

6.4 Illustration of the set S and T with respect to the improved arc (u, v) . . 88

7.1 Case studies. 93
7.2 Computing time on the four case studies 95
7.3 Benefits of the preprocessing on the MILP size 97
7.4 Quality of the solutions of greedy algorithms on the four case studies . 98
7.5 Execution time of the algorithms as a function of budget (log scale) . . 100
7.6 Computation times to solve the MILP on the Marseille case grow ex-

ponentially with the number of options while computation times of
suboptimal algorithms grow only polynomially 100

List of Tables
2.1 Set theory notations and their transcription in plain words. 18

7.1 Comparison of the MILP and the preprocessed MILP according to the
number of variables (#var), the number of constraints (#const), the
preprocessing time (p. time) and the average computation time (time). 96

7.2 Comparison of the MILP, the preprocessed MILP and DG according to
the number of variables (#var), the number of constraints (#const) and
the time (on average with 20 different budget values) it takes to solve the
Marseille instance with different numbers of unbuilt lots 96

7.3 Minimum and average optimilaty ratio for each algorithm and case study. 99

Glossary

BC-PC-Opt Budget Constrained PC Optimization, see Impor-
tant Box 4.1

40–44, 46,
48, 51, 56–
58, 64, 74,
81, 86, 104

10

Glossary

CSPP Constrained Shortest Path Problem, see Defini-
tion Box 15

74, 75

ECA Equivalent Connected Area, see [108] 27–29, 54, 82

IIC Integral Index of Connectivity, see [96] 14, 15, 26, 27

MILP Mixed Integer Linear Programming, see Defini-
tion Box 13

10, 14, 55–
57, 63, 64,
67, 68, 74,
84, 91, 94–
97, 100, 104

MSS-SPP Minimax regret Single-Source Shortest Path Prob-
lem

68

N P-Hard Non-determinstic Polynomial Hard, see Defini-
tion Box 7

13, 45–47,
49, 52, 55,
75, 76, 104

PC Probability of Connectivity, see Important Box 3.2.1 10, 14, 15,
26–34, 36,
38, 39, 41–
44, 49–51,
54, 55, 57,
58, 61, 62,
82, 84–
86, 89, 94,
101–104

PT AS Polynomial Time Approximation Scheme, see Defi-
nition Box 8

14, 45–47

RDSPP Robust Deviation Shortest Path Problem 67, 68

SAO-BC-PC-Opt Single-Arc Only Budget Constrained PC Optimiza-
tion, see Section 4.3.2

9, 43, 44, 49–
51, 55, 56,
66, 89

SPP Shortest Path Problem, see Definition Box 2 67, 74
SVO-BC-PC-Opt Single-Vertex Only Budget Constrained PC Opti-

mization, see Section 4.3.1
9, 46–48, 51

11

1 Introduction

Table of contents

1.1 Nature crises and landscape connectivity 12
1.2 Connectivity optimization . 13
1.3 Shortest path problems with interval data 14
1.4 Contributions and organization of the thesis 15

1.1 Nature crises and landscape connectivity
Climate change is only one of the many consequences of our modern civilization on
planet Earth. Although it is certainly the most noticeable one for the uninitiated public,
it is surely not the most striking and perhaps not (yet) the most worrying. As a matter of
facts, land artificialisation, overexploitation, pollution and the introduction of invasive
species are as many causes that, like climate change, put pressure on biodiversity and
provoke its decline. The IPBES report [17], which is the equivalent of the IPCC (GIEC in
French) report [25] for biodiversity, is clear on this point: Nature is declining globally
at rates unprecedented in human history. The WWF’s Living Planet Report of 2022
[7] states, among other alarming news, that the populations of monitored vertebrate
species declined on average by 69% between 1970 and 2018, accounting for 31,821
populations of 5,230 species of mammals, birds, fishes, reptiles and amphibians
around the world. Furthermore, insect populations are also estimated to have declined
by at least 75% in the last 30 years [58]. Overall, 1 million species of plants and animals
are now at risk of extinction [17]. While global warming has its part in these disasters,
particularly in the ruthless and accelerating decline of coral populations [17, 29], it
is far from being the only explanation for such a collapse of biodiversity. The IPBES
report [17] identifies economic growth as a key driver of nature loss by establishing that
the causes of biodiversity losses are, in decreasing order of severity, land and sea use
change, overexploitation, climate change, pollution and invasive species. Moreover,
just like CO2 emissions [82, 56], an absolute decoupling between economics growth
and biodiversity degradation seems more and more unlikely to occur in the near future
without major transformations of the economic systems [94].

Therefore, in the meantime, measures are being taken to mitigate the deleterious
effects on biodiversity. For two decades now, connectivity conservation has been
identified as an essential lever for biodiversity conservation in the face of natural

12

1 Introduction – 1.2 Connectivity optimization

habitat loss and fragmentation [31, 63, 77]. Landscape connectivity is defined by [117]
as the degree to which a landscape facilitates the movement of individuals between
habitat areas. This feature of landscapes is not only important for the capacity of
individual to move around and access vital resources but also to increase gene flow
among populations and improve their adaptability to climate change [31, 77].

1.2 Connectivity optimization
Implementing connectivity conservation requires that practitioners identify areas
where habitat conservation, restoration, or recreation will be the most effective and
cost-efficient for landscape connectivity [11]. For this purpose, graph-theoretical
approaches are very useful to model and study habitat connectivity [121]. Indeed, a
landscape can be viewed as a directed graph in which vertices represent the habitat
areas and each arc indicates a way for individuals to travel from one area to another.
Each vertex is associated with a weight corresponding to the ecological quality of the
area it represents, and each arc is associated with a length that represents the difficulty
for an individual to make the corresponding travel. This difficulty is often assessed
with a function of the euclidean distance between habitat areas. Interestingly, this ap-
proach can be used for a variety of ecological systems like terrestrial (patches of forests
in an agricultural area, networks of lakes or wetlands), riverine (segments of river than
can be separated by human constructions like dams that prevent fishes’ movement) or
marine (reefs that are connected by flows of larvae transported by currents). With this
formalism, ecologists have developed many connectivity indicators [96, 109, 88] that
aim to quantify the quality of a landscape with respect to the connections between its
habitat areas. Therefore, a multitude of frameworks have been developed to address
the prioritization of areas for conservation or restoration, under budget constraint, for
a variety of contexts and biological systems [81, 5, 116]. The problem facing decision
makers is to select, from a given set of possible conservation or restoration options,
a subset whose cost does not exceed the available budget and whose impact on im-
proving the quality of the ecological landscape is as great as possible. For most of
the connectivity indicators used in practice, the problem is very difficult to solve in
terms of computational complexity (In chapter 4 we will see that they are N P-Hard).
Indeed, the number of possible solutions grows exponentially with the number of
available options. The proposed frameworks thus do not seek optimal resolution and
largely struggle to account for the cumulative effects that can occur when multiple
impacts or small-scale decisions accumulate over large habitat networks [45, 127, 54].
Indeed, until now, ecologists have mostly tackled these problems by ranking each
conservation or restoration option by its independent contribution to the connectivity,
i.e., the amount by which the chosen connectivity indicator varies if the option is
purchased alone. Such an approach overlooks the cumulative effects of the decisions
made like unnecessary redundancies or potential synergistic effects. This could lead
to solutions that are more expensive or less beneficial to the landscape connectivity
than an optimal solution. Some studies have tried to overcome this limitation by

13

1 Introduction – 1.3 Shortest path problems with interval data

considering tuples of options [104, 98]. In [104], the authors show that the brute
force approach, that consists in testing all possible combinations of options, rapidly
becomes impractical for landscapes with more than 20 options. Few studies have
explored the search for optimal solutions or guaranteed approximations. In [129], the
authors propose a polynomial approximation scheme (PT AS) for optimizing the PC
indicator when the underlying graph is a tree. The authors of [131] have introduced a
XOR sampling method based on a mixed integer formulation for optimizing the PC
indicator. To our knowledge, this is the only linear programming formulation already
proposed for optimizing the PC. However, their mixed integer formulation does not
scale to landscapes with few hundreds of improvement options. More recently, the
PhD thesis [70] introduced a constraint programming method for optimizing the IIC
indicator. Nowadays, the PC and the IIC are the two most commonly used indicators
for connectivity conservation [72].

1.3 Shortest path problems with interval data
Given a landscape graph where each arc is associated to a length, computing the value
of the PC indicator requires finding the shortest path distance for each pair of vertices.
As we will see in Chapter 4, some improvement of the landscape can be represented
by modifying the lengths associated to certain arcs of the graph. Thus, optimizing PC
is closely related to solving the shortest path problem on a graph with different length
functions, namely one length function for each combination of improvement options.
In the sequel, we call such a combination a scenario. A very powerful approach to
solve this kind of hard combinatorial optimization problems is to express them as
Mixed Integer Linear Program (MILP), i.e. as the problem of maximizing a linear
objective function subject to linear and integrality constraints. Indeed, state-of-the-
art linear programming solvers are able to solve MILPs of increasing size more and
more efficiently. However, the size of the resulting MILP models often remains a
limit, even to these advanced solvers. An approach has been proposed in [21] for
the robust shortest path problem to address this issue. It consists in a preprocessing
step that identify a subset of arcs that can either be removed or contracted to reduce
the size of the graph considered when computing the shortest path to a given vertex
t . In [21], given an arc (u, v) and a vertex t , the authors give a sufficient (but not
necessary) condition for (u, v) to be on a shortest path from u to t in every possible
scenario and use it to design a O(m +n logn) time recognition algorithm, where m
is the number of arcs and n the number of vertices of the graph. However, since the
condition is only sufficient, their algorithm may fail to identify some pairs of arc (u, v)
and vertex t for which the property holds. The authors also proposed a O(m +n logn)
time algorithm to test whether a given arc (u, v) is never on a shortest path from u
to t . As explained bellow, in this thesis, we have extended this line of research with
the objective of improving the algorithmic implementation of this preprocessing and
study its efficiency in accelerating the resolution of landscape optimization problems.

14

1 Introduction – 1.4 Contributions and organization of the thesis

1.4 Contributions and organization of the thesis
The contribution of this thesis is twofold. On the one hand, we formalize a versatile
problem for the optimization of the PC indicator under a budget constraint and give
a mixed integer formulation for solving it efficiently. This new optimization method
allows us to compute optimal solutions for restoration and conservation case studies
of unprecedented sizes and compare these solutions to those obtained with simpler
but suboptimal algorithms used in practice by practitioners. On the other hand,
we improve and introduce general purpose processing algorithms for optimization
problems involving shortest path computations with changing arc lengths. These
algorithms are not only useful for reducing the size of our mixed integer formulations,
but have been studied as preprocessing steps for other optimization problems such
as robust shortest paths problems [71, 21, 79] and may be of similar interest for
optimizing current and future connectivity indicators based on shortest paths, like PC
and IIC.

In Chapter 2, we define the essential mathematical notations used throughout the
manuscript. In Chapter 3, we analyze the state of the art on the methods used for quan-
tifying landscape connectivity, motivate our choice of the PC indicator and describe
modelization techniques to represent landscapes with graphs. Then, in Chapter 4, we
introduce the Budget-Constrained PC Optimization problem (BC-PC-Opt), show that it
can capture many conservation and restoration problematics, prove its N P-Hardness
and inapproximability with a constant factor greater than (1− 1

e) , and give our mixed
integer formulation for solving it efficiently. Our new formulation is based on a gener-
alized flow formulation instead of a standard network flow formulation. This leads
to two improvements. Firstly, our formulation has a linear objective function as op-
posed to the model of [131] that was using a piecewise constant approximation and
additional binary variables to handle non-linearity. Secondly, the new formulation
aggregates into a single generalized flow the contribution to the connectivity of several
source/sink pairs having the same source whereas the previous model treated every
pair separately. More precisely, our model improves on the formulation given in [131]
by requiring n times less continuous variables and constraints and n2 times less inte-
ger variables, where n is the number of vertices of the graph. In Chapter 5, we design
and analyze an O(m +n logn) time algorithm that, given an arc (u, v) , computes the
set of all vertices t such that (u, v) is always on a shortest path from u to t or the set
of all vertices t for which (u, v) is never on a shortest path from u to t . Our algorithm
improves the one of [21] in two ways. First, we replace the sufficient condition de-
fined in [21] by a necessary and sufficient condition that allows us to identify all the
vertices t such that (u, v) is always on a shortest path from u to t instead of a subset
of them. We also improve the time complexity for computing this set by a factor n
since we only need to run our algorithm once instead of running it for each vertex t .
Chapter 6 is dedicated to the greedy algorithms used in practice to solve problems like
BC-PC-Opt. We describe in detail these algorithms and provide some instances where
they compute solutions that are far from optimal. We also show how to modify these
algorithms to improve their execution time in practice, while keeping the same time

15

1 Introduction – 1.4 Contributions and organization of the thesis

complexity. Finally, in Chapter 7, we briefly present the software packages developed
during the thesis and compare our optimization approach to the greedy algorithms
mentioned above in terms of running times and quality of the solutions found on
a set of experimental cases. These experiments show that the preprocessing is very
effective and that the greedy approach performs quite well on these instances.

16

2 Prerequisites

Table of contents

2.1 Set theory basics . 17
2.2 Graph theory . 18
2.3 Complexity of algorithms . 20

Since this thesis is interdisciplinary, we define many notions of computer science.
These definitions are intended to be either read by the neophyte and interested reader
or skipped by the more expert one. We have chosen to provide only the essential pre-
requisites for understanding the mathematical statements in this section, and to intro-
duce other prerequisites and definitions when necessary throughout the manuscript
in Definition Boxes.

DEFINITION BOX 1: DEFINITION BOXES

This gray box is a Definition Box. Definition Boxes are used to provide defini-
tions and additional information that are needed at a more local scale.

This is an "Important Box". This kind of boxes is used to highlight the core
definitions of the thesis and allow the reader to recover them easily.

2.1 Set theory basics
Set theory is a very powerful tool for representing mathematical objects that is com-
monly employed as a foundational system for the whole of mathematics. A set is
simply a mathematical model for representing a collection of different objects. We
can describe a set by listing its elements separated by commas within braces {} . The
set containing no elements, called the empty set, is denoted by the symbol ; . Given a
set S containing exactly the elements 1, 2 and 4, which we can denote as S = {1,2,4} ,
Table 2.1 shows true formal statements on S and their transcription in plain words.

17

2 Prerequisites – 2.2 Graph theory

Statement Transcription
S = {1,2,4} The set S contains exactly the numbers 1, 2 and 4.
|S| = 3 The size of the set S is 3 .
1 ∈ S 1 is in the set S .
3 ∉ S 3 is not in the set S .

{1,4} ⊆ S {1,4} is a subset of S .
S ∪ {2,3} = {1,2,3,4} The set of elements either in S or {2,3} is {1,2,3,4} .

S ∩ {1,2,3} = {1,2} The set of elements both in S and {1,2,3} is {1,2} .
S ∩ {7,8} =; The sets S and {7,8} share no elements in common.

S \ {2,6} = {1,4} The set S minus the elements of {2,6} is {1,4}∑
k∈S (k) = 7 The sum of the elements of S is 7 .∏
k∈S (k) = 8 The product of the elements of S is 8 .

∀k∈S (k < 5) For all element k of S , k is smaller than 5.
mink∈S (3−k) =−1 The minimum value of (3−k) for all k ∈ S is −1.

Table 2.1: Set theory notations and their transcription in plain words.

Another way of describing a set is the set-builder notation. This notation consists in
characterizing the elements of a set by a predicate, i.e., a logical formula, such that the
described set contains all the objects for which this predicate is true. For example, the
intersection of two sets S and T can be expressed as S∩T = {e : e ∈ S,e ∈ T } . Figure 2.1
illustrates the interpretation of this set-builder notation of S ∩T .

{ e : e ∈ S , e ∈ T }

The set of elements e such that e is in S and e is in T

Figure 2.1: Interpretation of the set-builder notation of S ∩T .

A set can also contain others sets as its elements, in which case it is often called a
family. We can describe the intersection of all the sets of a family F by

⋂
S∈F S . Finally,

given two sets A and B , we use the notation AB to describe the set of all the functions
f : B → A that associate to each element of B an element of A . We often describe the
function f : B → A as a vector of |B | elements of A that is indexed by the elements of
B . For example, x ∈ {0,1}A is a vector such that, for each a ∈ A , either xa = 0 or xa = 1.
We refer to [38] for a more in-depth introduction to set theory.

2.2 Graph theory
Graphs are very useful mathematical structures for describing networks of all kinds.
Usually, the term graph refers to undirected graphs. An undirected graph G is charac-
terized by a couple of sets G = (V ,E) where V is the set of the vertices (or nodes) of the
graph and E is the set of the edges (or links) that connects pairs of vertices together.

18

2 Prerequisites – 2.2 Graph theory

Formally, the elements of V can be anything from integers to train stations, and E
must be a subset of all the pairs that can be formed between all the vertices, i.e.,

E ⊆ {{u, v} : u ∈V , v ∈V ,u ̸= v} . (2.1)

On the other hand, a directed graph is formed by a couple (V , A) where V is still the
set of vertices but A is a set of arcs (or directed edges) that can only be followed in one
direction, i.e.,

A ⊆ {(u, v) : u ∈V , v ∈V ,u ̸= v} . (2.2)

Given an arc a ∈ A , let source(a) and target(a) respectively denote its source and
target vertices, i.e., if a = (u, v) then source(a) = u and target(a) = v .

Most of the time, graphs are assumed to be simple and without loop, that is, they
do not contain multiple edge (resp. arc) between to vertices u and v and do not
contain any edge (resp. arc) connecting a vertex to itself, hence u ̸= v . In this thesis we
rarely use the notion of undirected graphs since the notion of directed graph is more
expressive in our context. Indeed, an edge linking two vertices u and v can be seen as
the equivalent of two reciprocal arcs (u, v) and (v,u) , see Figure 2.2. Therefore, we use
the term graph to designate simple directed graphs without loop.

u v

(a)

u v

(b)

Figure 2.2: Topologically equivalent undirected (a) and directed (b) graphs.

A subgraph H of G = (V , A) is a couple H = (U ,F) with U ⊆ V and F ⊆ A . Given a
subset of vertices W ⊆V , we denote by G[W] the subgraph induced by the vertices of
W , that is, the graph on the vertices of W that contains all the arcs of A that have both
endpoints in W , i.e.,

G[W] = (
W, {a ∈ A : source(a) ∈W, target(a) ∈W }

)
. (2.3)

Given a graph G = (V , A) and a vertex w ∈ V , we denote δin
w and δout

w the sets that
correspond respectively to the incoming arcs of w and outgoing arcs of w such that
δin

w = {a ∈ A : target(a) = w} and δout
w = {a ∈ A : source(a) = w} .

The notion of path is very important for graph theory applications in general and
particularly in the context of landscape connectivity optimization. An st-path in the
graph G is a set of arcs P ⊆ A that can be ordered in a sequence P = {a1, . . . , an} of arcs
that can be consecutively followed to go from the vertex s to the vertex t , i.e., that
fulfills the following properties:

19

2 Prerequisites – 2.3 Complexity of algorithms

source(a1) = s

target(an) = t

target(ai) = source(a(i+1)) for each i ∈ {1, . . . ,n −1}

(2.4)

(2.5)

(2.6)

If each arc a ∈ A is associated with a length la ∈R+ , the length of a path P is defined
as the sum of the length of its arcs, i.e.,

∑
a∈P la , and the length of a shortest st-path is

called the distance from s to t and denoted d(s, t) such that

d(s, t) = min
P :st-path

(∑
a∈P

la

)
. (2.7)

2.3 Complexity of algorithms
In computer science, the computational complexity of an algorithm is a measure of
the amount of resources needed to run it. These resources are time and space. Or,
in practical terms, "How long should I wait for the result?" and "Does my computer
have enough RAM?". The amount of time (and memory) required by an algorithm
depends on the size of the input data. Thus, if n describes the size of the input data,
the time complexity of an algorithm is a function f (n) that associates each value of
n to the number of elementary operations needed to execute the algorithm on the
input data. Similarly, the space complexity is usually a function g (n) that associates
each value of n to the number of memory bits required to run the algorithm on the
input. We are not interested in the exact values of f (n) and g (n) but rather in how
they grow with n , i.e. their asymptotic behavior when n tends to infinity. Therefore,
the complexity is expressed using big O notation. The big O notation is a standard
mathematical notation used for comparing the rate of growth of functions. Given a
function g (n) , O(g (n)) denote the set of all the functions f (n) that are dominated by
g (n) when n tends to infinity. Formally, it is the set of functions f (n) for which it exists
two constants c and m such that f (n) < c · g (n) for any n > m .

20

2 Prerequisites – 2.3 Complexity of algorithms

0 2 4 6 8 10
0

5

10

15

n

f(
n

)
O(cn)

O(nc)
O(n logn)
O(n)
O(logn)

Figure 2.3: Common functions used for big O notations.

One of the goal of computer science is to study mathematical problems, and particu-
larly graph related problems, and find the algorithms with the smaller time complexity
possible for solving them. One typical algorithmic problem that has been studied very
intensively by computer scientists is the single-source shortest path problem. In the
following box, we define this problem and illustrate how we will present an algorithm
and its time complexity.

DEFINITION BOX 2: SINGLE-SOURCE SHORTEST PATH PROBLEM

The Single-Source Shortest Path Problem (SSSPP) is a fundamental and very well
studied combinatorial optimization problem [111]. Given a graph G = (V , A)
where each arc a ∈ A is associated with a length la ∈R+ and a vertex s ∈V , the
SSSPP consists in finding the lengths of the shortest paths from s to every other
vertices of G , i.e. finding d(s, t) for each t ∈V .
The SSSPP arises in numerous applications that are not only limited to the
fields of telecommunications and transportation with, for example, landscape
ecology. The Dijkstra algorithm [35] is well known for solving this problem
efficiently. Indeed, it can be implemented to run in O(|A| + |V | log |V |) time.
This algorithm can be described as the following pseudocode:

21

2 Prerequisites – 2.3 Complexity of algorithms

Algorithm 1: Dijkstra

Input :G = (V , A) , (l)a∈A , s ∈V
Output :di st : V →R+ such that di st (t) = d(s, t)
di st (s) ← 0
foreach (s, w) ∈ δout

s do
di st (w) ← lsw

S ← {s}
while S ̸=V do

Pick t ∈V −S with smallest di st (t)
foreach (t , w) ∈ δout

t such that di st (t)+ lt w ≤ di st (w) do
di st (w) ← di st (t)+ lt w

S ← S ∪ {t }
return di st

Correctness and complexity analysis of Algorithm 1 are provided in standard
reference manuals on algorithms such as [28].

Generally, we consider that an algorithm is efficient when its time complexity is
polynomial in the size of the input data. We define more advanced notions of compu-
tational complexity, like NP-Hardness and Approximation algorithms in the Defini-
tion Boxes 7 and 8.

22

3 Quantify landscape connectivity

Table of contents

3.1 State of the art . 23
3.2 The Probability of Connectivity (PC) indicator 27

3.2.1 Definition . 27
3.2.2 Properties . 29
3.2.3 Interpretation . 30
3.2.4 Empirical support and limitations 31

3.3 Modelling landscapes for the PC indicator 32
3.3.1 Raster-based models . 32
3.3.2 Patch-based models . 36
3.3.3 Discussion . 38

In the last two decades, landscape connectivity has become an essential tool for
biodiversity conservation and restoration. The first challenge in implementing land-
scape connectivity is to be able to identify what makes a landscape "well-connected".
And, more specifically, how to determine whether a local change in the landscape is
beneficial or detrimental to the ability of individuals to move around. In this chapter
we go from the state of the art concerning the methods for quantifying landscape con-
nectivity to the description of the method we chose to be our optimization criterion.

3.1 State of the art
Since the 1980s, human activities related to land use have become an increasing
concern for biodiversity. During this period, urban and agricultural expansion has de-
stroyed more and more natural habitats, to the point of stimulating environmentalists’
interest in the landscape processes affected by these destructions [120]. The stud-
ies that followed highlighted the fact that ecological processes are influenced by the
landscape at a much larger scale than the local scale that was traditionally considered
[128, 37]. An example of local changes that induced global problems in a landscape
can easily be found in the consequences of the land consolidation policies that took
place in European countries [124]. Land consolidation consists in merging adjacent
agricultural parcels for more efficient use. However, it also involves removing the
hedgerows that separated these fields. While locally these hedgerows provided little
habitat and resources, their removal has had a much greater impact on the landscape

23

3 Quantify landscape connectivity – 3.1 State of the art

as a whole, c.f. Fig. 3.1. Indeed, due to their rectilinear shape, hedgerows serve as
movement and dispersal corridors for many forest species [47, 19]. In addition to that,
they are considered key factors for regulating soil erosion and wind speed.

(a) 1950-1965 (b) 2000-2005

Figure 3.1: Aerial photographs of a region of Normandy, France, with, on the left, a
photography taken between 1950 and 1965 before the implementation of
land consolidation policies and, on the right, a photography taken between
2000 and 2005, IGN [66].

DEFINITION BOX 3: HABITAT PATCH

In landscape ecology, patches are the basic elements of a landscape. A patch is
often defined as a contiguous parcel of the same land cover, e.g., forest. However,
this definition is highly dependent on the scale adopted because landscapes
are fundamentally heterogeneous.

Despite the lack of colors on the first photography of Figure 3.1, we can see that
the amount of forest is approximately the same between the two photos whereas two
major changes occurred between 1965 and 2000. On the one hand, according to the
land consolidation policy, agricultural parcels have been merged, which resulted in
the disappearance of most of the landscape’s hedgerows and thus undermined the
connections between the forest patches. On the other hand, even if some parcels den-
sified and became forests, some parts of the forest patch on the right were destroyed
and became fields, breaking the contiguity of this forest patch. In landscape ecology
these two effects are recognized under the term habitat fragmentation which is the
process by which large and contiguous patches of habitats get divided into smaller
and isolated ones [40]. Habitat loss and fragmentation are known to be the primary
causes of declines in global biodiversity [57]. Fragmented ecological landscapes are

24

3 Quantify landscape connectivity – 3.1 State of the art

commonly represented as mosaics of patches that provide habitat and resources for
species, e.g., forest, above a more dominant and possibly inhospitable environment
called the matrix, e.g., agricultural fields, roads. Landscape connectivity is then de-
fined as "the degree to which the landscape facilitates or impedes movement among
resource patches" [117]. The relative importance of habitat loss versus habitat frag-
mentation is not clear and depends on many factors such as the degree of landscape
fragmentation and the species being studied [8, 40]. Usually, habitat connectivity
become more and more important as the proportion of habitat within the landscape
decreases. It is therefore necessary to be able to quantify landscape connectivity in
order to arbitrate the trade-off between quantity and connectivity of the habitat in
conservation and restoration planning. For this purpose a lot of connectivity metrics
have been developed in the literature. The first ones are based on simple statistics and
information theory such as the percentage of habitat within the landscape, the average
size of the habitat patches or the Shannon diversity index. In [86], dated from 1995,
the authors present the software FRAGSTATS version 2 together with an exhaustive
list of the connectivity indices that were used at the time. In 2000, the authors of [68]
introduced three new measures of fragmentation that outperform previous metrics on
nine suitability criterions. However, today, most of these connectivity indices would be
classified as structural connectivity indicators. As opposed to functional connectivity,
which is related to the behavioral response of organisms to the landscape structure,
structural connectivity considers only the geometrical properties of the landscape
[119, 118].

At that time, landscapes were mainly represented by rasters, i.e., grids of cells,
or vector maps, i.e., polygons, that delineate land use types. These two types of
representation are ubiquitous in the GIS programs that were becoming more and
more popular, thus facilitating spatial analyses. The articles [18, 121] are recognized
for popularizing a third tool for representing landscapes, namely graph theory. Indeed,
a landscape can be viewed as a graph G = (V ,E) whose vertices are the habitat patches
and edges represent the connections that individuals can use to travel from one patch
to another.

25

3 Quantify landscape connectivity – 3.1 State of the art

(a) ecological landscape [105] (b) a possible graph representation

Figure 3.2: Modelisation of an ecological landscape by a graph.

Usually, each patch is associated with a weight representing its ecological value
and each edge is associated with a weight representing the distance between the
two patches it connects. One strength of this formalism is to allow including species
specific variables. For example, each patch can be associated to the estimated number
of individual living in it and each edge can be associated to the probability for an
individual of the considered species to successfully travel from one patch to the other.
This proved to be a good compromise between data requirements and model relevance
[20]. Based on this new formalism many connectivity metrics have been created to
assess landscape connectivity. In fact graph-based indicators of connectivity are
applicable to raster maps since a raster can be represented by a graph where cells are
the vertices of the graph and adjacent cells are connected by an edge. In [96] (2006),
the authors introduced three graph-based connectivity metrics, namely, the Class
Coincidence Probability (CCP), the Landscape Coincidence Probability (LCP) and the
Integral Index of Connectivity (IIC). LCP is a generalization of the degree of coherence
index of [68] to arbitrary graphs. The authors then compared these three indices with
previous ones on seven examples to test for the sensibility of the metrics to minor
changes in landscape. Each example depicts two versions of the same landscape with
a minor change where an ideal connectivity metric should consistently prefer one
version over the other. They found that, among the tested metrics, IIC is the only
one to consistently prioritize the desired case and that LCP is the second best metric
by these criteria. However, these metrics apply to graphs with weighted vertices but
unweighted edges. One year later, the authors published another article presenting
the Probability of Connectivity indicator [109]. Combining their approach on the IIC
with the earlier works of [18] and [121] on the Flux metric, they showed that the PC
indicator outperforms all previous metrics while allowing to modulate the strength
of the connection between pair of patches. Since then, most of the graph-based
connectivity indicators that have been proposed, including the PC, have been based
on the least-cost path approach, i.e., the connectivity between two patches is assessed
by a function of the path of least resistance between these patches. This approach has

26

3 Quantify landscape connectivity – 3.2 The Probability of Connectivity (PC)
indicator

been recognized to be a great tool for modeling and calculating inter-patch distances
modified with landscape structure and movement behavior [1] but can be criticized
for not accounting for the number of different ecological routes that exist between two
patches. In [88] (2008), the authors proposed an approach based on electrical circuit
theory to assess the connectivity of a landscape when it is represented as a raster grid.
The notion of effective resistance that they use in their method has the advantages of
being closely related to random walks and thus to account for all the paths from one
patch to another.

Afterwards, many reformulations of the PC indicator have been proposed such as
the Probability of Functional Connectivity (PFC) [126], the Equivalent Connected Area
(ECA) [108], the Protected Connected (ProtCon) [107] and the Connectivity through
Intact lands (ConnIntact) [125]. There is also the Density Weighted Connectivity (DWC)
indicator [90] whose formula shares a lot of similarities with the PC. In [72] (2021), the
authors provide a review of the existing connectivity metrics used for conservation
planning. They conclude that planners should use more than one connectivity metric
to prioritize natural lands for inclusion in a protected area network such as in the
framework proposed in [5]. In [62], the authors conduct a review of the graph-based
connectivity indicators used in studies between 2014 and 2021. Among the 114 studies
they reviewed, 58 indicators are mentioned with PC, IIC, LCP and ECA being the four
most used indicators with respectively 30%, 18.75%, 8.12% and 2.5% of studies using
them. Overall, PC is the most widely used connectivity indicator and has many simi-
larities with other indicators, making it a prime candidate for studying connectivity
optimization problems.

3.2 The Probability of Connectivity (PC) indicator

3.2.1 Definition
In general terms, a landscape can be modelled for the PC indicator as a directed graph
G = (V , A, w,π) with weights on the vertices and the arcs that depends on the studied
species that we call a landscape graph. The vertices correspond to non-overlapping
regions of the landscape and the arcs represent the ability for an individual to travel
from one region to another. Each region, i.e., vertex, u ∈V is associated with a weight
wu ∈R+ that represents its ecological value for the considered species, that is usually
the area of available habitat within the region, and each arc (u, v) is associated with a
probability πuv representing the probability for an individual to succeed in his move
from the region u to the region v . In Section 3.3, we present more details about the
methods used for creating such graphs.

27

3 Quantify landscape connectivity – 3.2 The Probability of Connectivity (PC)
indicator

The PC indicator is computed as:

PC (G = (V , A, w,π)) =
∑

s∈V
∑

t∈V
(
ws ·wt ·Π(s, t)

)
W 2

, (3.1)

where Π(s, t) is the probability of the most reliable path from s to t , that we
often call the probability of connectivity from s to t , and W is a constant greater
than

∑
u∈V wu used to normalize the value between 0 and 1. Usually, W is the

area of a rectangle containing the landscape under study.

DEFINITION BOX 4: MOST RELIABLE PATH

Given a graph G = (V , A) where each arc (u, v) ∈ A is associated with a probability
πuv , the most reliable path from a vertex s ∈ V to a vertex t ∈ V is the path
maximizing the product of the probabilities of its arcs:

Π(s, t) = max
P :st-path

∏
a∈P

πa . (3.2)

The problem of identifying the most reliable path is closely related to that of
identifying the shortest path. Indeed, the computation ofΠ(s, t) can be reduced
to the computation of a shortest path from s to t :

Π(s, t) = exp

(
ln

(
max

P :st-path

∏
a∈P

πa

))
(3.3)

= exp

(
max

P :st-path

∑
a∈P

ln(πa)

)
(3.4)

= exp

(
− min

P :st-path

∑
a∈P

− ln(πa)

)
(3.5)

where
(
minP :st-path

∑
a∈P − ln(πa)

)
is the length of the shortest path from s to t

using − ln(πa) as the length of the arc a . Since 0 ≤ πa ≤ 1 for each a ∈ A , the
weights − ln(πa) are positive. Thus, given a source vertex s ∈ V , the Dijkstra
algorithm [35] allows to compute the probabilities of connectivityΠ(s, t) for all
t ∈V in one run of time complexity O(|E |+ |V | log |V |) .

The ECA indicator [108] is a reformulation of the PC indicator such that:

EC A (G) =
√

PC num (3.6)

where PC num is the numerator of the PC formula (3.1),

28

3 Quantify landscape connectivity – 3.2 The Probability of Connectivity (PC)
indicator

PC num (G) =
∑
s∈V

∑
t∈V

(
ws ·wt ·Π(s, t)

)
. (3.7)

Since the area containing the landscape under study, W , is a constant term and
the square root is a monotonically increasing function, PC and ECA are equivalent
in the sense that, given two landscape graphs G and H , PC (G) > PC (H) if and only if
EC A(G) > EC A(H) . The ECA indicator is often used to make the resulting value more
meaningful since EC A(G) is an area value that actually corresponds to the area of a
single habitat patch that would have the same PC value as PC (G) .

In this thesis we focus on the PC indicator, but since it is the basis for many other
connectivity indicators, all our results can be applied, with minor modifications, to its
derived indicators such as ECA [108], PFC [126], ProtConn [107], ConnIntact [125] and
DWC [90].

3.2.2 Properties
Given a landscape graph G = (V , A, w,π) the following properties hold :

Lemma 3.1. Increasing the quality wu of a vertex u ∈V strictly increases PC (G) .

Proof. The PC formula is the sum, for every pair of vertices s and t , of the products
ws · wt ·Π(s, t) where all terms are positive, the increase of wu can therefore not
make PC (G) decrease. However, wu appears in the product wu ·wu ·Π(u,u) where,
by definition, Π(u,u) = 1. Supposing wu is about to be increased by δ > 0, PC (G)
increases then at least by δ2 +2wuδ .

Corollary 3.2. Decreasing the quality wu of a vertex u ∈V strictly decreases PC (G) .

Lemma 3.3. Increasing the probability πa of an arc a ∈ A can only increase PC (G) .

Proof. Let a = (u, v) and suppose πuv is about to be increased to π+
uv >πuv . For every

pair of vertices s and t whose original probability of connectivity isΠ(s, t) , we can com-
pute their new *probability of connectivity asΠ+(s, t) = max

{
Π(s, t),Π(s,u) ·π+

uv ·Π(v, t)
}

thusΠ+(s, t) ≥Π(s, t) . Since the PC formula is the sum, for every pair of vertices s and
t , of the products ws ·wt ·Π(s, t) where all terms are positive, the increase of πa can
only make PC (G) increase.

Corollary 3.4. Decreasing the probability πa of an arc a ∈ A can only decrease PC (G) .

Remark. Increasing the probability πa of an arc a may not increase PC (G) .
The two graphs G and H , described by Figure 3.3 have the same value of PC, i.e.,

assuming wa = wb = wc = 1, PC (G) = PC (H) = 1.7, despite the fact that the arc (a,c)
has a higher probability in H than in G . Indeed, in both cases the most probable path
from a to c passes by b and has a probability ofΠ(a,c) = 0.5 ·0.8 = 0.4.

29

3 Quantify landscape connectivity – 3.2 The Probability of Connectivity (PC)
indicator

a c

b

0.5

0.2

0.8

(a) G

a c

b

0.5

0.3

0.8

(b) H

Figure 3.3: Two graphs, G (a) and H (b) with H being obtained from G by increasing
the probability of the arc (a,c) from 0.2 to 0.3.

Lemma 3.5. If two vertices s and t of G are connected with a probability of connectivity
Π(s, t) =Π(t , s) = 1 then PC (G) = PC (H) where H = (V ′, A′, w ′,π′) is the graph obtained
from G by contracting the vertices s and t , i.e., replacing them by a vertex u such that
V ′ = (V \ {s, t })∪ {u} with w ′

u = ws +wt and w ′
v = wv for any v ∈V ′ \{u} , and replacing

the occurrences of s and t in the arcs of A by u .

Proof. Since, in G , s and t are connected with probability 1, their probability of con-
nectivity to all the other vertices of the graph are the same, i.e., ΠG (s, v) = ΠG (t , v)
for any v ∈ V , furthermore contracting them does not affect the probability of con-
nectivity between any of the remaining vertices. Let S = V \ {s, t } be the set of ver-
tices that G and H have in common, we have ΠG (x, y) = ΠH (x, y) for any pair of
vertices x, y ∈ S , and ΠH (u, v) = ΠG (s, v) = ΠG (t , v) for any vertex v ∈ S . Let F G

v =∑
x∈S wx · (ΠG (x, v)+ΠG (v, x)) such that wv ·F G

v is the contribution to PC (G) of all the
pairs formed by v and a vertex of S , clearly F H

u = F G
s = F G

t . We can then reformulate
PC (G) as follows:

PC (G) =
∑
v∈S

(
wv ·F G

v

)+ws ·F G
s +wt ·F G

t + (ws)2 + (wt)2 +2 ·ws ·wt (3.8)

=
∑
v∈S

(wv ·Fv)+w ′
u ·F H

u + (w ′
u)2 (3.9)

= PC (H) (3.10)

3.2.3 Interpretation
In the article introducing the PC indicator [109] as well as in other articles [14, 110],
the authors give the idea of a probabilistic interpretation of this indicator as "the prob-
ability that two points randomly placed within the landscape fall into habitat areas
that are reachable from each other". In this section, we develop this interpretation
further, as it seems to explain many of the good properties of the PC indicator.

30

3 Quantify landscape connectivity – 3.2 The Probability of Connectivity (PC)
indicator

Let W be the area of a rectangle containing the landscape under study. We consider
a stochastic process that consists in choosing two points p and q uniformly at random
in the rectangle. The indicator PC is the expected value of a random variable equal to
0 if either p or q does not belong to habitat areas andΠ(s, t) if p belongs to the habitat
of s and q belongs to the habitat of t (recall thatΠ(s, t) = 1 if s = t). Let wu denote the
quantity of available habitat in the region u. Since the probability that p belongs to
the habitat of u is wu

W
and the events p ∈ s and q ∈ t are independent, by linearity of

expectation, PC can be expressed as follows:

PC (G) =
∑
s∈V

∑
t∈V

(ws

W
· wt

W
·Π(s, t)

)
. (3.11)

One important assumption of this interpretation is that two points belonging to the
same region, i.e., vertex, are assumed to be connected with probability 1. Although
the travel costs of an individual can easily be considered lower in a habitat patch than
in the matrix, this can be a rather extreme hypothesis when the regions described by
the vertices of the graph are very large with respect to the dispersal capability of the
species considered. On the other hand, it seems a reasonable approximation in highly
fragmented landscape where habitat patches are small.

3.2.4 Empirical support and limitations
While being widely used in practice [72], metrics based on least-cost paths, such as
PC, are sometimes criticized for their ecological interpretation and relevance. Indeed,
in most of the least cost path models, the connectivity between two habitat patches is
assessed only with the path that connect these patches and whose total resistance to
movement is minimum. This leads to two drawbacks: (1) individuals are assumed to
have knowledge of the paths presenting the least movement costs among the land-
scape and (2) PC does not promote the presence of multiple disjoint paths between
habitat patches.

To remedy these problems, other measures have been proposed. For example, the
resistance distance [88] between two vertices u and v of a graph takes account for all
the possible paths between these two vertices. The effective resistance between u and
v is linked to the expected number of steps needed in a random walk to go from u
to v and back to u by selecting randomly an incident edge to cross at each step. This
can be seen as the opposite hypothesis of (1) where individuals are assumed to have
absolutely no knowledge of the structure of the landscape. However, some studies have
shown that depending on the studied species the least cost path approach product
better results, i.e., that sticks more to the reality, than the effective resistance model.
For example, least-cost path approaches perform slightly better than circuit theory for
predicting the migration routes of elks [84] and, more generally, to predict immigration
rates at the patch scale [103]. In [65, 87], the authors suggest that least-cost path
methods and circuit theory ones should be used conjointly to find a compromise
between the two extreme hypothesis they carry.

31

3 Quantify landscape connectivity – 3.3 Modelling landscapes for the PC indicator

Figure 3.3 provides an example of the drawback pointed by (2). While the arc (a,c)
has a higher probability in the graph of 3.3b than the one in 3.3b, the PC values of the
two graphs are equal since the arc (a,c) does not belong to any least cost path. We can
nevertheless argue that an ideal connectivity indicator should be prioritizing the case
3.3b according to the well accepted definition of landscape connectivity: "the degree
to which the landscape facilitates or impedes movement among resource patches"
[117]. In [102], the authors propose two approaches that evaluate the connectivity
between two patches based on many of the shortest paths connecting them.

As the saying goes, "all models are wrong, but some are useful" [16], and despite
these criticisms, the PC indicator has not been formally refuted and has received
encouraging empirical support [99, 10] while being one of the most used connectivity
indicator [62].

3.3 Modelling landscapes for the PC indicator
As with any quantitative model, assessing the connectivity of a habitat network based
on its graph representation critically relies on the input data and the modeling process.
This includes characterizing the regions of the landscape that would be represented by
the vertices of the graph, weighting these regions according to their ecological quality
and modelling the connections between these regions, i.e., determining which pairs of
vertices should be linked by arcs and the probabilities to be associated with these arcs.
In this section, we present the two most commonly used techniques for representing
ecological landscapes with graphs, namely raster-based and patch-based modeling.
While the PC indicator can be applied to both [109], these two models share many
differences that need to be addressed. We argue that any patch-based model can be
viewed as a simplification of a raster-based one and that raster-based models allow for
a more accurate modeling of the response of individuals to the landscape structure at
the expense of higher computation time. The goal here is not to provide an exhaustive
guide for modeling ecological landscapes – this is far beyond the scope of this thesis –
but rather to give more precise ideas of what can be meant by graph representation of
an ecological landscape when considering the PC indicator.

3.3.1 Raster-based models
Raster data is ubiquitous in all domains where geospatial information are needed.
Its basic principle is to subdivide the continuous 2D terrain in cells that are usually
squares. The parallel can be made with a camera sensor where the incident light
represents the 2D terrain and is divided in pixels. Each cell is then associated with a
value, in our analogy, a color, that is the average value of the infinitely many 2D points
that lie within the cell. We define a raster as a way of subdividing the 2D plane in
regular cells. Thus, there are many kinds of rasters, with different cells shapes. For the
moment, we consider a standard raster whose cells are square and its associated raster
graph where each vertex represents a cell and each cell is linked to its four adjacent

32

3 Quantify landscape connectivity – 3.3 Modelling landscapes for the PC indicator

neighbors with reciprocal arcs, as depicted in Figure 3.4. From this point, we have

(a) (b)

Figure 3.4: Square raster grid (a) and its associated graph (b)

to determine for each cell the weights of its corresponding vertex and of its incident
arcs. Obtaining accurate and reliable data on the biological response of individuals to
the landscape structure is complicated, time-consuming and expensive. In general,
the weight wu of a cell u is defined as the area of potential habitat within it. Indeed,
habitat quality and habitat area seems to be the most important properties explaining
population size [64]. The probability πuv of an arc (u, v) is assessed by a function of
the center to center distance between the cells u and v . A basic method for estimating
this probability is given in the paper introducing the PC indicator [109] as:

πuv = exp(−α · luv) , (3.12)

where luv = ∥u − v∥ is usually the center-to-center euclidean distance between the
cells u and v and α is a constant used to fit the function to the relationship between
the travel distance and the dispersal probability of this species. The constant α can be
calculated:

α= − ln(0.5)

θ
, (3.13)

with θ being the median dispersal distance of the target species. Two cells s and t
whose center-to-center distance is θ would then be connected with an arc (s, t) of
probability:

πst = exp(−α ·θ) = 0.5, (3.14)

that is, starting from s , half of the individuals would not make it to t while the remain-
ing half would succeed and continue to disperse.

With additional data, such as the predominant soil type of each cell, it is possible
to refine the calculation of both wu for each vertex u and πuv for each arc (u, v) . For
example, the habitat quality of a cell u can be assessed by taking into account the
land cover and the spatial arrangement of the habitat [5]. Indeed, the edge and the
interior of the forest do not present the same attractiveness for some species. Similarly,
the estimation of the probability πuv can be refined by taking into account not only
the distance between the cells u and v but the movement cost that an individual
would pay to get from u to v . In this case, luv is called the effective distance between

33

3 Quantify landscape connectivity – 3.3 Modelling landscapes for the PC indicator

u and v and is computed from the center-to-center euclidean distance between the
cells multiplied by a constant r that depends on the soil types of u and v , and the
way in which the species under study responds to them, i.e., luv = r · ∥u − v∥ . Since
πuv = exp(−α · luv) , this is equivalent to defining a value of α for each type of soil.
However, this approach require knowing these values of α . While these data can
be accessible in other published works, some frameworks go further and probe the
environment to obtain it. For example, in the article introducing the Density Weighted
Connectivity (DWC) metric [90], which is very close to the PC one, the authors use
spatial capture-recapture models to estimate both the quality of the cells and the
probabilities of the arcs based on the fluxes of individuals across the landscape.

The choice of a raster and of its associated graph can have a strong impact on the
computed value of the PC indicator. Indeed, the distances in the square raster with
4-neighborhood of Figure 3.4 does not correspond exactly to the euclidean distance.

DEFINITION BOX 5: SPANNER GRAPH

Given an undirected graph G = (V ,E) where each edge e ∈ E has a weight le and
a real number r ≥ 1, a r -spanner of G is a graph H = (V ,F) with F ⊆ E such that,
for any pair of vertices s, t ∈V , the distance between s and t in H is at most r
times the distance between s and t in G :

∀s,t∈V dH (s, t) ≤ r ·dG (s, t) , (3.15)

where dG (s, t) is the length of the shortest path between s and t in G using le as
the length of the edge e . The smallest r such that H is a r -spanner of G is called
the stretch factor of H . This concept extends well to the case where each edge
is associated with a probability πe , and we are interested to the most reliable
paths between pairs of vertices. In this case, H is a r -spanner of G if and only if:

∀s,t∈VΠH (s, t) ≥ (
ΠG (s, t)

)r , (3.16)

whereΠG (s, t) is the probability of the most reliable path from s to t in the graph
G . This definition follows the equivalence between shortest paths and most
reliable paths that we addressed in the Definition Box 4 since exp(r · ln(π)) =
(π)r .

Thus, in practice, most of the studies employing raster-based modelization uses the
square raster with 8-neighbohood, in which each square cell is connected to its eight
surrounding neighbors, since its stretch factor for the euclidean distance is closer to
1, see Figure 3.5. We found only one study [115] that uses the hexagonal raster to
model landscapes and assess the connectivity of landscapes with the PC indicator.
The hexagonal raster has the advantage of having 6 times more arcs than vertices
which places it right between the square rasters with 4 and 8 neighborhoods that
have, adequately, 4 and 8 times more arcs than vertices, while having a stretch factor

34

3 Quantify landscape connectivity – 3.3 Modelling landscapes for the PC indicator

s u

t

(a) square raster with
4-neighborhood

s u

t

(b) hexagonal raster

s u

t

(c) square raster with 8-
neighborhood

Figure 3.5: Worst cases illustrating the stretch factors of different raster graphs for the
euclidean distance. The shortest st-paths in these graphs are represented
in red while the euclidean distance is represented in green by the segment
st . The square raster with 4-neighborhood (a) has a stretch factor of

p
(2) ≃

1.41, the hexagonal raster (b) stretch factor is 2p
3
≃ 1.15 and the square

raster with 8-neighborhood (c) is 1+p(2)p
5

≃ 1.08.

smaller than the average of the two square rasters. The stretch factor for the euclidean
distance of a raster graph can be interpreted as a distortion of the probabilities of
connection. Indeed, assuming that the probability of each arc (u, v) is assessed by the
function exp(−∥u − v∥) , the probability of connection between two cells s and t in a
raster of stretch factor r , that is normally defined as exp(−∥t − s∥) , can be as low as(
exp(−∥t − s∥)

)r . Figure 3.6 shows the worst cases of probability distortion that can
happen in those raster graphs.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

original probability

d
is

to
rd

ed
p

ro
b

ab
il

it
y

x
p

2

x
2p
3

x
1+

p
2p

5

x

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

original probability

d
is

to
rt

io
n

ra
ti

o

square grid 4-neighborhood
hexagonal grid

square grid 8-neighborhood
no distortion

(b)

Figure 3.6: Worst cases of probability distortion in raster graphs.

35

3 Quantify landscape connectivity – 3.3 Modelling landscapes for the PC indicator

We believe that the hexagonal raster is an excellent compromise between the square
rasters with 4 and 8 neighborhoods in terms of number of arcs and stretching factor
but that square rasters are preferred for ease of implementation. Indeed, a square
raster can easily be represented by two-dimensional arrays whereas it is less trivial for
a hexagonal raster.

3.3.2 Patch-based models
In the patch-based model, the vertices of the graph correspond exactly to the patches
of habitat of the landscape, i.e., the contiguous area of habitat. Each arc (u, v) then
represents the ability for an individual to travel directly from a patch u to a patch v
with a success probability of πuv . Like raster-based models, in the absence of more
data, the weight wu of a vertex u is often set to the area of the corresponding habitat
patch. However, these weights can also be assessed with additional data, like spatial
capture-recapture models [90], or by taking into account the land cover and the spatial
arrangement of the habitat [5]. Again, the probability πuv of an arc (u, v) can be
assessed with the formula

πuv = exp(−α · luv) , (3.17)

where, this time, luv denotes the border-to-border distance between the patches u
and v [109]. Thus, in this model, the inner patch movements are assumed to be "free",
i.e. they are not accounted in the movement costs of the individuals, only the costs
incurred by the matrix are accounted for. Arc probabilities can also be refined by
accounting for the heterogeneity of the matrix. For example, a raster model can be
used to compute the probabilities of the arcs [1, 41]. This is equivalent to creating a
raster model where each cell has a positive weight if it belongs to habitat and a null
weight if it belongs to the matrix, and every two adjacent cells corresponding to a
habitat area are linked with reciprocal arcs of probability 1. Indeed, by Lemma 3.5,
we can then contract all the cells corresponding to a contiguous habitat into a single
vertex representing the habitat patch and whose weight is the sum of those of the cells,
i.e., the total habitat area. The probability of an arc linking two patches in the patch-
based model is then defined by the most reliable path between the corresponding
vertices of this raster-based model.

Remark. The PC value between these two models would be essentially the same since
only the vertices with positive weights are accounted in the sum of the PC formula.

There is still to decide which vertices must be linked by arcs in a patch-based model.
Given a set of patches of the landscape, the simplest graph representation is the
complete graph where every pair of patches u and v are connected with reciprocal
arcs (u, v) and (v,u) . However, for n patches, the complete graph contains O(n2) arcs
which can quickly become intractable for graphs with few thousand of vertices, even
for simple graph algorithms. Moreover, since inner patch movements are considered
"free", many of the arcs of the complete graph would not be used in most reliable paths
and probably do not correspond to actual movements of individuals. To overcome
this problem, it is interesting to try to remove a maximum of arcs from the complete

36

3 Quantify landscape connectivity – 3.3 Modelling landscapes for the PC indicator

graph while keeping the distances between pairs of vertices as close as possible to the
original ones. In fact, finding methods to construct a graph on a set of arbitrary points
in 2D whose shortest path distances approximate those of the euclidean distance
is a well studied topic of research in graph theory. Such graphs are called geometric
spanners.

DEFINITION BOX 6: GEOMETRIC SPANNERS

A geometric t-spanners is a graph G = (V ,E) whose vertices correspond to
points in the 2D plane, i.e., V ⊆R2 , and where each edge has a length le such
that the shortest path distances in G approximate the euclidean distance as
follows:

∀u,v∈V dG (u, v) ≤ t · ||v −u|| , (3.18)

where dG (u, v) is the length of the shortest path between u and v in G using
le as the length of the edge e and ||v −u|| is the euclidean distance between u
and v . Geometric spanner graphs are well studied [91] with the objective of
obtaining good trade-offs between graph size and stretch factor. Indeed, for
points in general position, i.e., no 3 of them are aligned, the complete graph is
the only geometric spanner with a stretch factor of t = 1.
In [15], the authors presents a review of the types of planar graphs that are
geometric spanners. While a complete graph possesses O(|V |2) edges, planar
graphs are guarantied to have no more than (3 · |V |−6) edges which is O(|V |) .
This result is a corollary of the famous Euler polyhedron formula [80]. The
most common plane geometric spanner in the literature are types of Delaunay
triangulation. For example, the triangle distance (TD) Delaunay triangulation is
long known for approximating the euclidean distance in two dimensions with a
stretch factor of at most 2 [97]. Afterwards, it was proved that the standard De-
launay triangulation approximates the euclidean distance with a stretch factor
of at most 2.42 [73] and, more recently, this upper bound has been improved to
1.998 [130].

Two graph structures are typically used to represent landscape with the patch-based
model [50]. The Complete Thresholded Graph (CTG) is obtained from the complete
graph by removing the arcs whose probability is below a certain threshold γ that
corresponds to the maximum distance that organisms can travel. The choice of γmust
be checked by expert opinion since a value of γ that is too low will remove too few arcs
from the graph while a value that is too high would disconnect the graph, artificially
isolating some patches from the others. Therefore, the CTG of an arbitrary graph G is
not guarantied to be a spanner. The Minimum Planar Graph (MPG), introduced in
[41], is the other main structure used for patch-based models. The authors present
the MPG as a generalization of the Delaunay triangulation. Indeed, since the distance
between two patches is often defined as a function of the border-to-border distance
instead of the center-to-center one, patches does not correspond to points in 2D.

37

3 Quantify landscape connectivity – 3.3 Modelling landscapes for the PC indicator

Thus, the Delaunay triangulation can not be directly be computed on a set of patches.
To our knowledge, there are no known upper bounds on the stretch factor of the
MPG with respect to the chosen distances between the vertices. But, since the MPG
is a generalization of the standard Delaunay triangulation, its stretch factor (which
is defined by the worst case) is not better than those of the Delaunay triangulation.
However, in most practical cases, it seems to provide a good approximation of the
complete graph [41].

3.3.3 Discussion
The first major difference between raster and patch-based models is the number of
vertices of the resulting graph. In a raster-based model, the number of vertices is
determined by the type of raster adopted and its resolution, i.e. the chosen cell size,
whereas, in the patch-based model there are as many vertices as habitat patches.
Consequently, raster based models are generally many order of magnitude bigger than
patch-based models in terms of number of vertices. For this reason, most studies
that run simulations on the graph use patch-based models for their computational
efficiency. However, this larger size of the raster-based models comes with a greater
expressiveness. Indeed, since the matrix is entirely represented in raster-based graphs,
it is much easier to simulate changes in the matrix that may affect the probability of
connection between many pairs of habitats areas and to fully account for landscape
heterogeneity, which proved insufficient in the early patch-based models [118]. Raster-
based models have also the advantage of sticking more to the interpretation of the
PC indicator given in Section 3.2.3. Indeed, in patch-based models, inner patches
movements are assumed to have absolutely no cost for individuals which can lead to
overestimating the landscape connectivity in the case of very large patches of habitat.
Patched-based models can be seen as simplifications of raster-based models in order
to make them more computationally tractable at the expense of losing expressiveness
about the matrix and making some assumptions about the graph structure (CTG vs
MPG) and the inner patch movements.

Overall, the trade-off between raster-based and patch-based models is driven by the
need to represent the heterogeneity of the landscape, particularly its matrix, and the
constraints in computational resources. Our advice would be to prefer raster-based
models as soon as the computational requirements are reasonable. Otherwise, two
modifications can be done. First, increasing the size of the cells can significantly
reduce the number of vertices in the model, but the incurred loss of resolution can
make the model underestimate the impacts of thin barriers like roads. Then, if the
inner patch movements can be neglected, contracting the contiguous cells of habitat
into a single vertex, as described previously, is an option to greatly reduce the number
of vertices pairs contributing in the PC formula while keeping a representation of the
whole matrix. We adopted this technique for the Aix case study in our experiments of
Chapter 7.

While the goal of this thesis is to improve the solving methods for optimizing the PC
indicator in the general case, our contribution in Chapter 5 is even more interesting

38

3 Quantify landscape connectivity – 3.3 Modelling landscapes for the PC indicator

for improving the computational tractability of raster-based models since it allows to
automatically simplify the parts of the landscape whose contribution to the PC are
always the same, regardless of the landscape improvements selected.

39

4 A Mixed Integer Linear
Programming approach for
optimizing PC

Table of contents

4.1 Problem Statement . 40
4.2 State of the art . 42
4.3 Complexity results . 44

4.3.1 NP-hardness . 46
4.3.2 Inapproximability . 48

4.4 A MILP formulation for solving BC-PC-Opt 51
4.4.1 A Linear Program to compute PC 51
4.4.2 MILP formulation for SAO-BC-PC-Opt 55
4.4.3 Extension to BC-PC-Opt . 56

4.5 Preprocessing the MILP formulation . 57
4.5.1 Reducing the size of the graph . 57
4.5.2 Improving linear relaxation bounds 63

One of the key issues for which landscape connectivity indicators have been used
in the last years is to help conservation practitioners take the most effective and
cost-efficient actions to conserve, restore or recreate the habitat patches or ecological
corridors that preserve or enhance landscape connectivity [5]. This often translates
into identifying the set of vertices or arcs that optimally maintains a good level of
connectivity. In this chapter we first introduce the Budget-Constrained PC Optimiza-
tion problem (BC-PC-Opt), that we are concerned with, in Section 4.1, see how it fits
in the state of the art in Section 4.2, give difficulty and inapproximability results in
Section 4.3 and finally present a mixed integer formalization for solving it efficiently
in Section 4.4.

4.1 Problem Statement
For the BC-PC-Opt problem, we give a formulation that could deal with both patch-
based and raster-based models as well as address restoration or conservation prob-
lematics. The idea is to have a landscape graph G , a setΦ of options and a budget β .

40

4 A MILP approach for optimizing PC – 4.1 Problem Statement

Each option corresponds to either a conservation or restoration action whose effects
can be modeled by increasing the weights of some vertices and arcs of the graph and
for which we have an estimation of the cost. The BC-PC-Opt problem then consists in
finding the best combination of options fitting the budget in order to maximize the
PC of the resulting landscape:

BC-PC-Opt
Input: A landscape graph G = (V , A, w,π) , a budgetβ ∈R+ and a set options

Φ such that each option i ∈ Φ is associated with a cost ci ∈ R+ , a
weight w i

u ∈R+ for each vertex u ∈V and a probability πi
a ∈ [πa ,1]

for each arc a ∈ A .
Output: A subset of options S ⊆ Φ of total cost at most β that maxi-

mizes PC (G ′ = (V , A, w ′,π′)) , where w ′
u = wu +∑

i∈S w i
u and π′

uv =
max

{
πuv , maxi∈S π

i
uv

}
.

Interestingly, this problem is relevant both when the goal is to restore existing
landscape elements or when the goal is to identify landscape elements that are at risk
of being degraded and need to be protected, while ensuring the highest possible PC
value.

In the case of restoration, G is the landscape graph representing the current land-
scape, Φ is the set of restoration options and the realization of an option i ∈ Φ is
modeled by increasing the weight of each vertex u ∈V by w i

u and increasing the prob-
ability of each arc (u, v) ∈ A to πi

uv . In practice, the impacts of restoration options are
local and very unlikely to affect all the vertices or all the arcs of the graph. For each
vertex u ∈V (resp. arc a ∈ A) that is not affected by an option i ∈Φ , its corresponding
weight is simply set to w i

u = 0 (resp. πi
a = πa). However, we allow many options to

impact the same vertex or arc, in which case we consider that the increases in weight
of a vertex adds up whereas the increases in probability of an arc are concurrent and
that only the maximum value counts. To model the cumulative improvement of an
arc (u, v) by two options i and j , we can replace (u, v) with two arcs (u, x) and (x, v)
where the option i improves the probability of (u, x) and the option j improves those
of (x, v) . This requires adding an intermediary vertex x to the graph such that wx = 0
and πuv =πux ·πxv .

In the case of conservation, G = (V , A, w,π) represents the landscape as it would
be if no conservation action is taken, i.e., if all elements subject to degradation are
effectively degraded and Φ is the set of conservation options. The realization of an
option i ∈Φ corresponds to preventing the weight of each vertex u ∈V from decreasing
by w i

u and the probability of each arc a ∈ A from dropping below πi
uv . Let w u and πa

denote the current weights, i.e., before degradation, of each vertex u ∈V and each arc
a ∈ A , such that w u ≥ wu and πa ≥πa . If all potential degradation can be prevented
by the conservation option, we have:

41

4 A MILP approach for optimizing PC – 4.2 State of the art

w u = wu +
∑
i∈Φ

w i
u (4.1)

and

πa = max

{
πuv , max

i∈Φ

(
πi

uv

)}
. (4.2)

Solving the BC-PC-Opt problem in this case amounts to finding the set of conserva-
tion options S ⊆Φ that guarantees the highest PC value if all the landscape elements
that risk degradation and are not protected, i.e. those concerned by the optionsΦ\ S,
are indeed degraded. The restoration and conservation cases are thus equivalent,
given that they do not start with the same state of the graph.

Concrete instances are described in Chapter 7.

4.2 State of the art
Although, to our knowledge, the BC-PC-Opt problem has never been formalized like
this, its scheme can be applied to many studies dealing with conservation or restora-
tion problematics. One of the most typical workflows, widely applied by conservation
practitioners, is to represent the landscape with a patch-based model, assess its con-
nectivity using metrics such as the PC, and perform simulation experiments on the
graph to associate with each patch, i.e., vertex, the amount by which its removal, i.e.,
vertex deletion, affects the PC, namely its relative contribution to the PC [14, 115]. This
quantity, often denoted dPCk for a given patch k , is then used to rank the patches
of the landscape by order of importance and establish priorities for conservation or
restoration. The method of ranking patches based on the effect of their removal on
a connectivity indicator has been used since [121], but is known to overlook cumu-
lative effects such as potential synergistic effects or redundancies. For example, in
Figure 4.1a, removing the patches b or c makes PC (G) decrease by disconnecting the
patches a and d such that dPCb = dPCc = 2, but removing both patches does not
make PC (G) decrease more than that. In this case the two patches act in synergy
and are contributing to the PC only if both are selected in the conservation plan. On
the other hand, in Figure 4.1b the patches g and h are redundant since they both
provide a path from e to f of probabilityΠ(e, f) = 1. Thus, the deletion of only g or h
does not decrease PC (H) , i.e., dPCg = dPCh = 0 although the removing both patches
does decrease PC (H) . Therefore, dPCk can either overestimate or underestimate the
contribution of a patch k to the PC of the final solution and relying on these values for
decision-making can lead to solutions that are more expensive or less beneficial to
the PC than the optimal solution. Some studies tried to overcome this limitation by
computing the dPC for tuples of n patches instead of single patches [104, 98]. This
method, called multi-node approach, as opposed to the single-node approach, is how-
ever more computationally demanding since it requires computing the PC for |V |!

(|V |−n)!
subsets of patches rather than for each patch, which rapidly becomes impractical for
landscape with |V | ≥ 20 and n = 5 [104]. In [51] and [46], the authors show that the

42

4 A MILP approach for optimizing PC – 4.2 State of the art

dPC method can not only be used to identify the most important habitat patches in
the current landscape, but also to assess the potential gains that can be achieved by
reforesting certain regions of the landscape, i.e., adding habitat. In this case, ifΦ is the
set of regions of the landscape that can be reforested, dPCi denotes the increase in
PC achieved by reforesting the region i ∈Φwhich can either be modeled by adding a
new vertex to the graph or by increasing the weight of an existing vertex. The authors
of [46] then propose a simple greedy algorithm for selecting N regions ofΦ in order to
maximize the PC. This algorithm consists in N steps where, at each step, it computes
dPCi for each remaining region i ∈Φ , adds the region with the highest dPC to the
solution and update the landscape graph accordingly. Such greedy algorithms also
struggle to take into account all the cumulative effects of the decisions and can provide
arbitrarily bad solutions. We go into more details about this in Chapter 6.

a b c d

g

h

(a) G

e

g

h

f

(b) H

Figure 4.1: Examples of cumulative effects: (a) is a landscape graph G on four vertices
a , b , c and d with wa = wd = 1 and wb = wc = 0. (b) is a landscape graph
H on four vertices e , f , g and h with we = w f = 1 and wg = wh = 0. In
both cases, all the arcs have a probability of 1.

However, the problem addressed by [51], i.e., selecting N regions of the landscape
for reforestation in order to maximize the PC, is actually a special case of BC-PC-Opt.
In this case, all the vertices and arcs that would be added to the graph to model
the reforestation of some regions are already part of the base graph but with null
weights, i.e., 0 for the weights of the vertices and the probabilities of the arcs. Each
region that can be reforested then corresponds to a restoration option that consists in
increasing the weight of the corresponding vertex and the probabilities of its adjacent
arcs to their nominal values. Solving the BC-PC-Opt problem consists in finding the
best combination of reforestation options to maximize the PC, all cumulative effects
considered.

Only few studies have explored the search for an optimal or a guaranteed approxi-
mate solution to maximize landscape connectivity. In most cases these studies focus
on dendritic networks such as rivers where the landscape is represented by a tree
graph such as in [75, 113]. We only find two articles that address problems directly
applicable to the optimization of the PC indicator. In [129], the authors propose a
polynomial time approximation scheme for the bidirectional barrier removal problem
in river network. When applied to the optimization of the PC, this problem is a special
case of BC-PC-Opt, that we later define as SAO-BC-PC-Opt, when the landscape graph

43

4 A MILP approach for optimizing PC – 4.3 Complexity results

is restricted to be a tree. For any real ϵ> 0, their dynamical programming algorithm
with rounding allows to compute a (1−ϵ)-approximated solution in O(|V |8/ϵ) time.
More recently, [131] introduced a sampling method based on a mixed integer formula-
tion that is applicable to the same problem without requiring the graph to be a tree.
To our knowledge, this is the only linear programming formulation of SAO-BC-PC-Opt
for general graphs described in the literature. However, on its own, their mixed integer
formulation only approximates the PC because they used a standard shortest path
linear formulation to identify the most reliable path between each pair of vertices
s and t and a piecewise constant approximation to compute Π(s, t) from this path.
This formulation does not scale to landscape graphs with few hundreds of vertices, as
it requires at least |V |2 · |A| flow variables, |V |3 constraints and k ∗ |V |2 +|Φ| integer
variables, where k is the number of possible values for eachΠ(s, t) .

4.3 Complexity results
In order to be as general as possible concerning the improvements of a landscape
graph, the BC-PC-Opt problem is rather complicated, involving a lot of possibly
changing weights. In this section, we prove its NP-hardness and inapproximability
through the intermediary of two simpler derived problems, namely, the Single-Vertex-
Only (SVO) and the Single-Arc-Only (SAO) variants.

DEFINITION BOX 7: NP-HARDNESS

Two of the most fundamental questions underlying computer science are "What
problems can be solved by a computer?" and "How much time and memory
does it require?". Soon enough in this area of research, many complexity classes
were created in order to arrange problems by order of difficulty. The complexity
class P regroups the decision problems, i.e., whose answers are "yes" or "no",
that can be solved efficiently [23]. Here, efficiently means that, given a problem
A ∈ P , the time required to compute the solution of any instance I of A is at
most proportional to a polynomial of the number of symbols needed to describe
I , i.e., O(pol y(n)) where n is the size of the instance I . Another important class
of complexity is the class N P . A problem B is in N P if, for any instance J , we can
provide the solution with a proof of correctness that can be verified efficiently.
Clearly, P ⊆ N P , since any problem of P can be solved efficiently there is no
need for a proof, but, interestingly, the question "P = N P ?" remains open and
is considered the most important challenge of theoretical computer science.
The biggest step towards answering this question is the Cook-Levin theorem
[27, 78] proving that the Boolean Satisfiability (SAT) problem is N P-Complete.
A decision problem B ∈ N P is said to be N P-Complete if for any problem
A ∈ N P , we can efficiently transform an instance I of A into an instance J of
B such that solving J gives the solution for I . This transformation, called a

44

4 A MILP approach for optimizing PC – 4.3 Complexity results

polynomial reduction, is required to be time polynomial, which allows to chain
the reductions since pol y(pol y(n)) is also a polynomial. In this way, if SAT is
polynomially reducible to another problem of N P , this other problem is also
N P-complete. It is then only necessary to find a polynomial algorithm for any
of the N P-Complete problems to be able to claim that P = N P . Unfortunately
(or not [26]) such an algorithm has not yet been found and many consider its
existence very unlikely. N P-Hard [52] is the class of problems that are at least as
difficult as N P-Complete ones. An optimization problem is said to be N P-Hard
if its decision variant is N P-Complete. For example, given a maximization
problem A , the associated decision problem is "Given an instance I of A and a
value k , does I admit a solution of value at least k ?".

P

N P

N P-
Complete N P-Hard

(a)

P = N P

≃ N P-Complete
N P-Hard

(b)

Figure 4.2: Euler diagram for P , N P , N P-Complete and N P-Hard under the
hypothesis P ̸= N P (a) and under the hypothesis P = N P (b).

The bottom line is that N P-Hard problems are very unlikely to be solved effi-
ciently. In practice, some instances of any N P-Hard optimization problem may
require a time that is an exponential function of their size, which corresponds
to the need for testing all possible combinations to find the optimal solution.

DEFINITION BOX 8: POLYNOMIAL TIME APPROXIMATION ALGORITHMS

Since N P-Hard optimization problems are expensive to solve, research in this
field has moved to concede optimality in order to obtain algorithms that are
efficient but still guarantee the quality of their solutions to a certain extent.
Unfortunately, for some optimization problems, even approximation has turned
out to be difficult to achieve in polynomial time. Given a maximization problem
A , an α-approximation algorithm for A , with 0 ≤α< 1, is a time polynomial
algorithm that can associate to any instance I of A a solution y that has at
least α times the value of an optimal solution for I [122]. Symmetrically, for a
minimization problem α> 1 and an α-approximated solution is guaranteed to
be at most α times the optimal solution value. A problem admitting such an
approximation algorithm is said to be in the AP X complexity class. Similarly to
the N P class, AP X contains a class of problems that are "easy", namely PT AS

45

4 A MILP approach for optimizing PC – 4.3 Complexity results

which stands for Polynomial Time Approximation Scheme. An optimization
problem A is in PT AS if it admits an α-approximation algorithm for any α .

4.3.1 NP-hardness of SVO-BC-PC-Opt
The Single-Vertex-Only Budget-Constrained PC Optimization problem (SVO-BC-PC-
Opt) is a specialization of the BC-PC-Opt where each improvement option concerns
only the weight of a single vertex of the graph and each vertex corresponds to exactly
one improvement option.

SVO-BC-PC-Opt
Input: A landscape representation G = (V , A, w,π) , a budget β ∈ R+ and, for

each vertex u ∈V , a cost cu ∈R+ and a quality gain w+
u ∈R+ .

Output: A subset of vertices S ⊆V of total cost at most β that maximizes PC (G ′ =
(V , A, w ′,π)) , where w ′

u = wu +w+
u if u ∈ S and w ′

u = wu otherwise.

In this case, since the probabilities of the arcs are fixed, the probability of con-
nectivity Π(s, t) is known in advance for every pair (s, t) . This problem can then be
formulated as the following mixed integer quadratic program:

(SVO-BC-PC-Opt)

maximize
∑
s∈V

∑
t∈V

ys · yt ·Π(s, t)

subject to yu = wu +w+
u · xu u ∈V∑

u∈V
cu ·xu ≤β

xu ∈ {0,1} u ∈V

(4.3)

(4.4)

(4.5)

(4.6)

Proposition 4.1. SVO-BC-PC-Opt is N P-Hard.

Proof. We describe a polynomial reduction from Densest-k-Subgraph to SVO-BC-PC-
Opt to show the NP-hardness of the latter.

DEFINITION BOX 9: DENSEST-k-SUBGRAPH

Given a graph G = (V ,E) , the Densest-k-Subgraph problem (DkS) consists in
finding a subgraph of G on exactly k vertices whose number of edges is maximal.
This amounts to find a subset S ⊆ V of size k that maximizes |E(G[S])| which

46

4 A MILP approach for optimizing PC – 4.3 Complexity results

can be formulated as the following mixed integer quadratic program:

(Densest-k-Subgraph)

maximize
∑

{u,v}∈E
xu xv

subject to
∑

u∈V
xu = k

xu ∈ {0,1} u ∈V

(4.7)

(4.8)

(4.9)

This problem is known under various names in the literature [114] such as
the heaviest unweighted subgraph problem, the k-cluster problem or the k-
cardinality subgraph problem. It is N P-Hard on general graph and remains
N P-Hard on bipartite and chordal graphs. It is currently unknown if it exists a
constant approximation algorithm for the general case, but it has been shown
that, under the assumption N P ̸⊆⋂

ϵ>0 BPT I ME (2nϵ
) , there is no PT AS for this

problem [74]. However, it exists PT AS for specific cases like dense graphs [9]
and interval graphs [93]. Some articles also proposed algorithms with approxi-
mation ratio of |V |

2k [43] and |V |1/4 [13].

Let I be an instance of the Densest-k-Subgraph problem characterized by a graph
G = (V ,E) and an integer k . We assign to it the instance J of SVO-BC-PC-Opt charac-
terized by the complete directed graph H = (V , A, w,π) . Each vertex u ∈V has a base
quality of wu = 0 that can be increased by w+

u = 1 by paying the cost cu = 1. Each arc
a ∈ A has a probability of πa = 1

2 if it corresponds to an edge of G and a probability
of πa = 1

4 otherwise. The transformation from I to J can be done in O(|V |2) time for
creating the complete graph and adding the weights of vertices and arcs.

a

f

e

b

c

d

(a) G

a

f

e

b

c

d
1
2

1
4

(b) H

Figure 4.3: Example of the polynomial reduction from (a) the undirected graph G
of an instance of Densest-k-Subgraph to (b) the landscape graph H of
the corresponding instance of SVO-BC-PC-Opt where blue arcs have a
probability of 1

4 and red arcs a probability of 1
2 .

Let us adapt the mixed integer quadratic formulation of SVO-BC-PC-Opt (4.3) to the
instance J . Since in the instance J wu = 0 and w+

u = 1 for each u ∈V , we can directly

47

4 A MILP approach for optimizing PC – 4.3 Complexity results

use xu in the objective function and remove the constraint (4.4), by Lemma-3.1, we
can also assume that the budget inequality (4.5) is tight since all costs are unitary. This
gives:

maximize
∑
s∈V

∑
t∈V

xs · xt ·Π(s, t)

subject to
∑

u∈V
xu = k

xu ∈ {0,1} u ∈V

(4.10)

(4.11)

(4.12)

This reformulation shares the same variables and the same constraints with the
Densest-k-Subgraph one. It remains to show that their objective functions are positive
monotonic transformation of each other. Given that H is a complete graph and each
arc has either a probability of 1

2 or 1
4 , Π(s, t) =πst for every pair of distinct vertices s

and t since any path of at least two arcs has a probability of at most 1
2 · 1

2 . We can then
reformulate (4.10) as:∑

s∈V

∑
t∈V

xs · xt ·Π(s, t) =
∑

u∈V
x2

u +
∑

(s,t)∈A
xs · xt ·πst (4.13)

= k +2 ·α · 1

2
+2 ·

((
k

2

)
−α

)
· 1

4
(4.14)

= k +α+ k(k −1)

4
− 1

2
·α (4.15)

= 1

2

(
α+ k(k +3)

2

)
, (4.16)

where α is the number of edges in the subgraph induced by the purchased vertices
α= |{{u, v} ∈ E : xu = xv = 1}| . Since k(k+3)

2 is a constant term, we just reformulate the
objective function of SVO-BC-PC-Opt on instance J as an increasing function of α ,
completing the proof that SVO-BC-PC-Opt is NP-Hard.

Remark. Unfortunately, we were not able to derive inapproximability results for SVO-
BC-PC-Opt with this polynomial reduction from Densest-k-Subgraph. Indeed, the
constant term k(k+3)

2 can represent an arbitrary fraction of the optimal value since

0 ≤α≤ k(k−1)
2 .

Corollary 4.2. Since SVO-BC-PC-Opt is a special case of BC-PC-Opt, BC-PC-Opt is also
NP-Hard.

4.3.2 NP-hardness and inapproximability of SAO-BC-PC-Opt
The Single-Arc-Only Budget-Constrained PC Optimization problem (SAO-BC-PC-Opt)
is a specialization of the BC-PC-Opt where each improvement option concerns only

48

4 A MILP approach for optimizing PC – 4.3 Complexity results

the probability of a single arc of the graph and each arc corresponds to exactly one
improvement option.

SAO-BC-PC-Opt
Input: A landscape representation G = (V , A, w,π) , a budget β ∈ R+ and, for

each arc a ∈ A , a cost ca ∈R+ and an improved probability π+
a ≥πa .

Output: A subset of arcs S ⊆ A of total cost at most β that maximizes PC (G ′ =
(V , A, w,π′)) , where π′

a =π+
a if a ∈ S and π′

a =πa otherwise.

Remark. The SAO-BC-PC-Opt problem where each improvement option concerns
only a single arc is more general than the analogous problem on undirected graphs
where the improvement options would concern single edges. Indeed, Figure 4.4 shows
a construction for passing from the case where an edge {u, v} has a probability πuv

that can be improved to π+
uv to the case where the improvement of a single arc has the

same impact on the probabilities of connectivity between u and v ,Π(s, t) andΠ(t , s) .

u v
πuv or π+

uv

(a)

u

s1

s2

v1

1

πuv

π
+
uv

πvu

π +
vu

0 or 1

(b)

Figure 4.4: Example of the construction for reducing the version of the SAO-BC-PC-
Opt problem on undirected graphs to SAO-BC-PC-Opt.

We define the value of a solution to the SAO-BC-PC-Opt problem as the amount by
which the solution increases the PC value of the original landscape.

Proposition 4.3. SAO-BC-PC-Opt is N P-Hard and can not be approximated in poly-
nomial time with a constant factor greater than 1− 1

e ≃ 0.632, assuming P ̸= N P .

Proof. To prove the above proposition, we describe a polynomial reduction from the
Max-Coverage problem that preserves approximation.

DEFINITION BOX 10: MAX-COVERAGE

Given a set of elements E , a family F of subsets of E and an integer k , the
Maximum-Coverage problem consists in finding k sets of F that maximize the
number of covered elements |⋃S∈F S| . It can be formulated as the following

49

4 A MILP approach for optimizing PC – 4.3 Complexity results

integer program:

(Max-Coverage)

maximize
∑
e∈E

xe

subject to xe ≤
∑

S∈Fe

xS e ∈ E

∑
S∈F

xS ≤ k

xe ∈ {0,1} e ∈ E

yS ∈ {0,1} S ∈F

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

where Fe = {S ∈F : e ∈ S} is the set of sets containing e .
Max-Coverage is a NP-Hard problem which is widely taught in the context of
approximation algorithms. Indeed, the greedy algorithm consisting in iteratively
selecting a set covering the largest number of uncovered elements provides a
1− 1

e ≃ 0.632 approximation guaranty, i.e., the returned solution is guaranty
to cover at least 1− 1

e times the number of elements covered in the optimal
solution. Furthermore, it has been shown that, unless P = N P , no polynomial
algorithm can achieve a better approximation factor [42].

Let I be an instance of the Max-Coverage problem characterized by a set E , a family
F of subsets of E and an integer k . We assign to it the instance J of SAO-BC-PC-Opt
characterized by the landscape graph G = (V , A, w,π) , a budget k and, for each arc
a ∈ A , an improved probabilityπ+

a and a cost ca . There is a vertex in G for each element
e ∈ E , for each set s ∈F and an extra vertex t , i.e., V = E ∪F ∪ {t } . Each vertex u ∈V
has a weight wu = 1 if it corresponds to an element of E or if u = t and a weight wu = 0
otherwise. For each set s ∈ F , there is an arc (s, t) ∈ A with a default probability of
πst = 0, an increased probability π+

st = 1 and a cost cst = 1. Finally, there is an arc
(e, s) for each couple of element e ∈ E and set s ∈F such that e ∈ s with a probability
of πes = 1 which can’t be improved. Figure 4.5 shows the graph construction for an
arbitrary instance of Max-Coverage. This construction can be done in polynomial
time since there is O(|E |+ |F |) vertices and at most O(|E | · |F |) arcs.

In this construction, there is no path between the vertices of E since they have
no incoming arcs, and, without improvements, all the paths leading to t have a
null probability. The default value of the PC is then only the contribution of the
individual vertices, i.e., PC (G) = |E |+1. Now, it is easy to see that the only couples
of vertices that can contribute to the PC are the couples (e, t) where e ∈ E and that
we ·wt ·Π(e, t) = 1 if an arc (s, t) corresponding to a set s ∈F with e ∈ s is selected in
the solution and 0 otherwise. Finding the optimal solution for the instance J amounts
then to finding the set of arcs S which connects the maximum number of vertices of
E to t or, equivalently that maximizes |⋃(s,t)∈S s| . Thus, an optimal solution for the
instance J gives an optimal solution for the instance I of Max-Coverage, proving that

50

4 A MILP approach for optimizing PC – 4.4 A MILP formulation for solving
BC-PC-Opt

e1 e2 e3 e4

s1 s2

t

0 or 1

1

. . .

. . .

E

F

Figure 4.5: Example of the polynomial reduction from an instance of Max-Coverage
to the graph of the corresponding instance of SVO-BC-PC-Opt where blue
arcs have a probability of 1 and red arcs a default probability of 0 that can
be increased to 1 if selected in the solution.

SAO-BC-PC-Opt is NP-Hard.
As in the instance J the value of a solution S is exactly the number of covered

elements for the instance I , an approximation algorithm for SAO-BC-PC-Opt with a
constant factor r < 1 would give an approximation algorithm with factor r for the Max-
Coverage problem. Since it is well known that Max-Coverage can not be approximated
with a constant factor greater than 1− 1

e , under the assumption P ̸= N P , SAO-BC-PC-
Opt can also not be approximated with a constant factor greater than 1− 1

e .

Corollary 4.4. Since SAO-BC-PC-Opt is a special case of BC-PC-Opt, BC-PC-Opt cannot
be approximated with a constant factor greater than 1− 1

e ≃ 0.632, assuming P ̸= N P .

4.4 A MILP formulation for solving BC-PC-Opt
In this section we gradually introduce our mixed integer linear formulation for the
BC-PC-Opt problem. We first present a linear program allowing to compute the PC
of a given landscape graph, then describe a mixed integer linear formulation for the
SAO-BC-PC-Opt problem and show how to extend this formulation to the BC-PC-
Opt problem. Finally, we provide ways to preprocess the formulation in order to
significantly reduce its size and improve its resolution time in practice.

4.4.1 A Linear Program to compute PC

Since PC (G) = PC num(G)
W 2 and W 2 is a constant, see Section 3.2 for details, we only

need to compute PC num(G) . We decompose it as PC num(G) = ∑
t∈V wt · ft , where

ft =
∑

s∈V ws ·Π(s, t) , and describe how ft can be expressed as the optimal value of a
linear programming formulation of a generalized flow problem.

51

4 A MILP approach for optimizing PC – 4.4 A MILP formulation for solving
BC-PC-Opt

DEFINITION BOX 11: LINEAR PROGRAMMING

Linear Programming (LP), also called Linear Optimization, is a technique that
can be used to solve some optimization problems. An instance of Linear Pro-
gramming, called linear program, is characterized by a vector x ∈ (R+)n of n
unknown variables, a linear function c⊺x where the vector c ∈ Rn defines the
coefficients of the variables of x , i.e.

c⊺x =
n∑

i=1
ci · xi , (4.22)

and a set of m linear constraints often described by a matrix A ∈ Rm×n with
m rows and n columns, and a vector b ∈ Rm . Each linear constraint is then
represented by a row j ∈ {1, ...,m} of A and the entry b j such that

n∑
i=1

a j i · xi ≤ b j , (4.23)

where a j i is the entry positioned at row j and column i of A . Solving a linear
program therefore consists in finding values for the variables of x such that the
constraints are satisfied and c⊺x is maximum.

(P)

maximize c⊺x

subject to Ax ≤ b

x ≥ 0

(4.24)

(4.25)

(4.26)

Linear programming was a major breakthrough in the history of combinatorial
optimization. The first algorithm for solving it in most cases is attributed to
George Dantzig in 1947 [32] and called the simplex method. Although there
is no known variant of this algorithm whose time complexity is polynomial
in the worst case, it is very efficient in practice and is still used as the basis of
modern LP solvers. It is only in 1979 that Leonid Khachiyan showed that all
linear programs can be solved in polynomial time [49]. One important feature
of LP is that the set of feasible solution S = {x ∈ (R+)n : Ax ≤ b} is a convex
subset of Rn , i.e., for any solutions x, y ∈ S the solutions lying on the segment
[x, y] are also in S . Thus, LP belongs to the domain of convex optimization,
which often concerns polynomial problems, whereas non-convex optimization
problems are generally N P-Hard. A wide range of optimization problems can
be modeled in PL, including minimum cost flow problems such as shortest
path, maximum flow and the assignment problem [4]. We refer to [22, 83] for an
in-depth introduction to linear programming.

52

4 A MILP approach for optimizing PC – 4.4 A MILP formulation for solving
BC-PC-Opt

DEFINITION BOX 12: GENERALIZED FLOW PROBLEMS

Network flow problems arise in many fields that usually involve transportation.
Be it electricity, vehicles or nutriments, the network is modeled as a directed
graph where xuv usually represents the amount of flow moving from a vertex
u to a vertex v along the arc (u, v) . One elementary rule in such systems is
flow conservation, i.e., no losses or gains are incurred in the transport of flow
through vertices and arcs. Thus, the quantity of flow arriving at a vertex u from
its incoming arcs must equal the quantity of flow leaving u using its outgoing
arcs and if xuv units of flow are sent into the arc (u, v) from u , exactly xuv units
of flow are received into v from the arc (u, v) . Generalized flow problems are,
appropriately, a generalization of flow problems, where the conservation of
flow along the arcs is not assumed. Instead, each arc (u, v) is associated with a
multiplier µuv such that if xuv units of flow enters (u, v) from u , µuv · xuv units
of flow exit the arc at the vertex v . We recommend [2] for an introduction to
network flow problems.

The linear program (P) having ft as optimum value can be defined as follows.
Its decision variables are flow variables (φa)a∈A that represent the quantity of flow
entering each arc a ∈ A and a variable z that represents the total quantity of flow sent
to t . The objective of (P) is to maximize the value of the variable z . For each vertex
u ∈V , let δout

u be the set of arcs leaving u and δin
u the set of arcs entering u .

(P)

maximize z

subject to
∑

a∈δout
u

φa −
∑

b∈δin
u

πb ·φb ≤ wu u ∈V \ {t }

∑
a∈δout

t

φa −
∑

b∈δin
t

πb ·φb = wt − z

φa ≥ 0 a ∈ A

(4.27)

(4.28)

(4.29)

(4.30)

Constraints (4.28) require that the total quantity of flow leaving u is at most wu plus
the total quantify of flow entering u , i.e., the quantity of flow available in vertex u .
Constraint (4.29) requires that z is equal to the total quantity of flow entering t plus
wt minus the total quantity of flow leaving t . Finally, constraints (4.30) state that each
arc carries a non-negative quantity of flow.

Lemma 4.5. Any optimal solution of (P) is obtained by sending, for every vertex
s ∈V \ {t } , ws units of flow from s to t along most reliable st-paths.

Proof. First notice that the quantity of flow arriving at t when ws units flow are sent
from s to t along an st-path P is ws times the probability of the path P . Let φ′ be an
optimal solution of (P) maximizing the quantity of flow routed along a path which is

53

4 A MILP approach for optimizing PC – 4.4 A MILP formulation for solving
BC-PC-Opt

not a most reliable path. Suppose, by contradiction, that φ′ sends ϵ> 0 units of flow
along an st-path P ′ whose probability is smaller than the probability of a most reliable
st-path P . Let φ be the flow obtained from φ′ by decreasing the flow sent on path P ′

by ϵ and increasing the flow sent on path P by ϵ . Since the probability of P is larger
than the probability of P ′ , φ sends more flow to t than φ′ , leading to a contradiction
with the choice of φ′ .

Corollary 4.6. The optimal value of (P) is ft =
∑

s∈V ws ·Π(s, t) .

Proof. Since the objective is to maximize z , no flow leaves t in any optimal solution
of (P) , i.e.,

∑
a∈δout

t
φa = 0. Constraint (4.29) ensures that z is the quantity of flow

received by t plus wt . By Lemma 4.5, there exists an optimal solution φ such that
every vertex s distinct from t send ws units of flow on a most reliable st-path. Hence,
for every vertex s distinct from t , the flow received by t from s is ws ·Π(s, t) and thus
the value of z is

∑
s∈V ws ·Π(s, t) .

To compute PCnum(G) we simply have to combine the linear programming for-
mulations of ft for each t ∈V . To distinguish the variables from the different linear
formulations, we annotate the variables coming from the formulation of ft . For in-
stance, φt

a correspond to the flow variable of the arc a ∈ A in the linear program used
to compute ft . PCnum(G) can then be computed with the following linear program.

(PCnum)

maximize
∑
t∈V

wt · ft

subject to
∑

a∈δout
u

φt
a −

∑
b∈δin

u

πb ·φt
b ≤ wu t ∈V , u ∈V \ {t }

∑
a∈δout

t

φt
a −

∑
b∈δin

t

πb ·φt
b = wt − ft t ∈V

φt
a ≥ 0 t ∈V , a ∈Φ

(4.31)

(4.32)

(4.33)

(4.34)

Remark. To obtain the exact value of the PC with this formulation it suffices to multiply
the objective function by 1

W 2 , whereas, to obtain the value of the ECA we need to take
its square root.

54

4 A MILP approach for optimizing PC – 4.4 A MILP formulation for solving
BC-PC-Opt

4.4.2 MILP formulation for SAO-BC-PC-Opt

DEFINITION BOX 13: MIXED INTEGER LINEAR PROGRAMMING

Mixed Integer Linear Programming (MILP) is a generalization of Linear Pro-
gramming (LP) where each variable xi can also be constrained to lie in the
integer domain xi ∈N instead of the continuous one x ∈R+ . While the problem
of finding an optimal solution is polynomial for LP, this small modification
renders the problem N P-Hard for MILP.

With this linear programming definition of PC num we can now present our MILP
formulation of SAO-BC-PC-Opt. As a reminder, an instance of SAO-BC-PC-Opt is
composed of a landscape graph G = (V , A, w,π) where each arc a ∈ A is also associated
with an improved probability π+

a and a cost ca , and a budget β . The objective is
then to find the set of arcs fitting into the budget that maximizes the PC. For each
arc a = (u, v) ∈ A , we add another arc a′ = (u, v) of probability πa′ = π+

a that can be
viewed as an improved copy of the arc a . This improved copy can be used only if the
improvement of the arc a is purchased. For each arc a ∈ A , xa is equal to one if the
improvement of the arc a is purchased and zero otherwise. We denote by A′ the set
of improved copies of the arcs of A . In the following MILP program, δout

u , δin
u and the

flow variables φ are defined with respect to the set of arcsΨ= A∪ A′ .

(SAO-BC-PC-Opt):

maximize
∑
t∈V

wt · ft

subject to
∑

a∈δout
u

φt
a −

∑
b∈δin

u

πb ·φt
b ≤ wu t ∈V , u ∈V \ {t }

∑
a∈δout

t

φt
a −

∑
b∈δin

t

πb ·φt
b = wt − ft t ∈V

φt
a′ ≤ Ma · xa t ∈V , a ∈ A∑

a∈A
ca · xa ≤β

xa ∈ {0,1} a ∈ A

φt
a ≥ 0 t ∈V , a ∈Ψ

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

Constraints of (4.36) and (4.37) are simply the constraints of (4.32) and (4.33). For
each arc a ∈ A , the big-M constraints (4.38) ensures that if the improvement of the
arc a is not purchased, i.e., xa = 0, then the flow on arc a′ is null. The constant Ma is
an upper bound of the flow that can enter the arc a such that, if the improvement is
purchased, i.e., xa = 1, the flow on a′ is not restricted by the big-M constraint. We can

55

4 A MILP approach for optimizing PC – 4.4 A MILP formulation for solving

BC-PC-Opt

simply take Ma =∑
u∈V wu for every a ∈ A , but we show in the following Section 4.5

how to compute a much better, i.e., smaller, upper bound since these bounds play a
critical role in the resolution time of the MILP [12]. The constraint (4.39) ensures that
the total cost of the improvements is at most β . This MILP program has O(|V | · |A|)
flow variables, |A| binary variables and O(|V |2 +|V | · |A|) constraints.

Remark. In practical instances, not all arcs can be improved, i.e., for some arcs a ∈ A ,
π+

a = πa . In this case, we can remove the improved copy a′ from Ψ , its associated
constraint of (4.38) and the binary variable xa .

4.4.3 Extension to BC-PC-Opt
Now that we have a MILP formulation for the SAO-BC-PC-Opt problem, we explain
how to extend it to the more general BC-PC-Opt problem. As opposed to SAO-BC-PC-
Opt, an instance of BC-PC-Opt is characterized by a landscape graph G = (V , A, w,π)
and a set of optionsΦwhere each option i ∈Φ costs ci and has the effect of increasing
the weight of each vertex u ∈V by w i

u and improving the probability of each arc a ∈ A
to πi

a . We first focus on the arcs improvements. In the BC-PC-Opt problem, many
arcs can be improved by the purchase of a single option while in the SAO-BC-PC-Opt
problem each arc can be purchased independently. Since in the SAO-BC-PC-Opt
formulation the purchase of an arc a ∈ A is determined by the value of the binary
variable xa in the associated constraint of (4.38), to couple the arcs improvements
associated with an option i ∈Φ , it suffices to replace xa by the binary variable xi in
the corresponding constraints. It remains to address the improvements of the vertices.
Let xi be the binary variable equal to 1 if the option i is purchased and 0 otherwise.
Recall that the purchase of i has the effect of increasing the weight of each vertex u ∈V
by w i

u . Then, for each u ∈V , we process all the occurrences of wu as follows. When
wu appears as an additive constant, we simply replace it by wu +w i

u · xi . Note that
wu only appears as a coefficient in the objective function in the form wu ft . In this
case, to avoid a quadratic term, we use a standard McCormick linearization [85]. We
replace the product wu ft by wu ft +w i

u · f i
t where f i

t is a new variable that is equal
to ft if xi = 1 and 0 otherwise. To achieve this values of f i

t , for all u ∈V , we add the
constraints f i

t ≤ ft and f i
t ≤ Mt · xi where Mt is larger than any values of ft . As it is

a maximization program and f i
t appears with a positive coefficient in the objective

function, the first constraint guaranties that f i
t = ft if xi = 1 in any optimal solution

and the second constraint guaranties that f i
t = 0 if xi = 0.

56

4 A MILP approach for optimizing PC – 4.5 Preprocessing the MILP formulation

(BC-PC-Opt):

maximize
∑
t∈V

(
wt · ft +

∑
i∈Φ

w i
t · f i

t

)
subject to

∑
a∈δout

u

φt
a −

∑
b∈δin

u

πb ·φt
b ≤ wu +

∑
i∈Φ

w i
u · xi t ,u ∈V , u ∈V \ {t }

∑
a∈δout

t

φt
a −

∑
b∈δin

t

πb ·φt
b = wt +

∑
i∈Φ

w i
t ·xi − ft t ∈V

f i
t ≤ ft t ∈V , i ∈Φ

f i
t ≤ Mt ·xi t ∈V , i ∈Φ

φt
ai ≤ M t

a ·xi t ∈V , a ∈ A , i ∈Φ∑
i∈Φ

ci · xi ≤β

xi ∈ {0,1} i ∈Φ

φt
a ≥ 0 t ∈V , a ∈Ψ

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)

4.5 Preprocessing the MILP formulation
In this section we discuss how to preprocess the MILP formulation of an instance of
the BC-PC-Opt problem in order to reduce the computing time required to solve it. In
Section 4.5.1, we first provide methods to reduce the size of the formulation in terms of
numbers of variables and constraints and, in Section 4.5.2, we show how to compute
tighter upper bounds for the big-M constraints to improve the linear relaxation.

4.5.1 Reducing the size of the graph
The MILP formulation of the BC-PC-Opt problem, later designated as the MILP, can be
viewed as a linear formulation that, given a vector x ∈ {0,1}Φ , where xi = 1 if the option
i ∈Φ is purchased and xi = 0 otherwise, computes the value of the PC of the graph in
which the options designated by x are performed. We call x ∈ {0,1}Φ a scenario and
denote by G x = (V , A, w x ,πx) the landscape graph obtained by realizing the options
induced by the scenario x , where

w x
u = wu +

∑
i∈Φ

w i
u · xi , for each u ∈V , (4.51)

and

πa = max

{
πa , max

i∈Φ

(
πi

a · xi

)}
, for each a ∈ A . (4.52)

57

4 A MILP approach for optimizing PC – 4.5 Preprocessing the MILP formulation

Solving the BC-PC-Opt problem amounts to finding a scenario y ∈ {0,1}Φ with
∑

i∈Φ ci ·
xi ≤β that maximizes PC (G y) . Thus, the goal is to reduce the size of the MILP while
keeping the same optimal scenario. One way of doing this is to maintain that, for
every scenario x , the objective value of the reduced MILP is PC (G x) . Similarly to
the linear formulation of the PC, we decompose PC (G x) as

∑
t∈V w x

t · f x
t where f x

t =∑
s∈vΠ

x(s, t) ·w x
s is the optimum value of the generalized flow problem to the vertex

t , with Πx(s, t) being the probability of the most reliable path from s to t using πx
a

as the probability of each arc a . We respectively denote by w u = wu +∑
i∈Φw i

u and
πa = max

{
πa , maxi∈Φ

(
πi

a

)}
the weight of the vertex u and the probability of the arc a

in the scenario where all options are purchased. It is clear that, for every scenario x ,
w u is an upper bound on the weight of any vertex u , i.e., w u ≥ w x

u , and πa is an upper
bound on the probability of any arc a , i.e., πa ≥πx

a .

Contract the strongly connected components that are connected with
probability 1 . In Lemma 3.5 we proved that if two vertices u, v ∈V are connected
with probabilityΠ(u, v) =Π(v,u) = 1, we can contract them into a vertex t such that
wt = wu+wv without changing the value of the PC. It is easy to show by induction that
this is also true for any set of vertices T for which any vertices s, w ∈ T are connected
with probabilityΠ(s, w) =Π(w, s) = 1. Indeed, since the flow can pass from one to the
other of these vertices without losses, f x

s = f x
w for any scenario x . We can then contract

the vertices of T in a single vertex t , as illustrated in Figure 4.6, with wt =
∑

u∈T wu

and w i
t =

∑
u∈T w i

u for each option i ∈Φ . In this way∑
u∈T

w x
u · f x

u = w x
t · f x

T , (4.53)

where f x
T is the value of the generalized flow to any of the vertices of T . All the maximal

sets of vertices that are connected with probability 1 can easily be identified as the
strongly connected components of the graph G ′ = (V , A′) where A′ = {a ∈ A :πa = 1} in
O(|V |+ |A|) time with a depth-first-search.

a

d

b

c

1

(a)

t

(b)

Figure 4.6: Illustration of the contraction of a strongly connected component T =
{a,b,c,d} into a new vertex t such that wt = wa +wb +wc +wd .

58

4 A MILP approach for optimizing PC – 4.5 Preprocessing the MILP formulation

Remove the computation of ft if wt = 0 . Given a vertex t , if its best possible
weight is equal to 0, i.e., w t = 0, then there is no need to compute ft since w x

t · ft = 0
for every scenario x . We can then remove the formulation of the generalized flow
problem to t from the MILP.

Remove the uncrossable arcs, i.e., arcs a ∈ A with πa = 0 . The same goes with
an arc a ∈ A whose probability is null in any scenario, i.e., πa = 0 . Such arc can be
omitted in the formulation of the generalized flow problems since any flow passing
through it is lost.

Remove the components that are not connected to t in the formulation of
ft . After removing each arc a ∈ A whose probability is πa = 0 , the only flow that can
reach a vertex t can only come from vertices from which it exists a path to t . We can
identify this set of vertices in O(|V |+ |A|) time with a depth-first-search starting at the
vertex t in the reversed graph G ′ = (V , A′) where A′ = {(v,u) : (u, v) ∈ A} .

To further reduce the size of the MILP, we are interested in the arcs of the generalized
flow formulation to a particular vertex t . For any scenario x , the optimal solution of
the generalized flow to t is obtained by routing wu units of flow along most reliable
ut-paths for each vertex u . However, it is possible that, for any scenario, some arcs
(u, v) may never be on a most reliable path from u to t , like in Figure 4.7a, and then
never carry flow in an optimal solution. We denote the set of such arcs W(t) . At the
opposite, some arcs (u, v) may always be on a most reliable path from u to t and
funnel all the flow arriving in u to v , like in Figure 4.7b. We denote the set of such arcs
S(t) .

u

v

t1
2

1
3 or 1

2

1
4

(a)

u

v

t1
2

1
4 or 1

2

1

(b)

Figure 4.7: Examples of useless and strong arcs. In (a), the arc (u, v) is t-useless since
the best path from u to t passing by (u, v) has a lower probability than the
arc (u, t) in every scenario. In (b), the arc (u, v) is t-strong since the path
from (u, v), (v, t) has a probability greater or equal to the arc (u, t) in every
scenario.

More formally,

S(t) = {(u, v) ∈ A : ∀x ∈ {0,1}Φ,Πx(u, t) =πx
uv ·Πx(v, t)} , (4.54)

59

4 A MILP approach for optimizing PC – 4.5 Preprocessing the MILP formulation

and
W(T) = {(u, v) ∈ A : ∀x ∈ {0,1}Φ,Πx(u, t) <πx

uv ·Πx(v, t)} . (4.55)

One difficulty in the definition of S(t) and W(t) is that an option may affect the
probability of more than one arc at the same time and that the probability of an arc
may be increased differently by several options, in which case only the option with
the greater increase matters. In the following part of the preprocessing we relax the
notion of scenario and consider that the probability of each arc a ∈ A can vary in the
interval [πa ,πa] independently of the probabilities of the other arcs. We call x ∈ [0,1]A

a continuous scenario and define the probability of an arc a ∈ A under the continuous
scenario x as πx

a =πa +xa · (πa −πa) . Clearly, the set of probability functions defined
by the scenarios of {0,1}Φ is included in the set of probability functions defined by the
continuous scenarios [0,1]A , i.e.

{l x : x ∈ {0,1}Φ} ⊆ {l x : x ∈ [0,1]A} , (4.56)

thus, any property that is verified under all the scenarios of [0,1]A is also verified for
every scenario x ∈ {0,1}Φ . We can then define the following sets

S(t) = {(u, v) ∈ A : ∀x ∈ [0,1]A,Πx(u, t) =πx
uv ·Πx(v, t)} (4.57)

and
W (T) = {(u, v) ∈ A : ∀x ∈ [0,1]A,Πx(u, t) <πx

uv ·Πx(v, t)} , (4.58)

such that S(t) ⊆S and W (t) ⊆W .
In Chapter 5, given a graph G = (V , A) where each arc a ∈ A is associated with a

positive interval [l−a , l+a] , and an arc (u, v) , we address the problems of identifying the
set of vertices F (u, v) (resp. W (u, v)) such that for each vertex t ∈ F (u, v) (resp. t ∈
F (u, v)), (u, v) is always (resp. never) on a shortest path from u to t , for any assignment
of the arcs lengths into their intervals. We give O(|A|+ |V | log |V |) time algorithms for
solving these problems. Since shortest paths and most reliable paths are isomorphic
(see Definition Box 4), we can use the positive interval [− log

(
πa

)
,− log(πa)] for each

arc a ∈ A to obtain that F (u, v) (resp. W (u, v)) is the set of vertices such that, for each
vertex t ∈ F (u, v) (resp. t ∈ W (u, v)), (u, v) is always (resp. never) on a most reliable
path from u to t for any possible assignment of the probability of each arc a ∈ A
between π and πa . Thus, S(t) = {(u, v) ∈ A : t ∈ F (u, v)} and W (t) = {(u, v) ∈ A : t ∈
W (u, v)} , and we can use our algorithms to compute the sets S(t) and W (t) for all
t ∈V with a single run of time complexity O(|A|2 +|A||V | log |V |) .

Remark. When the graph is planar, which is often the case for landscape graphs, the
number of arcs is linear in the number of vertices. Therefore, the time complexity for
identifying S(t) and W (t) drops to O(|V |2 log |V |) which is tractable for graphs with up
to 105 vertices.

Remove the arcs of W(t) . Let (u, v) ∈W(t) , since for all scenarios x ∈ {0,1}Φ , (u, v)
does not belong to any shortest path from u to t , its removal does not affect the

60

4 A MILP approach for optimizing PC – 4.5 Preprocessing the MILP formulation

distance from any vertex to t . It is clear, from the definition of PC, that the removal of
(u, v) does not affect the contribution of t to PC. Let f x

t (G) =∑
s∈V ws wtΠ

x (s, t) be the
contribution to PC of all the pairs having sink t in the graph G when the probability of
connectionΠx(s, t) is computed under the scenario x .

Lemma 4.7. Let (u, v) ∈W(t) and let G ′ be a graph obtained from G by removing the
arc (u, v) . Then, for all scenario x ∈ {0,1}Φ , it holds that f x

t (G) = f x
t (G ′) .

Proof. For every scenario x ∈ {0,1}Φ , (u, v) does not belong to any shortest path from
u to t . Therefore, the removal of (u, v) cannot affect the probability of connection
Π(u, t) for any vertex t , Thus f x

t (G) = f x
t (G ′) .

Corollary 4.8. Let Gt = (V , A′) be the graph obtained from G by removing all the arcs
of W(t) . Then, given a vertex u ∈V , for any simple ut-path P of Gt whose probability
can be higher thanΠ(u, t) in some scenario, i.e.,

∏
a∈P πa ≥Π(u, t) , it exists a scenario

x ∈ {0,1}Φ such that P is a most reliable ut-path of G , i.e.,Πx
G (u, t) =∏

a∈P π
x
a .

Contraction of an arc in S(t) . Now, assume that (u, v) ∈S(t) and πuv =πuv . Since
(u, v) is on a most reliable path from u to t in any possible scenario, all the flow arriving
at u in the generalized flow problem to the vertex t can always be forwarded to v via
the arc (u, v) . The contraction of (u, v) consists in replacing every arc (w,u) ∈ δin

u by an
arc (w, v) of length π′

w v =πwu ·πuv and by removing the vertex u and all its outgoing
arcs, see Figure 4.8. Let G ′ be the graph obtained from G by contracting (u, v) . The
weight of u in G is transferred to the weight of v in G ′ . Namely, the weight of v in the
new graph is w ′

v = wv +πuv ·wu . The next lemma establishes that the contribution of
t to the PC in G is equal to its contribution in G ′ .

w
u v t

. . .

πwu πuv

wu wv

δin
u

(a)

w
v t

. . .

πwu ·πuv

w ′
v

δin
u

(b)

Figure 4.8: (a) A graph G before contraction of an arc (u, v) . (b) A graph G ′ obtained
from G by contracting the arc (u, v) . The weight w ′

v of v in G ′ is equal to
wv +πuv ·wu .

61

4 A MILP approach for optimizing PC – 4.5 Preprocessing the MILP formulation

Algorithm 2: Contract t-strong arc

Input :G = (V , A, w,π) ,Φ , (w)i∈Φ
u∈V , (π)i∈Φ

a∈A , (u, v) ∈ A
foreach (w,u) ∈ δin

u do
A ← A∪ {(w, v)}
πw v ←πwu ·πuv

foreach i ∈Φ do
πi

w v ←πi
wu ·πuv

foreach i ∈Φ do
w i

v ← w i
v +πuv ·w i

u

G ←G[V \ {u}]

Lemma 4.9. Let (u, v) ∈S(t) and let G ′ be the graph obtained from G by contracting the
arc (u, v) and modifying accordingly the weight of wv . For every scenario x ∈ {0,1}Φ ,
f x

t (G) = f x
t (G ′) .

Proof. Let s be a vertex of G and x be a scenario in {0,1}Φ . We denote f x
st (G) the

contribution to PC of the pair st with scenario x ∈ {0,1}Φ in G . If s ∉ {u, v} , it is easy
to check that, for any x ∈ {0,1}Φ the length of the shortest path from s to t in G is
equal to the length of the shortest path from s to t in G ′ . Moreover, the weight of s is
the same in G and in G ′ . Therefore, by the definition of PC, f x

st (G) = f x
st (G ′) , for any

x ∈ {0,1}Φ . On the other hand, the contributions of the pairs ut and v t in G sum to
the contribution of v in G ′ . Indeed,

f x
ut (G)+ f x

v t (G) = Πx(u, t) ·wu +Πx(v, t) ·wv (4.59)

= πuv ·Πx(v, t) ·wu +Πx(v, t) ·wv (4.60)

= Πx(v, t) · (πuv ·wu +wv) (4.61)

= Πx(v, t) ·w ′
v (4.62)

= f x
v t (G ′) . (4.63)

We conclude that, for any x ∈ {0,1}Φ ,

f x
t (G) =

∑
s∈V

f x
st (G) (4.64)

= f x
ut (G)+ f x

v t (G)+
∑

s∈V \{u,v}
f x

st (G) (4.65)

= f x
v t (G ′)+

∑
s∈V \{u,v}

f x
st (G ′) (4.66)

= f x
t (G ′) . (4.67)

Remove the vertices that can’t carry flow. Let G ′ be the graph obtained re-
moving all the arcs ofW(t) . By Corollary 4.8, a vertex u can carry flow in an optimal

62

4 A MILP approach for optimizing PC – 4.5 Preprocessing the MILP formulation

solution of the generalized flow problem to t only if it is on a simple path from a vertex
v with wv > 0. Let T = {u ∈V : wu > 0} denote the set of vertices with positive weights.
Thus, u can carry flow in an optimal solution only if wu ∈ T or if it exists a vertex
s ∈ T such that u is on an st-path of G ′ . Let R be the set of vertices not fulfilling these
conditions, all the vertices of R can be removed from the generalized flow formulation
without affecting its optimal value. Furthermore, R can be computed with simple
graph traversal algorithms in O(|V |+ |A|) time. For this, it is only necessary to run a
traversal algorithm (either Breadth First Search of Depth First Search) from each of
the nodes of T , all in a row. At each traversal, the set K of the visited vertices increases,
and we repeat the operation with a vertex s ∈ (T \ K) until T ⊆ K . Then R is exactly the
set of vertices that have not been visited after all these traversals, i.e., R =V \ K .

4.5.2 Improving linear relaxation bounds

DEFINITION BOX 14: BRANCH AND BOUND ALGORITHMS

Branch-and-bound (BnB) is an exact method for solving hard optimization
problems whose space of feasible solutions is non-convex. Although it was
quickly extended to other domains, this method was originally developed to
tackle mixed integer linear programs [76] and is still the basis for modern MILP
solvers. Generally speaking, BnB consists in recursively enumerating all the
feasible solutions and use a pruning strategy to avoid the enumeration of solu-
tions that cannot be optimal. In the worst case, this method therefore takes an
exponential amount of time if the pruning strategy is not able to prevent the
exploration of non-optimal solutions, but it is often very efficient in practice.
Let P be a MILP maximization problem on n variables. For the sake of simplicity,
we assume that all the variables of P are constrained to be integers between 0
and 1.

(P)

maximize c⊺x

subject to Ax ≤ b

x ∈ {0,1}n

(4.68)

(4.69)

(4.70)

Since {0,1}n ⊆ [0,1]n , the optimum value of P can be bounded as follows

max
x∈{0,1}n

Ax≤b

c⊺x ≤ max
x∈[0,1]n

Ax≤b

c⊺x , (4.71)

where maxx∈[0,1]n :Ax≤b c⊺x can be computed in polynomial time since it is the
optimum value of the linear program obtained by relaxing the integrity con-
straints of the variables of P .

63

4 A MILP approach for optimizing PC – 4.5 Preprocessing the MILP formulation

A basic branch and bound algorithm for solving P can be stated as follows

Algorithm 3: Branch and Bound method for P

Input :c ∈Rn , A ∈Rm×n , b ∈Rm

Output :s∗ such that As∗ ≤ b and c⊺s∗ is maximum
s ← {0}n

s∗ ← {0}n

Procedure recurse(k)
if Qs,k is unfeasible then

return
end
if i < n then

Let y be an optimal solution for Qs,k

if c⊺y < c⊺s∗ then
return

end
sk ← 1 ; recurse(k +1)
sk ← 0 ; recurse(k +1)

else
if c⊺s > c⊺s∗ then

s∗← s
end

end
recurse(0)
return s∗

where s represents the solution being recursively constructed by the procedure
r ecur se , s∗ is the best know solution at any point of the algorithm and Qs,k

is the linear program obtain by fixing the k first variables of P to their corre-
sponding values in s , i.e., adding the constraint xi = si for each i ∈ {1, . . . ,k} .
Like with (4.71), the optimum value of Qs,i ,c⊺y , can then be interpreted as an
upper bound on the value of any feasible solution sharing its i first values with
s . Thus, if c⊺y < c⊺s∗ then s∗ is a better solution than any solution based on the
i first values of s and there is no need to enumerate more of these solutions. It
is clear that if the inequality c⊺y < c⊺s∗ is always false, this algorithm results in
the enumeration of all feasible solutions, i.e., every x ∈ {0,1}n such that Ax ≤ b .
This small example illustrates why the efficiency of branch and bound algo-
rithms heavily depends on the fact that the optimum value of the relaxed prob-
lem is as small as possible, or, equivalently, that the optimal values of the original
problem and of its relaxed version are as close as possible.

As pointed out in Definition Box 3, the efficiency of the methods for solving a
mixed integer linear program (MILP) relies on the fact that the optimum value of its
linear relaxation is as close as possible to its own optimum value. In our process of
formalizing the BC-PC-Opt problem into a MILP, we regularly use big-M constraints

64

4 A MILP approach for optimizing PC – 4.5 Preprocessing the MILP formulation

(i.e., McCormick linearizations [85]), in order to get rid of quadratic terms. This method
of linearizing quadratic terms is known to degrade the quality of the linear relaxation,
i.e., increase the gap between the values of optimal integer solutions and the relaxed
ones. The common way of mitigating this effect is to choose the smallest constant M
possible for every big-M constraint [12]. Indeed, the role of a big-M constraint is to
prevent the value of a variable x from being greater than 0 if the corresponding integer
variable y has not been set to 1, i.e.,

x ≤ M · y , (4.72)

with M being greater that any possible value of x . While this inequality suffices to
enforce that x = 0 if y = 0 when y ∈ {0,1} , it is not in the relaxed problem where
y ∈ [0,1] . Indeed, if M is too big with respect to the possible values of x , e.g., 100
times bigger than the maximum value of x , then even a small positive value for y , e.g.,
y = 0.01, is enough to bypass the constraint and allow x to take any possible value.
Thus the goal is to chose the smallest possible upper bound M on the values of x .

In our formulation, big-M constants appear in the constraints (4.46) and (4.47).
Given a vertex t ∈ V and an option i ∈ Φ , constraints (4.46) in conjonction with
constraints (4.45) enforce the variable f i

t to be equal to 0 if yi = 0 and take a value
between 0 and ft if yi = 1. Here M must then be an upper bound on the values of ft ,
i.e., the maximum value of the flow that can arrive in the vertex t in it’s generalized
flow formulation for any scenario. Similarly, given a vertex t ∈V , an arc a = (u, v) ∈ A
and an option i ∈Φ , constraints (4.47) with constraints of (4.43) enforce that φi

a = 0
if yi = 0, i.e., no flow pass through the arc ai if the option i is not purchased, and, if
yi = 1, φi

a can take any value between 0 and the maximum flow that can arrive at u .
Thus, in both cases the constant M corresponds to the maximum value of the flow

that can arrive to a particular vertex u in the generalized flow formulation to a vertex
t . The exact upper bound on the value of this flow in any optimal solution can then
be expressed as

M t
u = max

x∈{0,1}Φ

 ∑
s∈I x

t ,u

w x
s ·Πx(s,u)

 , (4.73)

where I x
t ,u is the set of vertices s for which it exists a most reliable st-path passing by

the vertex u under the scenario x , i.e., I x
t ,u = {s ∈V :Πx (s, t) =Πx (s,u) ·Πx (u, t)} . This

bound is not trivial to compute as the algorithm that consists in enumerating all the
scenarios of {0,1}Φ is obviously not tractable. Moreover, M t

u should be computed for
each vertex u ∈V of each generalized flow to a vertex t ∈V , i.e., O(|V |2) times. Since
for any pair of vertices s, t ∈V and any scenario x ∈ {0,1}Φ ,Π(s, t) ≤Πx (s, t) ≤Π+(s, t) ,
we can define the set

It ,u = {s ∈V :Π(s, t) ≤Π+(s,u) ·Π+(u, t)} (4.74)

such that, for any scenario x ∈ {0,1}Φ , I x
t ,u ⊆ Iu,t . Thus, we can easily calculate an

65

4 A MILP approach for optimizing PC – 4.5 Preprocessing the MILP formulation

upper bound for M t
u in the graph G as

M t
u,G =

∑
s∈Iu,t

w+
s ·Π+

G (s,u) , (4.75)

which can be accomplished in O(|E |+ |V | log |v |) time by running the Dijkstra algo-
rithm from the vertex u on the reversed graph.

Since the graph Gt is obtained from G by deleting all the arcs of W (t) , it contains
less arcs than G while preserving all the most reliable paths from each vertex u ∈V to
the vertex t in any scenario. By the fact that Π+

Gt
(s,u) ≤Π+

G (s,u) , and by Lemma 4.7,
we have

M t
u ≤ M t

u,Gt
≤ M t

u,G . (4.76)

Therefore, M t
u,Gt

is an upper for the maximum flow that can enter the vertex u that is
both easy to compute and benefits from the removal of the arcs of W (t) .

Remark. In the case where each improvement option correspond to exactly one arc
(like for SAO-BC-PC-Opt), we conjecture that M t

u,Gt
is the best possible upper bound

in the sense that M t
u = M t

u,Gt
, or, equivalently, that it exists a scenario x ∈ {0,1}A where

the quantity of flow reaching u is M t
u,Gt

.

66

5 A Preprocessing algorithm for
shortest paths problems with
interval data

Table of contents

5.1 Introduction and state of the art . 67
5.2 Definitions . 69
5.3 Computing F (u, v) . 70
5.4 Extension to the computation of t-useless arcs 72
5.5 Extension to constrained shortest path problems 74

5.1 Introduction and state of the art
The Shortest Path Problem (SPP) is a fundamental and very well studied combinatorial
optimization problem. Formally, given a directed graph G = (V , A) where each arc
a ∈ A has a positive length la , and two vertices s, t ∈V , it consists in finding an st-path
P that minimizes

∑
a∈P la , i.e., a set of consecutive arcs linking s to t whose sum of

the lengths is minimum. This problem arises in numerous applications that are not
limited to the fields of telecommunications and transportation with, for example,
landscape ecology. It is long known that this problem can be very efficiently solved
with the Dijkstra algorithm [35]. However, the SPP can be encountered as a subroutine
for larger and more difficult problems like network designing or robust shortest path.
In these problems, the length of each arc a ∈ A is either subject to change or uncertain
and is only known to lie in a positive interval [l−a , l+a] . Like in this thesis, these kinds
of optimization problems are often solved using Mixed Integer Linear Programming
(MILP). Identifying whether an arc a is never or always part of a shortest path from a
vertex s to a vertex t for any assignment of the arcs lengths into their intervals then
becomes interesting. Indeed, this information can be used to reduce the search space
by definitely setting the arc a as being part of the shortest st-path or not.

In [71], the authors study the Robust Deviation Shortest Path Problem (RDSPP) using
MILP. In order to solve their MILP more efficiently, they propose a preprocessing
step that requires identifying if an arc a can be part of a shortest st-path for some
assignment of the arcs lengths into their intervals. Unfortunately they showed that

67

5 A Preprocessing algorithm for shortest paths problems with interval data – 5.1
Introduction and state of the art

identifying such arcs is N P-Complete in the general case, but still give a polynomial
algorithm when the graph is restricted to have very particular properties, i.e., when it
is a directed acyclic, layered graph with a small width. We are interested in a special
case of this problem where s = u , i.e., our problem is to identify whether an arc (u, v)
is never or always on a shortest path from u to a given vertex t .

Given a graph G = (V , A) where each arc a ∈ A is associated with a positive
interval of lengths [l−a , l+a]:
We say that an arc (u, v) is t-strong if it is always on a shortest path from u to t
for any assignment of the lengths of the arcs into their intervals.
We say that an arc (u, v) is t-useless if it is never on a shortest path from u to t
for any assignment of the lengths of the arcs into their intervals.

The problem of identifying if an arc (u, v) is t-strong or t-useless has also received
attention in the context of robust shortest paths problems. In [21], given a vertex
n ∈V , the authors investigate the identification of n-strong and n-useless arcs, which
they respectively call T -1-persistent and T -0-persistent arcs, in order to preprocess
their MILP formulations for the Minimax regret Single-Source Shortest Path Problem
(MSS-SPP). The MSS-SPP is the single-source variant of the RDSPP [133]. They provide
sufficient (but not necessary) conditions for an arc (u, v) to be t-strong or t-useless and
use these conditions to design O(|A|+ |V | log |V |) time algorithms that, given an arc
(u, v) and a vertex t , can in most cases identify if (u, v) is t-strong or t-useless. More
recently, the authors of [79] also studiedin the problem of identifying t-useless arcs for
a given t in order to reduce the size of MILP formulations embedding shortest path
computations. They improve the result of [21] by providing a sufficient and necessary
condition for an arc (u, v) to be t-useless. In their article, they call t-weak an arc that is
not t-useless, i.e., that is on a shortest path from u to t for some assignment of the arcs
lengths in their interval, and provide an O(|V | · (|A|+ |V | log |V |)) time algorithm that
allows to identify if an arc (u, v) is t-useless (non-t-weak in their terms) for a given
vertex t .

In Section 5.2, we give a more formal definition of the notion of t-strongness. Then,
in Section 5.3, given an arc (u, v) of G , we show how to adapt the Dijkstra’s algorithm
to compute in O(|A|+ |V | log |V |) time the set of all vertices t ∈ V such that (u, v) is
t-strong. This improves the results of [21] by providing a necessary and sufficient
condition for (u, v) to be t-strong, i.e., we can identify all the t-strong arcs while the
algorithm of [21] identifies only a subset of it. This also reduces the time complexity
for computing the sets of t-strong arcs for all t by a factor |V | as we only need to run
the algorithm on each arc instead of each pair of arc and vertex. In Section 5.4, we
show how to modify our algorithm to compute, with the same complexity the set of
all vertices t ∈ V such that (u, v) is t-useless. This also improves the results of [79]
since our algorithm has a time complexity that is smaller by a factor |V | . Finally, in
Section 5.5, we show preliminary results on how to extend the notions of t-strongness
and t-uselessness to constrained shortest paths.

68

5 A Preprocessing algorithm for shortest paths problems with interval data – 5.2
Definitions

5.2 Definitions
Given a graph G = (V , A) where each arc a ∈ A is associated with a positive interval of
lengths [l−a , l+a] , we call a continuous scenario a vector [0,1]A that associate to each arc
a ∈ A a coefficient xa such that the length of the arc a under the scenario x is

l x
a = l+a −xa · (l+a − l−a) . (5.1)

We define d x(s, t) to be the length of a shortest path, i.e., the distance, from s to t
under the scenario x:

d x(s, t) = min
P : st-path

l x(P) , (5.2)

where l x(P) =∑
a∈P l x

a is the length of the path P under the scenario x .

Lemma 5.1. Given two vertices s, t ∈V and an st-path P , it exists a continuous scenario
x such that P is a shortest st-path if and only if P is a shortest path in the scenario q
where qa = 1 if a ∈ P and qa = 0 otherwise.

Proof. Since q is a particular case of continuous scenario, we only need to prove that if
P is a shortest under a scenario x it remains a shortest path under the scenario q . The
lengths of the arcs of P are guaranteed to be smaller or equal in the scenario q than in
the scenario x , since qa ≥ xa for each arc a ∈ P , whereas the others arcs lengths are
guaranteed to be greater or equal since qa ≤ xa for each arc a ∈V \ P . Thus, among
all the st-paths, P is the path whose length is the most reduced by passing from the
scenario x to the scenario q .

Corollary 5.2. To prove that an arc (u, v) is t-strong or t-useless, we only need to check
the property for the 2|A| scenarios of {0,1}A .

To state our following results, we introduce the notion of fiber.

The fiber of an arc (u, v) ∈ A under the scenario x ∈ {0,1}A , that we denote
F x(u, v) , is the set of vertices such that (u, v) belongs to a shortest path from u
to t for each t ∈ F x(u, v) when arc lengths are set according to x , i.e.

F x(u, v) = {t ∈V : d x(u, t) = l x
uv +d x(v, t)} . (5.3)

Let F (u, v) be the intersection of the fibers of the arc (u, v) over all possible scenarios
x ∈ {0,1}A , i.e.

F (u, v) =
⋂

x∈{0,1}A

F x(u, v) . (5.4)

By definition and by Lemma 5.1, an arc (u, v) is t-strong if and only if t belongs to
F x(u, v) for every scenario x ∈ {0,1}A , i.e., if t belongs to F (u, v) .

69

5 A Preprocessing algorithm for shortest paths problems with interval data – 5.3
Computing F (u, v)

5.3 Computing F (u, v)

Let y ∈ {0,1}A be the following scenario :

yw t =
{

0 w ∈ F (u, v) or (w, t) = (u, v)
1 otherwise

(5.5)

Lemma 5.3. The intersection F (u, v) of the fibers of (u, v) ∈ A over all possible scenarios
is the fiber of (u, v) under the scenario y , i.e., F (u, v) = F y (u, v) .

Proof. Since, by definition, F (u, v) ⊆ F y (u, v) , it remains to prove that F y (u, v) ⊆
F x (u, v) for any scenario x ∈ {0,1}A . By way of contradiction, let t ∈ Fy (u, v) be a vertex
at minimum distance from u in the scenario y such that it exists a scenario x with
t ∉ F x(u, v) . Let P be a shortest ut-path containing (u, v) under the scenario y . For
every vertex w of P , d y (u, w) ≤ d y (u, t) and w ∈ F y (u, v) . Hence, by the choice of t ,
w belongs to F x(u, v) for every scenario x . Therefore, w belongs to F (u, v) and the
length of every arc of P is set to its upper bound in the scenario y , i.e., l y (P) = l+(P) .
Now, let Q be a shortest ut-path in the scenario x . If the path Q contains a vertex
z ∈ F (u, v) then d x(u, t) = d x(u, z)+d x(z, t) = l x

uv +d x(v, z)+d x(z, t) = l x
uv +d x(v, t) ,

a contradiction with t ∉ F x(u, v) . Therefore, the vertices of Q do not belong to F (u, v)
and thus all the arcs of Q are set to their lower bound in y , i.e., l y (Q) = l−(Q) . Since P
is a shortest path in y , l y (P) ≤ l y (Q) . We deduce that l x(P) ≤ l+(P) = l y (P) ≤ l y (Q) =
l−(Q) ≤ l x(Q) , which contradicts t ∉ F x(u, v) .

We describe a O(|A|+ |V | log |V |) time algorithm that, given an arc (u, v) , computes
simultaneously the scenario y defined by (5.5) and the fiber F y (u, v) of arc (u, v) with
respect to this scenario. The algorithm is an adaptation of the Dijkstra’s shortest path
algorithm that assigns colors to vertices. We prove that it colors a vertex w in blue if w
belongs to F y (u, v) and in red otherwise. At each step, we consider a subset of vertices
S ⊆V whose colors have been already computed. Before the first iteration, S = {u} and
the length of every arc leaving u is set to its lower bound except the length of (u, v)
which is set to its upper bound according to scenario y . At each step, since the color of
every vertex of S is known, the length, under scenario y , of every arc (w, t) with w ∈ S
is also known. Therefore, it is possible to find a vertex t ∈V \ S at minimum distance
from u , under scenario y , in the subgraph G[S ∪ {t }] induced by S ∪ {t } . Following
Dijkstra’s algorithm analysis, we know that the distance under scenario y from u to t
in G[S ∪ {t }] is in fact the distance between u and t in G . This allows us to determine if
there exists a shortest path from u to t in the scenario y passing via (u, v) and to color
the vertex t accordingly. We end-up the iteration with a new vertex t whose color is
known and that can be added to S before starting the next iteration. The algorithm
terminates when S =V .

70

5 A Preprocessing algorithm for shortest paths problems with interval data – 5.3
Computing F (u, v)

Algorithm 4: Computes the set S of vertices t such that (u, v) is t-strong

Input :G = (V , A) , [l−a , l+a]a∈A , (u, v) ∈ A
Output :F (u, v) = {t ∈V : (u, v) is t-strong}
d(u) ← 0
γ(u) ← r ed
foreach (u, w) ∈ δout

u \ {(u, v)} do
d(w) ← l−uw
γ(w) ← r ed

d(v) ← l+uv
γ(v) ← bl ue
S ← {u}
while S ̸=V do

Pick t ∈V −S with smallest d(t) breaking tie by choosing a vertex t such that
γ(t) = bl ue if it exists

if γ(t) is blue then
foreach (t , w) ∈ δout

t such that d(t)+ l+t w ≤ d(w) do
d(w) ← d(t)+ l+t w
γ(w) ← bl ue

else
foreach (t , w) ∈ δout

t such that d(t)+ l−t w < d(w) do
d(w) ← d(t)+ l−t w
γ(w) ← r ed

S ← S ∪ {t }
return {t ∈V : γ(t) = bl ue}

For every vertex w ∈V \ S , the estimated distance d(w) is the length of a shortest
uw-path under the scenario y in the subgraph G[S ∪ {w}] . An arc a is blue if a = uv
or if its origin is blue, the other arcs are red, i.e., a is blue if ya = 0 and red if ya = 1.
The estimated color γ(w) of w is blue if there exists a blue uw-path of length d(w)
in G[S ∪ {w}] and red otherwise. The correctness of Algorithm 4 follows from the
following Lemma.

Lemma 5.4. For every vertex t ∈ S, γ(t) is blue if and only if t ∈ F y (u, v) .

Proof. We proceed by induction on the number of vertices of S . When S = {u} , the
property is verified. Now, suppose the property true before the insertion in S of
the vertex t such that d(t) is minimum. By induction hypothesis, the lengths of arcs
having their source in S are set according to y . Therefore, following Dijkstra’s algorithm
analysis, we deduce that d(t) is the length of the shortest path from u to t in the graph
G under scenario y . If t has been colored blue then there exists a blue vertex w ∈ S
such that d(t) = d(w)+ l+w t . By induction hypothesis w ∈ F y (u, v) and there exists a
shortest ut-path under scenario y containing (u, v) , i.e., t ∈ F y (u, v) . Now, suppose
that t has been colored in red. By contradiction, assume there exists a shortest ut-path
under scenario y that contains (u, v) . This path cannot contain a vertex outside S
except t because otherwise, since arc lengths are non-negative, its length according

71

5 A Preprocessing algorithm for shortest paths problems with interval data – 5.4
Extension to the computation of t-useless arcs

to y would be greater than d(t) by the choice of t . Therefore, the predecessor w of t
in this path belongs to S . Since w belongs to a shortest ut-path passing via (u, v) , by
induction, it was colored blue. But in this case, there exists a blue vertex w such that
d(w)+ l+w t = d(t) , and t was colored blue as well, a contradiction.

We are now ready to state the main result of this section.

Proposition 5.5. Given a graph G = (V , A) where each arc a ∈ A is associated with a
positive interval of lengths [l−a , l+a] , and an arc (u, v) , Algorithm 4 computes in O(|A|+
|V | log |V |) time the set of vertex t such that (u, v) is t-strong.

Proof. The Lemma 5.3 shows that given an arc (u, v) the set of vertices S such that
t ∈ S if and only if (u, v) is t-strong is a fiber for a specific scenario. The Lemma 5.4
shows that the algorithm compute this fiber. Therefore, the Algorithm 4 is correct.
Analogously to the Dijkstra’s algorithm, Algorithm 4 can be implemented to run in
O(|A|+ |V | log |V |) time by using a Fibonacci heap as priority queue.

5.4 Extension to the computation of t-useless arcs
An adaptation of Algorithm 4 can compute, given an arc (u, v) the set of vertices W
such that t ∈W if and only if (u, v) is t-usless. Before describing this adaptation, we
explain how the two problems are related. For that, we first introduced a strengthening
of the notion of t-strongness. We will say that an arc (u, v) is strictly t-strong if it
belongs to all shortest ut-paths for every scenario x ∈ {0,1}A . Recall that t-strongness
requires only the existence of a shortest ut-path passing via (u, v) for every scenario
x ∈ {0,1}A . Algorithm 4 can be easily adapted to compute for every arc (u, v) the set of
vertex t such that (u, v) is strictly t-strong. It suffices to change the way the algorithm
breaks the tie between a red path and a blue path when it chooses the next vertex
t to visit and when it updates the colors of the neighbors of t . Namely, in the first
internal loop, the condition for coloring w in blue becomes d(w) > d(t)+l+t w while the
condition for coloring w in red in the second internal loop becomes d(w) ≥ d(t)+l−t w .
Moreover, when we choose t such that d(t) is minimal, we break tie by choosing a red
vertex if it exists. Clearly, these small changes exclude the existence of a red path of
length d(w) between u and a blue vertex w . Therefore, (u, v) belongs to every path of
length d(w) and (u, v) is strictly w-strong whenever w is blue. We call the resulting
algorithm the strict version of Algorithm 4. The next step is to extend the notion of
strict strongness to a subset of arcs having the same source. For any vertex u ∈V , a
subset δ⊆ δout

u of arcs is strictly t-strong if, for every scenario x ∈ {0,1}A , all shortest
ut-paths intersect δ . By definition, an arc (u, v) is t-useless if and only if δout

u \ {(u, v)}
is strictly t-strong. Indeed, every ut-path avoiding (u, v) intersects δout

u \ {(u, v)} and,
conversely, (u, v) belongs to every ut-path avoiding δout

u \ {(u, v)} . Hence, computing
the set of vertex t such that (u, v) is t-useless amounts to compute the set of vertex
t such that δout

u \ {(u, v)} is strictly t-strong. An algorithm that computes this set of

72

5 A Preprocessing algorithm for shortest paths problems with interval data – 5.4
Extension to the computation of t-useless arcs

vertices can be obtained from the strict version of Algorithm 4 by modifying only the
initialization step: arc (u, v) is colored in red and its length is set to l−uv while arcs
of δout

u \ {(u, v)} are colored in blue and their lengths are set to their upper bound. A
correctness proof very similar to the one of Algorithm 4 (and that we will not repeat)
shows that a vertex is colored blue by Algorithm 5 if and only if (u, v) is t-useless. Since
the two algorithms have clearly the same time complexity, we conclude this section
with the following result.

Algorithm 5: Computes the set of vertex t such that (u, v) is t-useless

Input :G = (V , A) , [l−a , l+a]a∈A , (u, v) ∈ A
Output :{t ∈V : (u, v) is t-useless}
d(u) ← 0
γ(u) ← blue
foreach (u, w) ∈ δout

u \ {(u, v)} do
d(w) ← l+uw
γ(w) ← bl ue

d(v) ← l−uv
γ(v) ← r ed
S ← {u}
while S ̸=V do

Pick t ∈V −S with smallest d(t) breaking tie by choosing a vertex t such that
γ(t) = r ed if it exists

if γ(t) is blue then
foreach (t , w) ∈ δout

t such that d(t)+ l+t w < d(w) do
d(w) ← d(t)+ l+t w
γ(w) ← bl ue

else
foreach (t , w) ∈ δout

t such that d(t)+ l−t w ≤ d(w) do
d(w) ← d(t)+ l−t w
γ(w) ← r ed

S ← S ∪ {t }
return {t ∈V : γ(t) = bl ue}

Proposition 5.6. Given a graph G = (V , A) where each arc a ∈ A is associated with a
positive interval of lengths [l−a , l+a] , and an arc (u, v) , Algorithm 5 computes in O(|A|+
|V | log |V |) time the set of vertex t such that (u, v) is t-useless.

Remark. For all the presented algorithms, if at the beginning of an iteration, all the
unvisited vertices V \ S have the same estimated color, i.e., they are all red or all blue,
then we can immediately return since these colors will not change throughout the rest
of the execution.

73

5 A Preprocessing algorithm for shortest paths problems with interval data – 5.5
Extension to constrained shortest path problems

5.5 Extension to constrained shortest path
problems

In this section, we present preliminary results about the extension of the notion of t-
strongness and t-uselessness, and our recognition algorithms, to constrained shortest
paths. Indeed, in practice, not all scenarios can be encountered, for example, in our
problem BC-PC-Opt or even in some robust shortest path problems [100], a budget
constraint restricts the number of arcs that can be at their lower bound length. In
these cases, being t-strong is a stronger requirement than necessary for an arc (u, v)
to be always on a shortest ut-path.

DEFINITION BOX 15: CONSTRAINED SHORTEST PATH AND LAGRAGIAN RELAXATION

The (budget) Constrained Shortest Path Problem (CSPP) [69] is a generalization
of the Shortest Path Problem (SPP) where the shortest path must also satisfy
a budget constraint. Given a directed graph G = (V , A) where each arc a ∈ A
is associated with a length la ≥ 0 and a cost ca ≥ 0, two vertices s, t ∈ V and
a budget β , the CSPP is to find a st-path P whose cost c(p) = ∑

a∈P ca is at
most β and whose length l (P) = ∑

a∈P la is minimum. Interestingly, the only
addition of this constraint renders the problem N P-Hard [60] while the SPP
can be solved very efficiently. Constrained shortest paths arise in a variety of
network problems such as mission planning but also as a subproblem for many
operational research methods like column generation [67].
A common approach for solving the CSPP is to explore the search space, i.e., the
set of all st-paths, and use the Lagrangian relaxation technique [60, 3] to find
lower bounds and prevent testing paths that cannot possibly be the optimal
solution. This is very similar to the Branch and Bound approach used to solve
MILP. The principle behind Lagrangian relaxations is to include the additional
constraints into the objective function in the form of penalties. Here the idea is
to penalize expensive arcs by defining a length function that account for their
cost:

lµa = la +µ · ca , (5.6)

where µ is a constant called Lagrange multiplier. The value of µ is either chosen
arbitrarily or by using heuristics that depends on the graph [3]. The shortest
path distance from s to t using lµa as the length of each arc a ,

dµ(s, t) = min
P : st-path

(∑
a∈P

lµa

)
= min

P : st-path

(
l (P)+µ · c(P)

)
, (5.7)

74

5 A Preprocessing algorithm for shortest paths problems with interval data – 5.5
Extension to constrained shortest path problems

can then be used to derive a lower bound on the length of an optimal path P∗ ,

l (P∗) = min
P : st-path

c(P)≤β
l (P) . (5.8)

Indeed, the following inequalities hold:

min
P : st-path

(
l (P)+µ · c(P)

)≤ min
P : st-path

c(P)≤β

(
l (P)+µc(P)

)≤ l (P∗)+µ ·β . (5.9)

The first inequality of (5.9) is due to the budget constraint, since the minimum
length among a subset of the st-paths can only be greater or equal than those
for all the st-paths. The second inequality of (5.9) is obtained from (5.8) and
the fact that µ · c(P) ≤µ ·β for all st-paths P with c(P) ≤β , since µ ·β is a con-
stant term, we can move it outside the minimum function. As a consequence,(
dµ(s, t)−µ ·β)

is a lower bound on the length of any optimal solution path
l (P∗) . Since this lower bound depends on the value of the Lagrange multiplier
µ , it is often interesting to test many values for µ and retain the highest lower
bound obtained.

We extend the notion of t-strongness to constrained shortest paths as follows. Given
a graph G = (V , A) where each arc a is associated with a length l+a that can be improved
to l−a ≤ l+a by paying a cost ca , we call scenario a vector x ∈ {0,1}A such that the length
of the arc a under the scenario x , that we denote l x

a , is equal to l−a if xa = 1 and equal
to l+a otherwise. The cost of a scenario x ∈ {0,1}A ,

c(x) =
∑

a∈A
xa · ca , (5.10)

corresponds to the cost for improving the length of the arcs a ∈ A for which xa = 1.
Now, given a budget β , an arc (u, v) is said to be t-β-strong if it is on a shortest path
from u to t in every scenario x ∈ {0,1}A whose cost is at most β , i.e., c(x) ≤β . Clearly,
any t-strong arc is t-β-strong for any β , but the opposite is not true. Let Fβ(u, v) be
the intersection of the fibers of the arc (u, v) over all the scenarios whose costs are at
most β , i.e.

Fβ(u, v) =
⋂

x∈{0,1}A

c(x)≤β

F x(u, v) . (5.11)

By definition, an arc (u, v) is t-β-strong if and only if t belongs to Fβ(u, v) . Computing
the set Fβ(u, v) is a N P-Hard problem. Indeed, even the problem of deciding whether
v belongs to Fβ(u, v) or not is N P-Hard since the decision version of the CSPP can
be reduced to it. More precisely, given a graph G = (V , A) where each arc a ∈ A has
a length la and a cost ca , two vertices s, t ∈ V , a budget β and a length l∗ , deciding
if it exists a path P from s to t such that c(P) ≤ β and l (P) < l∗ can be reduced to
deciding if t ∈ Fβ(s, t) in the graph G ′ = (V , A∪ {(s, t)}, l−, l+,c) where l−a = la , l+a =+∞

75

5 A Preprocessing algorithm for shortest paths problems with interval data – 5.5
Extension to constrained shortest path problems

and l+st = l−st = l∗ . Indeed, t ∉ Fβ(s, t) if and only if it exists an st-path P with c(P) ≤β

and l (P) < l∗ that do not contain the arc (s, t) . Since computing Fβ(u, v) is N P-Hard,
we focus on how to use Lagrange multipliers to compute in polynomial time a subset
S such that F (u, v) ⊆ S ⊆ Fβ(u, v) .

Given a Lagrange multiplier µ , let λµa denote the modified length of the arc a such
that

λ
µ
a = min

(
l−a +µ · ca , l+a

)
. (5.12)

Then, let F x
µ,T (u, v) , with T ⊆ V , denote the fiber of the arc (u, v) in the graph H =

(V , A′) obtained from G by removing the incoming arcs of T except (u, v) , i.e., A′ =
A \ {(w, t) ∈ A : w ∉ T , t ∈ T , (w, t) ̸= (u, v)} and where each arc a ∈ A′ is associated to
the interval [λµa ,λ+

a] with λ+
uv = l+uv +µ ·β and λ+

a = l+a for a ̸= (u, v) , such that

F x
µ,T (u, v) = {t ∈V : d x

H (u, t) =λx
uv +d x

H (v, t)} . (5.13)

Here, d x
H (st) denotes the length of a shortest st-path in the graph H using λx

a as the
length of each arc a ∈ A′ with λx

a =λ
µ
a if xa = 1 and λx

a =λ+
a otherwise. We denote the

intersection of all the fibers of (u, v) in this graph by

Fµ,T (u, v) =
⋂

x∈{0,1}A′
F x
µ,T (u, v) . (5.14)

Lemma 5.7. Given an arc (u, v) , a budget β , a subset T ⊆ Fβ(u, v) and a Lagrange
multiplier µ , T ⊆ Fµ,T (u, v) ⊆ Fβ(u, v) .

Proof. Since we removed the incoming arcs of T except (u, v) to obtain the graph
H , the inclusion T ⊆ Fµ,T (u, v) is trivial because all the remaining paths from u to a
vertex of T must contain (u, v) . It then remains to prove that Fµ,T (u, v) ⊆ Fβ(u, v) . We
proceed by contradiction. Suppose that Fµ,T (u, v) \Fβ(u, v) ̸= ; and let t be the vertex
of Fµ,T (u, v) \Fβ(u, v) . By definition, since t ∉ Fβ(u, v) , it exists a scenario x ∈ {0,1}A

with c(x) ≤β under which (u, v) do not belong to any shortest ut-path of the graph G ,
i.e.

d x
G (u, t) < l x

uv +d x
G (v, t) ≤ l+uv +d+

G (v, t) . (5.15)

We chose the vertex t such that d x
G (u, t) is minimum. Let P be a shortest ut-path

realizing the distance d x
G (u, t) in the graph G , i.e., l x(P) = d x

G (u, t) . Since c(x) ≤β , the
cost of P under the scenario x , cx (P) =∑

a∈P ca ·xa , is also at mostβ . By our hypothesis,
P can neither contain (u, v) nor any vertex w ∈ T since T ⊆ Fβ(u, v) and, by definition,
there would be a shortest uw-path Q passing by (u, v) with l x (P) = l x (Q)+d x

G (w, t) , a
contradiction. Therefore, P can only contain arcs of A′ , and is also a ut-path in the
graph H . By Lemma 5.3, t ∈ Fµ,T (u, v) is equivalent to t ∈ F y

µ,T (u, v) where y is the
scenario defined as

yw t =
{

0 w ∈ Fµ,T (u, v) or (w, t) = (u, v)
1 otherwise

, (5.16)

76

5 A Preprocessing algorithm for shortest paths problems with interval data – 5.5
Extension to constrained shortest path problems

and the distance from u to t in this scenario is

d y
H (u, t) =λ+

uv +d+
H (v, t) = l+uv +d+

H (v, t)+µ ·β . (5.17)

We can deduce that all the arcs of P are at their lower bound in the scenario y ,
otherwise P should contain a vertex w ∈ Fµ,T (u, v) that either leads to the same
contradiction as previously if w ∈ Fβ(u, v) or contradicts our choice of t minimizing
d x

G (u, t) if w ∉ Fβ(u, v) . Thus, the length of P in the scenario y is

λy (P) =
∑
a∈P

λ
µ
a = l−(P)+µ · c(P) . (5.18)

Since in the scenario y all the arcs of P are at their lower bound and the cost of P in
the scenario x is at most β , we have

λy (P) ≤λx(P) ≤ l x(P)+µ ·β , (5.19)

with λx(P) = l x(P)+µ · cx(P) . Finally, we obtain the following inequalities

λy (P) ≤ l x(P)+µ ·β< l+uv +d+
G (v, t)+µ ·β≤ d y

H (u, t) . (5.20)

The first inequality of (5.20) comes from (5.19), the second comes from the fact that
l x(P) = d x

G (u, t) and (5.15), and the last one is derived from (5.17) and d+
G (v, t) ≤

d+
H (v, t) . This leads to a contraction since, according to (5.20), in the graph H and

under the scenario y , the ut-path P must be shorter than the distance from u to t .

We describe an O(|A|+ |V | log |V |) time algorithm that, given an arc (u, v) of G , a
subset T ⊆ Fβ(u, v) and a Lagrange multiplierµ , computes Fµ,T (u, v) . This algorithm is
clearly a generalization of Algorithm 4, since for µ= 0 and T =; , Fµ,T (u, v) = F (u, v) .
It amounts to running Algorithm 4 on the graph H , thus, its correctness follows from
the correctness of Algorithm 4 and Lemma 5.7.

77

5 A Preprocessing algorithm for shortest paths problems with interval data – 5.5
Extension to constrained shortest path problems

Algorithm 6: Computes the set Fµ,T (u, v) ⊆ Fβ(u, v)

Input :G = (V , A) , (l−a , l+a ,ca)a∈A , β ∈R+ , (u, v) ∈ A , T ⊆ Fβ(u, v) , µ ∈R+

Output :Fµ,T (u, v)
d(u) ← 0
γ(u) ← r ed
foreach (u, w) ∈ δout

u \ {(u, v)} do
d(w) ←λ

µ
uw

γ(w) ← r ed

d(v) ← l+uv +µ ·β
γ(v) ← bl ue
S ← {u}
while S ̸=V do

Pick t ∈V −S with smallest d(t) breaking tie by choosing a vertex t such that
γ(t) = bl ue if it exists

if γ(t) is blue then
foreach (t , w) ∈ δout

t such that d(t)+ l+t w ≤ d(w) do
d(w) ← d(t)+ l+t w
γ(w) ← bl ue

else
foreach (t , w) ∈ δout

t such that w ∉ T and d(t)+λµt w < d(w) do
d(w) ← d(t)+λµt w
γ(w) ← r ed

S ← S ∪ {t }
return {t ∈V : γ(t) = bl ue}

Proposition 5.8. Given a graph G = (V , A) where each arc a is associated with a length
l+a that can be improved to l−a ≤ l+a by paying a cost ca , a budget β , an arc (u, v) ∈ A ,
a subset T ⊆ Fβ(u, v) of the β-strong vertices for (u, v) and a Lagrange multiplier µ ,
Algorithm 6 computes in O(|E |+|V | log |V |) the set Fµ,T (u, v) such that T ⊆ Fµ,T (u, v) ⊆
Fβ(u, v) .

The use case for Algorithm 4 is to start with the biggest known subset T of Fβ ,
typically, at the beginning T = F (u, v) , and try a value for the Lagrange multiplier µ in
order to increase T with vertices of Fβ . The obtained subset is then guaranteed to be
at least T , and we can repeat the operation with it and another value for µ . There is
no need to test the same value for µ two consecutive times since we can easily show
that Fµ,(Fµ,T (u,v))(u, v) = Fµ,T (u, v) . This approach seems quite promising since, given
k different values for µ , running this procedure is only k times more expensive in time
than identifying the set F (u, v) , and the benefits seem to increase when the budget
gets smaller. Indeed, for any budget value β ,

F+∞(u, v) ⊆ Fβ(u, v) ⊆ F 0(u, v) , (5.21)

where F+∞(u, v) = F (u, v) , and F 0(u, v) = {t ∈ V : d+(u, t) = l+uv +d+(v, t)} . However,

78

5 A Preprocessing algorithm for shortest paths problems with interval data – 5.5
Extension to constrained shortest path problems

since Fµ,T (u, v) is only guaranteed to be a subset of Fβ(u, v) , numerical experiments
are still needed to assess the benefits of running such procedure on practical instances
and to help develop a strategy for choosing the values for µ . For now, we only know
that µ must be comprised between 0 and

max
a∈A

(l+a − l−a)

ca
, (5.22)

since above this value, λµa = l+a for each arc a ∈ A .

Similarly to Algorithm 4, Algorithm 6 can be modified to identify a subset of the
β-useless vertices of an arc (u, v) by following the same rationale as the one presented
in Section 5.4. LetWβ(u, v) denote the set of vertices t such that (u, v) is t-β-useless
i.e.

Wβ(u, v) = {t ∈V : ∀x ∈X β ,d x(u, t) < l x
uv +d x(v, t)} , (5.23)

where X β = {x ∈ {0,1}A : c(x) ≤β} is the set of scenarios whose costs are at most β .

Algorithm 7: Computes the set Wµ,T (u, v) ⊆Wβ(u, v)

Input :G = (V , A) , (l−a , l+a ,ca)a∈A , β ∈R+ , (u, v) ∈ A , T ⊆ Fβ(u, v) , µ ∈R+

Output :Wµ,T (u, v)
d(u) ← 0
γ(u) ← bl ue
foreach (u, w) ∈ δout

u \ {(u, v)} do
d(w) ← l+uw +µ ·β
γ(w) ← bl ue

d(v) ←λ
µ
uv

γ(v) ← r ed
S ← {u}
while S ̸=V do

Pick t ∈V −S with smallest d(t) breaking tie by choosing a vertex t such that
γ(t) = r ed if it exists

if γ(t) is blue then
foreach (t , w) ∈ δout

t such that d(t)+ l+t w < d(w) do
d(w) ← d(t)+ l+t w
γ(w) ← bl ue

else
foreach (t , w) ∈ δout

t such that w ∉ T and d(t)+λµt w ≤ d(w) do
d(w) ← d(t)+λµt w
γ(w) ← r ed

S ← S ∪ {t }
return {t ∈V : γ(t) = bl ue}

Proposition 5.9. Given a graph G = (V , A) where each arc a is associated with a length
l+a that can be improved to l−a ≤ l+a by paying a cost ca , a budget β , an arc (u, v) ∈ A ,

79

5 A Preprocessing algorithm for shortest paths problems with interval data – 5.5
Extension to constrained shortest path problems

a subset T ⊆ Fβ(u, v) of the β-useless vertices for (u, v) and a Lagrange multiplier µ ,
Algorithm 7 computes in O(|E |+|V | log |V |) the set Wµ,T (u, v) such that T ⊆Wµ,T (u, v) ⊆
Wβ(u, v) .

80

6 Greedy Algorithms

Table of contents

6.1 Definition of the algorithms . 81
6.2 Arbitrary bad cases . 84
6.3 Incremental Greedy with dynamic update 86
6.4 A bound for improving IG on SAO-BC-PC-Opt 89

In the lack of an efficient method to compute optimal solutions of BC-PC-Opt, ecolo-
gists often use greedy algorithms to compute suboptimal solutions [61]. In Section 6.1,
we present four commonly used greedy algorithms for BC-PC-Opt and highlight their
pathological cases in Section 6.2. We will compare the quality of the solutions ob-
tained with these greedy algorithms with the optimal solution on four case studies
in Chapter 7. Then, in Section 6.3, we show results for improving the complexity and
execution time of the Incremental Greedy algorithm that were obtained as part of
Nicolas Yaverian’s Bachelor’s degree internship that we co-supervised [132].

DEFINITION BOX 16: GREEDY ALGORITHM

A greedy algorithm is an algorithm designed to construct solutions (not nec-
essarily optimal ones) for a combinatorial optimization problem [111] by only
making locally optimal choices, for example, by starting from the empty solu-
tion and iteratively adding to it the element that offers the largest increase in
the objective function, as long as such element exists. Since greedy algorithms
never reconsider their previous decisions, they do not always produce opti-
mal solutions for many problems. However, they do provide optimal solutions
when the space of solutions for the considered optimization problem has a
matroidal structure. They can also provide constant factor approximations for
some problems. We refer to [28] for an in-depth introduction.

6.1 Definition of the algorithms
The Incremental Greedy (IG) algorithm starts from the graph with no improved ele-
ments. At each step k , the algorithm selects an option i ∈Φ with the greatest ratio
∆k

i /ci until no more options fit in the budget. Here,∆k
i denotes the difference between

81

6 Greedy Algorithms – 6.1 Definition of the algorithms

the value of PC with and without the improvements of the option i at the step k . As
usual, ci is the cost of the option i . This IG algorithm is for example used in [46]. The
Decremental Greedy (DG) algorithm, similar to the Zonation Algorithm [89], starts from
the graph with all improvements performed and iteratively removes the improvement
of the option i that have the smallest ratio ∆k

i /ci . DG finishes with incremental steps
to ensure there is no free budget left. These algorithms perform at most |Φ| steps and
at each step k need to compute ∆k

i for each option i ∈Φ . It is easy to implement IG
and DG in O(|Φ|2 · |V |3) time by using an all-pair shortest path algorithm, for example,
the Floyd-Warshall one [44], to compute in O(|V |3) the initial value of the PC and the
value of∆k

i /ci for each option i and step k . These complexities are already too large for
the practical instances handled by ecologists which can have few thousands of patches.
Most of the studies relying on the PC or ECA indicators use simpler algorithms that we
call Static Increasing (SI) and Static Decreasing (SD). These algorithms are variants of
the greedy algorithms which do not recompute the ratio ∆i /ci of each option i at each
step and thus are faster but do not account for cumulative effects nor redundancies.
The SI and SD have thus a time complexity of O(|Φ| · |V |3) .

We will see how to improve the time complexity of the SI and IG algorithm in
Section 6.3.

Let GP , with P ⊆Φ , denote the landscape graph obtained from G by realizing the
improvements corresponding the options of P . Below, we give the pseudocode of each
of the algorithms we have described to eliminate any ambiguity.

Algorithm 8: Static Incremental

Input :G = (V , A, w,π) ,Φ , c ∈ (R+)Φ , β ∈R+

Output :P ⊆Φ : c(P) ≤β

Let S = (i1, . . . , in) be the sequence of the options ofΦ in decreasing order of

their benefit-cost ratio, where PC (G {ik })−PC (G)
c(ik) is the ratio of the option ik ∈Φ

P ←;
for k ← 1 to n do

if c(P)+ c(ik) ≤β then
P ← P ∪ {ik }

return P

82

6 Greedy Algorithms – 6.1 Definition of the algorithms

Algorithm 9: Static Decremental

Input :G = (V , A, w,π) ,Φ , c ∈ (R+)Φ , β ∈R+

Output :P ⊆Φ : c(P) ≤β

Let Sdec = (i1, . . . , in) be the sequence of the options ofΦ in increasing order of

their benefit-cost ratio, where PC (GΦ)−PC (GΦ\{ik })
c(ik) is the ratio of the option ik ∈Φ

P ←Φ

for k ← 1 to n do
if c(P) >β then

P ← P \ {ik }

Let Sinc = (j1, . . . , jm) be the sequence of the options ofΦ\ P in decreasing order

of their benefit-cost ratio, where PC (G { jk })−PC (G)
c(jk) is the ratio of the option jk ∈Φ

for k ← 1 to m do
if c(P)+ c(jk) ≤β then

P ← P ∪ { jk }

return P

Algorithm 10: Incremental Greedy

Input :G = (V , A, w,π) ,Φ , c ∈ (R+)Φ , β ∈R+

Output :P ⊆Φ : c(P) ≤β

D ← { j ∈Φ : c(j) ≤β}
P ←;
while D ̸= ; do

Pick i ∈ D maximizing the ratio PC (GP∪{i })−PC (GP)
c(i)

P ← P ∪ {i }
D ← { j ∈ D : j ̸= i ,c(j) ≤β− c(P)}

return P

Algorithm 11: Decremental Greedy

Input :G = (V , A, w,π) ,Φ , c ∈ (R+)Φ , β ∈R+

Output :P ⊆Φ : c(P) ≤β

P ←Φ

R ←;
while c(P) ≥β do

Pick i ∈ P minimizing the ratio PC (GP)−PC (GP \{i })
c(i)

P ← P \ {i }
R ← R ∪ {i }

R ← { j ∈ R : c(j) ≤β− c(P)}
while R ̸= ; do

Pick i ∈ R maximizing the ratio PC (GP∪{i })−PC (GP)
c(i)

P ← P ∪ {i }
R ← { j ∈ R : j ̸= i ,c(j) ≤β− c(P)}

return P

83

6 Greedy Algorithms – 6.2 Arbitrary bad cases

6.2 Arbitrary bad cases
Below, we provide instances on which IG and DG perform poorly compared to an
optimal solution. On these instances, it is easy to check that the solutions returned by
SI and SD are not better than the solutions returned by IG and DG. In the following
instances, all arcs have a probability 1 if improved and 0 otherwise and have unitary
costs. Recall that a spider is a tree consisting of several paths glued together on a
central vertex (Figure 6.1a, 6.2a and 6.3a).

Bad case for IG: The graph is a spider with 2k branches: k long branches with two
edges, an intermediate node of weight 0 and a leaf node of weight 1, and k short
branches consisting of a single edge with a leaf of very small weight ϵ> 0, see Figure2
(a). All branches are connected to a central node of weight 1. IG performs poorly on
this instance. Indeed, IG is tricked into selecting short branches with very small PC
improvement because selecting an edge of a long branch alone does not increase PC
at all. An optimal solution results in larger value of PC by improving pairs of arcs of
long branches.

In this case, IG does not perform well while DG finds an optimal solution computed
by the MILP solver except when the budget is 1. In this case, the reverse occurs:
DG performs badly while IG is optimal. Indeed, DG realizes that the budget is not
sufficient to improve two arcs of a long branch only after removing the improvements
of all short branches.

(a) (b)

Figure 6.1: An instance on which Incremental Greedy fails. (a) the graph of the IG
bad case with k = 4, (b) ratio of the increase in PC between the solutions
returned by IG and DG and an optimal solution for several budgets.

Bad case for DG: The graph is obtained from a star with k +1 branches by replacing
one branch by a path of length k . The central node and all leaves except the leaf of
the path have a weight of 1. The leaf of the path has a weight of 1+ ϵ . The internal
nodes of the path have a weight of 0. DG performs poorly on this instance because
it removes one by one the branches of the star for which ∆e /ce = 1 before removing

84

6 Greedy Algorithms – 6.2 Arbitrary bad cases

an edge of the path for which ∆e /ce = 1+ϵ . When the budget is at least 2, an optimal
solution removes all the edges of the path before removing an edge of another branch.

(a)
(b)

Figure 6.2: An instance on which Decremental Greedy fails. (a) the graph of the DG
bad case with k = 5, (b) ratio of the increase in PC between the solutions
returned by IG and DG and an optimal solution for several budgets.

Bad case for IG and DG: The graph is a spider with k+1 branches. All branches except
one are paths of length 2 with an internal node of weight 0 and a leaf of weight 1.
The last branch is a path of length 2k with internal nodes of weight ϵ> 0 and a leaf of
weight 1+ϵ . All branches intersect in a central node whose weight is 1. In this case,
both Incremental and Decremental Greedy fail. On one hand, IG selects the edges of
the path of length 2k one by one and does not realize that by taking two edges of a
short branch it could improve much more PC. On the other hand, DG removes first
the edges of the short branch because the weight of leaf of a long branch is 1+ϵ while
the weight of the leaf of a short branch is 1. Hence, DG and IG return the same low
quality solution.

85

6 Greedy Algorithms – 6.3 Incremental Greedy with dynamic update

(a)

(b)

Figure 6.3: An instance on which both Incremental and Decremental Greedy algo-
rithms fail. (a) the graph of the IG and DG bad case with k = 5, (b) ratio of
the increase in PC between the solutions returned by IG and DG and an
optimal solution for several budgets.

The case of Figure 6.3 illustrates the fact that IG and DG do not provide any constant
approximation guarantee (even for trees, that are usually simpler cases), i.e. for any
constant 0 < α < 1 there exists an instance of BC-PC-Opt such that ALG < αOPT
where ALG is the value of PC for the best solution among those returned by IG and DG
and OPT is the value of PC for an optimal solution.

6.3 Incremental Greedy with dynamic update
As described in Section 6.1, each time the greedy algorithms select an option, they
need to recompute the all-pair shortest paths for each remaining option i to assess ∆i

which leads to a time complexity of O(|Φ|2 · |V |3) , using the Floyd-Warshall algorithm
[44]. We can indeed drop this complexity to O(|Φ|2 · |V |2.37287) by using advanced
matrix multiplication algorithms [6], but the hidden multiplicative constant is so high

86

6 Greedy Algorithms – 6.3 Incremental Greedy with dynamic update

that it would not be practical for any landscape graph of reasonable size. Consequently,
static algorithms are often preferred when the landscape graph has more than a few
thousand of vertices and a few hundred of options. In this section we present how to
improve the complexity of the IG algorithm to O(|V |3 +|Φ|2 ·k · |V |2) where k is the
maximum number of vertices and arcs that can be improved by a single option.

It is long known that when we decrease the length (resp. increase the probability)
of an arc we can update the matrix of distances (resp. probabilities) in O(|V |2) time
[33]. In our case, let Π be the matrix of the probabilities of connection and (u, v) be
the arc whose probability is about to be increased from πuv to π′

uv . The matrix Π′

corresponding to the probabilities of connection after the improvement of (u, v) can
then be computed fromΠ as follows:

Π′
st = max

(
Πst ,Πsu ·π′

uv ·Πv t
)

. (6.1)

Thus, given an option i than improves the probability of k arcs, we can compute the
updated the matrix of probabilitiesΠi in O(k · |V |2) and obtain the new value of the
PC in O(|V |2) as ∑

s,t∈V
(ws +w i

s) · (wt +w i
t) ·Πi

st . (6.2)

Recently, the authors of [123] proposed an improved algorithm for updating the
matrix of distances (resp. probabilities) upon the decrease of the length (resp. increase
of the probability) of an arc (u, v) . Their algorithm still runs in O(|V |2) but exhibits a
much better average runtime, which is applicable to our case. The idea is to focus on
the set P of the pairs of vertices whose probability of connection will strictly increase
with the improvement of the arc (u, v) , i.e.,

P = {(s, t) ∈V 2 :Π(s,u) ·π′(u, v) ·Π(v, t) >Π(s, t)} . (6.3)

Since any subpath of a most reliable path is also a most reliable path, P can be viewed
as a subset of the Cartesian product S×T where S (resp. T) is the set of vertices whose
probability of connection to v (resp. from u) is strictly increased by the improvement
of the arc (u, v) , i.e.,

P ⊆ S ×T (6.4)

with
S = {s ∈V :Π(s,u) ·π′

uv >Π(s, v)} , (6.5)

T = {t ∈V :π′
uv ·Π(v, t) >Π(u, t)} . (6.6)

The sets S and T have the advantage of being computable in O(|V |) time, as shown in
Algorithm 12, while also being smaller than V , on average. The matrix of probabilities
can thus be updated in O(|V |+ |S| · |T |) which is still O(|V |2) , but faster in practice.

87

6 Greedy Algorithms – 6.3 Incremental Greedy with dynamic update

u vS T

Figure 6.4: Illustration of the set S and T with respect to the improved arc (u, v) .

Algorithm 12: Compute-S-T

Input :A probability matrixΠ and an arc (u, v) with improved probability π′
uv

Output :The pair of sets (S,T)
S ←;
T ←;
for w ∈V do

ifΠ(w,u) ·π′
uv >Π(w, v) then

S ← S ∪ {w}

if π′
uv ·Π(v, w) >Π(u, w) then
T ← T ∪ {w}

return (S,T)

We still need to compute ∆i , i.e., the amount by which the PC is increased by the
option i . Recall that πi

uv corresponds to the probability of (u, v) when it is improved by
the option i and that w i

u corresponds to the amount by which the option i increases
the weight of u . Let Fi and Wi be the sets of arcs and vertices whose weights are strictly
increased by the option i . If Wi =; we can easily compute ∆i by iteratively updating
the probability matrixΠ for each improved arc in O(|Fi | · |V |2) time, c.f. Algorithm 13.

Algorithm 13: Compute-∆i -arcs-only

Input :A probability matrixΠ and an option i ∈Φwith Wi =;
Output :∆i

∆i ← 0
Π′ ←Π

for (u, v) ∈ Fi do
(S,T) ← Compute-S-T (Π′, (u, v),πi

uv)
for s ∈ S do

for t ∈ T do
p ←Π′

su ·πi
uv ·Π′

v t
if p >Π′

st then
∆i ←∆i +ws ·wt ·

(
p −Π′

st

)
Π′

st ← p

return ∆i

88

6 Greedy Algorithms – 6.4 A bound for improving IG on SAO-BC-PC-Opt

However, when Wi ̸= ; we need to account for the increased contribution to the PC
of the pairs of vertices of V ×Wi and Wi ×V . One way to achieve this efficiently is to
maintain a vector f ∈RV that associates to each vertex t the quantity of flow arriving
at t , i.e., ft =

∑
s∈S ws ·Πst . When increasing the weights of the vertices of Wi , the new

vector f ′ can be calculated from f in O(|Wi | · |V |) time such that, for each vertex t ,
f ′

t = ft +
∑

s∈Wi
w i

s ·Πst . The incurred increase in PC can then be computed in O(|V |)
time as (∑

t∈V
wt · (f ′

t − ft)

)
+

(∑
t∈Wi

w i
t · f ′

t

)
. (6.7)

The first sum of (6.7) correspond to the gain obtained by increasing the weights of the
source vertices while the second sum correspond to the gain achieved by increasing
the weights of the target vertices. Thus, the whole procedure of computing ∆i can be
implemented in O(|Fi | · |V |2 +|Wi | · |V |) , as described by Algorithm 14.

Algorithm 14: Compute-∆i

Input :A probability matrixΠ , the vector f ∈RV and an option i ∈Φ
Output :∆i

∆i ← 0
Π′ ←Π

f ′ ← f
for (u, v) ∈ Fi do

(S,T) ← Compute-S-T (Π′, (u, v),πi
uv)

for s ∈ S do
for t ∈ T do

p ←Π′
su ·πi

uv ·Π′
v t

if p >Π′
st then

∆i ←∆i +ws ·wt ·
(
p −Π′

st

)
f ′

t ← f ′
t +ws ·

(
p −Π′

st

)
Π′

st ← p

if Wi ̸= ; then
f ′′ ← f ′

for s ∈Wi do
for t ∈V do

f ′′
t ← f ′′

t +w i
s ·Π′

st

∆i ←∆i +
(∑

t∈V wt · (f ′′
t − f ′

t)
)+ (∑

t∈Wi
w i

t · f ′′
t

)
return ∆i

6.4 A bound for improving IG on SAO-BC-PC-Opt
In the case when each option i ∈Φ improves only one arc (u, v) of the graph, i.e., the
case of an instance of the SAO-BC-PC-Opt problem, we can also consider a bounding

89

6 Greedy Algorithms – 6.4 A bound for improving IG on SAO-BC-PC-Opt

method to avoid computing the real value of ∆i if i cannot be the option with the
greatest ratio ∆i /ci . Indeed, in this case, ∆i can be expressed as

∆i =
∑

(s,t)∈P

ws ·wt · (Π′(s, t)−Π(s, t)) , (6.8)

where Π′ is the probability matrix obtained by improving the arc (u, v) , and we can
then bound ∆i as follows

∆i ≤
∑

(s,t)∈P

ws ·wt ·Π(s,u) · (π′(u, v)−π(u, v)
) ·Π(v, t) (6.9)

≤
∑
s∈S

∑
t∈T

ws ·wt ·Π(s,u) · (π′(u, v)−π(u, v)
) ·Π(v, t) (6.10)

≤
(∑

s∈S
ws ·Π(s,u)

)
· (π′(u, v)−π(u, v)

) ·(∑
t∈T

wt ·Π(v, t)

)
. (6.11)

The first bound (6.9) is obtained from the fact that, for every pair of vertices (s, t) ∈
P ,Π′(s, t) =Π(s,u) ·π′

uv ·Π(v, t) , andΠ(s,u) ·πuv ·Π(v, t) ≤Π(s, t) , giving

Π′(s, t)−Π(s, t) ≤Π(s,u) · (π′(u, v)−π(u, v)
) ·Π(v, t) . (6.12)

The second bound (6.10) derives from P ⊆ S ×T and the fact that all the terms of the
sum are positive. Then, (6.11) is a reformulation of (6.10) showing that this bound can
be computed in O(|V |) time together with the sets S and T . Thus, at a given step k of
the IG algorithm, when computing ∆k

i for each option i , we can use the bound Mi

given by (6.11) to avoid computing the exact value of ∆k
i for an option i if we already

found an option j with a greater ratio, i.e., such that

∆k
j

c j
≥ Mi

ci
. (6.13)

Experiments conducted during the internship of Nicolas Yaverian have shown that
very interesting speedups can be obtained over the naive implementation of the
IG algorithm by using the methods presented in Sections 6.3 and 6.4. As the gains
obtained are highly instance-dependent, with observed speedups between 4 and 100
times, it would be interesting to evaluate these algorithms on a larger set of instances.

90

7 Software and numerical
experiments

Table of contents

7.1 Software production . 91
7.2 Case studies . 92
7.3 Numerical experiments . 94

7.3.1 Scalability and benefits of the preprocessing 95
7.3.2 Quality of the solutions . 98
7.3.3 Execution Times . 99

7.4 Discussion . 101

7.1 Software production
An important part of this thesis has been devoted to the development of C++ tools in
order to provide practical and efficient implementations of the data structures and
algorithms needed to perform our optimization method. Consequently, quite a bit of
time has been spent in learning to produce safe, portable and efficient C++ code using
the last standards of C++, i.e. C++17, 20 and 23, and state-of-the-art building tools like
CMake and Conan.

The experiments presented in this chapter are part of our article [59] whose code is
accessible at https://gitlab.lis-lab.fr/francois.hamonic/landscape_opt_
networks_submission. This first tool is implemented in C++17 uses Gurobi Opti-
mizer [55] for solving MILP formulations, the graph library LEMON [34] for managing
graph algorithms, and the library TBB [101] for multithreading the preprocessing
and greedy algorithms. Since then, our codebase evolved, we use now C++20 and
included our own graph library, MELON https://github.com/fhamonic/melon,
and our own linear solver interface, MIPpp https://github.com/fhamonic/mippp.
These two libraries are at very early stages of development but contain all the function-
alities needed for implementing our optimization method. This new implementation
is available at https://github.com/fhamonic/landscape_opt. Our graph library,
MELON, offers between 25% and 50% faster execution times for the Dijkstra algorithm
than the LEMON [34] and Boost.Graph [24] implementations, depending on hardware

91

https://gitlab.lis-lab.fr/francois.hamonic/landscape_opt_networks_submission
https://gitlab.lis-lab.fr/francois.hamonic/landscape_opt_networks_submission
https://github.com/fhamonic/melon
https://github.com/fhamonic/mippp
https://github.com/fhamonic/landscape_opt

7 Software and numerical experiments – 7.2 Case studies

specificities. We refer to https://github.com/fhamonic/melon_benchmark for up-
to-date benchmarks. Moreover, the implementation of static digraphs in MELON
is totally thread safe and easy to manipulate thanks to the extensive use of C++20
ranges and concepts. On the other hand, our linear solver interface, MIPpp, allows to
concisely and efficiently instantiate mixed integer linear programs through the use of
operator overloading and template metaprogramming, thanks again to C++20 func-
tionalities. For the moment, MIPpp allows to interface either the Gurobi Optimizer
[55] or Cbc [48] solvers.

7.2 Case studies
We have selected four case studies that cover a wide range of potential applications for
conservation practitioners (Fig. 7.1), including conservation and restoration problems
focused on habitat patches or corridors for different types of organisms (mammal, fish,
bird, amphibian) in different types of ecosystems (terrestrial or freshwater). These
case studies reflect different types of graphs or topologies that are classically used
in connectivity conservation studies and described in Section 3.3. The case studies
№1,2 and 4 are representing different patch based models with, respectively, the tree
graph (typically used for river systems), the Minimum Planar Graph (MPG) and the
Complete Thresholded Graph (CTG), and the case study №3 is a hexagonal raster
model. These case studies relate to real conservation or restoration problems, but
the results presented here and the parameterizing of the models aim to be illustrative.
Application-oriented results would require the implication of static stakeholders,
which was beyond the scope of this thesis.

Case study №1 consists in identifying among a set of 15 dams present on the Aude
river (France) those that need to be equipped with fish passes in order to restore the
river connectivity for trouts [106]. The river is modelled by a graph of 45 vertices
of which 34 represent the river segments obtained by cutting the river tributaries at
each confluence point and each dam while the 11 remaining vertices represent the
confluence points [39, 112]. Each stretch is associated with a weight representing its
length, as an approximation for its area. Two adjacent segments u and v are connected
by reciprocal arcs (u, v) and (v,u) which represents the ability for an individual to
move from the center of one stretch to the center of the other in upstream and down-
stream directions. Each arc (u, v) is associated with a probability πuv representing the
feasibility for an individual to make the corresponding movement. If the segments u
and v are separated by a dam we fix this probability to zero, i.e., πuv = 0, otherwise we
compute it according to the negative exponential model, considering a median dis-

persal range of 10 kilometers [30], i.e., πuv = exp
(
− log(0.5)

10000 ·d(u, v)
)

where d(u, v) is the

distance in meters between the centers of the segments u and v along the river course.
The installation of a fish pass on a dam is modeled by increasing the probability of
the corresponding arcs from 0 to 80% of the probability computed with the negative
exponential model, and we assume that all fish passes have the same construction
cost.

92

https://github.com/fhamonic/melon_benchmark

7 Software and numerical experiments – 7.2 Case studies

Figure 7.1: Case studies.

Case study №2 consists in identifying the remnant forest patches that need to be
preserved from deforestation in the Montreal neighborhood (Canada) to guaranty
habitat connectivity for the wood frog [5]. Here the 518-vertices graph is a minimum
planar graph [41] with 1814 arcs. Each arc is weighted with a probability of movement
which is a negative exponential function of the least-cost path length among patches,
with a median dispersal of 300 meters. For each vertex u , we have an estimate of the
area that the corresponding habitat patch could lose by 2050 due to agriculture or
urbanization (’business as usual’ scenario, [5]). A total of 260 vertices could be reduced
in size (w i

u > 0), of which 80 could disappear entirely if not protected (w i
u = wu). For

partially-threatened patches we consider that individuals can continue to move across
adjacent arcs with unchanged probabilities. However, for each fully-threatened patch,
we replace its corresponding vertex u by two vertices u1 and u2 such that u1 receive
the incoming arcs of u and u2 the outgoing arcs, i.e., δin

u1
= δin

u and δout
u2

= δout
u , and

add an arc (u1,u2) whose probability is forced to be 1, if the patch is protected and
0 otherwise. Fully-threatened patches that are not protected thus cannot be part of
most reliable paths. Without loss of generality, we report the weight of u on u1 . We
assume that the protection cost of each patch is proportional to its potential area loss
by 2050.

Case study №3 consists in identifying street sections in which planting trees can

93

7 Software and numerical experiments – 7.3 Numerical experiments

improve the connectivity of the urban canopy for the European red squirrel in the city
of Aix-en-Provence. The landscape is here modelled with a raster-based model of 6565
hexagonal cells of 187 m2 . Each cell is associated with a quality weight of 1 if it contains
mostly treed areas and 0 otherwise, and probability µu (probability that an individual
succeeds when moving through it) that depends on the underlying land cover: 1 for
habitat, 0.97 for partially treed areas, 0.7 for low vegetated areas, 0.45 for non vegetated
areas, 0.25 for roads and 0 for buildings. The probability of each arc (u, v) is computed

as πuv = (µu ·µv)
1
2 . We assume that planting trees along a street section increases by 6

the permeability of the arcs its crosses, i.e., πi
uv = (πuv)

1
6 , and that the cost of these

actions is proportional to the number of crossed hexagons. For illustration, we chose
here a set of 47 candidate street sections for which we implemented PC optimization.
To make the instance more tractable, we contract adjacent cells that correspond to
habitat, as described in Section 3.3.3. The resulting graph contains then 6186 vertices,
of which 60 represent habitat patches, and 27818 arcs.

Case study №4 consists in identifying unbuilt lots that need to be preserved from
artificialization to maintain connectivity among urban parks and the surrounding
natural massifs in the city of Marseille for songbirds (e.g., Eurasian blackcap). Unbuilt
lots, that are mainly present in the city periphery, can indeed act like stepping stones
between massifs and parks. The baseline graph is composed of 196 vertices of which
42 models the frontier of massifs (20 ha each), 43 represents smaller parks (1 ha),
11 larger parks (5 ha), and 100 unbuilt lots (0.1 ha). We use a negative exponential
function of the border-to-border distance between patches, with a median dispersal
distance of 3000 meters [95] to estimate the probability of arcs. The graph is a complete
thresolded graph with a thresolded probability of 0.135, i.e., it contains all arcs except
those whose probability would be less than 0.135 which correspond approximately
to an inter-patch distance of 8600 meters. When an unbuilt lot is not selected for
conservation, its area becomes zero, and it no longer contributes to any shortest path
(probability of moving along adjacent arcs set to zero). When selected, its attributes
and those of its adjacent arcs do not change.

7.3 Numerical experiments
In this section, we report on our computational experiments in order to demonstrate
the combined benefits of our MILP formulation and preprocessing step. We per-
formed the numerical experiments on a desktop computer equipped with an Intel(R)
Core(TM) i7-8700k 4.8 gigahertz and 32 gigabytes of memory and running Manjaro
Linux release 21.2.4 with GCC version 10.2 and the libstdc++ that comes with it. At
the moment, we used Gurobi Optimizer [55] version 9.1.1 with default settings for
solving MILP formulations, the graph library LEMON [34] version 1.3.1 for managing
graph algorithms, and the library TBB [101] version 2020.3 for multithreading the pre-
processing and greedy algorithms. Code and data are available at https://gitlab.
lis-lab.fr/francois.hamonic/landscape_opt_networks_submission.

94

https://gitlab.lis-lab.fr/francois.hamonic/landscape_opt_networks_submission
https://gitlab.lis-lab.fr/francois.hamonic/landscape_opt_networks_submission

7 Software and numerical experiments – 7.3 Numerical experiments

7.3.1 Scalability and benefits of the preprocessing
In order to address the scalability of our approach and the benefits of our prepro-
cessing step, we execute our method with and without preprocessing on about one
hundred instances obtained from our four case studies by varying the budget between
0 (meaning no option is selected) and 100% (meaning all the options are selected). Our
goal is to understand how the computing times and the size of the MILP model vary
with respect to (i) the budget available, (ii) the number of binary decision variables,
(iii) the presence of the preprocessing, (iv) and the percentage of improvable arcs
compared to the total number of arcs in the graph.

0 50 100

10 2

10 1

ex
ec

ut
io

n
tim

e
(s

)

Aude

0 20

101

102

103
Montreal

0 10 20
budget percent

101

102

103

ex
ec

ut
io

n
tim

e
(s

)

Aix

milp milp preprocessed

0 20 40
budget percent

101

Marseille

Figure 7.2: Execution times on the four case studies as a function of the budget (miss-
ing points correspond to instances that do not finish within 10 hours)

For the Aude and Montreal cases, the preprocessing reduces the resolution time
by about a factor of 10 (Figure 7.2). Without preprocessing, the Aix and Marseille
instances are not solved by the optimizer within 10 hours, whereas with preprocessing
they become solvable in about half an hour and half a minute respectively. In most
unfinished instances, the optimizer reaches the optimal solution but is not able to
prove its optimality since it did not complete the exploration of the search space in
the allotted time. Some instances of the Montreal case cannot be solved without
preprocessing. The average computation times shown in Table 7.2 do not take these
instances into account.

The preprocessing represents a small portion of the total computation time for all
case studies (Table 7.1). The number of variables of the model is reduced by about
75% in the Aude case, 60% in the Montreal case, 70% in the Aix case and 99% in the

95

7 Software and numerical experiments – 7.3 Numerical experiments

case
MILP preprocessed MILP

#var #const time #var #const p. time time
Aude 4061 2551 120 ms 1069 1055 3 ms 20 ms

Montreal 830530 262445 4 mins 318848 167153 0.26 s 19 s
Aix 1748708 624841 – 555124 295010 3 s 1600 s

Marseille 4949825 78410 – 41676 22465 0.9 s 7 s

Table 7.1: Comparison of the MILP and the preprocessed MILP according to the num-
ber of variables (#var), the number of constraints (#const), the preprocessing
time (p. time) and the average computation time (time).

Marseille case. This last number is explained by the fact that the Marseille graph is
near complete and a large proportion of its arcs are t-useless for some vertex t , i.e.,
they never belong to any most reliable path to t and can thus be removed. Regarding
the constraints, the reduction is 60% for the Aude case, 33% for the Montreal one, 53%
for the Aix case and about 70% for the Marseille case.

#unbuilt lots
MILP preprocessed MILP DG

#var #const time #var #const time time
20 345775 18410 12 s 10716 7197 < 1 s < 1 s
50 717901 36410 2 mins 34613 21485 2 s 7 s
80 1306597 59810 32 mins 76281 42039 13 s 30 s

110 - 132225 66759 1 min 1 min 30 s
140 - 207999 96600 3 mins 3 mins
170 - 308355 132701 28 mins 7 mins

Table 7.2: Comparison of the MILP, the preprocessed MILP and DG according to the
number of variables (#var), the number of constraints (#const) and the time
(on average with 20 different budget values) it takes to solve the Marseille
instance with different numbers of unbuilt lots

For the case of Marseille, the one with the largest number of variables, we also
explored how the number of potential options influences the number of constraints
and the computation time. We see in Table 7.2 that the computation time of the MILP
without preprocessing increases very quickly. It takes more than 30 minutes on average
for instances with 80+ unbuilt lots whereas the preprocessed ones can be solved in less
than 30 minutes with up to 170 unbuilt lots. This is due to the preprocessing step that
significantly reduces the time required to solve the linear relaxation by reducing the
number of variables, constraints and non-zero entries of the mixed integer program.
The preprocessed MILP is faster than the greedy algorithm for instances with at most
140 unbuilt lots (the preprocessing step was not used for greedy algorithms).

To show the efficiency of the preprocessing on the number of constraints in the
problems (which is related to computation time), we run our preprocessing on 400

96

7 Software and numerical experiments – 7.3 Numerical experiments

randomly generated instances from a model of the landscape around Montreal for
snowshoe hares of 8733 vertices and 18422 arcs [5] and study the impact of the pre-
processing on the MILP formulation size. For building these instances, we take 20
connected subgraphs of 500 vertices and for each graph we create 20 instances by
randomly picking a percentage of arcs whose probability could be increased from π top
π . Sampling in the very large graph representing the Montreal region gives rise to

different types of instances in terms of shapes, arc density, etc. This is why we decided
to use the Montreal case for these experiments.

20

40

60

80

100

re
m

ov
ed

 v
ar

ia
bl

es

20

40

60

80

100

re
m

ov
ed

 c
on

st
ra

in
ts

0 10 20 30 40 50 60 70 80 90 100
percentage of improvable arcs

20

40

60

80

100

re
m

ov
ed

 e
nt

rie
s

Figure 7.3: Box plots showing the percentage of constraints, variables and non-zero
entries removed by the preprocessing as a function of the percentage of
improvable arcs. The red line is the median, the dashed green line is the
mean, the box represents the values between the 25th and 75th percentiles
and the whiskers the min and max values.

Figure 7.3 shows a box plot of the size reduction of the MILP formulation in terms
of constraints, variables and non-zero entries with respect to the percentage of arcs
that could be improved compared to the total number of arcs in the graph. The
preprocessing removes almost all the elements of the MILP formulation when the
number of improvable arcs arrives close to zero. This reduction decreases with the

97

7 Software and numerical experiments – 7.3 Numerical experiments

number of arcs that can be improved. When 20% of the arcs can be improved, the
preprocessing removes on average 80% and at least 70% of the model’s variables,
on average 60% and at least 45% of the model’s constraints, and on average 75%
and at least 65% of the model’s non-zero entries. Even when 100% of the arcs can
be improved, the preprocessing reduces on average by 35% the model’s size. The
reductions achieved in terms of variables, constraints and entries seem to be robust
since, for any percentage of improvable arcs, the gaps between the 25th and 75th
percentiles do not exceed 17%. Furthermore, these results appear to be consistent
with those of Table 7.1. Indeed, in the case of Aix, in which about 15% of the arcs
can be improved, our preprocessing reduces the number of variables by 70% and the
number of constraints by 65%.

7.3.2 Quality of the solutions
In order to compare the quality of the solutions returned, we run the four simple
algorithms described in Chapter 6 and our optimization method on a total of about
100 instances obtained from our four case studies by varying the budget value.

50 100

0.5

1.0

op
tim

um
 ra

tio

Aude

0 10 20 30

0.95

1.00
Montreal

0 10 20 30
budget percent

0.6

0.8

1.0

op
tim

um
 ra

tio

Aix

decremental local
incremental local

decremental greedy
incremental greedy

optimal

0 10 20 30
budget percent

0.96

0.98

1.00
Marseille

Figure 7.4: Percentage of gain in PC achieved by the solutions of the different algo-
rithms compared to the optimal solution for different budget values.

98

7 Software and numerical experiments – 7.3 Numerical experiments

IL DL IG DG

min. avg. min. avg. min. avg. min. avg.
Aude 77.7 % 93.1 % 13.9 % 82.9 % 80 % 93 % 87.4 % 96.8 %

Montreal 91.8 % 99.2 % 97.7 % 99.6 % 98.4 % 99.8 % 98.4 % 99.8 %
Aix 81.5 % 96.1 % 64.9 % 95.6 % 81.5 % 98.6 % 53.9 % 97.3 %

Marseille 97.8 % 99.5 % 94.9 % 99.3 % 97.8 % 99.6 % 97.8 % 99.6 %

Table 7.3: Minimum and average optimilaty ratio for each algorithm and case study.

For each case study and each of the four algorithms, there is at least one budget
value for which the quality of the solution is significantly lower than the quality of
the optimal solution, the greatest departures being observed at lower budget values
(Figure 7.4, Table 7.3). Greedy versions of incremental and decremental algorithms
perform on average better than their static counterpart (Table 7.3). The minimum
and average optimality ratio in the Aude and Aix cases is lower than in the other cases,
for all algorithms (Table 7.3). This can be explained by the fact that the improvements
seem to have a stronger impact on the distances between patches in the case of Aude
and Aix. Static and greedy algorithms are generally quite close to the optimal solution
(5% lower on average). However, all algorithms, whether static or greedy, incremental
or decremental, provide poor quality solutions for some budget values (Table 7.3).

7.3.3 Execution Times
In order to evaluate the trade-offs between optimality and resolution time, we also
recorded the execution times of all algorithms on the instances of the previous section.

For all the cases, the IL algorithm is the fastest one, taking milliseconds for the
Aude case and of the order of seconds for the other cases (Fig. 7.5). The DL algorithm
follows with a calculation time 2 to 4 times longer than the IL algorithm. The IG and DG
algorithms computing time are respectively linearly increasing and linearly decreasing
with the budget value, with some outliers in Montreal case. The IG algorithm takes
a maximum of 10 milliseconds in the Aude case and a maximum of 30 seconds in
the other cases. The DG algorithm takes a maximum of 20 milliseconds in the Aude
case and few minutes in the others. The optimal solution takes in the order of 100
milliseconds for the Aude case, few minutes for the Montreal and Marseille cases and
one hour for the Aix case.

99

7 Software and numerical experiments – 7.3 Numerical experiments

50 100
10 3

10 2

10 1

ex
ec

ut
io

n
tim

e
(s

)

Aude

0 10 20 30

100

101

102

Montreal

0 10 20 30
budget percent

101

103

ex
ec

ut
io

n
tim

e
(s

)

Aix

decremental local
incremental local

decremental greedy
incremental greedy

optimal

0 10 20 30
budget percent

100

101

Marseille

Figure 7.5: Execution time of the algorithms as a function of budget (log scale)

20 40 60 80 100
number of unbuilt lots

0

50

100

150

200

250

co
m

pu
ta

ti
on

 t
im

e
in

 s
ec

on
ds static incremental

decremental greed
MILP

Figure 7.6: Computation times to solve the MILP on the Marseille case grow exponen-
tially with the number of options while computation times of suboptimal
algorithms grow only polynomially

100

7 Software and numerical experiments – 7.4 Discussion

7.4 Discussion
The mixed integer optimization algorithm always finds the best solution for a given
budget. As expected, both the static and greedy algorithms lead to solutions that are
mostly less good than the optimal solution, i.e., the options chosen lead to a lower PC
value. As expected, the greedy algorithms also lead on average to solutions that are
closer to the optimum than the static algorithms, because they partly account for the
cumulated effect that can occur. All algorithms, whether static or greedy, incremental
or decremental, deviate from the optimal solution for some budget values, which
means that they do not keep pace with the performance of the optimal algorithm
as the budget increases. These deviations mean that at some point, past decisions
were not the best decisions given the new decisions that can be made as the budget
increases. There are two possible and non-exclusive explanations to these deviations.
On the one hand, the deviations could be due to the suboptimality of the greedy and
static algorithms for the knapsack problem, a problem in combinatorial optimization.
The knapsack problem seeks to determine, given a set of objects with a weight and a
value, which objects should be chosen to fill a knapsack so that the total weight is less
than or equal to its load limit and the total value is as large as possible [92]. It is similar
to our problem of resource allocation, where the decision-makers have to choose from
a set of non-divisible projects (options) under a fixed budget. Thus, even if there are
no cumulative effects between the chosen options, static and greedy algorithms do
not guarantee an optimal budget allocation [36]. However, this suboptimality issue
only arises when the costs of the options are not all the same. Otherwise, i.e. when the
options all have equal costs, the knapsack can easily be filled optimally by choosing
the options with the highest values first. Unlike the other three cases, in the Aude
case, all options have a similar cost, so we know that the observed deviations cannot
be explained by the suboptimality of the greedy algorithm for the knapsack problem.
On the other hand, these deviations could be due to synergies or redundancies of
certain combinations of options, i.e., cumulated effects. The fact that the four simpler
algorithms perform poorly in some arbitrary and unpredictable cases is due to the
way they work sequentially, and their inability to question previous decisions based
on novel ones. We illustrated trivial cases for which each of the static and greedy
algorithms fail to reach good solutions in Chapter 6. Since in the Aude case all options
have equal weights, we know that, in this case, the suboptimality is not related to the
suboptimality of greedy algorithms for the knapsack problem. We thus assume that
the observed deviations between the simpler algorithms and the optimal algorithm is
due to the interactions among the potential options and the order in which they are
chosen, similarly to the bad cases exposed in Chapter 6. Indeed, since the river system
is represented by a tree (dendritic) graph, this case has some similarities with our
schematic example above for the bad cases. In particular, sequential selections may
overlook the large potential effects of selecting multiple options along a single branch
if each individual option provides only poor improvements to the PC. In the other
three cases, we assume that the observed deviations may be due to both explanations,
the size and density of the graphs makes it difficult to understand the effect of each

101

7 Software and numerical experiments – 7.4 Discussion

option or budget level on the whole graph and its PC value. Computation time varies
by several orders of magnitude between case studies and between algorithms. The
computation time of the different algorithms depends on several elements, including:
the search procedure, the size of the graph, the number of options, the budget, and the
complexity of the problem (existence of synergies/redundancies among options), all
being not necessarily independent. For both static algorithms, the computation time
depends only on the number of possible options and the time needed to calculate
PC (so the graph size), but only once for each option. That is why they are quick
to compute, and that also explains why they are currently largely used in applied
conservation problems. Here, decremental (less used) is a bit longer than incremental
due to implementation procedure which implies more calculation steps for small
budget values. For both greedy algorithms, the computation time depends on the
number of options, but also largely on the size of the graph, as the time required
to compute PC directly depends on it, and PC needs to be recalculated N −k times
for each kth additional option. The computation time of the incremental greedy
algorithm increases with the value of the budget, this is due to the fact that a larger
budget allows for the inclusion of more options and therefore requires the addition
of the computation of the effects of these additional options on top of those already
chosen. For the optimal algorithm, the computation time depends on the space that
needs to be explored on the decision tree of options, which is at most a function
of 2N (N being the number of options), but the optimization process allows a large
reduction of this time by pruning the search space to remove non-optimal solutions,
like the branch and bound method seen in Definition-Box 3. For this reason, the
computation time of the optimal algorithm is shorter for smaller problems (smaller
graphs with fewer options) but also when the problem is simpler (fewer complex
interactions between the potential solutions) because more branches can be pruned
earlier. Above a budget value the marginal gain on PC may be very small or even null.
In the case of Aix, for instance, this arises around 30% of the budget (or 80% in the
case of Aude), because the highest possible PC has been reached. We have chosen to
illustrate our experiments by demonstrating the method on cases on which the four
algorithms run easily and thus quantify the differences in the orders of magnitude
required by the different algorithms. Obviously, no one is afraid to run a calculation
for a few minutes, hours, or even days if they want to arrive at an efficient and cost-
effective solution to their conservation problem. However, months or years quickly
become problematic. As shown in Table 7.2 and Figure 7.6, the computation time
needed to solve the mixed integer program grows exponentially with the number of
options. When this computation time reaches several minutes, the maximum size
of the instances that can be solved optimally in a reasonable time is almost reached.
Indeed, with this exponential growth, adding a few more options would explode the
computation time to several days or even months (see Fig. 7.6). Combining and
comparing different conservation scenarios with different budgets, or different sets of
possible options, would also only multiply the computation time by the number of
different scenarios chosen.

In our four case studies, if the mixed integer optimization algorithm always finds

102

7 Software and numerical experiments – 7.4 Discussion

the best solution for a given budget, and if the quality of the solution obtained with
the different algorithms depends on how much they account for the cumulated effects
(optimal > greedy > static), the static and greedy algorithms are generally quite close to
the optimal solution (5% lower on average). The largest departures from the optimum
are observed at low budget values and, beyond a certain budget value all algorithms
stay very close to the optimal solution. This convergence between the algorithms,
especially for higher budget values, tends to show that in our cases the cumulated
effects have low impact. However, our results also show some discrepancies between
the cases, the solutions being on average better for Marseille and Montreal cases
than for Aix and Aude cases (Fig. 7.4). These discrepancies could be explained by
the density of these graphs (how close to complete they are). A higher (resp. lower)
density, as in the case of Marseille (resp. Aude), leads to reach the maximum value
of PC more quickly (resp. less quickly). Alternatively, the maximum value of PC is
also reached more quickly when fewer options strongly impact the most probable
paths between multiple vertices. This maximum value of PC is reached when the
probabilities of connection between all habitat patches have reached their maximum
value, or equivalently the distances among patches have reached their minimum. After
this point, additional options are only redundant. This emerging property actually
corresponds to something we believe is a shortcoming of the PC indicator which
only takes into account the shortest path distance among pairs of vertices and not
the number of short paths: redundancies taken into account by circuit connectivity
measure [88] can lead to more robust networks. As we have illustrated our work with
four very contrasted and complementary case studies, we believe that our results
are rather robust and are not related to the modelling of the landscape (graph types)
nor to the type of problem. We thus conclude that the optimal resolution is to be
preferred when the landscape model is small enough (few hundred of habitat patches)
to obtain a solution in a reasonable time. Our results show that the benefits of optimal
resolution are greater on instances that are weakly connected or whose options have a
strong impact on the most probable paths between multiple nodes.

103

Conclusion

In the face of the nature crisis that this planet is experiencing – while the solution is
probably to address the anthropogenic causes [17, 94, 25] – landscape connectivity has
been identified as a key element to mitigate biodiversity losses resulting from habitat
loss and fragmentation. Consequently, decision-makers need reliable tools to select
the most efficient and cost-effective actions to preserve or enhance biodiversity habi-
tats. Indeed, current methods for prioritizing connectivity conservation/restoration
actions are suboptimal because they largely ignore cumulated effects [104].

In this thesis we addressed the optimization of the Probability of Connectivity (PC)
indicator [109], which is currently the most widely used indicator for assessing the
priority of connectivity conservation and restoration actions [72]. We introduced the
Budget-Constrained PC Optimization problem (BC-PC-Opt) that can capture both
connectivity conservation and restoration problematics. We then proved that this
problem is N P-Hard and inapproximable with a constant factor greater than (1+ 1

e) ,
and gave a mixed integer formulation for solving it efficiently. Our experiments show
the scalability of our approach that now allows solving to optimality instances with
few hundred of habitat patches whereas the previous models were limited to about 30
patches [131]. In addition to provide an optimization method for real-world instances
of modest size, this contribution highlights the fact that the algorithms used in practice
are suboptimal, even on realistic instances larger than the trivial bad cases, and now
allows measuring how bad this suboptimality is. In our four case studies, although
our mixed integer linear program always finds the best solution, the local and greedy
algorithms are indeed quite close to the optimal solution (5% lower on average). In
a broader context, we improved existing [21, 79] and introduced new preprocessing
steps for shortest path problems on graphs whose arcs lengths are only known to
lie in positive intervals. Our experiments show that these preprocessing steps play
a key role in the scalability of our approach by significantly reducing the size of our
MILP formulations. Furthermore, the problems of identifying t-strong and t-useless
arcs, addressed by our algorithms, were previously studied for robust shortest path
problems [71, 21] and have undoubtedly many other applications. For example, they
would be of similar interest for optimizing another connectivity indicator based on
shortest path computations.

On a practical side, it would be important to experiment our approaches on other
practical instances of the BC-PC-Opt problem arising from different ecological con-
texts. Implementing the extension of our algorithms to constrained shortest path
problems, described in Section 5.5, would address the added benefits of accounting
for the budget limit while identifying arcs that can or cannot be part of an optimal
solution. It would also be interesting to look for existing problems that could benefit

104

7 Software and numerical experiments – 7.4 Discussion

from our preprocessing techniques and conduct experiments to evaluate these bene-
fits. At the same time, it seems very important to pursue the software development in
order to provide a tool for practitioners to easily use our optimization methods.

On a theoretical side, since we showed the greedy algorithms can perform arbitrarily
bad on some instance, it would be natural to look for some constant approximation
algorithms. A first approach to tackle this question would be to find reasonable as-
sumptions on the instances such that a greedy algorithm could a have a constant
approximation ratio. If these assumptions are fulfilled by the real instances that we
considered, this would explain our experimental observations. Moreover, since a
polynomial time approximation scheme has been given in the case of trees [129], it
could also be interesting to know for which larger classes of graphs constant factor
approximation algorithms for this problem exist. Another interesting question is to
determine whether good solutions could be obtained by decomposing geographi-
cally the problem, solving independently the subproblems of each region and then
reassembling the solutions. In this case, a notion of fairness could help to allocate the
budget among the regions so that each region can enhance its own internal connec-
tivity keeping a part of the budget to enhance the connectivity between the regions.
Another line of research would be to investigate the optimization of other connectivity
indicators based on circuit theory [88]. Indeed, while not being used for prioritizing
connectivity conservation and restoration actions, these indicators are gaining in
popularity and the notion of effective resistance intimately relates to Semidefinite
Programming (SDP), a generalization of linear programming [53].

Historically, the interaction between computer science and ecology has long been
one-sided, with ecologists adapting pre-existing notions such as graph theory to
their case studies. We hope that this thesis can serve as an example to encourage
interdisciplinary exchanges which are much more interesting from a practical and
theoretical point of view as they also stimulate the emergence of structural, metric
and algorithmic questions that have sounded practical applications.

105

Bibliography

[1] Adriaensen, F., Chardon, J.P., De Blust, G., et al. “The application of ‘least-
cost’ modelling as a functional landscape model”. In: Landscape and Urban
Planning 64.4 (2003), pp. 233–247. DOI: 10.1016/S0169-2046(02)00242-6
(cit. on pp. 27, 36).

[2] Ahuja, Ravindra K., Magnanti, Thomas L., and Orlin, James B. “Generalized
flows”. In: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall,
Inc., 1993. Chap. 15, pp. 566–597. ISBN: 978-0136175490 (cit. on p. 53).

[3] Ahuja, Ravindra K., Magnanti, Thomas L., and Orlin, James B. “Lagrangian
relaxation and network optimization”. In: Network Flows: Theory, Algorithms,
and Applications. Prentice-Hall, Inc., 1993. Chap. 16, pp. 598–648. ISBN: 978-
0136175490 (cit. on p. 74).

[4] Ahuja, Ravindra K., Magnanti, Thomas L., and Orlin, James B. Network Flows:
Theory, Algorithms, and Applications. Prentice-Hall, Inc., 1993. ISBN: 978-
0136175490 (cit. on p. 52).

[5] Albert, Cécile H., Rayfield, Bronwyn, Dumitru, Maria, and Gonzalez, Andrew.
“Applying network theory to prioritize multispecies habitat networks that are
robust to climate and land-use change”. In: Conservation Biology 31 (2017),
pp. 1383–1396. DOI: 10.1111/cobi.12943 (cit. on pp. 13, 27, 33, 36, 40, 93,
97).

[6] Alman, Josh and Williams, Virginia Vassilevska. “A Refined Laser Method and
Faster Matrix Multiplication”. In: Proceedings of the 2021 ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pp. 522–539. DOI: 10.1137/1.9781611976465.
32 (cit. on p. 86).

[7] R.E.A. Almond, M. Grooten, D. Juffe Bignoli, and T. Peterson, eds. Living Planet
Report 2020 - Building a nature- positive society. World Wildlife Fund, 2022.
ISBN: 978-2-88085-316-7. URL: https://wwflpr.awsassets.panda.org/
downloads/lpr_2022_full_report.pdf (cit. on p. 12).

[8] Andren, Henrik. “Effects of habitat fragmentation on birds and mammals in
landscapes with different proportions of suitable habitat: a review”. In: Oikos
(1994), pp. 355–366. DOI: 10.2307/3545823 (cit. on p. 25).

[9] Arora, Sanjeev, Karger, David, and Karpinski, Marek. “Polynomial Time Approx-
imation Schemes for Dense Instances of NP-Hard Problems”. In: Journal of
Computer and System Sciences 58.1 (1999), pp. 193–210. ISSN: 0022-0000. DOI:
10.1006/jcss.1998.1605 (cit. on p. 47).

106

https://doi.org/10.1016/S0169-2046(02)00242-6
https://doi.org/10.1111/cobi.12943
https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.1137/1.9781611976465.32
https://wwflpr.awsassets.panda.org/downloads/lpr_2022_full_report.pdf
https://wwflpr.awsassets.panda.org/downloads/lpr_2022_full_report.pdf
https://doi.org/10.2307/3545823
https://doi.org/10.1006/jcss.1998.1605

Bibliography

[10] Awade, Marcelo, Boscolo, Danilo, and Metzger, Jean Paul. “Using binary and
probabilistic habitat availability indices derived from graph theory to model
bird occurrence in fragmented forests”. In: Landscape Ecology 27 (2012), pp. 185–
198. DOI: 10.1007/s10980-011-9667-2 (cit. on p. 32).

[11] Beier, Paul, Spencer, Wayne, Baldwin, Robert F, and McRAE, BRAD H. “Toward
best practices for developing regional connectivity maps”. In: Conservation
Biology 25.5 (2011), pp. 879–892. DOI: 10.1111/j.1523-1739.2011.01716.x
(cit. on p. 13).

[12] Belotti, Pietro, Bonami, Pierre, Fischetti, Matteo, et al. “On handling indicator
constraints in mixed integer programming”. In: Computational Optimization
and Applications 65.3 (2016), pp. 545–566. DOI: 10.1007/s10589-016-9847-8
(cit. on pp. 56, 65).

[13] Bhaskara, Aditya, Charikar, Moses, Chlamtac, Eden, Feige, Uriel, and Vija-
yaraghavan, Aravindan. “Detecting High Log-Densities: An O(N¼) Approx-
imation for Densest k-Subgraph”. In: Proceedings of the Forty-Second ACM
Symposium on Theory of Computing. STOC ’10. Association for Computing
Machinery, 2010, pp. 201–210. DOI: 10.1145/1806689.1806719 (cit. on p. 47).

[14] Bodin, Örjan and Saura, Santiago. “Ranking individual habitat patches as con-
nectivity providers: Integrating network analysis and patch removal experi-
ments”. In: Ecological Modelling 221.19 (2010), pp. 2393–2405. ISSN: 0304-3800.
DOI: 10.1016/j.ecolmodel.2010.06.017 (cit. on pp. 30, 42).

[15] Bose, Prosenjit and Smid, Michiel. “On plane geometric spanners: A survey
and open problems”. In: Computational Geometry 46.7 (2013). EuroCG 2009,
pp. 818–830. ISSN: 0925-7721. DOI: 10.1016/j.comgeo.2013.04.002 (cit. on
p. 37).

[16] Box, George EP. “Robustness in the strategy of scientific model building”. In:
Robustness in statistics. Elsevier, 1979, pp. 201–236. DOI: 10.1016/B978-0-12-
438150-6.50018-2 (cit. on p. 32).

[17] Brondizio, E. S., Settele, J., Díaz, S., and Ngo, H. T. Global assessment report
on biodiversity and ecosystem services of the Intergovernmental Science- Policy
Platform on Biodiversity and Ecosystem Services. IPBES, Bonn, Germany, 2019.
ISBN: 978-3-947851-13-3. DOI: 10.5281/zenodo.3831673 (cit. on pp. 12, 104).

[18] Bunn, A.G, Urban, D.L, and Keitt, T.H. “Landscape connectivity: A conservation
application of graph theory”. In: Journal of Environmental Management 59.4
(2000), pp. 265–278. DOI: 10.1006/jema.2000.0373 (cit. on pp. 25, 26).

[19] Burel, Françoise. “Hedgerows and Their Role in Agricultural Landscapes”. In:
Critical Reviews in Plant Sciences 15.2 (1996), pp. 169–190. DOI: 10.1080/
07352689.1996.10393185 (cit. on p. 24).

107

https://doi.org/10.1007/s10980-011-9667-2
https://doi.org/10.1111/j.1523-1739.2011.01716.x
https://doi.org/10.1007/s10589-016-9847-8
https://doi.org/10.1145/1806689.1806719
https://doi.org/10.1016/j.ecolmodel.2010.06.017
https://doi.org/10.1016/j.comgeo.2013.04.002
https://doi.org/10.1016/B978-0-12-438150-6.50018-2
https://doi.org/10.1016/B978-0-12-438150-6.50018-2
https://doi.org/10.5281/zenodo.3831673
https://doi.org/10.1006/jema.2000.0373
https://doi.org/10.1080/07352689.1996.10393185
https://doi.org/10.1080/07352689.1996.10393185

Bibliography

[20] Calabrese, Justin M. and Fagan, William F. “A comparison-shopper’s guide to
connectivity metrics”. In: Frontiers in Ecology and the Environment 2.10 (2004),
pp. 529–536. DOI: 10.1890/1540-9295(2004)002[0529:ACGTCM]2.0.CO;2
(cit. on p. 26).

[21] Catanzaro, Daniele, Labbé, Martine, and Salazar-Neumann, Martha. “Reduc-
tion approaches for robust shortest path problems”. In: Computers & OR 38
(2011), pp. 1610–1619. DOI: 10.1016/j.cor.2011.01.022 (cit. on pp. 14, 15,
68, 104).

[22] Chvatal, Vasek, Chvatal, Vaclav, et al. Linear programming. Macmillan, 1983.
ISBN: 9780716715870 (cit. on p. 52).

[23] Cobham, Alan. “The Intrinsic Computational Difficulty of Functions”. In: Logic,
Methodology and Philosophy of Science: Proceedings of the 1964 International
Congress (Studies in Logic and the Foundations of Mathematics). Ed. by Yehoshua
Bar-Hillel. North-Holland Publishing, 1965, pp. 24–30. DOI: 10.2307/2270886
(cit. on p. 44).

[24] community, Boost. Boost C++ libraries. 2022. URL: https://www.boost.org
(cit. on p. 91).

[25] Contribution of Working Group II to the Sixth Assessment Report of the Inter-
governmental Panel on Climate Change : Pörtner, Hans-Otto, Roberts, Debra
C, Adams, H, et al. Climate Change 2022: Impacts, Adaptation and Vulner-
ability. Cambridge University Press. Cambridge University Press, 2022. DOI:
10.1017/9781009325844 (cit. on pp. 12, 104).

[26] Cook, Stephen. “The importance of the P versus NP question”. In: Journal of
the ACM (JACM) 50.1 (2003), pp. 27–29. DOI: 10.1145/602382.602398 (cit. on
p. 45).

[27] Cook, Stephen A. “The Complexity of Theorem-Proving Procedures”. In: Pro-
ceedings of the Third Annual ACM Symposium on Theory of Computing. STOC
’71. Association for Computing Machinery, 1971, pp. 151–158. ISBN: 9781450374644.
DOI: 10.1145/800157.805047 (cit. on p. 44).

[28] Cormen, Thomas H, Leiserson, Charles E, Rivest, Ronald L, and Stein, Clifford.
Introduction to algorithms. MIT press, 2009. ISBN: 978-0-262-53305-8 (cit. on
pp. 22, 81).

[29] Cornwall, Christopher E., Comeau, Steeve, Kornder, Niklas A., et al. “Global
declines in coral reef calcium carbonate production under ocean acidification
and warming”. In: Proceedings of the National Academy of Sciences 118.21
(2021), e2015265118. DOI: 10.1073/pnas.2015265118 (cit. on p. 12).

[30] Crook, David A. “Is the home range concept compatible with the movements
of two species of lowland river fish?” In: Journal of Animal Ecology 73.2 (2004),
pp. 353–366. DOI: 10.1111/j.0021-8790.2004.00802.x (cit. on p. 92).

[31] Crooks, Kevin R. and Sanjayan, M. Connectivity conservation. Vol. 14. Cam-
bridge University Press, 2006. ISBN: 978-0521673815 (cit. on p. 13).

108

https://doi.org/10.1890/1540-9295(2004)002[0529:ACGTCM]2.0.CO;2
https://doi.org/10.1016/j.cor.2011.01.022
https://doi.org/10.2307/2270886
https://www.boost.org
https://doi.org/10.1017/9781009325844
https://doi.org/10.1145/602382.602398
https://doi.org/10.1145/800157.805047
https://doi.org/10.1073/pnas.2015265118
https://doi.org/10.1111/j.0021-8790.2004.00802.x

Bibliography

[32] Dantzig, George. Linear Programming and Extensions. Princeton University
Press, 1963. ISBN: 9781400884179. DOI: 10.1515/9781400884179 (cit. on
p. 52).

[33] Demetrescu, Camil and Italiano, Giuseppe F. “A new approach to dynamic all
pairs shortest paths”. In: Journal of the ACM (JACM) 51.6 (2004), pp. 968–992.
DOI: 10.1145/1039488.1039492 (cit. on p. 87).

[34] Dezs, Balázs, Jüttner, Alpár, and Kovács, Péter. “LEMON - an Open Source C++
Graph Template Library”. In: Electron. Notes Theor. Comput. Sci. 264.5 (2011),
pp. 23–45. DOI: 10.1016/j.entcs.2011.06.003 (cit. on pp. 91, 94).

[35] Dijkstra, Edsger W et al. “A note on two problems in connexion with graphs”. In:
Numerische mathematik 1.1 (1959), pp. 269–271. DOI: 10.1007/BF01386390
(cit. on pp. 21, 28, 67).

[36] Dilkina, Bistra, Lai, Katherine J., and Gomes, Carla P. “Upgrading Shortest Paths
in Networks”. In: Integration of AI and OR Techniques in Constraint Program-
ming for Combinatorial Optimization Problems. Springer Berlin Heidelberg,
2011, pp. 76–91. DOI: 10.1007/978-3-642-21311-3_9 (cit. on p. 101).

[37] Dunning, John B, Danielson, Brent J, and Pulliam, H Ronald. “Ecological pro-
cesses that affect populations in complex landscapes”. In: Oikos (1992), pp. 169–
175. DOI: 10.2307/3544901 (cit. on p. 23).

[38] Enderton, Herbert B. Elements of set theory. Academic press, 1977. ISBN: 978-0-
12-238440-0 (cit. on p. 18).

[39] Erős, Tibor and Lowe, Winsor H. “The landscape ecology of rivers: from patch-
based to spatial network analyses”. In: Current Landscape Ecology Reports 4.4
(2019), pp. 103–112. DOI: 10.1007/s40823-019-00044-6 (cit. on p. 92).

[40] Fahrig, Lenore. “Effects of habitat fragmentation on biodiversity”. In: Annual
review of ecology, evolution, and systematics (2003), pp. 487–515. DOI: 10.1146/
annurev.ecolsys.34.011802.132419 (cit. on pp. 24, 25).

[41] Fall, Andrew, Fortin, Marie-Josee, Manseau, Micheline, and O’Brien, Dan. “Spa-
tial graphs: principles and applications for habitat connectivity”. In: Ecosystems
10.3 (2007), pp. 448–461. DOI: 10.1007/s10021-007-9038-7 (cit. on pp. 36–
38, 93).

[42] Feige, Uriel. “A Threshold of Ln n for Approximating Set Cover”. In: J. ACM 45.4
(July 1998), pp. 634–652. DOI: 10.1145/285055.285059 (cit. on p. 50).

[43] Feige, Uriel, Peleg, David, and Kortsarz, Guy. “The dense k-subgraph problem”.
In: Algorithmica 29.3 (2001), pp. 410–421. DOI: 10.1007/s004530010050 (cit.
on p. 47).

[44] Floyd, Robert W. “Algorithm 97: Shortest Path”. In: Commun. ACM 5.6 (1962).
DOI: 10.1145/367766.368168 (cit. on pp. 82, 86).

109

https://doi.org/10.1515/9781400884179
https://doi.org/10.1145/1039488.1039492
https://doi.org/10.1016/j.entcs.2011.06.003
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/978-3-642-21311-3_9
https://doi.org/10.2307/3544901
https://doi.org/10.1007/s40823-019-00044-6
https://doi.org/10.1146/annurev.ecolsys.34.011802.132419
https://doi.org/10.1146/annurev.ecolsys.34.011802.132419
https://doi.org/10.1007/s10021-007-9038-7
https://doi.org/10.1145/285055.285059
https://doi.org/10.1007/s004530010050
https://doi.org/10.1145/367766.368168

Bibliography

[45] Foley, Melissa M., Mease, Lindley A., Martone, Rebecca G., et al. “The challenges
and opportunities in cumulative effects assessment”. In: Environmental Impact
Assessment Review 62 (2017), pp. 122–134. ISSN: 0195-9255. DOI: 10.1016/j.
eiar.2016.06.008 (cit. on p. 13).

[46] Foltête, Jean-Christophe, Girardet, Xavier, and Clauzel, Céline. “A method-
ological framework for the use of landscape graphs in land-use planning”. In:
Landscape and Urban Planning 124 (2014), pp. 140–150. DOI: 10.1016/j.
landurbplan.2013.12.012 (cit. on pp. 42, 43, 82).

[47] Forman, Richard TT and Baudry, Jacques. “Hedgerows and hedgerow networks
in landscape ecology”. In: Environmental management 8.6 (1984), pp. 495–510.
DOI: 10.1007/BF01871575 (cit. on p. 24).

[48] Forrest, John, Ralphs, Ted, Santos, Haroldo Gambini, et al. coin-or/Cbc: Release
releases/2.10.8. 2022. DOI: 10.5281/zenodo.6522795 (cit. on p. 92).

[49] Gács, Peter and Lovász, Laszlo. “Khachiyan’s algorithm for linear program-
ming”. In: Mathematical Programming at Oberwolfach. Springer Berlin Heidel-
berg, 1981, pp. 61–68. DOI: 10.1007/BFb0120921 (cit. on p. 52).

[50] Galpern, Paul, Manseau, Micheline, and Fall, Andrew. “Patch-based graphs
of landscape connectivity: A guide to construction, analysis and application
for conservation”. In: Biological Conservation 144.1 (2011), pp. 44–55. DOI:
10.1016/j.biocon.2010.09.002 (cit. on p. 37).

[51] García-Feced, C., Saura, S., and Elena-Rosselló, R. “Improving landscape con-
nectivity in forest districts: A two-stage process for prioritizing agricultural
patches for reforestation”. In: Forest Ecology and Management 261.1 (2011),
pp. 154–161. DOI: 10.1016/j.foreco.2010.09.047 (cit. on pp. 42, 43).

[52] Garey, Michael R and Johnson, David S. “Computers and intractability”. In: A
Guide to the (1979) (cit. on p. 45).

[53] Ghosh, Arpita, Boyd, Stephen, and Saberi, Amin. “Minimizing Effective Re-
sistance of a Graph”. In: SIAM Review 50.1 (2008), pp. 37–66. DOI: 10.1137/
050645452 (cit. on p. 105).

[54] Grech, Alana, Hanert, Emmanuel, McKenzie, Len, et al. “Predicting the cumula-
tive effect of multiple disturbances on seagrass connectivity”. In: Global change
biology 24.7 (2018), pp. 3093–3104. DOI: 10.1111/gcb.14127 (cit. on p. 13).

[55] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual. 2022. URL:
https://www.gurobi.com (cit. on pp. 91, 92, 94).

[56] Haberl, Helmut, Wiedenhofer, Dominik, Virág, Doris, et al. “A systematic review
of the evidence on decoupling of GDP, resource use and GHG emissions, part
II: synthesizing the insights”. In: Environmental Research Letters 15.6 (June
2020), p. 065003. DOI: 10.1088/1748-9326/ab842a (cit. on p. 12).

110

https://doi.org/10.1016/j.eiar.2016.06.008
https://doi.org/10.1016/j.eiar.2016.06.008
https://doi.org/10.1016/j.landurbplan.2013.12.012
https://doi.org/10.1016/j.landurbplan.2013.12.012
https://doi.org/10.1007/BF01871575
https://doi.org/10.5281/zenodo.6522795
https://doi.org/10.1007/BFb0120921
https://doi.org/10.1016/j.biocon.2010.09.002
https://doi.org/10.1016/j.foreco.2010.09.047
https://doi.org/10.1137/050645452
https://doi.org/10.1137/050645452
https://doi.org/10.1111/gcb.14127
https://www.gurobi.com
https://doi.org/10.1088/1748-9326/ab842a

Bibliography

[57] Haddad, Nick M, Brudvig, Lars A, Clobert, Jean, et al. “Habitat fragmentation
and its lasting impact on Earth’s ecosystems”. In: Science advances 1.2 (2015),
e1500052. DOI: 10.1126/sciadv.1500052 (cit. on p. 24).

[58] Hallmann, Caspar A., Sorg, Martin, Jongejans, Eelke, et al. “More than 75 per-
cent decline over 27 years in total flying insect biomass in protected areas”. In:
PLOS ONE 12.10 (Oct. 2017), pp. 1–21. DOI: 10.1371/journal.pone.0185809
(cit. on p. 12).

[59] Hamonic, François, Albert, Cécile, Couëtoux, Basile, and Vaxès, Yann. “Opti-
mizing the ecological connectivity of landscapes”. In: Networks (2022). DOI:
10.1002/net.22131 (cit. on pp. 3, 91).

[60] Handler, Gabriel Y. and Zang, Israel. “A dual algorithm for the constrained
shortest path problem”. In: Networks 10.4 (1980), pp. 293–309. DOI: 10.1002/
net.3230100403 (cit. on p. 74).

[61] Hanson, Jeffrey O, Schuster, Richard, Strimas-Mackey, Matthew, and Bennett,
Joseph R. “Optimality in prioritizing conservation projects”. In: Methods in
Ecology and Evolution 10.10 (2019), pp. 1655–1663. DOI: 10.1111/2041-210X.
13264 (cit. on p. 81).

[62] Hashemi, Rastegar and Darabi, Hassan. “The Review of Ecological Network
Indicators in Graph Theory Context: 2014-2021”. In: International Journal of
Environmental Research 16 (2022). DOI: 10.1007/s41742-022-00404-x (cit.
on pp. 27, 32).

[63] Heller, Nicole E. and Zavaleta, Erika S. “Biodiversity management in the face
of climate change: A review of 22 years of recommendations”. In: Biological
Conservation 142.1 (2009), pp. 14–32. DOI: 10.1016/j.biocon.2008.10.006
(cit. on p. 13).

[64] Hodgson, Jenny A., Moilanen, Atte, Wintle, Brendan A., and Thomas, Chris
D. “Habitat area, quality and connectivity: striking the balance for efficient
conservation”. In: Journal of Applied Ecology 48.1 (2011), pp. 148–152. DOI:
10.1111/j.1365-2664.2010.01919.x (cit. on p. 33).

[65] Howey, Meghan CL. “Multiple pathways across past landscapes: circuit theory
as a complementary geospatial method to least cost path for modeling past
movement”. In: Journal of Archaeological Science 38.10 (2011), pp. 2523–2535.
DOI: 10.1016/j.jas.2011.03.024 (cit. on p. 31).

[66] Institut national de l’information géographique et forestière. Remonter le temps.
2022. URL: https://remonterletemps.ign.fr/comparer/basic?x=-0.
777181&y=49.208000&z=15&layer1=ORTHOIMAGERY.ORTHOPHOTOS.1950-
1965&layer2=ORTHOIMAGERY.ORTHOPHOTOS2000-2005&mode=doubleMap
(cit. on p. 24).

111

https://doi.org/10.1126/sciadv.1500052
https://doi.org/10.1371/journal.pone.0185809
https://doi.org/10.1002/net.22131
https://doi.org/10.1002/net.3230100403
https://doi.org/10.1002/net.3230100403
https://doi.org/10.1111/2041-210X.13264
https://doi.org/10.1111/2041-210X.13264
https://doi.org/10.1007/s41742-022-00404-x
https://doi.org/10.1016/j.biocon.2008.10.006
https://doi.org/10.1111/j.1365-2664.2010.01919.x
https://doi.org/10.1016/j.jas.2011.03.024
https://remonterletemps.ign.fr/comparer/basic?x=-0.777181&y=49.208000&z=15&layer1=ORTHOIMAGERY.ORTHOPHOTOS.1950-1965&layer2=ORTHOIMAGERY.ORTHOPHOTOS2000-2005&mode=doubleMap
https://remonterletemps.ign.fr/comparer/basic?x=-0.777181&y=49.208000&z=15&layer1=ORTHOIMAGERY.ORTHOPHOTOS.1950-1965&layer2=ORTHOIMAGERY.ORTHOPHOTOS2000-2005&mode=doubleMap
https://remonterletemps.ign.fr/comparer/basic?x=-0.777181&y=49.208000&z=15&layer1=ORTHOIMAGERY.ORTHOPHOTOS.1950-1965&layer2=ORTHOIMAGERY.ORTHOPHOTOS2000-2005&mode=doubleMap

Bibliography

[67] Irnich, Stefan and Desaulniers, Guy. “Shortest Path Problems with Resource
Constraints”. In: Column Generation. Ed. by Guy Desaulniers, Jacques Desrosiers,
and Marius M. Solomon. Springer US, 2005, pp. 33–65. DOI: 10.1007/0-387-
25486-2_2 (cit. on p. 74).

[68] Jaeger, Jochen AG. “Landscape division, splitting index, and effective mesh
size: new measures of landscape fragmentation”. In: Landscape ecology 15.2
(2000), pp. 115–130. DOI: 10.1023/A:1008129329289 (cit. on pp. 25, 26).

[69] Joksch, H.C. “The shortest route problem with constraints”. In: Journal of
Mathematical Analysis and Applications 14.2 (1966), pp. 191–197. DOI: 10.
1016/0022-247X(66)90020-5 (cit. on p. 74).

[70] Justeau-Allaire, Dimitri. “Planification systématique de la conservation basée
sur les contraintes, une approche générique et expressive : application à l’aide
à la décision pour la conservation des forêts de Nouvelle-Calédonie”. PhD
thesis. Université Montpellier, 2020. URL: https://tel.archives-ouvertes.
fr/tel-03329679 (cit. on p. 14).

[71] Karaşan, OE, Pinar, MÇ, and Yaman, H. “The robust shortest path problem with
interval data”. In: 2001. URL: https://optimization-online.org/2001/
08/361/ (cit. on pp. 15, 67, 104).

[72] Keeley, Annika T.H., Beier, Paul, and Jenness, Jeff S. “Connectivity metrics for
conservation planning and monitoring”. In: Biological Conservation 255 (2021),
p. 109008. DOI: 10.1016/j.biocon.2021.109008 (cit. on pp. 14, 27, 31, 104).

[73] Keil, J. Mark and Gutwin, Carl A. “Classes of Graphs Which Approximate
the Complete Euclidean Graph”. In: Discrete Comput. Geom. 7.1 (Dec. 1992),
pp. 13–28. DOI: 10.5555/2805869.2805935 (cit. on p. 37).

[74] Khot, Subhash. “Ruling Out PTAS for Graph Min-Bisection, Dense k-Subgraph,
and Bipartite Clique”. In: SIAM Journal on Computing 36.4 (2006), pp. 1025–
1071. DOI: 10.1137/S0097539705447037 (cit. on p. 47).

[75] King, S. and O’Hanley, J. R. “Optimal Fish Passage Barrier Removal–Revisited”.
In: River Research and Applications 32.3 (2016), pp. 418–428. DOI: 10.1002/
rra.2859 (cit. on p. 43).

[76] Land, A. H. and Doig, A. G. “An Automatic Method of Solving Discrete Program-
ming Problems”. In: Econometrica 28.3 (1960), pp. 497–520. ISSN: 00129682,
14680262. DOI: 10.2307/1910129 (cit. on p. 63).

[77] Lawler, Joshua J. “Climate change adaptation strategies for resource man-
agement and conservation planning”. In: Annals of the New York Academy of
Sciences 1162.1 (2009), pp. 79–98. DOI: 10.1111/j.1749-6632.2009.04147.x
(cit. on p. 13).

[78] Levin, Leonid. “Universal search problems (in Russian)”. In: vol. 9. 3. 1973,
pp. 115–116. ISBN: 9781450374644 (cit. on p. 44).

112

https://doi.org/10.1007/0-387-25486-2_2
https://doi.org/10.1007/0-387-25486-2_2
https://doi.org/10.1023/A:1008129329289
https://doi.org/10.1016/0022-247X(66)90020-5
https://doi.org/10.1016/0022-247X(66)90020-5
https://tel.archives-ouvertes.fr/tel-03329679
https://tel.archives-ouvertes.fr/tel-03329679
https://optimization-online.org/2001/08/361/
https://optimization-online.org/2001/08/361/
https://doi.org/10.1016/j.biocon.2021.109008
https://doi.org/10.5555/2805869.2805935
https://doi.org/10.1137/S0097539705447037
https://doi.org/10.1002/rra.2859
https://doi.org/10.1002/rra.2859
https://doi.org/10.2307/1910129
https://doi.org/10.1111/j.1749-6632.2009.04147.x

Bibliography

[79] Lindner, Niels, Maristany de las Casas, Pedro, and Schiewe, Philine. “Optimal
Forks: Preprocessing Single-Source Shortest Path Instances with Interval Data”.
In: Open Access Series in Informatics (OASIcs) 96 (2021), 7:1–7:15. DOI: 10.
4230/OASIcs.ATMOS.2021.7 (cit. on pp. 15, 68, 104).

[80] Lovász, L., Pelikán, J., and Vesztergombi, K. “Euler’s Formula”. In: Discrete
Mathematics: Elementary and Beyond. Springer New York, 2003, pp. 189–196.
ISBN: 978-0-387-21777-2. DOI: 10.1007/0-387-21777-0_12 (cit. on p. 37).

[81] Magris, Rafael A, Treml, Eric A, Pressey, Robert L, and Weeks, Rebecca. “Inte-
grating multiple species connectivity and habitat quality into conservation
planning for coral reefs”. In: Ecography 39.7 (2016), pp. 649–664. DOI: 10.1111/
ecog.01507 (cit. on p. 13).

[82] Mardani, Abbas, Streimikiene, Dalia, Cavallaro, Fausto, Loganathan, Nanthaku-
mar, and Khoshnoudi, Masoumeh. “Carbon dioxide (CO2) emissions and eco-
nomic growth: A systematic review of two decades of research from 1995 to
2017”. In: Science of The Total Environment 649 (2019), pp. 31–49. ISSN: 0048-
9697. DOI: https://doi.org/10.1016/j.scitotenv.2018.08.229 (cit. on
p. 12).

[83] Matoušek, Jiří and Gärtner, Bernd. Understanding and using linear program-
ming. Vol. 33. Springer, 2007. ISBN: 978-3-540-30697-9. DOI: 10.1007/978-3-
540-30717-4 (cit. on p. 52).

[84] McClure, Meredith L, Hansen, Andrew J, and Inman, Robert M. “Connecting
models to movements: testing connectivity model predictions against empiri-
cal migration and dispersal data”. In: Landscape Ecology 31.7 (2016), pp. 1419–
1432. DOI: 10.1007/s10980-016-0347-0 (cit. on p. 31).

[85] McCormick, Garth P. “Computability of global solutions to factorable noncon-
vex programs: Part I - Convex underestimating problems”. In: Mathematical
Programing 10.1 (1976), pp. 147–175. DOI: 10.1007/BF01580665 (cit. on pp. 56,
65).

[86] McGarigal, Kevin and Marks, Barbara J. “Spatial pattern analysis program
for quantifying landscape structure”. In: Gen. Tech. Rep. PNW-GTR-351. US
Department of Agriculture, Forest Service, Pacific Northwest Research Station
(1995), pp. 1–122. DOI: 10.2737/PNW-GTR-351 (cit. on p. 25).

[87] McRae, BH, Shah, Viral, and Edelman, Alan. “Circuitscape: modeling landscape
connectivity to promote conservation and human health”. In: The Nature
Conservancy 14 (2016). DOI: 10.13140/RG.2.1.4265.1126 (cit. on p. 31).

[88] McRae, Brad H., Dickson, Brett G., Keitt, Timothy H., and Shah, Viral B. “Using
circuit theory to model connectivity in ecology, evolution, and conservation”.
In: Ecology 89 (2008), pp. 2712–2724. DOI: 10.1890/07-1861.1 (cit. on pp. 13,
27, 31, 103, 105).

113

https://doi.org/10.4230/OASIcs.ATMOS.2021.7
https://doi.org/10.4230/OASIcs.ATMOS.2021.7
https://doi.org/10.1007/0-387-21777-0_12
https://doi.org/10.1111/ecog.01507
https://doi.org/10.1111/ecog.01507
https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.08.229
https://doi.org/10.1007/978-3-540-30717-4
https://doi.org/10.1007/978-3-540-30717-4
https://doi.org/10.1007/s10980-016-0347-0
https://doi.org/10.1007/BF01580665
https://doi.org/10.2737/PNW-GTR-351
https://doi.org/10.13140/RG.2.1.4265.1126
https://doi.org/10.1890/07-1861.1

Bibliography

[89] Moilanen, Atte, Franco, Aldina MA, Early, Regan I, Fox, Richard, Wintle, Bren-
dan, and Thomas, Chris D. “Prioritizing multiple-use landscapes for conser-
vation: methods for large multi-species planning problems”. In: Proceedings
of the Royal Society B: Biological Sciences 272.1575 (2005), pp. 1885–1891. DOI:
10.1098/rspb.2005.3164 (cit. on p. 82).

[90] Morin, Dana J., Fuller, Angela K., Royle, J. Andrew, and Sutherland, Chris.
“Model-based estimators of density and connectivity to inform conservation
of spatially structured populations”. In: Ecosphere 8.1 (2017), e01623. DOI:
10.1002/ecs2.1623 (cit. on pp. 27, 29, 34, 36).

[91] Narasimhan, G. (Giri) and Smid, Michiel. Geometric spanner networks. Jan.
2007. ISBN: 978-0-521-81513-0. DOI: 10.1017/CBO9780511546884 (cit. on
p. 37).

[92] Nemhauser, George and Wolsey, Laurence. Integer and Combinatorial Opti-
mization. John Wiley & Sons, Ltd, 1988, pp. 1–26. ISBN: 9781118627372. DOI:
10.1002/9781118627372 (cit. on p. 101).

[93] Nonner, Tim. “PTAS for Densest-k-Subgraph in Interval Graphs”. In: Algorith-
mica 74.1 (2016), pp. 528–539. DOI: 10.1007/s00453-014-9956-7 (cit. on
p. 47).

[94] Otero, Iago, Farrell, Katharine N., Pueyo, Salvador, et al. “Biodiversity policy
beyond economic growth”. In: Conservation Letters 13.4 (2020), e12713. DOI:
https://doi.org/10.1111/conl.12713 (cit. on pp. 12, 104).

[95] Paradis, Emmanuel, Baillie, Stephen R, Sutherland, William J, and Gregory,
Richard D. “Patterns of natal and breeding dispersal in birds”. In: Journal of
Animal ecology 67.4 (1998), pp. 518–536. DOI: 10.1046/j.1365-2656.1998.
00215.x (cit. on p. 94).

[96] Pascual-Hortal, Lucía and Saura, Santiago. “Comparison and development
of new graph-based landscape connectivity indices: Towards the priorisation
of habitat patches and corridors for conservation”. In: Landscape Ecology 21
(2006), pp. 959–967. DOI: 10.1007/s10980-006-0013-z (cit. on pp. 11, 13,
26).

[97] Paul Chew, L. “There are planar graphs almost as good as the complete graph”.
In: Journal of Computer and System Sciences 39.2 (1989), pp. 205–219. ISSN:
0022-0000. DOI: 10.1016/0022-0000(89)90044-5 (cit. on p. 37).

[98] Pereira, Juliana, Saura, Santiago, and Jordán, Ferenc. “Single-node vs. multi-
node centrality in landscape graph analysis: Key habitat patches and their
protection for 20 bird species in NE Spain”. In: Methods in Ecology and Evolu-
tion 8 (2017), pp. 1458–1467. DOI: 10.1111/2041-210X.12783 (cit. on pp. 14,
42).

114

https://doi.org/10.1098/rspb.2005.3164
https://doi.org/10.1002/ecs2.1623
https://doi.org/10.1017/CBO9780511546884
https://doi.org/10.1002/9781118627372
https://doi.org/10.1007/s00453-014-9956-7
https://doi.org/https://doi.org/10.1111/conl.12713
https://doi.org/10.1046/j.1365-2656.1998.00215.x
https://doi.org/10.1046/j.1365-2656.1998.00215.x
https://doi.org/10.1007/s10980-006-0013-z
https://doi.org/10.1016/0022-0000(89)90044-5
https://doi.org/10.1111/2041-210X.12783

Bibliography

[99] Pereira, Miguel, Segurado, Pedro, and Neves, Nuno. “Using spatial network
structure in landscape management and planning: A case study with pond
turtles”. In: Landscape and Urban Planning 100 (2011), pp. 67–76. ISSN: 0169-
2046. DOI: 10.1016/j.landurbplan.2010.11.009 (cit. on p. 32).

[100] Pérez-Galarce, Francisco, Candia-Véjar, Alfredo, Maculan, Guido, and Maculan,
Nelson. “Improved robust shortest paths by penalized investments”. In: RAIRO
Oper. Res. 55 (2021), pp. 1865–1883. DOI: 10.1051/RO\%2F2021086 (cit. on
p. 74).

[101] Pheatt, Chuck. “Intel® threading building blocks”. In: Journal of Computing
Sciences in Colleges 23.4 (2008), pp. 298–298. DOI: 10.5555/1352079.1352134
(cit. on pp. 91, 94).

[102] Pinto, Naiara and Keitt, Timothy H. “Beyond the least-cost path: evaluating
corridor redundancy using a graph-theoretic approach”. In: Landscape Ecology
24.2 (2009), pp. 253–266. DOI: 10.1007/s10980-008-9303-y (cit. on p. 32).

[103] Poli, Caroline, Hightower, Jessica, and Fletcher Jr., Robert J. “Validating network
connectivity with observed movement in experimental landscapes undergoing
habitat destruction”. In: Journal of Applied Ecology 57.7 (2020), pp. 1426–1437.
DOI: 10.1111/1365-2664.13624 (cit. on p. 31).

[104] Rubio, Lidón, Bodin, Örjan, Brotons, Lluís, and Saura, Santiago. “Connectivity
conservation priorities for individual patches evaluated in the present land-
scape: How durable and effective are they in the long term?” In: Ecography 38
(2015), pp. 782–791. DOI: 10.1111/ecog.00935 (cit. on pp. 14, 42, 104).

[105] Rudnick, Deborah A., Ryan, Sadie J, Beier, Paul, et al. “The role of landscape
connectivity in planning and implementing conservation and restoration pri-
orities”. In: Issues in Ecology 16 (2012), pp. 1–23. ISSN: 1092-8987 (cit. on p. 26).

[106] Saint-Pé, Keoni. “In situ quantification of brown trout movements”. PhD thesis.
Université Paul Sabatier-Toulouse III, 2019. URL: https://tel.archives-
ouvertes.fr/tel-02942828/document (cit. on p. 92).

[107] Saura, Santiago, Bastin, Lucy, Battistella, Luca, Mandrici, Andrea, and Dubois,
Grégoire. “Protected areas in the world’s ecoregions: How well connected
are they?” In: Ecological Indicators 76 (2017), pp. 144–158. DOI: 10.1016/
j.ecolind.2016.12.047 (cit. on pp. 27, 29).

[108] Saura, Santiago, Estreguil, Christine, Mouton, Coralie, and Rodríguez-Freire,
Mónica. “Network Analysis to Assess Landscape Connectivity Trends: Appli-
cation to European Forests (1990-2000)”. In: Ecological Indicators 11 (2011),
pp. 407–416. DOI: 10.1016/j.ecolind.2010.06.011 (cit. on pp. 11, 27–29).

[109] Saura, Santiago and Pascual-Hortal, Lucía. “A new habitat availability index
to integrate connectivity in landscape conservation planning: Comparison
with existing indices and application to a case study”. In: Landscape and
Urban Planning 83 (2007), pp. 91–103. ISSN: 0169-2046. DOI: 10.1016/j.
landurbplan.2007.03.005 (cit. on pp. 13, 26, 30, 32, 33, 36, 104).

115

https://doi.org/10.1016/j.landurbplan.2010.11.009
https://doi.org/10.1051/RO\%2F2021086
https://doi.org/10.5555/1352079.1352134
https://doi.org/10.1007/s10980-008-9303-y
https://doi.org/10.1111/1365-2664.13624
https://doi.org/10.1111/ecog.00935
https://tel.archives-ouvertes.fr/tel-02942828/document
https://tel.archives-ouvertes.fr/tel-02942828/document
https://doi.org/10.1016/j.ecolind.2016.12.047
https://doi.org/10.1016/j.ecolind.2016.12.047
https://doi.org/10.1016/j.ecolind.2010.06.011
https://doi.org/10.1016/j.landurbplan.2007.03.005
https://doi.org/10.1016/j.landurbplan.2007.03.005

Bibliography

[110] Saura, Santiago and Rubio, Lidón. “A common currency for the different ways
in which patches and links can contribute to habitat availability and connec-
tivity in the landscape”. In: Ecography 33.3 (2010), pp. 523–537. DOI: 10.1111/
j.1600-0587.2009.05760.x (cit. on p. 30).

[111] Schrijver, Alexander. Combinatorial Optimization. Springer Berlin, Heidelberg,
2003. ISBN: 978-3-540-44389-6 (cit. on pp. 21, 81).

[112] Segurado, Pedro, Branco, Paulo, and Ferreira, Maria T. “Prioritizing restoration
of structural connectivity in rivers: a graph based approach”. In: Landscape
Ecology 28.7 (2013), pp. 1231–1238. DOI: 10.1007/s10980-013-9883-z (cit.
on p. 92).

[113] Shi, Qinru, Gomes-Selman, Jonathan M., García-Villacorta, Roosevelt, Sethi,
Suresh, Flecker, Alexander S., and Gomes, Carla P. “Efficiently Optimizing
for Dendritic Connectivity on Tree-Structured Networks in a Multi-Objective
Framework”. In: Proceedings of the 1st ACM SIGCAS Conference on Computing
and Sustainable Societies. COMPASS ’18. Association for Computing Machinery,
2018. DOI: 10.1145/3209811.3209878 (cit. on p. 43).

[114] Sotirov, Renata. “On solving the densest k-subgraph problem on large graphs”.
In: Optimization Methods and Software 35.6 (2020), pp. 1160–1178. DOI: 10.
1080/10556788.2019.1595620 (cit. on p. 47).

[115] Tambosi, Leandro R, Martensen, Alexandre C, Ribeiro, Milton C, and Metzger,
Jean P. “A framework to optimize biodiversity restoration efforts based on habi-
tat amount and landscape connectivity”. In: Restoration ecology 22.2 (2014),
pp. 169–177. DOI: 10.1111/rec.12049 (cit. on pp. 34, 42).

[116] Tarabon, Simon, Bergès, Laurent, Dutoit, Thierry, and Isselin-Nondedeu, Fran-
cis. “Maximizing habitat connectivity in the mitigation hierarchy. A case study
on three terrestrial mammals in an urban environment”. In: Journal of envi-
ronmental management 243 (2019), pp. 340–349. DOI: 10.1016/j.jenvman.
2019.04.121 (cit. on p. 13).

[117] Taylor, Philip D., Fahrig, Lenore, Henein, Kringen, and Merriam, Gray. “Connec-
tivity Is a Vital Element of Landscape Structure”. In: Oikos 68 (1993), pp. 571–
573. DOI: 10.2307/3544927 (cit. on pp. 13, 25, 32).

[118] Taylor, Philip D., Fahrig, Lenore, and With, Kimberly A. “Landscape connec-
tivity: a return to the basics”. In: Connectivity Conservation. Ed. by Kevin R.
Crooks and M. Sanjayan. Vol. 14. Cambridge University Press, 2006, pp. 29–43.
DOI: 10.1017/CBO9780511754821.003 (cit. on pp. 25, 38).

[119] Tischendorf, Lutz and Fahrig, Lenore. “On the usage and measurement of
landscape connectivity”. In: Oikos 90.1 (2000), pp. 7–19. DOI: 10.1034/j.1600-
0706.2000.900102.x (cit. on p. 25).

[120] Turner, Monica Goigel. “Landscape ecology: the effect of pattern on process”.
In: Annual review of ecology and systematics (1989), pp. 171–197. DOI: 10.1146/
annurev.es.20.110189.001131 (cit. on p. 23).

116

https://doi.org/10.1111/j.1600-0587.2009.05760.x
https://doi.org/10.1111/j.1600-0587.2009.05760.x
https://doi.org/10.1007/s10980-013-9883-z
https://doi.org/10.1145/3209811.3209878
https://doi.org/10.1080/10556788.2019.1595620
https://doi.org/10.1080/10556788.2019.1595620
https://doi.org/10.1111/rec.12049
https://doi.org/10.1016/j.jenvman.2019.04.121
https://doi.org/10.1016/j.jenvman.2019.04.121
https://doi.org/10.2307/3544927
https://doi.org/10.1017/CBO9780511754821.003
https://doi.org/10.1034/j.1600-0706.2000.900102.x
https://doi.org/10.1034/j.1600-0706.2000.900102.x
https://doi.org/10.1146/annurev.es.20.110189.001131
https://doi.org/10.1146/annurev.es.20.110189.001131

Bibliography

[121] Urban, Dean and Keitt, Timothy. “Landscape connectivity: A graph-theoretic
perspective”. In: Ecology 82 (2001), pp. 1205–1218. DOI: 10 . 1890 / 0012 -
9658(2001)082[1205:LCAGTP]2.0.CO;2 (cit. on pp. 13, 25, 26, 42).

[122] Vazirani, Vijay V. Combinatorial Optimization. Springer Berlin, Heidelberg,
2003. ISBN: 978-3-540-65367-7. DOI: 10.1007/978-3-662-04565-7 (cit. on
p. 45).

[123] Verbel, Arturo, Rodriguez, Nestor, and Rojas–Galeano, Sergio. “A Simple Yet
Effective Algorithm to Compute Incremental All-Pairs Shortest Distances”. In:
Applied Computer Sciences in Engineering. Springer International Publishing,
2020, pp. 222–229. DOI: 10.1007/978-3-030-61834-6_19 (cit. on p. 87).

[124] Vitikainen, Arvo. “An overview of land consolidation in Europe”. In: Nordic
Journal of Surveying and real Estate research 1.1 (2004), pp. 25–43. ISSN: 1459-
5877 (cit. on p. 23).

[125] Ward, Michelle, Saura, Santiago, Williams, Brooke, et al. “Just ten percent of the
global terrestrial protected area network is structurally connected via intact
land”. In: Nature communications 11.1 (2020), pp. 1–10. DOI: 10.1038/s41467-
020-18457-x (cit. on pp. 27, 29).

[126] Watts, Kevin and Handley, Phillip. “Developing a functional connectivity in-
dicator to detect change in fragmented landscapes”. In: Ecological Indicators
10.2 (2010), pp. 552–557. DOI: 10.1016/j.ecolind.2009.07.009 (cit. on
pp. 27, 29).

[127] Whitehead, Amy L, Kujala, Heini, and Wintle, Brendan A. “Dealing with cumula-
tive biodiversity impacts in strategic environmental assessment: A new frontier
for conservation planning”. In: Conservation letters 10.2 (2017), pp. 195–204.
DOI: 10.1111/conl.12260 (cit. on p. 13).

[128] Wiens, John A. “Spatial scaling in ecology”. In: Functional ecology 3.4 (1989),
pp. 385–397. DOI: 10.2307/2389612 (cit. on p. 23).

[129] Wu, Xiaojian, Sheldon, Daniel, and Zilberstein, Shlomo. “Stochastic Network
Design in Bidirected Trees”. In: Proceedings of the Twenty-Eighth Neural Infor-
mation Processing Systems Conference. 2014, pp. 882–890. URL: http://rbr.
cs.umass.edu/shlomo/papers/WSZnips14.html (cit. on pp. 14, 43, 105).

[130] Xia, Ge. “The Stretch Factor of the Delaunay Triangulation Is Less than 1.998”.
In: SIAM Journal on Computing 42.4 (2013), pp. 1620–1659. DOI: 10.1137/
110832458 (cit. on p. 37).

[131] Xue, Yexiang, Wu, Xiaojian, Morin, Dana, et al. “Dynamic Optimization of
Landscape Connectivity Embedding Spatial-capture-recapture Information”.
In: 31st AAAI Conference on Artificial Intelligence. Vol. 31. 2017, pp. 4552–4558.
URL: https://ojs.aaai.org/index.php/AAAI/article/view/11175
(cit. on pp. 14, 15, 44, 104).

[132] Yaverian, Nicolas. Optimisation de la connectivité des paysages écologiques.
May 2021 (cit. on p. 81).

117

https://doi.org/10.1890/0012-9658(2001)082[1205:LCAGTP]2.0.CO;2
https://doi.org/10.1890/0012-9658(2001)082[1205:LCAGTP]2.0.CO;2
https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1007/978-3-030-61834-6_19
https://doi.org/10.1038/s41467-020-18457-x
https://doi.org/10.1038/s41467-020-18457-x
https://doi.org/10.1016/j.ecolind.2009.07.009
https://doi.org/10.1111/conl.12260
https://doi.org/10.2307/2389612
http://rbr.cs.umass.edu/shlomo/papers/WSZnips14.html
http://rbr.cs.umass.edu/shlomo/papers/WSZnips14.html
https://doi.org/10.1137/110832458
https://doi.org/10.1137/110832458
https://ojs.aaai.org/index.php/AAAI/article/view/11175

Bibliography

[133] Yu, Gang and Yang, Jian. “On the Robust Shortest Path Problem”. In: Com-
puters & Operations Research 25.6 (1998), pp. 457–468. DOI: 10.1016/S0305-
0548(97)00085-3 (cit. on p. 68).

118

https://doi.org/10.1016/S0305-0548(97)00085-3
https://doi.org/10.1016/S0305-0548(97)00085-3

	Title page
	Front Matter
	Affidavit
	Publication list and participation in conferences
	Résumé
	Abstract
	Remerciements
	Contents
	List of Definition Boxes
	List of Figures
	List of Tables
	Glossary

	Introduction
	Nature crises and landscape connectivity
	Connectivity optimization
	Shortest path problems with interval data
	Contributions and organization of the thesis

	Prerequisites
	Set theory basics
	Graph theory
	Complexity of algorithms

	Quantify landscape connectivity
	State of the art
	The Probability of Connectivity (PC) indicator
	Definition
	Properties
	Interpretation
	Empirical support and limitations

	Modelling landscapes for the PC indicator
	Raster-based models
	Patch-based models
	Discussion

	A MILP approach for optimizing PC
	Problem Statement
	State of the art
	Complexity results
	NP-hardness
	Inapproximability

	A MILP formulation for solving BC-PC-Opt
	A Linear Program to compute PC
	MILP formulation for SAO-BC-PC-Opt
	Extension to BC-PC-Opt

	Preprocessing the MILP formulation
	Reducing the size of the graph
	Improving linear relaxation bounds

	A Preprocessing algorithm for shortest paths problems with interval data
	Introduction and state of the art
	Definitions
	Computing F(u,v)
	Extension to the computation of t-useless arcs
	Extension to constrained shortest path problems

	Greedy Algorithms
	Definition of the algorithms
	Arbitrary bad cases
	Incremental Greedy with dynamic update
	A bound for improving IG on SAO-BC-PC-Opt

	Software and numerical experiments
	Software production
	Case studies
	Numerical experiments
	Scalability and benefits of the preprocessing
	Quality of the solutions
	Execution Times

	Discussion

	Conclusion
	Bibliography

