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Résumé

L’un des grands objectifs de cette thèse est de comprendre les symétries de l’espace-temps
(e.g. l’homogénéité et l’isotropie) au niveau quantique, i.e. au niveau de la fonction
d’onde de l’univers. Une première approche serait d’essayer de quantifier des métriques
qui sont déjà symétriques. Ceci conduit aux modèles dits de mini-superspace. Cependant,
nous savons que les fonctions d’onde qui sont homogènes et isotropes dans les théories des
champs standards, (typiquement, celles de l’état fondamental), ont un support non nul sur
toutes les configurations de champ, même celles qui ne sont pas homogènes et isotropes.
La fonction d’onde est e.g. homogène si elle associe une même amplitude de probabilité
pour toutes les versions translatées d’une configuration donnée. Schématiquement,

Au niveau de la gravité quantique, cependant, il n’est pas évident de définir les
translations et les rotations en l’absence d’une métrique d’arrière-plan. En raison de
leur complexité potentielle, nous avons abordé ces problèmes dans des modèles qui sont
homogènes dès le niveau classique : les “not-so”-mini-superspaces, correspondants à la
quantification des métriques de Bianchi. Dans ces configurations simplifiées, nous avons
étudié comment imposer au moins l’isotropie au niveau quantique.

Durant cette quête, mes collaborateurs et moi-même avons découvert d’intéressantes
solutions classiques d’univers en rotation. Nous montrons que cela n’est possible qu’en
présence de matière générant des contraintes anisotropes. En particulier, nous avions
considéré un “solide” comme source de matière [1]. La théorie effective de champ
d’un solide implique un nombre (égal à la dimension spatiale) de champs scalaires qui
“étiquettent” les éléments du volume infinitésimal. Nous passerons brièvement en revue
les modèles d’inflation solide où le solide est utilisé pour générer l’expansion accélérée
de l’univers. Ces modèles sont connus pour ne pas être très efficaces dans la dilution
de l’anisotropie, en comparaison avec l’inflation standard. Tout en confirmant ce fait,
l’étude au coeur de cette thèse trouve une autre caractéristique potentielle de l’inflation
solide, à savoir une “rotation” des axes principaux de l’expansion. Une telle rotation n’est
pas seulement un artefact de jauge comme dans le cas des modèles de Bianchi seuls ou
couplés à des champs scalaires homogènes. En raison de la contrainte anisotrope générée
par le solide, la rotation devient une véritable réelle quantité dynamique.

Le traitement quantique de ce modèle révèle des ambiguïtés intéressantes lorsqu’on
opère une réduction des degrés de liberté type mini-superspace. La structure de l’opérateur
Laplacien appliqué à la fonctionnelle d’onde semble dépendre intrinsèquement du nombre
de champs présents dans la théorie, ou des symétries imposées classiquement avant
quantification. Il en résulte une potentielle incohérence au niveau quantique : en
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effet, implémenter l’isotropie au niveau classique (cosmologies de Friedmann-Lemaître-
Robertson-Walker) ne conduit pas nécessairement à la limite isotropique des modèles de
Bianchi quantifiés.

Mots-clés : gravité quantique, cosmologie, équation de Wheeler-DeWitt, symmétries
de l’espace-temps, modèles de Bianchi, inflation solide
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Abstract

One broad aim of this thesis is to understand spacetime symmetries (e.g. homogeneity
and isotropy) at the quantum level i.e. at the level of the wavefunction of the uni-
verse. One obvious possibility would be to try to quantize metrics which are already
symmetric. This leads to the so-called mini-superspace models. However, we know
that the wavefunctions that are homogeneous and isotropic in standard field theories
(typically, those of the ground state), have support on all field configurations, even those
which are not homogeneous and isotropic. The wavefunction is e.g. homogeneous if it
associates a probability amplitude that is the same for all the translated versions of a
given configuration. Schematically,

At the full quantum gravitational level, however, it is not clear how to define translations
and rotations in the absence of a background metric. Because of their potential complexity,
we have tackled these problems in models which are already homogeneous from the
onset (i.e. the classical configurations are already homogeneous). These “not-so”-mini-
superspace models correspond to quantization of Bianchi metrics. In these simplified
setups we studied how to impose at least isotropy at the quantum level.

As a classical by-product of our quest, my collaborators and I have discovered interesting
classical solutions of rotating universes. We show that this is possible only in the presence
of matter with anisotropic stresses. In particular, we consider a “solid” as the matter
source of a the cosmology we have studied [1]. The effective field theory of a solid involves
a number (equal to the spatial dimension) of scalar fields that label the infinitesimal
volume elements. We will briefly review models of solid inflation where the solid is used
to ignite the accelerating expansion of the universe. These models are known for not
being very efficient in diluting away anisotropy, as compared to standard inflation. While
confirming this fact, the study at the core of this thesis finds another potential feature
of solid inflation, namely a “rotation” of the principal axes of the expansion. Such a
rotation is not just a gauge artifact as in the case of Bianchi models alone or coupled to
homogeneous scalar fields. Due to the anisotropic stress generated by the solid, rotation
becomes a real dynamical quantity.

The quantum counterpart of this model reveals interesting ambiguities in operating a
mini-superspace-like truncations of the degrees of freedom. The structure of the Laplacian
operator applied to the wavefunctional seems to intrinsically depend on the number of
fields involved or the symmetries one imposes classically before quantization. This results
in potential inconsistency at the quantum level: indeed, implementing isotropy at the
classical level (Friedmann-Lemaître-Robertson-Walker cosmologies) does not necessarily
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lead to the isotropic limit of quantized Bianchi models.

Keywords: quantum gravity, cosmology, Wheeler-DeWitt equation, spacetime symme-
tries, Bianchi models, solid inflation
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Résumé long

A ce jour, deux théories fondamentales, la mécanique quantique et la relativité générale
(RG), décrivent notre monde avec une grande précision.

La mécanique quantique est considérée comme étant le cadre standard pour décrire
les forces fondamentales de notre univers. Elle est à la base de la théorie quantique des
champs ou quantum field theory (QFT), qui a permis de décrire avec succès la physique
des interactions électromagnétiques, fortes et faibles grâce au modèle standard de la
physique des particules [2, 3].

Notre compréhension moderne de la gravité repose sur la théorie générale de la relativité
d’Albert Einstein, qui modélise la gravité comme la dynamique de l’espace-temps et son
interaction avec la matière régies par les équations du champ d’Einstein ou Einstein field
equations [4–6].

Les deux théories sont couronnées de succès dans leurs prédictions, avec des confirma-
tions expérimentales de leurs hypothèses. D’une part, la découverte du boson de Higgs
en 2012 [7, 8] qui est une particule fondamentale du modèle standard et qui a été prédite
dans les années 60 [9–14]. D’autre part, la détection d’ondes gravitationnelles en 2015
[15, 16], prédite un siècle plus tôt [17], s’ajoute aux nombreux tests que la RG a passés
avec succès.

L’une des principales préoccupations des physiciens.ennes d’aujourd’hui est de formuler
une théorie de la gravité quantique i.e. une théorie qui décrit le comportement quantique
du champ gravitationnel.

Malgré de nombreuses tentatives dans cette quête, aucune théorie complète de la
gravité quantique et aucune prédiction réussie n’ont encore été réalisées à ce jour.

Ce problème est cependant strictement lié au comportement de la théorie à haute énergie.
Une façon simple de le voir est d’estimer l’amplitude de probabilité gravitationnelle A
d’un processus 2 → 2 à l’énergie au centre de masse E. Sur le plan dimensionnel, en
unités ℏ = c = 1, nous avons

A ∼ GE2 , (0.1)

où G est la constante gravitationnelle. Il est clair que cette formule “arborescente” ou
tree-level que l’on trouve dans la gravité d’Einstein n’a pas de sens à des énergies proches
de l’échelle de Planck MP = G−1/2, puisqu’elle conduit à des valeurs potentiellement
A > 1 . C’est là que les boucles de gravitons deviennent importantes et qu’une nouvelle
théorie au-delà de la RG est nécessaire. Mais si nous restons à bonne distance de ces
énergies, il est possible d’avoir un aperçu des effets quantiques de la gravité (d’Einstein)
en inspectant les domaines physiques où ces échelles sont approchées - par exemple, près
des singularités des trous noirs et pendant les toutes premières étapes de l’évolution
de l’univers. Comme il semble peu probable que nous puissions un jour construire une
expérience générant des énergies de l’ordre de 10−19GeV , nous pourrions envisager de
tester la gravité quantique indirectement, en étudiant la physique de l’univers primordial.
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En cosmologie, il est courant d’effectuer des calculs perturbatifs de gravité quantique à
l’échelle de l’inflation primordiale, la courbure pouvant atteindre ∼ 10−5MP . Dans ces
calculs, le champ gravitationnel se mélange aux degrés de liberté de la matière (inflaton).
Des corrélateurs à N points peuvent être calculés et le résultat est censé pouvoir être
testé par observation en examinant les fluctuations du fond diffus cosmique ou cosmic
microwave background (CMB) et les structures à grande échelle (LSS ou large scale
structures) que nous observons dans l’univers aujourd’hui. Selon la théorie standard, ces
inhomogénéités ont été ensemencées par les fluctuations primordiales générées pendant
l’inflation. Par conséquent, toutes les fonctions de corrélation ultérieures qui décrivent
la distribution des galaxies ou les fluctuations de température dans le CMB peuvent
déterminer les fonctions de corrélation des champs quantiques calculées à la fin de
l’inflation. L’étude de ces fonctions aiderait non seulement à comprendre la structure
mathématique de l’inflation, mais nous permettrait également d’appréhender la physique
des hautes énergies loin de notre portée, et peut-être même d’obtenir des indices sur une
théorie de la gravité quantique.

L’étude des observables mécaniques quantiques en cosmologie est plus vivante que
jamais avec le récent programme “cosmological boostrap” [18–20] qui vise à appliquer les
règles générales de la matrice S analytique à la fonction d’onde cosmologique.

De manière encore plus audacieuse, plusieurs approches non perturbatives ont été
appliquées à l’univers primordial. Dans ce cas, l’ensemble du champ métrique (et pas
seulement ses perturbations) est décrit au niveau d’une fonction d’onde qui nous indique
avec quelle probabilité une certaine configuration métrique peut être observée. Cette
démarche a été initiée il y a plusieurs années, dans le contexte de la quantification
canonique de la gravité, et a donné naissance à un tout nouveau domaine de recherche,
la “cosmologie quantique”.

Cosmologie quantique

La cosmologie quantique consiste à étudier les aspects quantiques de l’univers. L’un des
ingrédients clés est l’équation de Wheeler-DeWitt (WdW) [21, 22], qui est l’équivalent de
l’équation de Schrödinger en mécanique quantique standard, dérivée de la quantification
canonique de la relativité générale et qui gouverne ce que l’on appelle la fonction d’onde
de l’univers, Ψ, voir la Partie II Sec. 3. L’espace de Hilbert correspondant est un espace
fonctionnel infini des métriques riemanniennes spatiales hij et tout champ de matière ϕ
présent dans la théorie classique, appelé superspace.

L’équation de WdW est une équation fonctionnelle hyperbolique du second ordre qui
génère l’invariance de la fonction d’onde Ψ par rapport à la paramétrisation temporelle.
Elle souffre de nombreux problèmes, dont l’un provient du fait qu’il n’est pas évident de
définir les conditions aux limites de Ψ.

Dans les années 80, beaucoup se sont attaqués à ce problème spécifique et deux propo-
sitions majeures ont été très populaires à l’époque (et sont encore étudiées aujourd’hui)
: la no-boundary proposal de Hartle et Hawking [23, 24], et la tunneling proposal de
Vilenkin [25, 26].
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Symétries de l’espace-temps dans la gravité quantique

Étant donné le rôle important joué par l’homogénéité et l’isotropie en cosmologie, et du
fait qu’il ne semble pas y avoir de problème à traiter le champ métrique en mécanique
quantique, si nous restons à une énergie suffisamment basse, une question naturelle se
pose : comment pouvons-nous définir l’homogénéité et l’isotropie au niveau quantique
de façon totalement non perturbative ? Une métrique classique donnée peut avoir un
certain nombre d’isométries, mais comment caractériser les symétries spatio-temporelles
d’une fonction d’onde de métriques Ψ[hij ] ? Cette question a été l’inspiration principale
de cette thèse. Bien qu’elle n’ait pas encore été complètement traitée, plusieurs résultats
classiques et quantiques intéressants ont émergé dans la quête d’y répondre. Nous les
résumerons bientôt, mais posons d’abord la question plus en détails.

En mécanique quantique, si un état dispose d’une certaine symétrie, il s’agit d’une
propriété de la fonction d’onde. Ceci représente un véritable contraste avec la physique
classique. Considérons l’exemple simple d’un champ scalaire ϕ dans l’espace de Minkowski.
L’état d’un tel champ est homogène si la fonction d’onde Ψ satisfait

Ψ
[
ϕ(x⃗ )

]
= Ψ

[
ϕ(x⃗− a⃗ )

]
, (0.2)

for every vector a⃗. Schématiqueùment,

Tout ceci est bien compris dans le cas de champs quantiques définis sur un espace-
temps classique donné. Imposer une invariance de Ψ par translation implique que la
N -point correlation function ⟨ϕ(x⃗1)ϕ(x⃗2) . . . ϕ(x⃗n)⟩ ne dépend que des distances mutuelles,
autrement dit la geométrie de la N -point function, et non de leur position globale, comme
l’illustre la figure ci-dessous.

Figure 1.: Space-translation invariance of the spatial correlators.

Remarquez que l’homogénéité classique (i.e., simplement, ϕ(x⃗ ) = const.) a peu de
liens avec les énoncés ci-dessus. Dans la théorie classique des champs, la restriction aux
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configurations présentant certaines symétries spatio-temporelles implique une troncature
massive de l’espace des phases. Une telle troncature n’est pas impliquée par (0.2).

Pour autant que l’on sache, les configurations classiquement homogènes du type
ϕ(x⃗) = const. pourraient même être absentes de l’ensemble quantique (0.9). En d’autres
termes, Ψ pourrait s’annuler sur toute configuration homogène de la métrique, tout en
restant elle-même homogène !

Cette troncature est précisément ce qui est habituellement fait en cosmologie quantique,
où l’on quantifie une solution classique qui est déjà homogène et isotrope : les fameux
mini-superspaces, Sec. 3.5. Cependant, nous savons que le véritable état quantique
contient toutes les configurations possibles, qu’elles soient symétriques ou non. Par
conséquent, cette approche correspond à une troncature drastique des degrés de liberté.

Mais quel est alors l’analogue de (0.9) pour la gravité ? Nous devrions pouvoir poser
cette question - sans nécessairement y répondre - directement au niveau de la théorie
effective à basse énergie. En gravité canonique, un état est une fonctionnelle de la
métrique tridimensionnelle hij(x⃗ ) et des champs de matière. La propriété exposée
dans l’équation (0.9) n’a manifestement pas de sens lorsqu’elle est appliquée au champ
métrique lui-même, car il n’existe pas de notion de “métrique translatée hij(x⃗− a⃗)” en
l’absence d’un espace-temps classique de fond : les coordonnées x⃗ sont arbitraires et la
contrainte de quantité de mouvement ou momentum constraint garantit que la fonction
d’onde ne dépend que de quantités invariantes. Par conséquent, un état quantique n’est
pas localisé “quelque part” dans l’espace. Alors, comment caractériser les translations
pour une métrique générique (sans isométries) de manière indépendante des coordonnées
?

Il est clair que nous avons besoin d’un type de champs de matière qui puisse servir
de “cadre de référence spatiale”. Les champs ne seraient alors pas localisés sur un fond
fixe, mais localisés les uns par rapport aux autres. Un champ de matière particulier se
distingue à cet égard : solides. Les solides ont été utilisés comme champs de matière
conduisant une phase d’inflation primordiale, dans un modèle cosmologique qui porte le
nom de inflation solide, [27]. La théorie des champs effectifs de l’inflation solide diffère
radicalement du scénario inflationniste standard Sec. 5, dans la mesure où les valeurs de
l’espérance du vide des champs scalaires impliqués ne dépendent pas du temps (comme
dans les modèles inflationnistes habituels), mais de space, Sec. 6. Cela signifie que les
difféormorphismes spatiaux sont spontanément brisés. C’est cette particularité que nous
pouvons utiliser pour définir des axes spatiaux par rapport auxquels nous “déplaçons” le
champ gravitationnel.

En raison de la complexité de l’équation de Wheeler-DeWitt, la tâche initiale consistant
à conserver tous les degrés de liberté infinis s’est avérée difficile. C’est pourquoi nous avons
abordé ces problèmes dans des modèles qui sont déjà homogènes dès le départ (c’est-à-dire
que les configurations classiques sont déjà homogènes) : les modèles de Bianchi. Leur
quantification donne lieu à ce que nous avons appelé les “not-so”-mini-superspace, Sec.
3.6. Dans ces configurations simplifiées, nous avons étudié comment imposer au moins
l’isotropie au niveau quantique.

Mais avant d’aborder le niveau quantique, examinons quelques solutions classiques
intéressantes et inattendues que mes collaborateurs et moi-même avons découvertes dans
le cadre de notre recherche. [1].
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Cosmologies tournantes

Pour tenter de répondre aux questions que nous avons abordées ci-dessus, le principal
modèle que nous avons étudié tout au long de la thèse est le modèle Bianchi de type I
spatialement plat, couplé à un champ de matière solide. Nous trouvons que les solides
brisent le groupe de symétrie SL(d,R) de l’action gravitationnelle en SO(d). Ceci a des
conséquences importantes sur les solutions classiques. En particulier, le modèle présente
des solutions classiques dont les axes d’expansion sont “en rotation”.

Etant donné une métrique de Bianchi générale et spatialement plate,

ds2 = −dt2 + hij(t)dxidxj , (0.3)

il est habituel de choisir des coordonnées telles que hij soit diagonal. La forme diagonale
est particulièrement utile lorsque l’on souhaite étudier les anisotropies. Celles-ci sont
géométriquement caractérisées par des taux d’expansion dépendant de la direction. La
forme diagonale permet donc d’extraire facilement les taux d’expansion des directions à
partir des valeurs propres de la métrique.

Cependant, on peut se demander si hij doit rester diagonal à tout moment. En
l’absence de stress anisotropique dans le secteur de la matière, nous pouvons montrer que
c’est le cas, en utilisant les équations dynamiques (voir Sec. 3.6). Cependant, dans le cas
où la source génère un stress anisotropique, la métrique spatiale ne reste pas diagonale
à tout instant t, ce qui correspond à une “rotation” non triviale. Rotation de quoi par
rapport à quoi ? Il existe de nombreuses façons de décrire le mouvement. L’une d’entre
elles consiste à décomposer la dérivée de la métrique en ses vecteurs propres,

ḣij(t) =
d∑

n=1
Hn(t) û(n)

i (t) û(n)
j (t) . (0.4)

Les valeurs propres Hn sont des “taux de Hubble” dépendant de la direction, tandis
que les vecteurs propres instantanés peuvent être considérés comme les principaux axes
d’expansion, ou comme les axes principaux de la courbure extrinsèque Kij ∝ ḣij des
hypersurfaces de constante t (voir Sec. 2.1 pour une revue de la décomposition d+ 1).
Comme ḣij est symétrique, û(n)

i (t) est, à tout moment, une base orthonormée par rapport
au produit scalaire de Kronecker standard,

û
(n)
i (t) û(m)

j (t) δij = δmn . (0.5)

Ainsi, la “rotation” signifie la dépendance temporelle de cet ensemble orthogonal d’axes
principaux des cosmologies Friedmann-Lemaître-Robertson-Walker (FLRW) par rapport
au système d’observateurs mobiles xi = const. qui sont en mouvement géodésique. Si
l’on tente de définir de nouvelles coordonnées spatiales x′i afin de “suivre la rotation”,
ces coordonnées n’étiquettent plus les observateurs géodésiques.

Dans les Secs. 8 et 9, nous revisitons l’approche habituelle du mini-superspace en
mettant l’accent sur les symétries et les lois de conservation associées.

Ces considérations nous amènent à une conclusion logique. Les modèles d’inflation
solide contiennent potentiellement un ingrédient qui n’a jamais été considéré auparavant.
La rotation ! En effet, les auteurs de [28] avaient découvert que l’inflation solide est
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beaucoup moins efficace que l’inflation standard pour se débarrasser de l’anisotropie
spatiale. Alors que dans l’inflation standard (en 2+1 dimensions), la densité d’énergie
associée ρaniso s’échelonne comme A−4 (A étant le facteur d’échelle), dans l’inflation
solide, l’échelonnement est supprimé par ce que l’on appelle paramètre de slow-roll ϵ ,
A−2ϵ, et A−4ϵ selon le régime des anisotropies (ξ ≫ 1 , ξ ≪ 1 ). De manière surprenante,
la densité d’énergie de rotation s’échelonne comme l’anisotropie dans l’inflation standard
i.e.A−4 . Par conséquent, la contribution de la rotation décroit beaucoup plus rapidement
que celle provenant de l’anisotropie.
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Figure 2.: The energy densities of the anisotropy ρaniso and the rotation ρrot, for ϵ = 0.05
. The red and green dashed lines correspond resp. to the e−2ϵN and e−4ϵN

modes.

Traitement quantique

Dans la Sec. 11, nous procédons au traitement quantique du modèle, qui a été construit
à l’origine dans le but d’étudier l’isotropie en mécanique quantique.

Nous trouvons des ambiguïtés intéressantes dans l’exploitation d’une troncature des
degrés de liberté semblable à celle d’un mini-superspace. La structure de l’opérateur
laplacien appliqué à la fonction d’onde semble dépendre intrinsèquement du nombre de
champs impliqués ou des symétries imposées classiquement avant la quantification. En ef-
fet, pour un ordre spécifique des champs quantiques, l’opérateur de Laplace correspondant
à l’action de Bianchi (2 + 1) couplée à un champ scalaire ϕ est

∇2
s = 1

2A2

[
−A2

4 ∂2
A − 3

4A ∂A + ∂2
ξ + 1

tanh ξ ∂ξ + 1
sinh2ξ

∂2
θ + ∂2

ϕ

]
. (0.6)

où A est le facteur d’échelle, ξ et θ les paramètres décrivant les anisotropies et la rotation
respectivement. Cependant, si nous considérons un espace FLRW isotrope au lieu de
notre modèle de type Bianchi, nous obtenons

∇2
s,FLRW = 1

2A2

[
−A2

4 ∂2
A − 1

4A ∂A + ∂2
ϕ

]
(gravity + scalar, FLRW ) . (0.7)

Les solutions classiques de FLRW étant des cas particuliers de modèles de Bianchi, on
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aurait pu espérer retrouver (0.7) en tant que limite isotrope de (0.6), par exemple lorsque
l’état quantique Ψ ne dépend pas de ξ ou de θ . Cependant, nous voyons clairement
que les deux opérateurs impliquent une dépendance différente de la fonction d’onde par
rapport à A . Nous montrons que pour des paramétrisations plus générales de la métrique,
la partie purement gravitationnelle du Laplacien est sensible au nombre total de champs
impliqués, ou même simplement au nombre de symétries. L’exemple simple présenté
ci-dessus montre que le mini-espace FLRW n’est même pas une troncature cohérente
d’un espace de Bianchi !
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Structure de la thèse

La thèse est organisée comme suit.

La première partie est consacrée à la dérivation du formalisme hamiltonien classique
de la relativité générale et aux contraintes, les contraintes dites Hamiltoniennes et de
quantité de mouvement ou momentum.

La partie II traite de la théorie quantique. Nous dérivons l’équation de Wheeler-DeWitt
de la quantification canonique de la gravité, et discutons de certaines de ses caractéris-
tiques très intrigantes. Nous introduisons également les modèles de mini-superspace, en
particulier ceux dérivés de la quantification des modèles de Bianchi, les “not-so-mini-
superspace”. Nous détaillons également certaines de leurs caractéristiques géométriques
classiques.

La partie III introduit l’inflation, où nous donnons un aperçu des modèles à déroule-
ment lent et de l’inflation solide. Une brève comparaison entre les deux est donnée à la fin.

Enfin, la partie IV est consacrée au principal modèle étudié au cours de la thèse :
les univers de Bianchi de type I couplés à des champs de matière solide. Nous décrivons
en détail comment un tel modèle génère une rotation des axes principaux d’expansion.
Nous fournissons également le traitement quantique du modèle, qui révèle des ambiguïtés
intéressantes dans l’exploitation d’une troncature des degrés de liberté à la manière d’un
mini-superspace.
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So far, two fundamental theories, quantum mechanics and general relativity (GR)
describe our world with a high level of accuracy.

Quantum mechanics is believed to be the standard framework to describe the funda-
mental forces of our universe. It is the foundation for quantum field theory (QFT), which
has provided a successful description of the physics of electromagnetic, strong and weak
interactions through the standard model of particle physics [2, 3].

Our modern understanding of gravity relies on Albert Einstein’s general theory of
relativity, which models gravity as the dynamics of spacetime and its interaction with
matter as governed by the Einstein’s field equations [4–6].

Both theories are successful in their predictions, with experimental confirmations of
their hypotheses. On the one hand, the discovery of the Higgs boson in 2012 [7, 8] ,
which is a fundamental particle in the Standard Model and which was predicted in the
60’s [9–14]. On the other hand, the detection of gravitational waves in 2015 [15, 16],
predicted one century earlier [17], adds up to the numerous tests GR has successfully
passed.

One of the main concerns of physicists today is to formulate a quantum gravity theory
i.e. a theory that describes the quantum behavior of the gravitational field. Despite
many attempts for this quest, no complete quantum gravity theory and no successful
prediction have ever been achieved yet.

This problem is however strictly related with the high energy behavior of the theory.
One simple way to see this is to estimate the gravitational probability amplitude A of
a 2 → 2 process at energy in the center of mass frame E. On dimensional grounds, in
units ℏ = c = 1 we have

A ∼ GE2 , (0.8)

where G is the gravitational constant. Clearly this tree-level formula that one finds
in Einstein gravity does not make sense at energies that approach the Planck scale
MP = G−1/2, since it leads to potentially A > 1 . This is where loops of gravitons become
important and a new theory beyond GR is needed. But if we keep at a safe distance from
those energies it is possible to get a taste of the quantum effects of (Einstein) gravity by
inspecting those physical arenas where these scales are approached - for example, near
black holes singularities and during the very early stages of evolution of the universe.
Since it seems unlikely that we will ever be able to build an experiment generating energies
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of the order 10−19GeV , we could instead consider testing quantum gravity indirectly, by
studying the physics of the primordial universe.

It is common practice in cosmology to make perturbative quantum gravity calculations
at the scales of primordial inflation, with curvature reaching as high as ∼ 10−5MP . In
those calculations the gravitational field mixes with the matter (inflaton) degrees of
freedom. N -points correlators can be computed and the result is believed to be observa-
tionally testable by looking at the cosmic microwave background (CMB) fluctuations and
the large scale structures that we see in the universe today. According to the standard
lore, these inhomogeneities have been seeded by the primordial fluctuations generated
during inflation. Hence, all later times correlations functions that describe the galaxies
distributions or the temperature fluctuations in the CMB, can determine the correlation
functions of quantum fields computed at the end of inflation. Studying these would not
only help understanding the mathematical structure of inflation, but would also allow us
to grasp physics at high energies far from our reach and perhaps hints on a quantum
gravity theory.

The study of quantum mechanical observables in cosmology is as lively as ever with
the recent “cosmological boostrap program” [18–20] that aims at applying the general
rules of the analytic S-matrix to the cosmological wavefunction.

Even more venturously, several non-perturbative approaches have been applied to the
primordial universe. In this case the entire metric field (and not just its perturbations) is
described at the level of a wavefunctional that tells us with what probability a certain
metric configuration can be observed. This actually was initiated several years ago, in
the context of the canonical quantification of gravity, giving rise to a whole new field of
research, quantum cosmology.

0.1. Quantum cosmology

Quantum cosmology is about studying quantum aspects of the universe. One key ingredi-
ent is the Wheeler-DeWitt equation (WdW) [21, 22], which is the “Schrödinger-equivalent”
equation derived from the canonical quantization of general relativity and governs the
so-called wavefunction of the universe, Ψ, see Part II Sec. 3. The corresponding Hilbert
space is an infinite-dimensional functional space of the Riemannian spatial metrics hij

and any matter fields ϕ present in the classical theory, called the superspace.
The WdW equation is a second-order hyperbolic functional equation generating time-

reparametrisation invariance of the wavefunctional Ψ. It suffers from many issues, one of
which stems from the fact that it is not clear how to set the boundary conditions for Ψ.

In the 80s, many tackled this specific issue and two major proposals were very popular
at the time (and are still investigated now): the no-boundary proposal of Hartle and
Hawking [23, 24], and the tunneling proposal of Vilenkin [25, 26].

0.2. Spacetime symmetries in quantum gravity

Given the important role played by homogeneity and isotropy in cosmology, and given
that there seems to be nothing wrong treating the metric field quantum mechanically, if
we stay at sufficiently low energy, one natural question is: how can we define homogeneity
and isotropy at the full quantum non-perturbative level? A given classical metric can

22



Table of contents – 0.2. Spacetime symmetries in quantum gravity

have a number of isometries, but how do we characterize the spacetime symmetries of
a wavefunctional of metrics Ψ[hij ]? This question has been the driving inspiration for
this thesis. Although it has not been fully addressed yet, while trying to do so, several
interesting classical and quantum results have emerged. We will summarize them soon,
but first let us pose this question in more details.

In quantum mechanics, if a state enjoys some symmetry, this is a property of the
wavefunction. This represents an interesting twist on classical physics. Let us consider
the simple example of a scalar field ϕ in Minkowski space. The state of such a field is
homogeneous if the wavefunction Ψ satisfies

Ψ
[
ϕ(x⃗ )

]
= Ψ

[
ϕ(x⃗− a⃗ )

]
, (0.9)

for every vector a⃗. Schematically,

This is all well understood in the case of quantum fields defined on a given classical
spacetime. Imposing an invariance of Ψ under translation implies that the N -point
correlation function ⟨ϕ(x⃗1)ϕ(x⃗2) . . . ϕ(x⃗n)⟩ depends only on mutual distances, or let’s say
the geometry of the N -point function and not on their overall position, as shown in the
figure below.

Figure 3.: Space-translation invariance of the spatial correlators.

Notice that classical homogeneity (i.e., simply, ϕ(x⃗ ) = const.) has little to do with
the above statements. In classical field theory restricting to configurations with certain
spacetime symmetries implies a massive truncation of the phase space. No such a
truncation is implied by (0.9).

As far as we know, classically homogeneous configurations of the type ϕ(x⃗) = const.
could even be absent from the quantum ensemble (0.9). In other words, Ψ could vanish
on each and every homogeneous configuration, and still be homogeneous!

This truncation is precisely what is usually done in quantum cosmology where one
quantizes a classical solution that is already homogeneous and isotropic: the so-called
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mini-superspaces, Sec. 3.5. However, we know that the true quantum state contains all
possible configurations, whether they are symmetric or not. Therefore, this approach
corresponds to a dramatic truncation of degrees of freedom.

But what is the analogue of (0.9) for gravity? We should be able to pose this question—
albeit not necessarily to answer it—directly at the level of the low-energy effective theory.
In canonical gravity a state is a functional of the three-dimensional metric hij(x⃗ ) and
of the matter fields. The property displayed in eq. (0.9) is clearly meaningless when
applied to the metric field itself, because there is no such notion of “translated metric
hij(x⃗ − a⃗)” in the absence of a background classical spacetime: the x⃗ coordinates are
arbitrary, and the momentum constraint ensures that the wavefunction only depends
on invariant quantities. Hence, a quantum state is not localized “somewhere” in space.
So, how do we characterize translations for a generic metric (with no isometries) in a
coordinate independent fashion?

Clearly, we need a type of matter fields that can serve as a “spatial reference frame”.
The fields then would be not localized on a fixed background, but localized with respect
to one another. A particular matter field stands out for this purpose: solids. Solids
have been used as matter fields driving a primordial inflationary phase, in a cosmological
model that goes under the name of solid inflation, [27]. The effective field theory of solid
inflation differs drastically from the standard inflationary scenario Sec. 5, in the fact that
vacuum expectation values of the scalar fields involved do not depend on time (as in usual
inflationary models), but on space, Sec. 6. This means that spatial diffeormorphisms are
spontaneously broken. This is the particular feature that we can use to kind of define
spatial axes with respect to which we “move” the gravitational field.

Because of the complexity of the Wheeler-DeWitt equation, the original task of keeping
all the infinite degrees of freedom has proven hard. Therefore, we have tackled these
problems in models which are already homogeneous from the onset (i.e. the classical
configurations are already homogeneous): the Bianchi models. Their quantization yields
to what we called the “not-so”-mini-superspaces, Sec. 3.6. In these simplified setups we
studied how to impose at least isotropy at the quantum level.

But before going into the quantum, let us look at some interesting classical solutions
that, as a by-product of our quest, my collaborators and I have discovered. [1].

0.3. Rotating cosmologies

In trying to answer the questions we addressed above, the main model we studied along
the thesis is the spatially flat Bianchi type I model coupled to a solid matter field. We
find that solids break the SL(d,R) symmetry group of the gravitational action down to
SO(d). This has far consequences on the classical solutions. In particular, the model
presents classical solutions whose axes of expansion are “rotating”.

Given a general spatially flat Bianchi metric,

ds2 = −dt2 + hij(t)dxidxj , (0.10)

it is customary to choose coordinates such that hij is diagonal. The diagonal form
is particularly useful when one wants to study anisotropies. These are geometrically
characterized by direction-dependent expansion rates. Hence, the diagonal form allows
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to easily extract the direction expansion rates from the eigenvalues of the metric.
However, one may wonder, does hij need to stay diagonal at all times? In the absence

of anisotropic stress in the matter sector, we can show that it does, using the dynamical
equations (see Sec. 3.6). However, in the case where the source generates anisotropic
stress, the spatial metric does not remain diagonal at all times, and this corresponds to a
non trivial “rotation”. Rotation of what with respect to what? There are many ways to
describe the motion. One way to do so is decompose the derivative of the metric into its
eigenvectors,

ḣij(t) =
d∑

n=1
Hn(t) û(n)

i (t) û(n)
j (t) . (0.11)

The eigenvalues Hn are direction-dependent “Hubble rates”, while the instantaneous
eigenvectors can be seen as the principal expansion axes, or as the principal axes of
the extrinsic curvature Kij ∝ ḣij of the hypersurfaces of constant t (see Sec. 2.1 for a
review of the d+ 1-decomposition). Because ḣij is symmetric, û(n)

i (t) is, at any time, an
orthonormal basis with respect to the standard Kronecker scalar product,

û
(n)
i (t) û(m)

j (t) δij = δmn . (0.12)

So, “rotation” means time-dependence of this orthogonal set of principal axes of Friedmann-
Lemaître-Robertson-Walker (FLRW) cosmologies with respect to the system of comoving
observers xi = const. who are in geodesic motion. If one tried to define new spatial
coordinates x′i in order to “follow the rotation”, such coordinates would not label geodesic
observers any longer.

In Secs. 8 and 9, we revisit the usual mini-superspace approach by giving particular
emphasis to symmetries and the associated conservation laws.

These considerations bring us to a logic conclusion. The models of solid inflation
potentially contain an ingredient that has never been considered before. Rotation!
Indeed, authors of [28] had discovered that solid inflation is much less efficient than
standard inflation in getting rid of spatial anisotropy. While in standard inflation (in
2+1 dimensions), the associated energy density ρaniso scales as A−4 (A being the scale
factor), in solid inflation, the scaling is suppressed by the so-called slow-roll parameter ϵ ,
A−2ϵ and A−4ϵ depending on the regime for anisotropies (ξ ≫ 1 , ξ ≪ 1 ). Surprisingly,
the energy density of rotation scales as the anisotropy in standard inflation i.e. A−4 .
Consequently, the contribution of rotation from rotation decays much faster than that
the one coming from anisotropy.
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Figure 4.: The energy densities of the anisotropy ρaniso and the rotation ρrot, for ϵ = 0.05
. The red and green dashed lines correspond resp. to the e−2ϵN and e−4ϵN

modes.

0.4. Quantum treatment

In Sec. 11, we proceed to the quantum treatment of the model, which was originally built
in the purpose of studying isotropy quantum mechanically.

We find interesting ambiguities in operating a mini-superspace-like truncations of the
degrees of freedom. The structure of the Laplacian operator applied to the wavefunctional
seems to intrinsically depend on the number of fields involved or the symmetries one
imposes classically before quantization. Indeed, for a specific ordering of the quantum
fields, the corresponding Laplace operator of the Bianchi action (2 + 1) coupled to a
scalar field ϕ is

∇2
s = 1

2A2

[
−A2

4 ∂2
A − 3

4A ∂A + ∂2
ξ + 1

tanh ξ ∂ξ + 1
sinh2ξ

∂2
θ + ∂2

ϕ

]
. (0.13)

where A is the scale factor, ξ and θ the parameters describing the anisotropies and rotation
resp. However, if we consider an isotropic FLRW space instead of our Bianchi-type model,
we get

∇2
s,FLRW = 1

2A2

[
−A2

4 ∂2
A − 1

4A ∂A + ∂2
ϕ

]
(gravity + scalar, FLRW ) . (0.14)

Because classical FLRW solutions are special cases of Bianchi models, one might have
hoped to recover (0.14) as an isotropic limit of (0.13), for instance when the quantum state
Ψ does not depend on ξ or θ . However, we see clearly that both operators imply different
dependence of the wavefunction on A . We show that for more general parametrisation of
the metric, the pure gravitational part of the Laplacian is sensitive to the total number of
fields involved, or even just on the number of symmetries. The simple example displayed
above show that the FLRW mini-superspace is not even a consistent truncation of a
Bianchi one!
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Thesis outline

The thesis is organised as follow.

Part I is devoted to the derivation of the classical Hamiltonian formalism of general
relativity and the constraints, the so-called Hamiltonian and momentum constraints.

Part II deals with the quantum theory. We derive the Wheeler-DeWitt equation from
the canonical quantization of gravity, and discuss some of its puzzling features. We also
introduce mini-superspace models, in particular those derived from the quantization
of the Bianchi models, the not-so-minisuperspaces. We detail some of their classical
geometrical features as well.

Part III is dedicated to inflation, where we provide an overview of slow-roll models
and solid inflation. A brief comparison between the two is given at the end.

Finally, Part IV is devoted to the main model studied during the thesis: the Bianchi type I
universes coupled to solid matter fields. We describe in detail how such a model generates
a rotation of the main axes of expansion. We also provide the quantum treatment of
the model, which reveals interesting ambiguities in operating a mini-superspace-like
truncations of the degrees of freedom.
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1. Lagrangian formulation

Contents

1.1. Newtonian mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
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1.2. Action of general relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

This section is a very quick reminder of some basics of the Lagrangian formulation.
The purpose is to provide tools such as the variational computational techniques to derive
the equations of motions, for those who might have forgotten the procedure or are new to
the computations. For readers already familiar with these, this section can be skipped.

1.1. Newtonian mechanics

Let’s commence with a very quick reminder of the Lagrangian formulation of Newtonian
mechanics. The dynamics of a one-dimensional mechanical system is described with a
Lagrangian L(q, q̇) - a function of a generalized coordinate q and its velocity q̇ ≡ dq

dt - and
an action functional S[q],

S[q] =
∫ t2

t1
dtL(q, q̇) , (1.1)

that is the integration of the Lagrangian over a selected path q(t). The equations of
motion are derived from the extremization of the action, or equivalently, when S[q] is
stationary: under a variation of the path δq(t), restricted by the boundary conditions:

δq(t1) = δq(t2) = 0 , (1.2)

the action does not vary −→ δS = 0

δS =
∫ t2

t1
dt δL

=
∫ t2

t1
dt

(
∂L

∂q
δq + ∂L

∂q̇
δq̇

)
=
[
∂L

∂q̇
δq

]t2

t1

+
∫ t2

t1
dt

(
∂L

∂q
− d

dt

∂L

∂q̇

)
δq (1.3)
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where, in the last step, we have integrated by parts. Because of the boundary conditions
(1.2), and the variation δq(t) being arbitrary in t1 < t < t2 ,

δS = 0 =⇒ ∂L

∂q
− d

dt

∂L

∂q̇
= 0 . (1.4)

This is the so-called Euler-Lagrange equation for a one-particle system and can easily be
generalized to higher dimensions.

1.1.1. Field theory

Let’s now formulate the field theory version of the Euler-Lagrange equation. For simplicity,
we first consider the case of one single scalar-field ϕ(xα) on a curved manifold M bounded
by a closed surface ∂M. We define the Lagrangian density L (ϕ, ϕ,α) 1, a scalar function
of the field and its first derivatives. The action functional is then given by

S =
∫

M
dd+1x

√
−g L (ϕ, ∂αϕ) , (1.5)

where g is the determinant of the metric tensor, and √
−g dd+1x 2 the d + 1-volume

element.
Following the same scheme we used for finite-dimensional systems, we introduce a

variation δϕ(xα) that is arbitrary within M but vanishes everywhere on ∂M,

δϕ|∂M = 0 . (1.6)

Then we use the stationarity condition δS = 0 to derive the dynamical equations for ϕ :

δS =
∫

M
dd+1x

√
−g

[
∂L

∂ϕ
δϕ+ ∂L

∂ϕ,α
δϕ,α

]

=
∫

M
dd+1x

√
−g

[
∂L

∂ϕ
δϕ+ ∇α

(
∂L

∂ϕ,α
δϕ

)
− ∇α

∂L

∂ϕ,α
δϕ

]

=
∫

M
dd+1x

√
−g

[
∂L

∂ϕ
− ∇α

∂L

∂ϕ,α

]
δϕ+

∮
∂M

dΣα
∂L

∂ϕ,α
δϕ , (1.7)

where we have used the Gauss-Stockes theorem in the last step. The variation δϕ being
arbitrary within M, we get:

δS = 0 =⇒ ∂L

∂ϕ
− ∇α

∂L

∂ϕ,α
= 0 . (1.8)

This the Euler-Lagrange equation for a single scalar field ϕ. The same procedure is applied
to vectors, tensors and spinors of any type. A well-known example worth mentioning is
the (real) Klein-Gordon field ψ with Lagrangian density

L = −1
2
(
gαβ ∇αϕ∇βϕ+m2ϕ2

)
. (1.9)

1Where ϕ,α = ∂ϕ
∂xα .

2It is implied that we work on manifolds with Lorentzian signatures.
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The corresponding Euler-Lagrange equation is given by(
∇α∇α −m2

)
ϕ = 0 , (1.10)

which turns out to be the curved-spacetime version of the well-known Klein-Gordon
equation.

1.2. Action of general relativity

Now we finally introduce the action functional of general relativity. It contains a pure
gravitational part Sgrav[g] depending on the metric field gαβ, and a contribution from
any matter fields ϕ, Smatter[g, ϕ] 3.

Let’s first detail the pure gravitational part. We consider a (d + 1)-dimensional4
spacetime M, whose boundary is denoted ∂M .

The (d+ 1)-dimensional gravitational action itself contains the Einstein-Hilbert action
SEH, a boundary term Sbound and a holographic renormalisation term S0 that is non-
dynamical, in the sense that it does not affect the equations of motions but only changes
the numerical value of the action.

Sgrav[g] = 1
16πG (SEH[g] + Sbound[g] + S0) (1.11)

= 1
16πG

(∫
M
dd+1x

√
−g R+ 2ϵ

∫
∂M

ddy
√
γ K + 2ϵ

∫
∂M

ddy
√
γ K0

)
(1.12)

where G is the gravitational constant, R the Ricci scalar which is the measure of the
intrinsic curvature of M. K is the trace of the extrinsic curvature of ∂M, which measures
the curvature of ∂M as perceived by an observer in M 5. ϵ = n .n, with n the normal
vector of ∂M. It is +1 where n is space-like and −1 where n is time-like 6. γ is the
determinant of the induced metric on ∂M. Following the same conventions as Poisson in
[30], the coordinates xα are used for M, and yα for ∂M.

The Gibbons–Hawking–York boundary term Sbound needs to be added to the Ein-
stein–Hilbert action, when the underlying spacetime has a boundary. It is the counter-
term that makes the variational problem well-defined, and allows to generate the right
Einstein’s fields equations [30], but only when the boundary is space-like or time-like. In
the null-like case, see the boundary integral of [29].

The renormalization term S0 allows to eliminate divergences coming from SEH when
the underlying spacetime is asymptotically-flat (see [30]).

For the rest of the thesis, we do not consider Sbound and S0, and simply set theses to
0. The gravitational action is reduced to the Einstein-Hilbert action SEH.

3For those willing a more detailed description of the theory, see [4, 6].
4The notation “d+ 1” will make more sense when we present the Hamiltonian formulation. d refers to

the dimension of the spatial part, while the extra dimension is for time.
5We will detail all the hypersurfaces related objects as the extrinsic curvature in sect. 2.2.
6We do not consider the case where the boundary is null-like. Actually, the right boundary term in that

case has been found recently in [29].
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Stress-energy tensor

In GR, the symmetric stress-energy tensor Tµν is a symmetric tensor that describes the
density and flux of energy and momentum in spacetime, acting as the source of spacetime
curvature. It is derived from the matter sector Smatter ,

Tµν ≡ − 2√
−g

δSmatter
δgµν

. (1.13)

In the case of a minimally-coupled scalar-field ϕ ,

Smatter =
∫

M
dt Lmatter (1.14)

=
∫

M
dd+1x

√
−g

(
−1

2g
µν∂µϕ∂νϕ− V (ϕ)

)
, (1.15)

where V (ϕ) is the potential. The corresponding stress-energy tensor is

Tµν ≡ − 2√
−g

δSmatter
δgµν

= ∂µϕ∂νϕ− gµν

(1
2∂

αϕ∂αϕ+ V (ϕ)
)
. (1.16)

In the case of a perfect fluid in thermal equilibrium,

Tµν = (ρ+ p)uµ uν + p gµν , (1.17)

with ρ the mass-energy density, p the hydrostatic pressure and uα the fluid’s velocity
satisfying uα uα = −1 .

Einstein’s field equations

The Einstein’s field equations are derived from the variation of the action Sgrav + Smatter
with respect to all the fields involved in the theory (δgµν , δϕ , ...),

Gµν = 8πGTµν , (1.18)

Rµν − 1
2Rgµν = 8πGTµν , (1.19)

where Rµν is the Ricci tensor, and R the Ricci scalar. These are contractions of the
overall Riemann curvature tensor, Rα

µβν .
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The Lagrangian and Hamiltonian formulations are two equivalent formalisms describing
the dynamics of a given system. Each has its own advantages and relevance depending
on one’s purposes. For instance, the Lagrangian form makes it very simple to satisfy the
conditions of special relativity by assuming that the action, or the time integral of the
Lagrangian, is Lorentz invariant. There is no straightforward method for “relativizing”
the Hamiltonian form.

On the other hand, the Hamiltonian formulation is particularly useful when one wants
to extract the symmetries (gauge and physical) of a theory. These are encoded in
functions called “constraints”. These have been classified and well defined by Dirac in his
constraints classification theory [31]. They allow to count the degrees of freedoms of the
system. Also, it turns out that it is a suitable framework to derive the quantum theory,
by elevating these constraints into operators acting on the wavefunction [21].

For now, we review basic features of Hamiltonian mechanics for a simple finite-
dimensional system, in order to identify the key elements for a Hamiltonian formulation
of general relativity. The quantum treatment will be dealt later in the quantum part.
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2.1. Hamiltonian mechanics

The Hamiltonian formulation of any theory starts with the definition of the canonical
momenta 1 . As we previously did in 1.1, we start with a simple one-particle system,
bearing in mind that the generalisation to a N -dimensional is straight away. The canonical
momentum p is defined by

p = ∂L

∂q̇
. (2.1)

When this relation is invertible2 and give q̇ as a function of p and q. The Hamiltonian is
then given by the Legendre transformation

H(p, q) = p q̇ − L , (2.2)

which can be used to recast the action

S =
∫ t1

t2
(pq̇ −H) dt . (2.3)

As for the Lagrangian, we can use a variational principle to derive the equations of
motions. We ask for the action to be stationary, as we vary q and p independently, with
the usual boundary conditions δq(t1) = δq(t2) = 0. Hence,

δS =
∫ t1

t2
δ (p q̇ −H) dt (2.4)

=
∫ t1

t2

(
p δq̇ + δp q̇ − ∂H

∂q
δq − ∂H

∂p
δp

)
dt (2.5)

=
[
p δq

]t2

t1

+
∫ t2

t1

[
−
(
ṗ+ ∂H

∂q

)
δq +

(
q̇ − ∂H

∂p

)
δp

]
dt. (2.6)

The variation between t1 and t2 being arbitrary, and the boundary conditions being fixed,
we obtain the famous Hamilton’s equations:

δS = 0 =⇒ q̇ = ∂H

∂p
, ṗ = −∂H

∂q
, (2.7)

which are easily generalised to a finite N -dimensional system. Notice that we can relate
partial derivatives of the Hamiltonian and the Lagrangian through:

ṗ = dp

dt
= d

dt

∂L

∂q
= ∂L

∂q
=⇒ ∂L

∂q
= −∂H

∂q
(2.8)

1Actually, the Hamiltonian theory describes the whole dynamics by itself, there is no need for a
Lagrangian on the onset. As we already stated, relativistic theories are better formulated in the
Lagrangian formulation. However, their Hamiltonian counterpart enables to prescind particular
features of the theory, such as the (gauge and physical) symmetries, and count the number of d.o.f.

2More details on this statement will be given in the section dedicated to the constrained Hamiltonian
systems. General relativity is a constrained theory, and some of the conjugate momenta are not
invertible!
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2. Hamiltonian formulation of gravity – 2.2. The d+ 1 decomposition

We used the action-variational-principle approach to derive the equations of motion.
Actually, these can also be obtained using the symplectic structure of the phase space,
and the Poisson algebra. We provide an overview of the symplectic geometry in Appendix
??.

The generalisation to fields is very subtle, and requires more mathematical material, as
it involves functionals H[p, q] of the field configurations q and the canonical momentum
p. That is the purpose of next section, where we provide the needed geometrical tools to
tackle the field formulation, in particular for general relativity.

2.2. The d + 1 decomposition

The Hamiltonian formulation is particularly suitable when one wants to study the dynam-
ics of a system and describe the time-evolution of any “initial conditions”, equivalently
known as the initial-value problem. For field theories, and especially for covariant field
theories such as general relativity, the derivation of the Hamiltonian is not straightforward.
We need to properly define what would be the “time” with respect to which we study
the dynamics and determine the dynamical fields that depend on this time.

However, this means that we would have to break the manifest covariance and choose
a preferred set of time in the overall manifold. This is possible by slicing the (d + 1)-
dimensional manifold into a family of space-like d-dimensional hypersurfaces Σt, one for
each instant of “time”.

Arnowitt, Deser and Misner used the geometrical decomposition of spacetime to
construct the canonical formulation of gravity, in 1962 [32]. This decomposition is known
as the ADM formalism, named after the authors.

Beyond its use in studying the dynamics, the slicing is particularly relevant in the
formulation of the action principle, as it allows to (more or less) properly define the
boundary conditions. Indeed, as stated in gravitation [4] Sec. 21.4, the boundary
conditions are two faces of a sandwich of spacetime with given d-dimensional geometries,
and the dynamics is derived by picking the (d+ 1)-dimensional geometry in between that
extremizes the action.

Actually, there is another - and probably more accurate - way to study the dynamics of
covariant theories, known as the the covariant phase space method. It was developed by
[33–37] based on earlier work of [38]. The formalism provides an elegant way to construct
the Hamiltonian formulation of Lagrangian field theories without breaking covariance 3 .

Let’s proceed to the slicing of the d+ 1 spacetime into constant time t hypersurfaces
Σt, and describe its dynamics through the time foliation. The first step is to re-write the
Lagrangian as a function of appropriate variables as the metric, any spatial derivatives
and first time derivatives.

Throughout the manuscript, the greek letters α, β... refer to the overall manifold, while
the latin indices i, j, k... are for the hypersurfaces.

3The breakthrough that made the covariant phase space formalism popular was the 1987 article of
Crnkovic and Witten [33], which gave explicit covariant constructions for the symplectic forms of
scalar fields, Yang-Mills theory and General Relativity. See also [39–43] where the authors contributed
to the developmnent of the formalism. See as well Halliwell’s work regarding the boundary terms and
total derivatives[44], where he also provided a nice historical overview of the formalism’s evolution
from the old Lagrange, Hamilton and Jacobi formalisms, to the construction of the non-covariant
phase space formalism.
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2. Hamiltonian formulation of gravity – 2.2. The d+ 1 decomposition

Figure 2.1.: An infinitesiaml thin volume of spacetime delimited by two constant time-
slices Σt and Σt+dt. nα is the unit normal vector to the hypersurfaces, and
the curves xi and xi + dxi are constant space coordinates separated by a
displacement dxi. We consider a particle moving from point P at time t to
P ′ a bit later at time t+ dt

As showed in figure 2.1, consider an infinitesimally thin volume of spacetime, delimited
by two hypersurfaces Σt and Σt+dt, resp. defined at a constant time t and a bit later
time t + dt. We also draw two constant spatial trajectories xi and xi + dxi, and the
unit normal vector n to Σt. As we will see in more details later, the constant spatial
trajectories are not necessarily tangent to the unit normal vector (when it is the case,
the coordinates are said to be co-moving), there is a shift N i that deviates the trajectory
in the tangent direction, as illustrated in figure 2.1.

Now we follow a particle that moves from the position P on Σt to P ′ on Σt+dt. The
proper interval ds between the two points can be computed by decomposing the path
along the dashed trajectory in figure 2.1 then use the generalised Pythagorean theorem.
The first piece is given by the proper time dτ = Ndt with N being the lapse which
measures the difference between the proper time and the coordinate t. The spatial
distance dl is given by the base-geometry of the hypersurfaces.

We compute ds using the Pythagorean theorem in the Lorentzian signature:

ds2 = −dτ2 + dl2 (2.9)

which explicitly is

ds2 = −N2dt2 + gij

(
N idt+ dxi

) (
N jdt+ dxj

)
(2.10)

=
(
−N2 +N iNi

)
dt2 + 2Ni dt dx

i + gijdx
idxj . (2.11)

N and N i are key objects in the decomposition. They define how the hypersurfaces are
stitched to each other.
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2. Hamiltonian formulation of gravity – 2.2. The d+ 1 decomposition

From (2.9), we introduce the following parametrisation for the metric field:

gµν =

sN2 +NkNk Ni

Ni hij

 (2.12)

with N , Ni being resp. the lapse and shift; hij = gij the metric tensor on the d-dimensional
hypersurfaces Σt, also called the first fundamental form. These are also called the ADM
variables [32]. s is either equal to +1 or −1 depending on the space-time’s geometrical
signature.

Let’s give a detailed geometrical description of each of these elements. We define a set
of coordinate basis vectors, et and {ei}D

i=1; with ei = ∂/∂xi tangent to Σt, and et = ∂/∂t
not tangent to Σt.

Any vector v lying in Σt is expressed as :

v = viei . (2.13)

We also define the coordinate 1-forms basis {dxi}d
i=1 dual to the tangent vector basis. A

displacement in Σt

2.2.1. The first fundamental form hij

The spatial metric hij is a symmetric, linear operation at each point p ∈ Σt, h :
TpΣt × TpΣt → R .

It allows to raise and lower the indices of vectors, tensors defined on the surface Σt, as
long as Σt is a not null so that hij is non-singular. Its inverse is denoted hij , and is not
automatically equal to gij .
hij specifies the geometry of each hypersurface Σt. The rest of the elements of the overall

spacetime metric tensor gtt = −N2 +NkNk , gti = Ni describe how these hypersurfaces
are stitched to each other.

2.2.2. The shift Ni

The shift Ni, defined as

Ni = et . ei , (2.14)

measures how much a particle at constant spatial trajectory xi deviates from a curve
tangent to the normal vector of Σt. In particular, the spatial coordinates are comoving
when Ni = 0.

It is a 1-form - linear mapping : TpΣt → R - on the space of vectors tangent to Σt,
N : TpΣt → R. Its contravariant form (vector tangent to Σt) is given by:

N i = hijNj . (2.15)
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2.2.3. The lapse N

First let’s introduce the “future-directed” time-like unit vector normal to the hypersurfaces
Σt, n. Its squared norm is

s = n .n (2.16)

where s = +1 if the hypersurfaces were defined in the Euclidean-signature, else s = −1
for Minkowski-signature. n being normal to these hypersurfaces, for every tangent vector
v ∈ TpΣt, n .v = 0. Since the tangent vectors v are characterised by vt = 0, therefore
ni = 0 and the only non-null component of the unit vector is nt. This introduces the
lapse N , related to the unit vector through

nt = sN , N = −et .n . (2.17)

Let’s clarify the geometrical role of N . First notice that

sN−2 = N−2n .n = dt .dt = gtt . (2.18)

which allows to find the relation between the lapse and the contravariant vector component
nt, by raising the index on n.

nt = N−1 . (2.19)

This tells us that an observer moving orthogonal to Σt sees a difference between the
proper time and the coordinate time t. This difference is measured by the lapse function
N , through the relation dτ = Ndt, dτ/dt = N . In co-moving coordinates, N = 1 .

La section sur les exemples de vecteurs, ajouter plutôt aux sections précédentes.

2.3. The inverse metric

From the previous results, we can derive another key element of the d+ 1 decomposition,
the inverse metric,

gµν =


s

N2 −sN i

N2

−sN i

N2 hij + sN iN j

N2

 (2.20)

For the rest of the chapter, we consider only the Lorentzian signature, s = −1.

2.4. The extrinsic curvature

Definition

So far, we have been able to construct the set of connectors, n, N and Ni to glue these
hypersurfaces together and thus construct the whole spacetime. Moreover, hij specifies
their intrinsic geometry. There remains only one fundamental notion to define in order to
finish completely the d+ 1 decomposition, the extrinsic curvature. It is the geometrical
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2. Hamiltonian formulation of gravity – 2.4. The extrinsic curvature

object that measures how these hypersurfaces are immersed in the whole space-time, and
how these are “perceived” (i.e. flat? curved?) by a particle living in the whole manifold.

The extrinsic curvature of a d-dimensional Σt ⊂ M at a point P ∈ Σt is the mapping
K : TpΣt −→ TpM,

K(v) = −∇vn4 . (2.21)

∇v is the (d+ 1)-dimensional covariant derivative. Since v ∈ TpΣt, the definition only
takes into account the values of n on Σt. As a result, K depends only on Σt, and not on
the lapse and the shift. Notice that

n .K(v) = −n .∇vn = −1
2∇v (n .n) = 0 . (2.22)

Thus K(v) is tangent to Σt, and is actually a mapping from TpΣt to itself. This
immediately tells us that K(v) is a d× d matrix, with components Ki

j . Moreover, it is
symmetric, as we can see in this simple check: consider two vectors u and v ∈ TpΣt, we
have

u · K(v) − v · K(u) = −uαvβ∇βnα + vαuβ∇βnα (2.23)
= 2vαuβn[α;β] (2.24)
= 2vαuβn[α,β] (2.25)
= 0 , (2.26)

where at the end we used that vt = ut = 0 and ni = 0. This tells us that u .K(v) =
uihilK

l
jv

j = uiKijv
j is symmetric in u and v, or equivalently Kij is symmetric.

Notice that the first fundamental form hij is a pure characteristic of Σt and does not
depend on M, unlike the second fundamental form which essentially depends on M, and
on the way these hypersurfaces are immersed in.

To have a nice visual on the role of K and its definition (2.21), see Fig. 2.2.

Figure 2.2.: The extrinsic curvature measures the rate of contraction of observers moving
normal to the surface. Each unit normal vector n carries a unit interval of
proper time normal to the hypersurface. The dashed arrow represents n at
the fiducial point P after parallel transport to the nearby point P + δP

Consider P + dP . As n does not change in length, the infinitesimal displacement dP is

4The sign is chosen so that so that the trace K is positive when the normal vector is forward-directed.
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a vector-valued 1-form lying on Σt. The apparent velocity of the normal vector observer
at P relative to that at dP is K(dP). Therefore, the extrinsic curvature measures the
rate of contraction or expansion of observers moving normal to the surface. In the
case of a d = 3 dimensional Friedman-Lemaître-Robertson-Walker (FLRW) universe,
this velocity is HdP and the extrinsic curvature is Kij = −Hhij , with H being the
Hubble-Lemaître constant. The anisotropic part measures the anisotropic expansion and
the trace K = −3H gives the Hubble rate [4].

2.4.1. Relation to the induced metric

Thanks to the definition of the extrinsic curvature, we approached a notion of “velocity”
for the hypersurfaces Σt. Now let’s build explicitly the relationship with the time rate
of change of the metric ∂hij

∂t
= ḣij which, as we will see later, is one of the canonical

variables and key elements in Einstein’s equations of motion.

Kij = −∇jni = −ni,j + Γα
ijnα , (2.27)

where the Γ’s refer to the (d+ 1)-dimensional Christoffel symbols.
Since ni = 0 and nt = −N , we find

Kij = −N Γt
ij

= −1
2Ng

tα (gαi,j + gαj,i − gij,α)

= −1
2N

[(
− 1
N2

)(
Ni,j +Nj,i − ḣij

)
+ Nk

N2 (hik,j + hjk,i − hij,k)
]
. (2.28)

Hence

ḣij = −2NKij +Ni,j +Nj,i +Nk (hik,j + hjk,i − hij,k) (2.29)

With the change Nk = hklNl, we can rewrite everything as covariant derivatives on
Σt, using the spatial metric hij and the d-dimensional Christoffel symbols (d)Γl

ij ,

ḣij = −2NKij +Ni|j +Nj|i . (2.30)

where | denote covariant derivatives on Σt.

2.5. Re-expressing the Lagrangian

Now that we have all the geometrical key elements for the d+ 1 decomposition, we can
recast the Lagrangian of gravity as a function of these new variables.

We recall the pure gravity part of the action,

Sgrav ≡ 1
16πG

∫
M
dt Lgrav = 1

16πG

∫
M
dd+1x

√
−g (d+1)R (2.31)

We re-express (2.31) with the ADM variables,
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2. Hamiltonian formulation of gravity – 2.5. Re-expressing the Lagrangian

gµν =

−N2 +NkNk Ni

Ni hij

 . (2.32)

First we deal with the volume element √
−g . We have that

g = det

−N2 +NkNk Ni

Ni hij

 (2.33)

= −N2 h+ det

NkNk Nkhik

Ni hij

 (2.34)

= −N2h , (2.35)

with h = dethij . The second determinant in the second line vanishes, as the first row of
the matrix is a linear combination of all the others (N1 times the second row plus N2

the third plus ... Nd times the last row). Hence:
√

−g = N
√
h (2.36)

Now we tackle the Ricci scalar (d+1)R, which is much less trivial. We want to find a
relation between (d+1)R and (d)R evaluated on the hypersurfaces Σt. It is provided by
the Gauss-Codazzi relations.

2.5.1. Gauss-Codazzi relations

A nice trick [4, 45] is to use the Gaussian normal coordinates i.e. a coordinate system
where N = 1 and Ni = 0 5, as it simplifies a lot the Christoffel symbols. Then we derive
expressions that are coordinate-independent, hence that apply to any coordinate system.
Geometrically, choosing normal coordinate corresponds to consider geodesics orthogonal
to Σt at spatial positions xi, and taking the proper time as the coordinate for time.

First, we will use that in Gaussian normal coordinates, we have that

Γt
ij = −Kij (2.37)

Γi
jk = (d)Γi

jk (2.38)

Γi
jt = 1

2h
ikḣkj = −hikKkj = Ki

j (2.39)

where (d)Γi
jk is the d-dimensional Christoffel symbol, defined on Σt. The first relation

comes from (2.28), and the last ones from the vanishing of all the crossed time-spatial
component g0i, g0i .

5In differential geometry, normal coordinates at a point p on a manifold M are a local coordinate
system in a neighborhood U of p on M, defined by the exponential map expp : V → U , where
V is a neighborhood of p on the tangent space TpM. It is a particular nice coordinate system as
the Christoffel symbols vanish at the point p. Moreover, one can manage to write the metric as the
Kronecker delta in the neighborhood of p, and the first partial derivatives of the metric at p vanish.
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The components of the Riemann tensor are generally given by

Rρ
σµν = Γρ

νσ,µ − Γρ
µσ,ν + Γρ

µλΓλ
νσ − Γρ

νλΓλ
µσ . (2.40)

As we want to derive (d)R, we consider only the components associated with the spatial
part, i.e. i, j, k....

Ri
jkl = (d)Γi

lj,k − (d)Γi
kj,l + (d)Γi

km
(d)Γm

lj +Ki
kKlj − (d)Γi

lm
(d)Γm

jk −Ki
lKjk

= (d)Ri
jkl +

(
Ki

kKlj −Ki
lKjk

)
. (2.41)

We lower the index using hij , we obtain the relation

Rijkl = (d)Rijkl + (KikKjl −KilKjk) . (2.42)

By definition, Rijkl = R (ei, ej , ek, el) and so does not depend on the choice of e0 i.e. on
the lapse and shift, which means the relation is valid for any coordinate system. (2.42) is
called the first Gauss-Codazzi relation.

There exists a second notable relation we can derive by taking the time t component
of (2.41) in Gaussian normal coordinates

Rt
ijk = −Kki,j +Kji,k −Kjm

(d)Γm
ki +K

(d)
kmΓm

ji (2.43)
= Kji|k −Kki|j , (2.44)

and rewrite the left hand side as

nαR
α

ijk = Kji|k −Kki|j , (2.45)

where nα = (−1,0) in Gaussian normal coordinates. Therefore, (2.45) is coordinate-free
and is called the second Gauss-Codazzi relation.

2.5.2. Final Lagrangian

(d+1)R = (d)R+K2 −KijKij + total derivatives . (2.46)

Kij ≡ −ni;j = 1
2N

(
−ḣij +Ni|j +Nj|i

6
)

(2.47)

K = hijKij . (2.48)

The action becomes

Sgrav = 1
16π

∫
M
dt ddxN

√
h
(

(d)R+KijKij −K2
)

(2.49)

where we have integrated out the total derivative terms in (2.46).
Notice that the intrinsic curvature (d)R contains the spatial derivative of h and the

extrinsic curvature K carries the time derivative ḣ. Hence (d)R plays the role of the
potential while K provides the kinetic terms.
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2. Hamiltonian formulation of gravity – 2.6. The gravitational Hamiltonian

2.6. The gravitational Hamiltonian

Now we finally have all the tools to formulate the gravitational Hamiltonian.
As we saw in section 2.1, the very first step for this task is to identify the canonical

variables - here hij , N,Ni - and define their conjugate momenta.

2.6.1. Primary constraints

We have,

Πij ≡ δLgrav

δḣij

= − 1
16π

(
Kij − hijK

)√
h , (2.50)

Π0 ≡ δLgrav

δṄ
= 0 , (2.51)

Πi ≡ δLgrav

δṄi
= 0 . (2.52)

As expected, the conjugate momentum of the spatial metric depends on the extrinsic
curvature Kij and its trace K, as the latter contain the time derivatives ḣij . The Πij is a
d×d pseudo-symmetric tensor, pseudo as it is not exactly a tensor because of the presence
of the volume element

√
h that does not allow the object to transform exactly as a tensor 7.

Since the Lagrangian does not depend on time derivatives of the lapse Ṅ and shift Ṅi,
the conjugate momenta associated to the shift N and the lapse Ni vanish. This is an
important characteristic of GR, and is often encountered in the so-called constrained
Hamiltonian systems. These were studied by Dirac in his constraints classification theory.
General relativity is a constrained theory, and the vanishing conjugate momenta are
called the primary constraints in Dirac’s terminology. They restrict the solutions of
the e.o.m. to subspaces of the overall phase space. In the d = 4 case, out of the 20
components of the metric and the conjugate momenta, only 4 are real degrees of freedom.
We will discuss this in more details in the next section 2.8.

Now that we defined the conjugate momenta, we have to inverse the relations and
express the “q̇” variables with respect to their conjugate momenta “p”. Hence we should
re-express K and Kij as functions of Πij and its trace Π = Πij hij . Notice that the
primary constraints (2.51) and 2.52 are not invertible. This is one of the features of
constrained Hamiltonian systems we mentioned earlier.

K = 16πG
(d− 1)

√
h

Π , (2.53)

which yields to

Kij = 16πG√
h

( 1
d− 1 Πhij − Πij

)
. (2.54)

7See Weinberg [5]
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The next step for building the Hamiltonian is to use the standard Legendre transform
method. For the pure gravitational part,

Hgrav =
∫
ddx

(
Π0Ṅ + ΠiṄi + Πij ḣij

)
− Lgrav . (2.55)

As Π0 = 0, Πi = 0 and

ḣij = −2NKij +Ni|j +Nj|i , (2.56)

we replace in the Hamiltonian

Hgrav =
∫
ddx

(
Π0Ṅ + ΠiṄi + Πij ḣij

)
− Lgrav . (2.57)

= − 1
16πG

∫
ddx

√
h
(
Kij − hijK

) (
−2N Kij +Ni|j +Nj|i

)
− Lgrav . (2.58)

We are left with Lgrav. From the reformulated Einstein-Hilbert action (2.49),

Lgrav = 1
16πG

∫
ddxN

√
h
(

(d)R+KijKij −K2
)
. (2.59)

Using (2.59), the Hamiltonian simplifies into

Hgrav = 1
16πG

∫
ddx

√
h
[
N
(
KijKij −K2 − (d)R

)
+ 2Ni|jK

ij − 2N i
|iK

]
. (2.60)

From the expressions of Kij (2.54) and K (2.53), we find

KijKij −K2 = 256π2G2

h

( 1
d− 1Π2 − ΠijΠij

)
(2.61)

and replace everything in the Hamiltonian, we obtain

Hgrav = 16πG
∫
ddx

N√
h

( 1
d− 1Π2 − ΠijΠij

)
− 1

16πG

∫
ddx

√
hN (d)R+ 2

∫
ddxNi|jΠij .

(2.62)

We re-express the last term using an integration by parts, for a purpose that will be
explained a bit later.

∫
ddxNi|jΠij =

∫
ddx

√
hNi|j

(
Πij 1√

h

)
(2.63)

= −
∫
ddx

√
hNi

(
Πij 1√

h

)
|j

8 (2.64)
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which finally leads us to the gravitational Hamiltonian:

Hgrav = 16πG
∫
ddx

N√
h

( 1
d− 1Π2 − ΠijΠij

)
− 1

16πG

∫
ddx

√
hN (d)R

− 2
∫
ddx

√
hNi

(
Πij 1√

h

)
|j
. (2.65)

Of course, this is the pure gravitational part. If we had considered matter fields in the
Lagrangian, there would have been an additional term in the Hamiltonian associated
with them.

H = Hgrav +Hmatter . (2.66)

2.6.2. Scalar field matter Lagrangian

Consider a very simple matter Lagrangian:

Lmatter =
∫

M
ddx

√
−g

(
−1

2g
µν∂µϕ∂νϕ− V (ϕ)

)
(2.67)

=
∫

M
ddx

√
hN

(
1
2
ϕ̇2

N2 − N i

N2 ϕ̇ ϕ,i − 1
2h

ijϕ,iϕ,j + 1
2
N iN j

N2 ϕ,iϕ,j − V (ϕ)
)
,

(2.68)

with ϕ a scalar field and V (ϕ) its potential.

The corresponding momentum conjugate is given by:

Πϕ ≡ δLmatter

δϕ̇
=

√
h

N

(
ϕ̇−N iϕ,i

)
, (2.69)

which leads to the matter Hamiltonian:

Hmatter =
∫
ddxΠϕ ϕ̇− Lmatter (2.70)

=
∫

M
ddx

[
√
hN

(
Π2

ϕ

2h + 1
2h

ijϕ,iϕ,j + V (ϕ)
)

+N i Πϕ ϕ,i

]
. (2.71)

2.7. Hamiltonian and momentum constraints

So far, we were able to construct the Hamiltonian of gravity with a set of coordinates and
their conjugate momenta {N,Ni, hij ,Π0,Πi,Πij}. From the definition of the momenta
conjugate, we derived equations called the primary constraints (2.51), (2.52) which reduce
the set of the allowed coordinates in phase space. It turns out that there exist another set

8We introduced the volume element
√
h in order to operate the covariant derivative on the surface Σ.

We neglect the boundary term.
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of equations that emerge when requiring that the primary constraints remain over time:

Π̇0 = {H,Π0} = −δH

δN
= 0 , Π̇i = {H,Πi} = − δH

δNi
= 0 . (2.72)

where H = HGR +Hmatter. These are called secondary constraints, according to Dirac’s
constraints terminology.

Using the gravitational Hamiltonian (2.65), we get:

Π̇0 = 16πG√
h

( 1
d− 1Π2 − ΠijΠij

)
−

√
h

16πG
(d)R+ δHmatter

δN
= 0 , (2.73)

Π̇i = −2
√
h

(
Πij 1√

h

)
|j

+ δHmatter
δNi

= 0 .9 (2.74)

In the case of a scalar field as in (2.70), the matter components of the secondary constraints
would be

δHmatter
δN

=
√
h

2

(
Π2

ϕ

h
+ hijϕ,iϕ,j + 2V (ϕ)

)
, (2.75)

δHmatter
δNi

= Πϕ h
ijϕ,j . (2.76)

(2.73), (2.74) are constraints on the legal hij and Πij , or equivalently the spatial geometries
and extrinsic curvatures of the spatial hypersurfaces Σ, as well as the matter fields and
their conjugate momenta.

Every problem in mechanics starts with the question of the initial conditions. How
many parameters do we need to set in order to fully determine the dynamics? In other
words, how many degrees of freedom does the system have? In a standard one-dimensional
mechanical system, one needs to fix p and q at a starting time t, then integrate two-first
order equations forward in time in order to find all their values in the future times.
The same happens in gravitation, one needs to fix the initial conditions among the set
{N,Ni, hij ,Π0,Πi,Πij , ϕ,Πϕ}. Only in this case, these should satisfy the constraints
equations (2.51), (2.52), (2.73), (2.74). Hence, the constraints equations are also said to
be constraints on the initial conditions.

In appendix ??, we show how the secondary constraints are related to Einstein’s equations
of motion.

Back to the general Hamiltonian (2.66). As it is linear in N and Ni, we may recast it as

H =
∫

Σ
ddx

(
NH +NiHi

)
, (2.77)
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with H and Hi the secondary constraints we derived earlier from δH

δN
and δH

δNi

H = 16πG√
h

( 1
d− 1Π2 − ΠijΠij

)
− 1

16πG
√
h (d)R+

√
h

2

(
Π2

ϕ

h
+ hijϕ,iϕ,j + 2V (ϕ)

)
,

(2.78)

Hi = −2
√
h

(
Πij 1√

h

)
|j

+ Πϕ h
ijϕ,j . (2.79)

These are also known as the Hamiltonian constraint and the momentum constraints
respectively. And we have that,

H = 0 , (2.80)
Hi = 0 . (2.81)

We may further rewrite the gravitational action in terms of the Hamiltonian,

Sgrav =
∫
dt

∫
Σ
ddx

(
Ṅ Π0 + Ṅi Πi −NH −NiHi

)
(2.82)

= −
∫
dt

∫
Σ
ddx

(
NH +NiHi

)
. (2.83)

where Π0 and Πi vanish, according to the primary constraints (2.51), (2.52).
It is clear that the lapse and shift functions now act as Lagrange multipliers. The

variation of (2.83) with respect to N and Ni, yields the Hamiltonian and momentum
constraints respectively.

In section Sec. 2.8, we show how H and Hi are the canonical generators of the gauge
symmetries (time and space diffeomorphisms) of the theory.

Now back to (2.77). Notice that if the constraints are satisfied, the gravitational Hamil-
tonian vanishes. Any allowed configuration of spatial geometries, extrinsic curvatures or
matter fields, lead to an apparently non-dynamical Universe!

Actually, the vanishing of the gravitational Hamiltonian reflects that the evolution
parameter given by the coordinate time t is not a physical quantity, but only a free
parameter. As general relativity treats time and space on equal footing, the dynamics
cannot be simply encoded in a singled out variable t. As we will discuss further in Sec.
3.4, we have to interpret the dynamics as a relational process between the fields involved
in the theory.
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2.8. More on the constraints of GR

In order to study GR constraints and show how these are actually the canonical generators
of the gauge symmetries, we introduce their smeared versions

H(N) :=
∫

Σ
ddxN H , (2.84)

H(N⃗) :=
∫

Σ
ddxN i Hi , (2.85)

where N⃗ is the usual shift vector we often refer to with its components N i.
Smearing is particularly useful to compute integrals per part and to remove the

Kronecker’s delta functions “δ” in the Poisson brackets ([46]), and N , N i in (2.84) and
(2.85) are actually just labels for the smearing functions. According to Dirac’s constrained
systems theory Appendix. ??, for every 1st-class constraint, the corresponding Lagrange
multiplier is a free parameter i.e. it can be freely chosen. However, it is natural to think
of the lapse and the shift as the gauge parameters of the diffeomorphism constraints 10.

As a first application of the operation above, we rewrite the smeared momentum
constraint as

H(N⃗) =
∫
ddxNi Hi

= −2
∫
ddx

√
h Ni ∇j

(
Πij

√
h

)

= b.t. + 2
∫
ddx∇j Ni Πij .

(2.86)

In order to see how it acts on phase space, let’s recall first some of the Poisson brackets
rules. We formally define the Poisson brackets of two functions f, g on phase space with

{f, g} =
∫

Σ
ddx

√
h

(
δf

δhkl(x)
δg

δΠkl(x) − δg

δΠkl(x)
δf

δhkl(x)

)
. (2.87)

Hence the following Poisson bracket rules:

{hij(x),Πkl(x′)} =
δk

i δ
l
j + δl

iδ
k
j

2 δ(d)(x,x′) = δkl
(ij) δ

(d)(x,x′) (2.88)

{hij(x), hkl(x′)} = 0 (2.89)
{Πij(x),Πkl(x′)} = 0 (2.90)

For a matter of clarity and simplification, we do not write the space components “x”
anymore, but they are all implicit in the integrals involved in the Poisson brackets with
the condition δ(d)(x,x′). We therefore compute

{H(N⃗), hij} = −∇iNj − ∇jNi . (2.91)

We can show that the right side of (2.91) is actually the Lie derivative of the spatial

10Notice that summing (2.84) and (2.85) gives the total Hamiltonian.
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metric hij along the shift vector N⃗ , LN⃗hij . Hence,

{H(N⃗), hij} = −LN⃗hij , (2.92)

and the constraint H(N⃗) acts as a generator of spatial diffeomorphisms.
We have to check if it is the same for the momentum conjugate. The Poisson bracket

with Πij is similar to (2.91), but a bit more tricky to compute. Recall that Πij is a
pseudo-tensor because of the factor

√
h (see (2.50)), and hence does not transform exactly

as a tensor. First we re-express it as a product of the volume element
√
h and an exact

tensor Π̂ij

Πij =
√
h Π̂ij . (2.93)

We can then compute the Lie derivative(
LN⃗

√
h Π̂ij

)
=
(
LN⃗

√
h
)

Π̂ij +
√
h
(
LN Π̂ij

)
. (2.94)

And since

LN⃗

√
h = 1

2
√
hhijLN⃗hij

=
√
h∇iNi ,

(2.95)

then (
LN⃗

√
h Π̂ij

)
=

√
h
(
LN⃗ + ∇iNi

)
Π̂ij . (2.96)

As Π̂ij is a tensor, we have that

LN⃗ Π̂ij = Nk∇kΠ̂ij − Πki∇kN
j − Πkj∇kN

i . (2.97)

Using (2.97) in (2.94) and contracting with hij , we obtain

hij

(
LN⃗

√
h Π̂ij

)
= ∇k (Nk Π) − 2Πij∇iNj . (2.98)

We then re-express the constraint (2.86)

H(N⃗) = b.t. + 2
∫

Σ
ddx∇j Ni Πij

= b.t. −
∫

Σ
ddxhij LN⃗ Πij .

(2.99)

As LN⃗ Πij does not depend on hij , we finally get

{H(N⃗),Πij} = −LN⃗ Πij , (2.100)

and find a similar result for H(N⃗) when acting on Πij . Thus H(N⃗) is the generator of
spatial diffeomorphisms on the phase space P.
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Now regarding the Hamiltonian constraint and its role as a generator of time-diffeomorphism,
the computations are much more complicated11. As they are heavy, we only provide the
global result and a very brief insight on the Lie algebra behind.

We find that

LN⃗h = {h,H(N⃗)} , (2.101)
LNh = {h,H(N)} + f(h) . (2.102)

Unlike the spatial d-diffeomorphisms , time-diffeomorphism is actually quite complicated
and not explicit in the constraints. As shown above, there is an additional term f(h) that
is a function of the metric. This feature actually comes from the fact that the constraints
of GR satisfy a complicated algebra known as Dirac’s hypersurface deformation algebra
[47, 48].

{H(N⃗), H(M⃗)} = −H(LM⃗ N⃗) , (2.103)
{H(N), H(M⃗)} = −H(LM⃗N) , (2.104)
{H(N), H(M)} = +H(V⃗ ) with V i = hij (M∂jN −N∂jM) . (2.105)

It is actually a Lie algebroïd, where there is a structure function - hij in (2.105) - instead
of a usual structure constant in standard Lie algebras. f(h) in (2.102) vanishes on-shell
i.e. for configurations satisfying the equations of motion.

The above Poisson algebra describes normal and tangential deformations of a hypersur-
face. Time-diffeomorphisms generate displacements from one hypersurface Σ1 to another
hypersurface Σ2 with a length proportional to N , while spatial-diffeomorphisms yield
movements on one hypersurface itself along N⃗ .

11Just by the looks, it is quite different from the momentum constraints. This is because general
covariance was mathematically broken in the d + 1-decomposition, but the physics is completely
recovered.
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Quantum gravity and quantum
cosmology
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3.1. Preliminaries on the quantum theory

Classical mechanics and quantum mechanics have very different mathematical frameworks.
In the Hamiltonian formalism, we saw that classical systems with n degrees of freedom are
points on a 2n-dimensional manifold, the phase space P. The fundamental structure on
P is a symplectic form Ωab, which is a non-degenerate, closed 2-form on P. Observables
are real-valued functions on P , and the dynamical evolution is given by a one-parameter
family of canonical transformations generated by a Hamiltonian vector hi = Ωij∇jH.

The dynamics is given by the Poisson bracket

{f, g} = Ωab∇af∇bg . (3.1)

In quantum theory, a state is represented by a vector Ψ in an infinite dimensional
Hilbert space H. An observable is represented as a self-adjoint operator Ô acting on H.
The dynamical evolution is given by a one-parameter family of unitary transformations
on H generated by a Hamiltonian operator.

As stated by Wald in [49] chapter 2, the key issue in constructing a quantum theory that
corresponds to a classical system is how to choose the Hilbert space and the self-adjoint
operators corresponding to the classical observables “O” of interest. In an attempt to
preserve the formal structure of the classical structure, such as the symmetries of the
classical theory, Dirac introduced his well-known Poisson-bracket-commutator relationship

{A,B} −→ 1
iℏ

[Â, B̂] , (3.2)
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which is a map upgrading classical observables A,B to quantum observables Â, B̂. The
Poisson bracket gives an algebraic structure on the space of the classical observables,
whereas commutators provide a similar algebraic structure on quantum observables.

However, there is still a great issue regarding the choice of the representation of the
quantum observables. Let H be a Hilbert space and Vα a collection of operators. (H, Vα)
and (H′, V ′

α) are said to be unitarily equivalent if there exists a unitary map U : H → H′

such that U−1V ′
α U = Vα for all α. Hence, according to the Stone-von Neumann theorem

1, the two quantum theories are physically equivalent in the sense that given any Ψ ∈ H,
the state UΨ in the quantum theory (H′, V ′

α) has exactly the same physical properties as
Ψ in the quantum theory (H, Vα).

Unfortunately, the Stone-von Neumann theorem does not provide a natural prescrip-
tion on how to represent observables, except for position and momentum through the
canonical commutation relation 2, and classical observables which are at most linear in
the momentum (see [49]). For more general observables, factor-ordering ambiguities arise
and it becomes difficult to find the right set satisfying (3.2). We particularly encounter
this issue in defining the Wheeler-DeWitt equation, which is the quantum equation for
gravity derived from its canonical quantization (see Sec. 3.3). Since gravity is an infinite
dimensional system and involves fields, infinitely many unitarily inequivalent irreducible
representations of the Weyl relations may exist. Actually, even in the (not-so-)mini-
superspace example considered in Sec. 3.5 we show that these ambiguities appear already
in finite dimensional systems.

3.2. Superspace

So the first step for constructing a quantum theory for gravity is to define the right
Hilbert space with the right observables.

In the canonical quantization of gravity, we have to consider the space of all Riemannian
d-metrics and matter configurations defined on the spatial hypersurfaces Σ

Riem(Σ) := {hij(x), ϕ(x) | x ∈ Σ} . (3.5)

It is an infinite-dimensional space, but there are a finite number of degrees of freedom
at each point x ∈ Σ. Moreover, two configurations that can be related to each other
by a diffeomorphism, i.e. a coordinate transformation, are said to be equivalent since
their intrinsic geometry is the same (this is a statement we will justify in next section).
Therefore, by factoring out the diffeomorphisms on the spatial hypersurfaces, the relevant

1Stone-von Neumann theorem: Let (H, Ŵ (y)) and (H′, Ŵ ′(y)) be strongly continuous, irreducible,
unitary representations of the Weyl relations

Ŵ (y1)Ŵ (y2) = ei Ω(y1,y2)/2 Ŵ (y1 + y2) , (3.3)

Ŵ †(y) = Ŵ (−y) . (3.4)

Then (H, Ŵ (y)) and (H′, Ŵ ′(y)) are unitarily equivalent. See chapter 2 of [49] for more details, and
implications to equivalent unitarily representations.

2Consider a standard finite quantum mechanical system, H = L2(R3). In the position representation,
the position operator X̂i is represented by a multiplication by xi, and the momentum operator P̂j by
−i ∂

∂xj .
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configuration space on which the quantum dynamics occurs is

Riem(Σ)
Diff0(Σ) , (3.6)

where the index 0 refers to the diffeomorphisms connected to the identity, and is called
the superspace [21].

The state vector Ψ[hij , ϕ] on the superspace is a functional of the spatial metrics hij

and matter fields ϕ introduced in the classical theory, and is called the wavefunction
of the universe. Unlike the case in standard quantum mechanics, Ψ does not explicitly
depend on time. Time is measured relationally, in the sense that it is implicitly encoded
by the mutual relations between the dynamical variables hij , ϕ. One typical quantity that
one might want to calculate is, for example, the probability (amplitude) that the metric
field be in some configuration given that the matter field attains some value. Hence the
matter field plays the role of a measuring apparatus, as we would use a clock to measure
time. These features will become clearer as we progress in the canonical quantization of
gravity and derive the so-called Wheeler-DeWitt equation governing the wavefunction
Sec. 3.3. In Sec. 3.5, we present one very well-known quantum cosmological model, the
mini-superspace, that we use to highlight the relational property of the fields.

Note: we sometimes refer to the wavefunction of the universe as the “wavefunctional”.
The former denomination is the usual one we find in the litterature. In our work, we
shorten it to wavefunctional

Note: we sometimes refer to the wavefunction of the universe as the “wavefunctional”.
The former denomination is the usual one we find in the litterature. In our work, we
shorten it to wavefunctional

We can define a metric on this superspace, using the Hamiltonian of GR (2.65) or the
recasted action (2.83):

HGR = 16πG
∫
ddx

N√
h

( 1
d− 1Π2 − ΠijΠij

)
− 1

16πG

∫
ddx

√
hN R(d)

− 2
∫
ddx

√
hNi

(
Πij 1√

h

)
|j
. (3.7)

We can re-arrange the above as

HGR = −16πG
∫
ddxN G(ij)(kl)ΠijΠkl − 1

16πG

∫
ddx

√
hN R(d)

− 2
∫
ddx

√
hNi

(
Πij 1√

h

)
|j
, (3.8)

where

G(ij)(kl) = 1
2h1/2

(
hikhjl + hilhjk − 2

d− 1hijhkl

)
(3.9)

and is called the DeWitt metric. We recast it as

GAB(x) := G(ij)(kl)(x) , (3.10)
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where the indices A,B stand for pairs of symmetric indices (ij) and (kl) respectively,
and are the independent components of the spatial metric hij ,

A,B ∈ {11, 12, ... 1d, 21, 22... 2d, ... dd} . (3.11)

In the case of d = 3 (which corresponds to a 4-dimensional overall spacetime M) , the
signature of the DeWitt metric is (−,+,+,+,+,+). We can construct the inverse metric
as well, using the following rule

GAB GBC = δC
A , (3.12)

G(ij)(kl) G(kl)(mn) = 1
2
(
δi

mδ
j
n + δi

nδ
j
m

)
, (3.13)

where δC
A is the identity matrix which, expressed in spatial indices i, j, ..., is the sym-

metrized product of Kronecker delta’s.
We find then

GAB = G(ij)(kl) = h1/2
(
hikhjl − hijhkl

)
. (3.14)

One last manipulation, we rewrite the total Hamiltonian and the action in (2.49) as

H =
∫
ddxN

2 GAB ΠAΠB + ... , (3.15)

S =
∫
dt ddx

2N GAB Ẋ
AẊB + ... , (3.16)

where we have set 8πG = 1 to avoid confusion between the DeWitt metric and the
gravitational constant. The left pieces are the non-dynamical terms: spatial curvature,
fields potential etc.

The placement of “AB” on the upper side on (3.10) or equivalently on the bottom
side in (3.14), is based on the fact that we consider the (covariant) spatial metric as a
generalized coordinate in field space, hij ∼ XA.

If we add a matter field ϕ as in (2.68), the factors multiplying the dynamical pieces
“ϕ̇” in the Lagrangian or “Πϕ” in the Hamiltonian, are contained in the DeWitt metric
the same way we did for the gravitatonal part. The coordinates of the superspace XA

are then extended to matter fields hij , ϕ ∼ XA.

3.3. The Wheeler-DeWitt equation

Now we introduce the fundamental quantum gravitational equations governing the quan-
tum state Ψ. We perform the canonical quantization using the Hamiltonian formulation
of GR (2.65). To keep it simple, we do not consider matter fields for now.

We recall the set of canonical coordinates and their conjugate momenta we used so far
{N,Ni, hij ,Π0,Πi,Πij}. According to the standard Dirac’s quantization procedure [48,
50],

Π0 → −i δ
δN

, Πi → −i δ

δNi
, Πij → −i δ

δhij
. (3.17)
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The primary classical constraints (2.51), (2.52) become constraints on the wavefunction

Π̂0Ψ = 0 ⇒ − i
δΨ
δN

= 0 , (3.18)

Π̂iΨ = 0 ⇒ − i
δΨ
δNi

= 0 , (3.19)

which implies that Ψ does not depend on N and Ni.
Similarly, the momentum constraints (2.74) yield

ĤiΨ = 0 ⇒ iℏ
[
δΨ
δhij

]
|j

= 0 . (3.20)

The equation above reflects that ψ is invariant under spatial diffeomorphisms. It may
not be straightforward to see it, for this reason we use the smeared constraint H(N⃗) we
introduced in (2.86),

Ĥ(N⃗) = b.t. − 2
∫

Σ
ddx∇jNi Πij ; (3.21)

Ĥ(N⃗)Ψ[hij ] = 0 ⇒ iℏ
∫

Σ
ddx∇jNi

δΨ[hij ]
δhij

= 0 . (3.22)

The variation of the functional Ψ along “the direction of ∇jNi” in the superspace of the
d-dimensional metrics has to be 0. Consequently, Ψ should be unchanged when the field
configuration hij is transformed under the gauge transformation generated by Ĥ(N⃗). As
in the classical theory, we had that

{H(N⃗), hij} = −LN⃗ hij , (3.23)

therefore, the quantum version reads

Ĥ(N⃗) Ψ[hij ] = 0 =⇒ Ψ[hij + LN⃗ hij ] = Ψ[hij ] .3 (3.24)

The physical wavefunctions are those invariant under the d-diffeomorphisms generated
by the constraints. This is the equivalent of reducing the phase space in the classical
theory, to the physical degrees of freedom by projecting on the constraint surface and
then removing the gauge orbits.

Hence, quantizing the constraints yields a reduction of the superspace of all metrics to
those up to diffeomorphisms, resulting in the (quotient) superspace Riem(Σ)

Diff0(Σ)
4. Therefore,

3We can do the analogy with a very basic finite particle system, where we impose that a given function
f of two variables x, y to be invariant under y

∂f(x, y)
∂y

= 0 −→ f(x, y) = f(x) . (3.25)

Another way to rephrase it is to ask f to be invariant along the y direction, which translates as

f(x, y) = f(x, y + c) . (3.26)

A more elaborate analogy with Maxwell’s field theory is done in appendix ??
4This is called a strong imposition of the constraints and concerns only 1rst-class constraints. The
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Ψ[hij ] depends only on the geometry of the hypersurfaces Σ. As pointed by DeWitt
in [21], in a finite universe, ψ would depend only on the geometric invariants of the
d−dimensional space and so be expressed as a function of the independent invariants
such as

∫
Σ d

dx
√
h,
∫

Σ d
dxR

√
h ,

∫
Σ d

dxR2 √
h and so on. These can be constructed

out of products of the d-dimensional Riemann tensor and its covariant derivatives, with
the topology of the d-space itself being separately specified. In an infinite universe,
assymptotic coordinates should be taken into account.

Actually, for (3.24) to be a rigorous statement, we need to properly define a measure
on the superspace. Unfortunately, to date, no measure of the type “Dh(x)” has been
correctly constructed yet. First because it is a functional measure, and these are usually
not clearly defined mathematically. But the difficulty lies essentially in the fact that the
field itself is a metric field, and hence defines a dynamical background. Nevertheless,
for some quantum cosmological models such as mini-superspace (Sec. 3.5), the issue
is removed as we do not deal with fields anymore but simple variables instead. In this
case, the system is reduced to quantum mechanical problem, hence the measure is not
functional and is properly defined.

In ordinary quantum field theories defined on a fixed background, the ambiguity is
usually solved. In Maxwell’s field theory, we can construct a measure “DAi(x)” on its
corresponding Hilbert space, with Ai(x) being the spatial components of the potential
vector Aµ(x) . We provide an overview on its canonical analysis (classical and quantum)
in Appendix ??.

Loop quantum gravity [52] is a quantum gravity theory that based its formalism on tetrad
variables [53]. These allow to bypass the problem of non-existence of a mathematically
precise functional measure and hence constructing a well-defined Hilbert space.

Finally, the Hamiltonian constraint (3.15) yields

ĤΨ =
[
−16πG(ij)(kl)

δ

δhij

δ

δhkl
− 1

16π
√
hR(d)

]
Ψ = 0 . (3.27)

The equation (3.27) is known as the Wheeler-DeWitt (WdW) equation. It is a second-
order hyperbolic functional equation on each point x ∈ Σ on superspace. It reflects
time-reparametrisation invariance of Ψ.

In fact, “G(ij)(kl)
δ

δhij

δ
δhkl

” is just a symbolic writing of the quantization of “G(ij)(kl)ΠijΠkl

”, as we do not have a mathematical prescription on how to order the second-order deriva-
tives. This is known as the factor-ordering problem 5, and is closely related to the fact
that since we do not have a precisely defined measure, we do not know how to rigorously
construct Hermitian operators. In Sec. 3.3.1, we elaborate a little on these ambiguities
and provide a simple example to illustrate the issue.

If we consider a given matter field ϕ weakly coupled to gravity as in Sec. 2.6.2, the
procedure is the same with this time additional terms in the Hamiltonian and momentum

2nd-class constraints must be solved at the classical level before quantization, unless one uses the
Dirac bracket to get rid of the non-physical degrees of freedom [51].

5We can draw a parallel with what we said in the preliminaries section: the fact that in gravity we deal
with an infinite dimensional system involving fields, infinitely many unitarily inequivalent irreducible
representations of the Weyl relations exist, and this may be related to the factor-ordering ambiguities
we encounter [49].
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constraints.

Πϕ → −i δ
δϕ

, (3.28)

Remark: all the statements above on the invariance of Ψ under time and spatial diffeo-
morphism of hij hold when adding matter fields ϕ.

3.3.1. On the hermiticity of operators

In a finite particle system, the ordering is determined by the Hermiticity of the quantum
operators. Recall that an operator Ô on a given finite-dimensional Hilbert space H =
L2(Rd) is said to be Hermitian if Ô it is equal to its self-adjoint Ô†, or equivalently

⟨Ψ, Ô Φ⟩ = ⟨Ô Ψ,Φ⟩ , (3.29)

for any two elements Ψ, Φ of the Hilbert space, and ⟨·, ·⟩ the inner product in H. Written
in terms of integrals of wavefunctions∫

ddxΨ⋆(x, t) Ô Φ(x, t) =
∫
ddx

(
Ô Ψ(x, t)

)⋆
Φ(x, t) , (3.30)

where “⋆” denotes the complex conjugate.
Take for instance a d = 2-dimensional free particle case, whose Hamiltonian is given by

H = p2

2m , (3.31)

m being the mass. The momentum pi is quantized in the position representation as
p̂i = −iℏ ∂

∂xi
, which corresponds to an Hermitian operator with respect to the integral

defined in (3.34).
What about p̂2? Imposing Ĥ to be Hermitian implies a unique ordering of p̂2 depending

on the chosen set of coordinates. Indeed, in Cartesian coordinates, the Hermitian
Laplacian operator is simply

p̂2 = −∇̂2 = −
[
∂2

∂x2 + ∂2

∂y2

]
, (3.32)

with respect to the measure integral dx dy. While in spherical coordinates,

p̂2 = −∇̂2 = −
[

1
r

∂

∂r

(
r
∂

∂r

)
+ 1
r2

∂2

∂θ2

]
, (3.33)

is the Hermitian Laplacian operator with respect to the measure r dr dθ. Let’s show
explicitly for the“r“ non-trivial piece of (3.33),
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∫
r dr dθ

(
Ψ⋆
[1
r

∂

∂r

(
r
∂

∂r

)])
Φ =

∫
dr dθ

(
Ψ⋆∂rΦ + rΨ⋆∂2

r Φ
)

(3.34)

=
∫
dr dθ

(
−∂rΨ⋆Φ + r ∂2

r Ψ⋆ Φ + 2 ∂rΨ⋆Φ
)

(3.35)

=
∫
r dr dθ

([1
r

∂

∂r

(
r
∂

∂r

)]
Ψ
)⋆

Φ , (3.36)

where we applied an integration per part in the second line, and used that Ψ and Φ
cancel at the infinite boundaries.

This simple example teaches us that the form of the differential operator depends on
the metric if we want such an operator to be Hermitian.

In the canonical quantization of gravity, one of the reasons it is difficult to construct
such operators is that we do not have a well-defined measure in the functional version
of (3.34). Moreover, it is not clear how to set the boundaries of the integral (3.34).
In a finite particle system, we usually fix the wavefunctions to be 0 in the boundaries
and hence ensure the convergence of any integral of the type (3.34). In particular, the
inner product ⟨Ψ,Ψ⟩ =

∫
ddx Ψ⋆(x, t) Ψ(x, t) is well-defined and | Ψ(x, t) |2 evaluates a

probability density in the system’s configuration space.
The measure issue can be solved for a superspace reduced to the configurations which

are homogeneous: the mini-superspace (see Sec. 3.5). In this case, the measure does
not depend on x ∈ Σ, and hence is mathematically well-defined as we deal with “points”
instead of “fields” on the reduced superspace. It also allows to define positive-definite
probabilities and hence construct quantum observables.

3.4. Interpretation of the Wheeler-DeWitt equation

A bit of history. The WdW equation was first derived by DeWitt [21] starting from the
Hamilton-Jacobi equation, which is an elegant alternative of Hamiltonian and Lagrangian
mechanics, with the particularity that it presents the motion of a particle as a wave.
The idea was to derive a quantum gravity theory the same way Schrödinger did with his
famous equation, starting from the Hamilton-Jacobi equation of a particle in a central
potential. Wheeler realized the importance of the wavefunction and the equation that
governs it [22].

3.4.1. Probability measure

The WdW equation encodes time in a subtle way. For any solution of this equation,
time can be extracted in a relational way, e.g., from the relations among the fields in
the theory. Already at the classical level, the structure of GR is relational. Indeed, the
original Einstein-Hilbert action is time-reparametrisation invariant. General relativity
treats space and time on an equal footing. There is no preferred observable for time, and
time evolution is always measured with respect to some arbitrary variables. As we quote
from [52], “General relativity describes the world in terms of relative evolution of partial
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observables6, rather than in terms of evolution of degrees of freedom in time”.
This translates in the quantum theory as a lack of a natural probabilistic interpretation

of the wavefunctional. Indeed, there is no obvious equivalent of a conserved probability
distribution as there is no external time parameter.

Recall that in a standard quantum mechanical system, the probability of finding a
particle in a volume element ddx of a Euclidean space V at a time t is given by

dP (x, t) = | ⟨x,Ψ⟩ |2 ddx = |Ψ(x, t)|2ddx , (3.37)

according to the Born rule. The normalization of Ψ guarantees to find the particle
somewhere in V , ∫

V
ddxP (x, t) =

∫
V
ddx |Ψ(x, t)|2 = ⟨Ψ,Ψ⟩ = 1 . (3.38)

Furthermore, the probability is conserved when it satisfies the “quantum continuity
equation”,

∂

∂t

∫
V
ddx |Ψ(x, t)|2 +

∮
S=∂V

dS · j(x, t) = 0 , (3.39)

where J is the probability density current given by

J = −i ℏ
2m (Ψ⋆∇Ψ − Ψ∇Ψ⋆) . (3.40)

How these find their analogues in quantum gravity? We could be tempted to use |Ψ|2
directly as a probability measure as in (3.37), and define the probability of the universe
to be in a configuration {h, ϕ} in the superspace S as

P (h, ϕ) =
∫

S
DhDϕ

√
−G |Ψ[h, ϕ]|2 , (3.41)

where DhDϕ
√

−G is the volume element in S. This definition works well for a superspace
reduced to the configurations which are homogeneous: the mini-superspaces. In these
models, the fields - and hence the measure - do not depend on x ∈ Σ, which means
we deal with a standard quantum mechanical system as above. Unfortunately, many
issues arise. One important one is that in order to normalize Ψ, ⟨Ψ,Ψ⟩ = 1, unphysical
boundary conditions seem to be needed. For example, in the case of a minisuperspace
model (see later for details) one would need to have Ψ to go rapidly to zero for large
values of the scale factor. This seems in contradiction with the large universe that we
observe today. Furthermore, while |Ψ(x, t)|2 in (3.37) describes a probability density
in a space of particle positions, in quantum cosmology the configurations space is a
configuration of fields, and time is encoded in their mutual relations. Therefore, the
fields cannot be considered as the analogues of particle positions and the probability
conservation law (3.39) is not clearly recovered.

6By partial observables is meant observables which include time itself. It is used in [52] to differentiate
two types of observables: those which can be predicted from a knowledge of an initial state (for
instance the position of a particle at some time t, q(t)), and those which can be measured with a
measuring apparatus as the position AND the time variable t, (q, t).
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Some works [21, 54, 55] used the similarity of the WdW equation to the Klein-Gordon
(KG) equation7 (1.10) to define a conserved probability density current as in (3.40),
conserved in the sense that ∇J = 0. However, since the (mini-)superspace has an
indefinite metric signature, negative probabilities could rise. For those who considered
the semi-classical limit8 i.e. expansion of the wavefunction as a sum over the saddle
points Ψn of its path integral version (see Sec.??), each component Ψn has a conserved
KG-type current which flows very nearly along the direction of the classical trajectories
in superspace [54–56]. This approach is interesting as it defines a kind of time flow in
mini-superspace, and the resulting Ψn modes are very similar to the wavefunctions for
coherent states in ordinary quantum mechanics.

Many other approaches were explored to find an appropriate measure9. All present
pros and cons, and this reflects that we may need a better understanding of some
concepts that have long been accepted. For instance, in the standard Copenhagen vision,
measurements or observations are done by an apparatus which is external to the system.
In quantum cosmology, the measurement apparatus is actually defined by the fields
themselves. We may for instance construct probability amplitudes that the metric field
be in some configuration given that the matter field attains some value. Thus we would
be considering conditional probabilities rather than absolute probabilities10.

3.5. Mini-superspace

One of the reasons the WdW equation we derived in (3.27) is hard to tackle, is that
we deal with an infinite dimensional superspace. One can seek then for a truncation
of the infinite degrees of freedom to a finite number, and hence work instead with a
mini-superspace model, such as homogeneous geometries. The latter have been studied
extensively and used as toy models for quantum cosmology, as they are easy to handle
and at the same time seem to possess some predictive power 11 . However, the truncation
seems to be drastic 12 and we know that at the quantum level, all the configurations for
the field must be considered, even those which are not homogeneous. Nevertheless, the
approximation can be useful to study quantum aspects of gravity, and more specifically
- and that is at the core of the thesis - be a nice framework to characterise spacetime
symmetries at the quantum level 13.

We first present one very well-known class of mini-superspace models: the quantized
standard Friedmann–Lemaître–Robertson–Walker (FRLW) models, characterised by their
spatial homogeneity and isotropy.

7In ordinary quantum field theory, fields obey the Klein-Gordon equation, but Ψ obeys the Schrödinger
equation.

8Also known as the WKB approximation
9See the very nice review [56] and many references therein.

10See the precursor work of Page[57] on the conditional probabilities in quantum cosmology.
11See [58–61]
12As stated by Halliwell in [62] simultaneously setting configurations fields and their conjugate momenta

to 0 violates the uncertainty principle.
13For a mathematical description of classical homogeneous and isotropic spacetimes, see appendix ??.
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The (d+ 1)-dimensional FLRW spatial metric is usually parameterized as

ds2 = −dt2 +A2(t)
[

dr2

1 − kr2 + r2 dΩ2
]
, (3.42)

where A(t) is the cosmic scale factor, k = −1, 0, 1 a curvature parameter whose values
correspond resp. to the open, flat and closed case, t the cosmic time (that we define in
next section), and dΩ the line element of the sphere S(d−1).

If coupled to a matter field ϕ, the model has only two d.o.f., the scale factor and the
matter field. Therefore, in the quantized theory, the mini-superspace coordinates XM

are simply {A, ϕ}. The usual infinite dimensional superspace is now reduced to a finite
two-dimensional system. Instead of having a separate Wheeler-DeWitt equation for each
point x ∈ Σ, we have a single equation for all of Σ.

Let’s consider a general (d+ 1)-dimensional FLRW universe, coupled to a standard
matter field ϕ. Using the parametrisation in (3.42), the action is given by

S =
∫
dt

[
−Ȧ2Ad−2 d (d− 1)

2N + Ad ϕ̇2

2N +N Ad
(
d (d− 1) k

2A2 − V (ϕ)
)]

, (3.43)

where 8πG = 1. As the fields do not depend on their spatial positions, we integrated out
the d-volume element. The canonical momenta and the Hamiltonian are then

ΠA = ∂L

∂Ȧ
= −ȦAd−2 d (d− 1)

N
; Πϕ = ∂L

∂ϕ̇
= A2ϕ̇

N
; (3.44)

H = ȦΠA + ϕ̇Πϕ − L

= N

[
− Π2

AA
2−d

2 d (d− 1) +
Π2

ϕ

2Ad
−Ad

(
d (d− 1) k

2A2 − V (ϕ)
)]

= N

[1
2G

MN ΠM ΠN −Ad
(
d (d− 1) k

2A2 − V (ϕ)
)]

, (3.45)

where in the last line we used the DeWitt metric as in (3.15), and ΠM ,ΠN refer to
the conjugate momenta of A and ϕ −→ ΠA, Πϕ. The (inverse) DeWitt metric is now

finite-dimensional and is given by GMN = diag
(

− A2−d

d (d− 1) ,
1
Ad

)
.

Under canonical quantization, (3.45) yields the Wheeler-DeWitt equation

ĤΨ =
[1

2∇2 −Ad
(
d (d− 1) k

2A2 − V (ϕ)
)]

Ψ = 0 , (3.46)

where the Laplacian operator ∇2 is still to be defined, because of the factor-ordering
ambiguity we mentioned in (3.27). Since the Hamiltonian constraint (3.46) is no longer
a functional, as it involves simple variables A, ϕ, we could apply a “natural” choice
of ordering and use the Laplace-Beltrami operator [21, 63] (which is the covariant
generalization of the Laplacian for Riemannian geometries) of the corresponding mini-
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superspace metric GAB,

∇2 = 1√
−G

∂

∂XA

√
−G GAB ∂

∂XB
, (3.47)

where G = det{GAB} = d (d− 1) A2(d−1). We discuss this choice of ordering more in
details at the end of the section.

Hence the operator is given by

∇2 =
[
− 1
d (d− 1)

1
Ad−1

∂

∂A
A

∂

∂A
+ 1
Ad

∂2

∂ϕ2

]
. (3.48)

For instance, let’s consider the d = 2 flat (k = 0) FLRW universe. The action is given by

S =
∫
dt

[
−Ȧ2

N
+ A2 ϕ̇2

2N +N A2 V (ϕ)
]
, (3.49)

and the Hamiltonian reads

H = N

[
−Π2

A

4 +
Π2

ϕ

2A2 −A2
(
k

A2 − V (ϕ)
)]

. (3.50)

The resulting WdW equation is

ĤΨ =
[1

2∇2 −A2 V (ϕ)
]

Ψ = 0 , (3.51)

and the corresponding Laplace-Beltrami operator is

∇2
s,FLRW =

[
− 1

2A
∂

∂A
A

∂

∂A
+ 1
A2∂

2
ϕ

]
, (3.52)

Notice that it looks exactly like the spherical Laplacian (3.33) up to a factor 1
2 we can

remove by an appropriate rescaling of ϕ .
As the operator is particularly simple, we solve the WdW equation (3.46) for V (ϕ) = 0.[

− ∂2

∂ (lnA)2 + ∂2

∂ϕ2

]
Ψ = 0 . (3.53)

This corresponds to a one-dimensional wave equation whose solutions are given by

Ψ(A, ϕ) = Ψ+(lnA− ϕ) + Ψ−(lnA+ ϕ)14 . (3.54)

It is interesting to compare the above wavefunctions with the classical results. By
varying (3.49) (with V (ϕ)= 0) with respect to N we obtain the Friedmann equation

H2 ≡ Ȧ2

A2 ∝ ϕ̇2 , (3.55)

13Notice that we used parenthesis instead of squared brakets for Ψ, as it is now a simple function of
variables and not a functional.
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(H being the so-called Hubble constant) which is easily integrated to give

ϕ = ± lnA + cst . (3.56)

Naïvely, we recover the classical solutions if one of the branches of Ψ is very peaked
around its argument and the other vanishes. Take, for instance, Ψ+(x) ∼ δ(x),Ψ− = 0.
In this case we have

Ψ ∼ δ(lnA− ϕ+ cst) . (3.57)

The above is a wavefunction extremely peaked around some given classical spacetime.
Clearly, we still do not have time but we can use the two variables A and ϕ relationally.
In other words, we can measure ϕ with A and viceversa.

3.5.1. Measure, ordering

Regarding the inner product issues we discussed in Sec 3.4, in the mini-superspaces
framework, we can build well-defined measures associated to the DeWitt metric, the
latter being constructed with the coordinates of the field space. Moreover, these models
provide a natural setup for the ordering of the Laplace operator and hence allow to define
Hermitian operators with respect to the “standard” scalar product

⟨Ψ,Φ⟩ =
∫
dAdϕ

√
−G Ψ(A, ϕ)⋆Φ(A, ϕ) . (3.58)

However, not all the issues are solved, such as the question of the boundary conditions. In
order to normalize Ψ, ⟨Ψ,Ψ⟩ = 1, we would impose Ψ to go rapidly to 0 for large values of
A, A → ∞ i.e. for an expanding universe, which is in contradiction with the observations.
Moreover, the Laplace-Beltrami operator stays a choice of ordering among others, there
is no prescription on how we should operate. Still, (3.47) presents nice features, as the
fact that it is invariant under field redefinition. We discuss this point in more details in
later sections. Other arguments supporting this choice of ordering are presented in [56],
among which, the fact that is particularly convenient in the semi-classical expansion of
the Wheeler-DeWitt equation (see [64] and references therein).

In next section, we introduce more general cosmological models which are homogeneous
but not necessarilly isotropic, the Bianchi models. We describe some of their classical
geometrical features, then we derive their quantum counterpart which provides a larger
set of configurations fields.

3.6. Not-so-mini-superspace

Anisotropic cosmological models

A pictorial view of spatial homogeneity is that observers living on a same hypersurface
see the same surroundings. Mathematically, this means that the hypersurfaces admit
isometry groups. In particular, Bianchi studied the 3-dimensional case and classified
the corresponding 3-dimensional Lie algebras into nine distinct ones according to their
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structure constants, resulting in nine types of Bianchi cosmology15.
Precedent works [66, 67] and other approaches in [65] have shown that spatial homo-

geneity implies that spacetime consists of a family of space-like hypersurfaces. These
hypersurfaces are geodesically parallel and define a cosmic time through a hypersurface-
orthogonal timelike congruence of geodesics. Hence the metric can be put into the
form

ds2 = −dt2 + hij(xµ) dxidxj , (3.59)

where t is the cosmic time. We can always rewrite the spatial metric in (3.59) as

hij(xµ) dxidxj = hij(t) ei ⊗ ej , (3.60)

with ei are the 1-forms associated with the isometry group. The simplest case is Bianchi
type I, whose isometry group is the group of translations R3. It is an Abelian group,
and hence, all of its structure constants are zero. Bianchi showed that all the spatial
hypersurfaces are flat and we can choose ei = dxi, hence

ds2 = −dt2 + hij(t) dxidxj . (3.61)

The coordinates of the spatial part are for now arbitrary. But we can show that the
Bianchi type I metric can always be put into the diagonal form if it is not coupled to a
matter field generating anisotropic stress. See Sec. 3.6 for more details.

In the d = 3 case, we can write

ds2 = −dt2 +A2(t) dx2 +B2(t) dy2 + C2(t) dz2 . (3.62)

If we couple the above with a standard scalar matter field ϕ, the mini-superspace
coordinates would be XM ∼ {A,B,C, ϕ}.

In the special case where A(t) = B(t) = C(t), we recover the flat FLRW metric. The
mini-superspace is then reduced to the d.o.f. {A, ϕ} we encountered in the previous
section.

A very interesting (and more complicated) Bianchi model is Bianchi type IX, whose
isometry group is SO(3,R). In this case, the invariant 1-forms can be written as

e1 = − sinψ dθ + sin θ cosψ dφ , (3.63)
e2 = cosψ dθ + sin θ sinψ dφ , (3.64)
e3 = cosψ dφ+ dψ . (3.65)

with (ψ, θ, φ) the Euler angles on the 3-sphere S3 . The spatial hypersurfaces have the
topology of S3, but are not necessarily spherically symmetric. They can be squashed and
twisted. In the special case where they are spherically symmetric, all the components
of hij are equal and the Bianchi model corresponds to the closed FLRW universe.
Bianchi IX played an important role in cosmology, particularly in the study of the initial
singularity, and served as a foundation for the so-called Mixmaster universe [68–72]. The

15Actually different past works using different techniques lead to the same classification. See [65] for
details and many references therein.

65



3. Quantization of gravity – 3.6. Not-so-mini-superspace

corresponding mini-superspace model has six independent coordinates, in addition to the
matter fields coordinates.

The open FLRW universe can be recovered as well from Bianchi V, whose metric can
be parametrised as (see [73])

ds2 = −dt2 +A2(t) dx2 + e2x
(
B2(t) dy2 + C2(t) dz2

)
, (3.66)

in the isotropic limit A = B = C . Because they are a generalisation of the three FLRW
universes, Bianchi I, V and IX are considered as the most valid candidates among the
other Bianchi models, according to current observations [65, 71, 73]. We shall restrict
our interest to Bianchi type I, as it is the simplest one to use as a toy model for studying
spacetime symmetries at the quantum level. It is the main gravitational universe we
study along the thesis, and we provide a deeper analysis of its geometrical and algebraic
features in later sections.

Quantum treatment

Before specializing in any cosmology, we may construct a general (not-so-)mini-superspace
corresponding to an arbitrary homogeneous cosmology coupled to a standard scalar field
as in (2.67). Let n be its dimension and its general coordinates denoted by

{
XM

}
,

M = 1, 2, .. n. We set Ni = 0 following (3.60). These types of models have an action of
the following form

S =
∫
dt ddx

[
1

2NGAB(X)ẊAẊB +N
√
h

(
(d)R

2 − V (ϕ)
)]

, (3.67)

where GAB is the “mini-supermetric” and is n-dimensional. The action (3.67) is equivalent
to a simple point particle moving in a potential given by the second term in (3.67). We
can even construct Christoffel symbols from the minisupermetric and hence geodesic
equations, as well as an equivalent of a curvature tensor of the field configurations space16

(see [21, 56]) .
The canonical momenta and the Hamiltonian are simply given by

ΠA = ∂L

∂ẊA
= GAB Ẋ

B

N
, (3.68)

H =
∫
ddxN

[
1
2G

AB ΠAΠB +
√
h

(
(d)R

2 − V (ϕ)
)]

(3.69)

=
∫
ddxN H , (3.70)

with H the Hamiltonian constraint.
As the configuration space is finite-dimensional, the quantum theory is greatly simplified.

Under canonical quantization, (3.69) yields the Wheeler-DeWitt equation

16We provide a deeper analysis about this meta-universe as we called it in Sec. 9.2 in the context
of anisotropic cosmologies, which were the main geometrical models we used to study spacetime
symmetries at the quantum level.
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ĤΨ =
[
−1

2∇2 +
√
h

(
(d)R

2 − V (ϕ)
)]

Ψ = 0 , (3.71)

where we used the Laplacian-Baltrami operator ∇2 we introduced in (3.47).
Now let’s apply the same construction for the d = 2 Bianchi type I cosmology. We

introduce a new parametrisation for the metric,

ds2 = −dt2 +A2(t) eξ dx2 +A2(t) e−ξ dy2 , (3.72)

where A is the usual scale factor, and ξ the shear. The isotropic limit is recovered when
ξ = 0.

The action is given by

S =
∫
dt

(
−Ȧ2

N
+ A2 ξ̇2

4N + A2 ϕ̇2

2N +N A2 V (ϕ)
)
. (3.73)

Following the same steps as above, the Hamiltonian reads

H = N

[1
2G

AB ΠAΠB −A2 V (ϕ)
]

17 (3.74)

= N

[
−Π2

A

4 +
Π2

ξ

A2 +
Π2

ϕ

2A2 +N A2 V (ϕ)
]
. (3.75)

Hence,

∇2
s, Bianchi = 1

A2

[
−A2

2 ∂2
A −A ∂A + 2 ∂2

ξ + ∂2
ϕ

]
. (3.76)

The diagonalisability of the spatially flat homogeneous metric

We show how a homogeneous metric can be put in a diagonal form for any time t, in
absence of matter source generating anisotropic stress.

Consider a general spatially flat homogeneous metric which, according to what we said
in the previous section, can always be written as

ds2 = −dt2 + hij(t) dxidxj . (3.77)

In the literature, it is common to choose coordinates such that hij is diagonal. The
diagonal form is particularly useful when one wants to study anisotropies. These are
geometrically characterized by direction-dependent expansion rates. Hence, the diagonal
form allows to easily extract them from the eigenvalues of the metric. However, one may
wonder if hij(t) needs to stay diagonal at all times? For that, we look at the dynamics.
The spatial components of the Einstein equations for a metric in the form (3.77), in d+ 1

17Notice that in Bianchi type I, the d-volume element is completely integrated out as the fields do not
depend on their spatial position in the hypersurfaces Σ.
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dimensions are

ḧij + 1
2 ḣij h

kl ḣkl − ḣik h
kl ḣlj = 16πG

(
Tij − 1

d− 1hij T
µ

µ

)
, (3.78)

where Tµν is the stress-energy tensor of an arbitrary matter source.
The spatial piece of (3.77), as well as the dynamical equation (3.78) are invariant

under the general linear symmetry group GL(d,R) 18. Let’s define initial conditions on
hij(t) and ḣij(t) at some given time t0. We can choose Cartesian coordinates such that
the metric is equal to identity δij . As the rotation group O(d,R) is the subgroup of
GL(d,R) under which the identity is invariant, OT δij O = δij , we can bring ḣij(t0) into
the diagonal form by simply rotating the space axis, without affecting hij(t0). To sum
up,

hij(t0) = δij , ḣij(t0) = diag
(
A2(t0), B2(t0), ...X2(t0)

)
. (3.79)

Now, can this form be preserved? From the equation of motion (3.78), it is clear that
the metric will stay diagonal at all times t, provided Tij does not contain off-diagonal
entries i.e. the matter source does not generate anisotropic stress.

3.7. Mini conclusion

One of the fundamental properties of quantum gravity we learned so far is the invariance
of Ψ[hij ] under time and space reparametrisation of hij . Because of the absence of an
external time parameter, the theory lacks of a natural probabilistic interpretation. Time
is actually encoded in the mutual relations between the fields of the classical theory.
For instance, in the mini-superspace framework Sec. 3.5, we saw that we could use the
scale factor A and the scalar field ϕ relationally. One can be set to be/as the “clock” to
parametrise the “time” evolution of the other.

The same analysis can be done for space. The momentum constraints ensure that
the wavefunction only depends on geometrical invariants of the spatial hypersurfaces Σ.
Hence, a quantum state is not localized “somewhere” in space. There is no background to
define for instance translation or rotation of the spatial metric “hij(x⃗− a⃗)” , “ hij(O.x⃗)”,
where the x⃗ coordinates are arbitrary. So how can we characterize these symmetries for
a generic metric (with no isometries) in a coordinate-independent fashion?

Clearly, we need a type of matter fields that can serve as a “spatial reference frame”,
the same we did for time. The fields then would be not localized on a fixed background,
but localized with respect to one another.

A particular matter field stands out for this purpose: solids. Solids have been used
as matter fields driving a primordial inflationary phase, in a cosmological model that
goes under the name of solid inflation, [27], see Sec. 6. The effective field theory of
solid inflation differs drastically from the standard inflationary scenario, in the fact that
vacuum expectation values of the scalar fields involved do not depend on time, but on
space. This means that spatial diffeormorphisms are spontaneously broken. This is the
particular feature we can use to kind of define spatial axes with respect to which we
“move” the gravitational field.
18We discuss the symmetry features in more details in Sec. 9
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The Standard Model of Cosmology has successfully predicted many current observations
of our universe. The nucleosynthesis of the light elements, the temperature and blackbody
spectrum of the cosmic microwave background (CMB), and the redshift of light from
galaxies revealing an expanding universe are examples of this successful history of
predictions [74], [75]. However, there are still remaining unsolved mysteries. Some of
them can be seen as initial value type of problems, such as the so-called horizon and
flatness problems: how comes that the universe is so homogeneous and isotropic? How
is it possible that the spatial curvature of the universe is so small? These are clearly
problems that can be fixed by extremely fine tuned initial conditions at the Big Bang,
which however look unnatural and unmotivated.

4.1. The Horizon problem

One fundamental principle in cosmology and modern astronomy is that the universe is
homogeneous and isotropic, as we believe that there is no preferred location in space and
no preferred direction to look in. A good observation in accordance to this statement
is the Cosmic Microwave Background (CMB), which is a remnant from the very first
moments of the universe.
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Figure 4.1.: The inhomogeneities of the Cosmic Microwave Background (CMB) as ob-
served by Planck. Credits: ESA and the Planck Collaboration

This radiation has an approximately constant temperature at 2.73K with very small
anisotropies [76]. This indicates that several regions of the universe must have been
in thermal contact at some point in the past. However, if we consider the standard
cosmological solutions (FRLW, Bianchi etc.), these regions cannot have been in causal
(and hence thermal) contact [77], [78].

A comoving particle horizon is the causal horizon or the maximum distance a light ray
can travel between time 0 and t

τ ≡
∫ t

0

dt′
A (t′) =

∫ A

0

dA
HA2 =

∫ A

0
d lnA

( 1
AH

)
. (4.1)

Here, we have expressed the comoving horizon as an integral of the comoving Hubble
radius, (AH)−1, which plays a crucial role in inflation.

We recall the energy-momentum tensor of a perfect fluid in thermal equilibrium

Tαβ = (ρ+ p)uα uβ + p gαβ , (4.2)

with ρ the mass-energy density, p the hydrostatic pressure and uα the fluid’s velocity
satisfying uα uα = −1. Essentially all the perfect fluids relevant to cosmology obey the
simple equation of state p = w ρ, with w a constant independent of time.
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For a universe dominated by a fluid with equation of state w, we have

(AH)−1 = H−1
0 A

1
2 (1+3w) , (4.3)

where H0 is the Hubble-Lemaître parameter measured at some given time. Notice the
dependence of the exponent on the combination (1 + 3w). Whether (1 + 3w) is positive
or negative, the Hubble radius is growing or shrinking. During the conventional Big
Bang expansion (w ≳ 0), (AH)−1 grows monotonically and the comoving horizon τ or
the fraction of the universe in causal contact increases with time

τ ∝ A
1
2 (1+3w)1. (4.4)

This reveals that the comoving horizon grows monotonically with time, which implies
that comoving scales entering the horizon today have been far outside the horizon at
CMB decoupling. But the high homogeneity of the CMB tells us that the universe was
extremely homogeneous at the time of last-scattering, on many regions that a priori are
causally independent.

4.2. The flatness problem

The flatness problem refers to a cosmological fine-tuning problem. Such problems are
typical of systems which are very sensitive to initial conditions. Small deviations from
these values result in a significant change in future times/late-times state of the system.
In cosmology, many parameters seem to be fine-tuned to very specific values to explain
current observations. The flatness problem relates to the density of matter and energy in
the universe. More precisely, the ratio of the density to the critical density at the present
epoch, Ω0, which constrains the curvature of the universe.

We define the curvature parameter as

Ωk ≡ Ω − 1 = ρ− ρcrit
ρcrit

, where ρcrit ≡ 3H2 . (4.6)

We know from the equations of GR that spacetime is dynamical, curving in response to
matter in the universe. However, observations show that the universe is very close to the
flat configuration [79], [77]. How can we explain this?

Let’s consider a standard 4-dimensional FLRW cosmological solution coupled to perfect
fluids. One of the so-called Friedmann Equation is given by

H2 = 1
3ρ(A) − k

A2 , (4.7)

derived from the 00th component of the Einstein field tensor.

1For radiation-dominated and matter-dominated universes, we find

τ ∝
{
A RD
A1/2 MD

(4.5)
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We define the density parameter and the critical density

Ω(A) ≡ ρ(A)
ρcrit (A) , ρcrit (A) ≡ 3H(A)2 , (4.8)

which are very often used cosmology. Using the above, we rewrite (4.7) as

1 − Ω(A) = −k
(AH)2 . (4.9)

In standard cosmology the comoving Hubble radius, (AH)−1, grows with time and from
(4.9), the quantity |Ω − 1| must thus diverge with time. Observations today show that
Ω (A0) ∼ 1 [77, 79]. The critical value Ω = 1 is an unstable fixed point. This means
that in standard Big Bang cosmology (without inflation) and using the FLRW models,
the density parameter Ω(A) was very close to the spatially flat case Ω(A) = 1 at early
times. More specifically, the deviation from flatness at the Planck scale would be (see
[77, 79–81] )

|Ω (Apl) − 1| ≤ O
(
10−62

)
2 . (4.10)

Why is Ω(A0) so close to 1, and not much larger or smaller?

4.3. Inflation: Big Bang puzzles solved

The inflationary universe scenario, i.e. an early phase of exponential expansion of the
universe solves these problems by drastically changing the past light cone in a such
way that it removes the horizon problem, while also driving Ω close to unity and hence
preserving the successes of the Big-Bang model.

Inflation was initially introduced to solve these particular initial conditions puzzles
[82–84]. It was soon discovered that inflation could also provide a mechanism to seed
the initial fluctuations that would eventually give rise to the CMB and the observed
large-scale structures in the universe.

In describing the flatness and horizon problems, we used a lot the comoving Hubble
radius (AH)−1, which plays a fundamental role. Actually, both issues arise from the
fact that in the conventional Big Bang cosmology, the comoving Hubble radius is strictly
increasing. What if the opposite happened at early times? A decreasing Hubble radius
would solve these puzzles at once, and this is the key (and elegant) idea of inflation.

Recall the comoving horizon we defined earlier

τ =
∫ A

0
d lnA

( 1
AH

)
. (4.13)

2Other scales can be computed, such as those of the Grand Unification Theory era, or the Big Bang
Nucléosynthesis. We find

|Ω (ABBN) − 1| ≤ O
(
10−16) , (4.11)

|Ω (AGUT) − 1| ≤ O
(
10−55) . (4.12)
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If particles are separated by distances greater than τ , they never could have communicated
one with another. If they are separated by distances greater than (AH)−1, they cannot
communicate with each other now. Particles that are not in causal contact now (τ >
(AH)−1), could have been in causal contact before. From (4.13), this could happen if
the comoving Hubble radius in the early universe was much larger than it is now, which
demands a decreasing phase of the Hubble radius. For an H that is approximately
constant and A growing exponentially, the trick is done.

For a schematic picture, see the well-known Fig. 7 of [85].
Regarding the flatness and horizon problems, everything becomes trivial. First, ac-

cording to

1 − Ω(A) = −k
(AH)2 , (4.14)

if the comoving Hubble radius decreases, then the universe tends towards flatness.
Second, a decreasing horizon means that large scales entering the present universe

were inside the horizon before inflation. The needed causal structure at early times is
recovered, and spatial homogeneity observed in the CMB is explained.

More than solving the Big Bang puzzles, the decreasing comoving horizon during infla-
tion is the key feature required for the quantum generation of cosmological perturbations,
that we do not discuss in the thesis but many references can be found in the literature.

More details and conditions for inflation are provided in the following section.
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5.1. Scalar field dynamics

Inflation is a very intriguing phenomenon. Within a fraction of a second, the universe
has expanded exponentially at an accelerating rate. In Einstein gravity, this requires a
negative pressure source.

The simplest models of inflation involve a single scalar field ϕ, the inflaton. Without
specifying its physical nature, we use ϕ as a clock to parametrize the time-evolution of
the inflationary energy density. Let’s consider the 4-dimensional case. The dynamics of a
scalar field minimally coupled to gravity is determined by the action

S = Sgrav + Sscalar , (5.1)

= 1
2

∫
d4x

√
−g R−

∫
d4x

√
−g 1

2 (gµν ∂µϕ∂νϕ+ V (ϕ)) , (5.2)

The energy-momentum tensor for the scalar field is

Tµν ≡ − 2√
−g

δSscalar
δgµν

= ∂µϕ∂νϕ− gµν

(1
2∂

αϕ∂αϕ+ V (ϕ)
)
. (5.3)

Assuming the FLRW metric (3.42) for gµν and restricting to the case of a homogeneous
field ϕ(t,x) = ϕ(t)1, the scalar energy-momentum tensor takes the form of a perfect fluid.
We recall the energy-momentum tensor of a perfect fluid in thermal equilibrium

Tαβ = (ρ+ p)uα uβ + p gαβ , (5.4)

with ρ the mass-energy density, p the hydrostatic pressure and uα the fluid’s velocity
satisfying uα uα = −1. By matching (5.3) and (5.4), we find

ρϕ = 1
2 ϕ̇

2 + V (ϕ) , (5.5)

pϕ = 1
2 ϕ̇

2 − V (ϕ) . (5.6)

1Actually, the scalar field ϕ can take any form. The reason for this choice is that our universe is
homogeneous and isotropic at large scales. Therefore, except from small fluctuations, we may assume
that ϕ is homogeneous and isotropic.
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The resulting equation of state is2

wϕ ≡ pϕ

ρϕ
=

1
2 ϕ̇

2 − V (ϕ)
1
2 ϕ̇

2 + V (ϕ)
. (5.8)

Eq. (5.8) shows that a scalar field can lead to negative pressure, wϕ < 0, and an accelerated
expansion for wϕ < −1

3 , according to the equation

Ä

A
= −4πG

3 (ρ+ 3p) . (5.9)

The dynamics of the scalar field and the FLRW geometry is governed by

ϕ̈+ 3H ϕ̇+ V,ϕ = 0 , (5.10)
1
3

(1
2 ϕ̇

2 + V (ϕ)
)

= H2 , (5.11)

where H = Ȧ

A
is the Hubble constant. For large values of the potential, the field undergoes

a significant Hubble friction from the term H ϕ̇.

5.2. Slow-roll parameters

According to (5.16), the universe undergoes an accelerated expansion if 1 + 3w < 0. In
particular, if we want the universe to be close to the de Sitter limit3 , w = −1, then the
potential energy should dominate over the kinetic energy i.e. the field is in a “slow-roll”
motion,

ϕ̇2

2 ≪ V (ϕ). (5.12)

2The perfect fluids relevant to cosmology obey the equation of state p = w ρ, with w a constant
independent of time. The conservation of energy yields

ρ ∝ A−3(1+w) , (5.7)

with A(t) the usual cosmic scale factor. The most familiar cosmological fluids are dust, whose equation
of state is w = 0, and radiation, w = 1

3 [74].
3Reminder, the de Sitter spacetime is the maximally symmetric vacuum solution of Einstein’s field

equations with a positive cosmological constant, corresponding to a positive vacuum energy density
and negative pressure. It is one of the simplest models consistent with the observed accelerated
expansion.
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Figure 5.1.: The shape of a typical slow-roll potential V (ϕ). The accelerated expansion
happens when V (ϕ) dominates over the kinetic energy 1

2 ϕ̇
2. Inflation ends

at ϕend, when 1
2 ϕ̇

2 ≈ V (ϕ). Quantum fluctuations of the field δϕ create
CMB fluctuations about 60 e-folds before the end of inflation. At reheating,
the field oscillates around the minimum and its energy is converted into
radiation.

Another condition is imposed to ensure that the accelerated expansion lasts for a
sufficiently long period of time, namely that the second derivative of ϕ is small enough,∣∣∣∣∣ ϕ̈

3Hϕ̇

∣∣∣∣∣ ≪ 1 . (5.13)

The two above conditions for slow-roll and long lasting inflation can also be expressed as
conditions on the shape of the inflationary potential

ϵv(ϕ) ≡ 1
2

(
V,ϕ

V

)2
≪ 1 , (5.14)

|ηv(ϕ)| ≡
∣∣∣∣V,ϕϕ

V

∣∣∣∣ ≪ 1 . (5.15)

The parameters ϵv, ηv are called the potential slow-roll parameters. Other slow-roll
parameters can be defined. We may recast (5.16) applied to ϕ as

Ä

A
= −1

6 (ρϕ + 3pϕ) = H2 (1 − ϵ) , (5.16)

and where we have set 8πG = 1 . Hence,

ϵ ≡ − Ḣ

H2 . (5.17)

Acceleration occurs at ϵ < 1, and the de Sitter limit is reached when ϵ → 0 .
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The equations of motions (5.10), (5.11) then become

H2 ≈ 1
3V (ϕ) ≈ const. , (5.18)

ϕ̇ ≈ −V,ϕ

3H . (5.19)

From (5.18), the spacetime is approximately de Sitter

A(t) ∼ eHt. (5.20)

Inflation ends when at least one of the two slow-roll conditions is violated

ηv (ϕend ) ≈ 1 , or ϵv (ϕend ) ≈ 1 . (5.21)

The number of e-folds before inflation ends is

N(ϕ) ≡ ln aend
a

=
∫ tend

t
H dt ≈

∫ ϕ

ϕend

V

V,ϕ
dϕ, (5.22)

where we have used the slow-roll equations of motion (5.18) and (5.19).
In order to be solved, the horizon and flatness problems require that the total number

Ntot of inflationary e-folds exceeds about 60 4

Ntot ≡ aend
astart

≳ 60 . (5.23)

The exact value depends on many parameters, including the energy scale of inflation and
the reheating, which corresponds to a post-inflationary phase where the field begins to
oscillate around the minimum of the potential and its energy is converted into radiations,
( [86–88]). The fluctuations on the CMB occurred in Ncmb ≈ 40 − 60 before the end of
inflation.

Inflation and observations

So far, we have presented all the setup that is used to solve the three puzzles of standard
Big Bang theory we mentioned in the previous section. In fact, inflation goes beyond
solving the mysteries of the primordial universe, and can be used to explain the large-scale
structures.

It is important to stress that the flatness and horizon problems are not strict inconsis-
tencies per se, but rather a questioning of the very constraining and improbable aspect
of the initial data that would explain the observations. It is perfectly fine to assume that
Ω was close to unity and that the universe started homogeneously over superhorizon
distances, but with the right level of inhomogeneities to explain structure formation.
But we would like for these features to be predicted by the model, rather than simply
assumed in initial conditions.

4See [85, 86] and many references therein.
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It turns out that inflation can solve the fine-tuning problem in an elegant way, while
predicting the large-scale structures, through a quantum mechanical principle: quantum
fluctuations. Around a “background” value, a scalar field ϕ can undergo quantum
fluctuations δϕ. Due to these fluctuations, not all patches in the universe are inflated
by the same “amount”. During inflation, these inhomogeneities are stretched across
the horizon scale and thus smoothed out. These become the seeds of the initial small
inhomogeneities, and continue to grow after the end of inflation because of gravitational
instability.

Although inflation is a very appealing theory in terms of the answers it provides, it has
one main drawback: there are (too) many different models, depending on the potential
V (ϕ) we consider. We could even introduce more than one scalar field, as long as the
two slow-roll conditions are satisfied5. There are physical constraints and consistency
relations that must be satisfied by the inflationary model, but still, the parameter space
of the consistent models is still extensive, and it is hard to narrow down to a single
satisfying inflationary model [79].

One could criticize this aspect, and say that we simply moved the fine-tuning problem
elsewhere. However, inflation brings answers to many observational mysteries at once,
and it may be worth to pursue in this direction. For instance, we could explore models
which are drastically different than a standard scalar field inflation, such as solid inflation,
where the fields involved in the model do not depend on time, but space. This yields
whole different features in terms of the effective field theory. We provide an overview of
the model in the following section.

5We cannot account for the many works done in the topic, but see [89–98] and references therein.
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We present one cosmological model that stands out from the standard inflationary
scenario, solid inflation, where primordial inflation is driven by a “solid”, [27]. The
authors studied scalar fields whose dynamics and symmetry features are equivalent to
those of a cosmological solid, and constructed the model relying on the framework of
effective field theory. While slow roll inflation has been generalized in several ways (e.g.
by changing the dynamics of the scalar of by adding more fields) without modifying the
basic symmetry breaking pattern. In this sense, solid inflation belongs to a different
universality class altogether. The different universality classes have been discussed in [99].

The effective field theory of solid inflation differs drastically from the standard in-
flationary scenario in the underlying symmetries and the symmetry breaking patterns.
In solid inflation, the vacuum expectation values of the scalar fields involved do not
depend on time (as in usual inflationary models) but on space. This means that spatial
diffeormorphisms are spontaneously broken.

This seems to contradict two main important features we usually like to implement in
an inflationary scenario.

• First, that the background is homogeneous and isotropic.

• Second, in an expanding universe physical quantities depend on time, among which
one is defined as a physical “clock” that determines when inflation ends.

In fact, x-dependent matter fields can be compatible with homogeneous and isotropic
cosmological solutions, as long as extra symmetries are imposed on these fields. For
instance, FLRW cosmological solutions for the gravitational field are derived from an
homogeneous and isotropic background stress-energy tensor. However, these can also
be recovered from matter fields which are not homogeneous nor isotropic, if there are
internal symmetries acting on the fields that can reabsorb the variations obtained after a
translation or rotation has been applied. One simple example is that of a scalar field
with a vacuum expectation value

⟨ϕ⟩ = αx . (6.1)

The above configuration seems to break translation along x. However, if we impose an
internal shift symmetry

ϕ −→ ϕ+ a , a = const , (6.2)
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then (6.1) is invariant under the combined spatial translation and internal shift symmetry.
Same goes for isotropy, but for that we need more fields than the simple scalar field
configuration (6.1), and hence more symmetries. Cosmological solids are made up with
these properties that we define in the following section.

6.1. Effective field theory for solids and fluids

We describe the mechanical degrees of freedom of a solid from an effective field theory
standpoint. Consider a medium filling space. We neglect potential gravitational effects
and consider a flat metric. Each volume element of the medium can be attached to a
comoving label ϕI , with I = 1, 2...d , d corresponding to the spatial dimension. Fig. 6.1
illustrates how the fields “label” and follow a solid volume element.

Figure 6.1.: A 3-dimensional solid volume element (in blue) labelled by the scalar fields
ϕI , I = 1, 2, 3 . (Credits: I thank Alberto Nicolis for letting me use his sketch
of the solid volume element. )

Hence, the system is parametrized via ϕI(x, t), whose expectation values are given by

⟨ϕI⟩ = αxI . (6.3)

The configuration above corresponds to a medium that is at rest, in equilibrium, at given
external pressure. The parameter α measures the compression level.

As we would like the medium to be homogeneous and isotropic, but (6.3) breaks spatial
translations and rotations, we impose two internal symmetries

(internal translations = shifts) ϕI −→ ϕI + aI , aI = const , (6.4)
(internal rotations) ϕI −→ OI

Jϕ
J , OI

J ∈ SO(d) , (6.5)

so that the background configurations (6.3) are invariant under combined spatial transla-
tion/internal shift symmetries, and combined spatial rotations/internal rotations.

Imposing a complete SO(d) invariance on the solid is equivalent to considering a solid
with no preferred axes, a “jelly”. While some solids might present preferred axis that
break SO(d) (e.g. crystals), in most cases an effective SO(d) invariance is restored at
sufficiently large scales.
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The only task left now is to construct a Lagrangian for the solid with the above
properties. The shift forces each field to appear with at least one derivative. As the
theory is defined on a gravitational background, we should recover diffeomorphism
invariance. Thus, the derivatives should be contracted among themselves with the metric
field. At lowest order in the derivative expansion, the object satisfying all these properties
is

BIJ ≡ gµν∂µϕ
I∂νϕ

J , (6.6)

which is a spacetime-scalar, shift-invariant symmetric matrix with internal indices.
Then, for a generic solid in d spatial dimensions, the effective Lagrangian must be a

function of the d independent SO(d) invariants that one can build out of B . For instance,

X1 = [B] , X2 = [B2] . . . Xd = [Bd] , (6.7)

where [ · · · ] denotes the trace of the matrix within. Or, following [27], one can take the
trace of B and normalized versions of the traces of Bn:

X = [B] , Y2 = [B2]
[B]2 . . . Yd = [Bd]

[B]d . (6.8)

X enables to keep track of the “size” of the matrix B, while the other invariants Y2, ...Yd

are insensitive to an overall rescaling of B.
Therefore, to lowest order in derivatives, the action of a solid in d+ 1 dimensions then

is

Ssolid = −
∫
dt Lsolid

= −
∫
dt ddx h1/2N F (X,Y2, . . . , Yd) , (6.9)

where F is a generic function, related to the equation of state of the solid.

Aside: Perfect fluids

The general description above also applies to perfect fluids, but with infinitely many more
internal symmetries. A fluid is characterized by the fact that we can move its volume
element around in an adiabatic manner, without spending any energy. By contrast, if
we want to move a solid’s volume element, we would encounter stresses that push the
volume element back to its rest position. Mathematically, this property corresponds to
an invariance of the fluid’s dynamics under internal volume-preserving diffeomorphisms

ϕI −→ ξI(ϕ) , det ∂ξ
I

∂ϕJ
= 1 , (6.10)

where ∂ξI

∂ϕJ
is the associated Jacobian.

For instance, in the d = 3 dimensional case, of the SO(3) invariants (6.7), one particular
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combination survives: the determinant of B

detB = 1
6
(
[B]3 − [B] [B2] + 2[B3]

)
. (6.11)

The general action for the fluid at lowest order in the derivative expansion, is given by

Sfluid = −
∫
dt ddx h1/2N F (detB) . (6.12)

Therefore, the fluid is a solid, with (infinitely) many more symmetries.

6.2. Solid inflation and predictions

As mentioned before, in solid inflation time-translations are not broken. There are
physical “clocks”, but played by the metric not the matter fields, as in usual inflationary
models. More precisely, it is played by the gauge invariant observables made up of the
scalars and of the metric, like the energy density or the pressure. This results in a
symmetry breaking pattern and thus a different universality class than standard slow-roll
inflation [99]. The different observational predictions are summarized in the figure below,
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Figure 6.2.: Summary of the observational results. Credits: Federico Piazza, talk at
Atelier TUG Montpellier Oct 4-6 2022.

where

• ξ is the adiabatic curvature perturbations,

• γij are the gravitational waves,

• fNL is a measure of non-Gaussianity, and cs the speed of sound,

• ∇γ power spectrum of the gravitational waves,

• and finally∇s power spectrum of scalar perturbations.

All these quantities are evaluated when the modes exit the horizon. We do not explain
in details their significance, but invite the interested readers to see [27, 99].

In the thesis, we have studied the Bianchi type I model coupled to a solid matter
field, which we present in details in Part IV. In this framework, we also define a slow-

roll parameter ϵ ≡ − Ḣ

H2 which, under some conditions, parametrizes an inflationary
expansion. Models of solid inflation are known for not being efficient in diluting away
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anisotropy [28]. While confirming this fact, we find another potential feature of solid
inflation, namely a rotation of the principal axes of the expansion.
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Part IV.

Homogeneity and Isotropy at the
level of the wavefunctional
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7. Introducing the model

Primordial inflation is extremely efficient at turning generic initial conditions into a
highly homogeneous and isotropic spacetime [100]. Inhomogeneities are stretched out to
unobservably large scales. Random initial anisotropies are also rapidly diluted away by
the quasi-exponential expansion. In this thesis we point to another potential feature—
“rotation”—that inflation can remove and that, to our knowledge, has never been previ-
ously considered.

In the homogeneous limit, anisotropies can be understood geometrically as a direction-
dependent expansion rate. Given a general spatially flat homogeneous metric

ds2 = −dt2 + hij(t)dxidxj , (7.1)

it is customary to choose coordinates such that hij is diagonal, so that the different
expansion rates can be easily read off. However, one may wonder, does hij need to stay
diagonal at all times? In the absence of anisotropic stress in the matter sector, it is easy
to see that it does.

To this end, consider the spatial components of the Einstein equations for a metric in
the form (7.1) in d+ 1 dimensions,

ḧij + 1
2 ḣklh

klḣij − ḣikh
klḣlj = 16πG

(
Tij − 1

d− 1 hijT
µ

µ

)
. (7.2)

The metric maintains the form (7.1) under any general coordinate-independent linear
transformation. The invariance of (7.2) under GL(d,R) is clearly a remnant of the
original diffeomorphism invariance. By using an element of such a group, at some given
instant t = t0 the metric can be made proportional to the identity. At the same time,
a suitable rotation can diagonalize ḣij(t0) without affecting hij(t0). From (7.2) it is
then clear that the metric will stay diagonal at all times, provided Tij does not contain
off-diagonal entries.

In the presence of anisotropic stress in the matter fields, however, the spatial metric
does not remain diagonal at all times, and this corresponds to a non trivial “rotation”.
Rotation of what with respect to what? There is more than one way to answer this
question but the most physical approach is probably to focus on the derivative1 of the
metric, ḣij , which can be decomposed as

ḣij(t) =
d∑

n=1
Hn(t) û(n)

i (t) û(n)
j (t) . (7.3)

The eigenvalues Hn are direction-dependent “Hubble rates”, while the instantaneous
eigenvectors can be seen as the principal expansion axes, or as the principal axes of the

1A mathematically more convenient choice is to decompose the metric itself, as we do in the rest of the
thesis.
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extrinsic curvature Kij ∝ ḣij of the hypersurfaces of constant t. Because ḣij is symmetric,
û

(n)
i (t) is, at any time, an orthonormal basis with respect to the standard Kronecker

scalar product,
û

(n)
i (t) û(m)

j (t) δij = δmn . (7.4)

So, “rotation” means time-dependence of this orthogonal set of principal axes FLRW
with respect to the system of comoving observers xi = const. who are in geodesic motion.
If one tried to define new spatial coordinates x′i in order to “follow the rotation”, such
coordinates would not label geodesic observers any longer.

In the rest of the thesis (Secs. 8 and 9), we revisit the usual mini-superspace approach
sketched above by giving particular emphasis to symmetries and the associated conserva-
tion laws. Such a viewpoint is useful because it allows us to recast the above analysis in
terms of which charges can be set to zero by a symmetry transformation. If the matter
sector breaks certain symmetries of the gravitational action—as will be the case for a
solid-driven cosmology—the angular momentum charges cannot be transformed to zero
by a symmetry transformation. This, we take as the definition of having a “rotating
cosmology”. In Sec. 10 we try to understand in physical terms the associated rotation,
by specializing to 2 + 1 dimensions, and we display some explicit numerical solutions.
We consider the quantum theory in Sec. 11.
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8. Classical minisuperspace actions: the
rules of the game

To study Friedmann Lemaître Robertson Walker (FLRW) cosmologies, one usually
specializes the Einstein equations to the FLRW metric and to time-dependent matter
fields, say in comoving coordinates and cosmic time, and tries to solve them. An
alternative approach, is to write the action in “minisuperspace”: that is, one substitutes
the FLRW ansatz directly into the action, and interprets the resulting action as a
functional of a(t), of time-dependent matter fields, and of—famously—the lapse function
N(t). Indeed, retaining N(t) as a degree of freedom is crucial to retain the Hamiltonian
constraint as an equation of motion, which is nothing but the first Friedmann equation.

We would like to do the same for spatially flat, homogeneous, but anisotropic universes.
Before attempting to do so, we must understand what the rules of the game are, in terms
of how general an ansatz we should use, and in particular of how specializing to a given
ansatz interferes with gauge invariance: why do we have to keep N(t)? Should we also
keep the shifts N i(t) in general?

Neglecting for a moment the subtleties associated with gauge invariance and gauge
fixing, we recall a general argument of Coleman’s for classical field theories: if an action
is invariant under a symmetry group G, and one is looking for solutions to the field
equations that preserve a subgroup H ⊆ G of such symmetries, one can plug into the
action the most general ansatz that is invariant under H, and vary the action within
that subspace of field configurations. The two variational problems (first vary and then
impose the symmetries of the solution, first impose the symmetries of the solution and
then vary) yield the same set of solutions [101].

Figure 8.1.: Coleman’s argument.

How does one adapt the above argument to gauge theories, and in particular to our case?
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The answer is simple. For definiteness, let’s consider directly the case of cosmological
solutions in GR, which is what we are interested in. The symmetries of the action, G,
are all the diffeomorphisms. The symmetries we would like our solution to preserve,
H ⊂ G, are certain isometries, generated by some Killing vectors ξµ

H(x). However, in
different gauges the Killing vectors take different forms. From the functional analysis
viewpoint, which is at the basis of Coleman’s argument, different-looking Killing vectors
generate different symmetries. So, if we ask what is the most general field configuration
that preserves a certain isometry ξµ

H(x), we must ask this with enough gauge-fixing to
completely specify the functional form of ξµ

H(x).
For example, an FLRW spacetime has translational and rotational isometries. These

take a particularly simple form if we decide to use the standard comoving coordinates:

x⃗ → x⃗+ ϵ⃗ , ϵ = const (8.1)
x⃗ → O · x⃗ , O = const, OT ·O = 1 . (8.2)

So, applying Coleman’s argument, we can plug into the action the most general metric
preserving the above symmetries: translational invariance in the form above means that
nothing can depend on x⃗. Rotational invariance in the form above means that spatial
indices can only come from δij or xi. So, the most general metric with these properties is

g00 = g00(t) ≡ −N2(t) , g0i = 0 , gij = a2(t)δij , (8.3)

which is the standard minisuperspace ansatz. Coleman’s argument guarantees that
proceeding in this way is equivalent to looking for FLRW solutions at the level of the full
Einstein equations.

The moral of this example is that, in order to apply Coleman’s argument to a gauge
theory, one should use an ansatz that is gauge-fixed enough so that all the symmetries
one wants to preserve have a completely specified functional form, but not more. One
should then use in the action the most general ansatz compatible with such symmetries.
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Consider then the action for gravity and matter in d+ 1 dimensions,

S = 1
16πGN

∫
dd+1x

√
−g R + Smatter . (9.1)

We are interested in studying spatially flat, homogenous, but not necessarily isotropic
solutions. “Spatially flat, homogeneous” means that there are d spacelike Killing vectors
ξµ

(1), . . . , ξµ
(d) with the same algebra as d-dimensional Euclidean translations—that is,

they commute.
Following the logic of the last section, we must fix the gauge enough so that the

functional form of these Killing vectors is completely specified. Similarly to the FLRW
case, one can show that one can always choose x1, . . . , xd coordinates such that

ξ(i) = ∂i , i = 1, . . . , d , (9.2)

that is, such that ξµ
(i) generates rigid translations along xi.

By requiring that our ansatz be invariant under these Killing vectors, we end up with
a metric that does not depend on x⃗ = (x1, . . . , xd). In ADM variables,

gµν =

−N2 +NkNk Nj

Ni hij

 , gµν =


− 1
N2

N j

N2

N i

N2 hij − N iN j

N2

 (9.3)

where N , N i and hij are only functions of time.
Notice that under a diffeomorphism of the form xi → xi + vi(t), the shift transforms

as N i → N i + v̇i . So it is possible to get rid of N i(t) with a coordinate transformation.
However, at face value this is incompatible with Coleman’s argument: from the viewpoint
of the variational problem, the only allowed truncations of configuration space are those
that correspond to a symmetry requirement—that the ansatz preserve one or more of the
symmetries of the action. Setting N i to zero is not a statement of symmetry, unless we
were trying to impose isotropy as well, which we are not. We should thus keep N i around
in the action, vary w.r.t it to get the associated equation of motion (the momentum
constraint), and only then set it to zero. However, as we show in Appendix E, for the
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matter systems that we will consider, the momentum constraint itself guarantees that it
is consistent to set N i to zero directly at the level of the action and not worry about the
momentum constraint any further. We will then do so, and postpone justifying in detail
this course of action until the Appendix.

Notice that, after we set N i to zero by a change of coordinates, the new coordinates
are still Killing coordinates, in the sense that the Killing vector fields are still of the form
∂i. The line element reduces to

ds2 = −N2(t)dt2 + hij(t)dxidxj . (9.4)

Contrary to the momentum constraint, the Hamiltonian constraint is nontrivial, and
so we have to keep the lapse N as a degree of freedom in the action. However, we will
systematically set N = 1 in the equations of motion.

9.1. Symmetries of the gravitational action

For the ansatz (9.4), the action becomes

S = 1
16πG

∫
dt

4N
√
h
(
hilhjm − hijhlm

)
ḣij ḣlm + Smatter . (9.5)

Notice that eq. (9.4) does not correspond to a complete gauge-fixing: if we multiply x⃗
by a constant (in x⃗ and t) invertible matrix L,

xi → x̃i = Li
jx

j , (9.6)

the metric still takes the form (9.4), with the same N(t), but with a new hij(t):

hij → h̃ij = (L−1)k
i(L−1)l

j hkl . (9.7)

General (invertible) linear transformations in d dimensions form the d2-dimensional group
GL(d,R). In terms of its fundamental representation, it is useful to classify its generators
ℓn in the following way:

1. Dilations: the associated generator is the identity matrix,

(ℓD)ij = δij , (9.8)

which rescales hij by an overall constant.

2. Rotations: the associated generators are antisymmetric matrices, for instance of
the form

(ℓR
ab)ij = δi

aδ
j
b − δj

aδ
i
b , (9.9)

which generate rotations in the (xa, xb) plane. We have d(d−1)
2 of them. The

associated group, SO(d), is the maximal subgroup of SL(d,R).

3. Diagonal shears: the associated generators are diagonal, traceless matrices, for
instance of the form

ℓdiag
a = diag(0, . . . , 0,+1,−1, 0, . . . , 0) , (9.10)
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where the +1 is at the a-th position along the diagonal, so that ℓdiag
a generates

shears along the (xa, xa+1) directions. We have d− 1 of them.

4. Off-diagonal shears: the associated generators are fully off-diagonal, symmetric
matrices, for instance of the form

(ℓ off
ab )ij = δi

aδ
j
b + δj

aδ
i
b , a ̸= b , (9.11)

which generate shears along the (xa + xb, xa − xb) directions. We have d(d−1)
2 of

them.

Consider for now only the gravitational (i.e., Einstein-Hilbert) part of (9.5), and let’s
investigate how these generators act. Dilations rescale the spatial metric by a constant
factor. Despite their being a symmetry of the equations of motion, they are not a
symmetry of the action (9.5), and so there is no conserved charge associated with them.
The reason is that in going from (9.1) to the reduced action (9.5), we have integrated
over the spatial volume. In other words, of the invariant combination ddx

√
h, we are left

only with the volume element
√
h. As a result, the action is only invariant under special

linear transformations SL(d,R), that is, the subgroup of GL(d,R) with unit determinant.
All the other generators are symmetries of the Einstein-Hilbert part of the action (9.5),
and so, neglecting matter for now, they correspond to conserved charges.

However, it turns out that for any given initial conditions, we can set to zero some of
the charges by a suitable choice of coordinates, that is, by acting with the symmetry group
itself. This is the the same logic that allows one to reduce a point-particle mechanics
problem with a central potential in three spatial dimensions to a two-dimensional one:
since the angular momentum vector J⃗ is conserved, motion happens on a fixed plane;
aligning the x, y coordinates with such a plane corresponds to setting Jx and Jy to zero
and keeping only a nonzero Jz.

For a generic symmetry group, there are arguments that indicate that one can always
apply symmetry transformations so that the only charges that are turned on are those
that make up the Cartan subalgebra, that is, the maximal abelian subgroup [102, 103].
We can confirm this general expectation in our specific case. We do so in Appendix
C.5. For SL(d,R), the Cartan subalgebra is spanned by the diagonal shears above. If
the matter action is also invariant under SL(d,R)—a question that we will address
soon—classical solutions will carry these d−1 conserved charges. If on the other hand the
matter action is, for instance, only invariant under rotations, then the classical solutions
will carry angular momentum charges, as many as the rank of SO(d), which is the integer
part of d/2.

Below we will study in some detail the d = 2 case, so let’s see explicitly how things work
out there. Using the same numbering as in the general classification above, a convenient
basis for the generators GL(2,R) is

ℓ1 =
(

1 0
0 1

)
, ℓ2 =

(
0 1

−1 0

)
, ℓ3 =

(
1 0
0 −1

)
, ℓ4 =

(
0 1
1 0

)
, (d = 2) .

(9.12)
In agreement with our discussion above, upon exponentiation, ℓ1 generates a scale

transformation, ℓ2 a rotation, and ℓ3 and ℓ4 shears in the (x1, x2) plane, respectively
along the x1, x2 and x1 ±x2 directions. It can also be useful to characterize the generators
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in terms of (real) irreducible representations of the SO(2) ⊂ GL(2,R) generated by ℓ2: ℓ1
is pure trace (helicity zero), ℓ2 is antisymmetric (helicity zero), ℓ3 and ℓ4 are symmetric
and traceless (helicity ±2). In fact, under a 45◦ rotation, ℓ3 and ℓ4 transform into each
other.

Consider now the most general time-dependent 2D spatial metric, hij(t). It has three
independent components, which we can parametrize conveniently as

hij = A2

 cos θ
2 sin θ

2

− sin θ
2 cos θ

2

(eξ 0
0 e−ξ

)cos θ
2 − sin θ

2

sin θ
2 cos θ

2

 , (9.13)

where the common scale factor A, the shear ξ, and the rotation angle θ are all functions
of time. The factor of 2 in the definition of θ is conventional, and is useful for what
follows. For the moment, suffice it to say that declaring θ to be an angular variable of
period 2π is consistent with the fact that a rotation of θ

2 = π is enough to map hij into
itself (hij only has components of helicity zero and ±2).

The gravitational action in these new variables becomes

Sgrav = 1
8πGN

∫
dt

N

(
−Ȧ2 + 1

4A
2(ξ̇2 + sinh2ξ θ̇2)) . (9.14)

In App. A we give the explicit transformations of the fields, whose infinitesimal versions
read,

ℓ2 : δθ = 1, δξ = 0, (9.15)
ℓ3 : δθ = − sin θ coth ξ, δξ = cos θ, (9.16)
ℓ4 : δθ = + cos θ coth ξ, δξ = sin θ , (9.17)

where we are suppressing the associated infinitesimal transformation parameters. One
can check that the action (9.14) is invariant under these transformations. On the other
hand, dilations simply rescale A and, as we have already emphasized, they are not a
symmetry of (9.14).

9.2. Anisotropic cosmologies as trajectories in a
meta-universe

It is illuminating to think of our variables A, ξ, θ as coordinates XM in a (2 + 1)-
dimensional meta-universe. Then, the gravitational action (9.14) is simply that of a free
massless particle with trajectory XM (t) in so-called parametrized (or Polyakov) form,

Sgrav ∝ 1
2

∫
dt

N
GMN (X)ẊMẊN , (9.18)

where GMN is the metric in this meta-universe:

ds2
meta = GMN (X)dXMdXN = −dA2 + A2

4
(
dξ2 + sinh2ξ dθ2) . (9.19)
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Were it not for the relative factor of 4, this would be the metric of flat space in Milne
coordinates. However, with the relative factor of 4, this is a more general (less symmetric)
open FLRW cosmology. In fact, at fixed time-variable in the meta-universe, that is, at
fixed A, this metric describes a two-dimensional hyperboloid, with ξ and θ playing the
roles of the standard radial and angular coordinates (this is another reason why the
factor of 2 in (9.13) is a convenient choice.) Related to this, notice that our symmetry
group SL(2,R) ≃ SO(2, 1) 1 spanned by the three generators l2, l3, and l4 is nothing
but the isometry group of the hyperboloid, with l2 being the rotation and l3 and l4 the
generalized translations.

Similar considerations apply in higher dimensions, albeit with less symmetric spatial
sections in the meta-cosmology. To see this, let’s start again from (9.5) and let’s
decompose hij into a common scale factor A(t) and a unit-determinant matrix,

hij(t) = A2(t)uij(t) , detu = 1 . (9.20)

Taking into account the unit-determinant condition on u, the gravitational part of the
action becomes

Sgrav = 1
16πG

∫
dt

N

(
− d(d− 1)Ad−2Ȧ2 +Ad uilujm u̇ij u̇lm

)
. (9.21)

Now, u is a symmetric matrix with unit determinant, and so it has d(d+1)
2 −1 independent

components, exactly as many as the dimensions of the SL(d,R)/SO(d) coset space. This
is no accident: using the standard framework of nonlinear realizations [104, 105], it
is useful to think of the most general uij(t) as being the result of applying a suitable
SL(d,R) transformation to the identity matrix. However, in the language of spontaneous
symmetry breaking, the identity matrix breaks SL(d,R) down to its SO(d) subgroup,
and so we can obtain a generic uij(t) by acting on the identity with the broken generators
only (type 3 and 4 in the classification above), for instance exponentiated as

uij(t) =
(
eXI(t) TI

)k
i
(
eXI(t) TI

)l
j δkl =

(
e2XI(t) TI

)
ij
, I = 1, . . . , d(d+1)

2 − 1 , (9.22)

where the XI(t) are a set of “Goldstone fields”, and we used the fact that the broken
TI generators in the fundamental representation correspond to symmetric matrices.
The Goldstone fields can be thought of as coordinates on the coset SL(d,R)/SO(d),
and provide a parametrization of the most general positive definite, symmetric, unit-
determinant uij . One can of course decide to put different coordinates on the coset space,
and so from now on we can consider the XI ’s to be a generic set of coset coordinates.
They are the higher dimensional analogs of our ξ and θ variables above 2.

Plugging the parametrization of uij in terms of Goldstones into the gravitational action
and defining the meta-cosmic time

X0 ≡ A
d
2 , (9.23)

1Actually, it would have been wiser to express the correspondence (and the symmetries) in terms of
Lie algebras sl(2,R) ≃ so(2, 1), to avoid any global topological ambiguities, but we preferred working
with the Lie groups for convenient reasons.

2In fact, our parametrization in (9.13) is not the same as (9.22) specialized to d = 2, but is related to it
by a nonlinear (ξ, θ) ↔ (X1, X2) change of variables.
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we get
Sgrav = 1

16πG

∫
dt

N

(
− 4 (d−1)

d (Ẋ0)2 + 1
2(X0)2 gIJ(X⃗)ẊIẊJ

)
(9.24)

where gIJ is the metric of the SL(d,R)/SO(d) coset manifold in the XI coordinate
system, which is invariant under generic SL(d,R) transformations 3.

Up to an overall constant, we thus have once again the action of a free massless particle,
eq. (9.18), living in a meta-cosmology with metric

ds2
meta = −(dX0)2 + (X0)2 d

8(d−1) gIJ(X⃗)dXIdXJ . (9.25)

The scale factor of this meta-cosmology is linear in the cosmic time X0, and the spatial
sections are invariant under SL(d,R). However, since these sections are (d(d+1)

2 − 1)-
dimensional, and SL(d,R) only has d2 − 1 generators, for d = 3 and above we don’t have
enough isometries to make the spatial sections maximally symmetric. Their geometry,
for generic d, is nicely reviewed in [106].

Adding matter to (9.21) will correspond to adding more fields and potentially breaking
some of the symmetries that we have discussed. In the meta-universe picture, this
will amount to adding dimensions to the meta-universe, and to breaking some of the
isometries by adding potentials for some of our point-particle’s coordinates—in which
case our particle will not follow geodesics anymore. Let’s look at a few examples.

9.3. Time-dependent scalar matter

The simplest possibility is to consider a time-dependent scalar field ϕ(t) as matter, which
is consistent with the isometry that we are trying to impose (spatial homogeneity). In
fact, it is invariant under the full SL(d,R) symmetry group we have been discussing at
length. Considering for simplicity a free massless scalar in d = 2, the action becomes

S =
∫
dt

N

[ 1
8πG

(
−Ȧ2 + 1

4A
2(ξ̇2 + sinh2ξ θ̇2))+ 1

2A
2ϕ̇2

]
(d = 2)

= 1
8πG

∫
dt

N

[
− Ȧ2 + 1

4A
2(ξ̇2 + sinh2ξ θ̇2 + 2ϕ̇2

Pl
)]
, (9.26)

where ϕPl is simply ϕ measured in Planck units. As anticipated, we have effectively
added one dimension to the meta-universe. Our fictitious particle still follows geodesics.
Moreover, SL(2,R) still corresponds to isometries of this enlarged meta-universe. In
fact, we have a shift symmetry on ϕPl as well, and so we have one more isometry. As a
consequence, any solution of the equations of motion will conserve all SL(2,R) charges
as well as the shift-symmetry charge.

Following the discussion of the preceding subsection, for any given initial conditions we
can perform a symmetry transformation and set to zero all the charges that are not in the
Cartan subalgebra. For SL(2,R), this means that, up to coordinate transformation, only
the charge associated with ℓ3 survives. Calling Q the charge associated with ϕPl-shifts

3The SL(d,R) isometries of the coset manifold do not fix the overall normalization of gIJ . The
normalization chosen in (9.24) matches what we had in d = 2 if we declare “the” metric of the
hyperbolic plane to be dξ2 + sinh2 ξ dθ2.
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and Qa the charges associated with the ℓa’s of SL(2,R), we have that, with suitable
normalizations (and with N = 1),

Q = A2ϕ̇Pl (9.27)
Q2 = A2 sinh2ξ θ̇ (9.28)
Q3 = A2(ξ̇ cos θ − θ̇ sin θ sinh ξ cosh ξ

)
(9.29)

Q4 = A2(ξ̇ sin θ + θ̇ cos θ sinh ξ cosh ξ
)

(9.30)

Setting Q2 and Q4 to zero while keeping Q3 nonzero corresponds to setting

θ = 0 , θ̇ = 0 . (9.31)

This can be thought of as an initial condition, but, by conservation of Q2 and Q4, it will
be true at all times. Also, we emphasize again that all initial conditions can be put in
this form by a suitable coordinate transformation.

We can thus just forget about θ altogether, and focus on the A, ξ, ϕPl degrees of freedom.
Their dynamics are completely determined by conservation laws: the Hamiltonian
constraint and the conservation of Q and Q3 read

H2(t) = 1
4
Q2

3 + 2Q2

A4(t) , H(t) ≡ Ȧ

A
(9.32)

ξ̇(t) = Q3
A2(t) (9.33)

ϕ̇Pl(t) = Q

A2(t) , (9.34)

with constant Q and Q3.
And so, in particular, the contribution of anisotropy (Q3) to the Friedmann equation

scales like A−4, and so does the energy density of ϕ. The anisotropy itself, measured as
the difference in the Hubble rate along the two principal axes,

∆H ≡
d
dt(Aeξ/2)
Aeξ/2 −

d
dt(Ae−ξ/2)
Ae−ξ/2 = ξ̇ , (9.35)

scales as A−2.
We can generalize this analysis to d > 2 and to a scalar with a nonzero potential V (ϕ).

We will have full SL(d,R) symmetry, but no shift symmetry. By a judicious choice of
coordinates, we can set to zero all the SL(d,R) charges corresponding to rotations and
to off-diagonal shears. We will thus be left with the d− 1 charges associated with the
diagonal shears. This means that, in this coordinates, the metric itself will be A2 times
a diagonal shear of the identity matrix, parametrized by d− 1 “anisotropy Goldstones"
ξa(t), for instance as

hij = A2 diag
(
eξ1 , eξ2−ξ1 , . . . , eξd−1−ξd−2 , e−ξd−1

)
. (9.36)

Since the generators in question commute, the coset submanifold spanned by these
Goldstones is flat. So, for this reduced set of variables, up to factors the action must
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take the form (see eq. (9.24))

S ∼
∫
dt

N

(
−Ad−2Ȧ2 +Ad(ξ̇a 2 + ϕ̇2

Pl) −N2Ad VPl(ϕPl)
)
, (9.37)

where VPl is the potential for ϕ in Planck units. The story then is very similar to the
d = 2 case, apart from the fact that now there is no shift-symmetry for ϕ and so both
the dynamics of ϕ and those of the scale factor will be more complicated. Nonetheless,
the dynamics of anisotropies is still completely determined by the conservation laws for
the nonzero charges Qa,

ξ̇a(t) = Qa

Ad(t) , Qa = const , (9.38)

and so is their contributions to the Friedmann equation,

H2 ⊃ 1
A2d(t) ·

∑
a

Q2
a , Qa = const . (9.39)

All this is in agreement with standard results, but here we derived it using only
symmetries and conservation laws.

9.4. Solid matter

We now consider what kind of matter can violate some of the SL(d,R) symmetries of
the gravitational action. We are particularly interested in the case in which the residual
symmetries make up the SO(d) rotation subgroup, so that solutions can be characterized
in terms of conserved angular momentum charges—that is, they can be thought of as
rotating solutions.

Ideally, we would like the matter action to be a function of hij that is only invariant
under SO(d), for instance because it is a function of the trace of h, the trace of h2,
etc. However, precisely because such SO(d) invariants are not invariant under the
full SL(d,R), they cannot arise directly as the mini-superspace limit of diff-invariant
quantities—SL(d,R) is what is left of diff-invariance in mini-superspace.

Following [107], the solution is clear: introduce scalar fields playing the role of Stückel-
berg fields, with internal symmetries that have exactly the same algebra as the symmetries
one wants to preserve (the d-dimensional Euclidean group, in our case), and then work
in unitary gauge where these scalars are aligned with the coordinates. We now describe
why, in our case, this is the same as considering a cosmological solid.

The low energy effective description of a solid or a fluid involves as many scalar fields
ϕI as there are spatial dimensions (d), and a Lagrangian equipped with certain internal
symmetries [108, 109]

(internal translations = shifts) ϕI −→ ϕ+ aI , aI = const (9.40)
(internal rotations) ϕI −→ OI

Jϕ
J , OI

J ∈ SO(d). (9.41)

(We are for simplicity considering only solids that, at least at long distances, have
isotropic ground states.) On top of those, the fluid Lagrangian is also invariant under
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internal volume-preserving diffeomorphisms. A straightforward way to implement these
symmetries to lowest order in derivatives is through certain invariants built out of

BIJ ≡ gµν∂µϕ
I∂νϕ

J , (9.42)

which is a spacetime-scalar, shift-invariant symmetric matrix with internal indices.
Then, for a generic solid in d spatial dimensions, the effective Lagrangian must be a

function of the d independent SO(d) invariants that one can build out of B. For instance,
following [27], one can take the trace of B and normalized versions of the traces of Bn:

X = [B] , Y2 = [B2]
[B]2 . . . Yd = [Bd]

[B]d , (9.43)

where [ · · · ] denotes the trace of the matrix within. To lowest order in derivatives, the
action of a solid in d+ 1 dimensions then is

Ssolid = −
∫
dt h1/2NF (X,Y2, . . . , Yd) , (9.44)

where F is a generic function, related to the equation of state of the solid.
For our minisuperspace application, it is particularly convenient to work in so-called

unitary gauge: recall that we are restricting to ansatze that are invariant under constant
shifts of the spatial coordinates xi. If we consider the field configuration

ϕI(x⃗, t) = xI , (9.45)

we are formally breaking the spatial translations, but, given the shift symmetries (9.40),
we are in fact preserving a diagonal combination of internal shifts and spatial translations.
This makes this ϕI configuration compatible with the mini-superspace framework. Simi-
larly, although spatial rotations are formally broken by the ϕI configuration above, thanks
to the internal rotational symmetry (9.41), there is an unbroken diagonal combination of
internal rotations and spatial ones. On the other hand, unless we demand that the solid
action only be a function of detB—in which case we would be describing a perfect fluid
[108, 109]—the rest of SL(d,R) is broken by (9.45). Notice that in unitary gauge, the
matrix BIJ defined in (9.42) reduces simply to

BIJ = hIJ . (9.46)

The conclusion is that if we consider a generic solid in unitary gauge, we are effectively
adding to the mini-superspace gravitational action a function of hij(t) that is only
invariant under the SO(d) subgroup of SL(d,R)—precisely what we were looking for.

To make the discussion as concrete and as simple as possible, we now specialize to
d = 2. The d = 3 case is analyzed in Appendix D. Using the same parametrization of hij

as before, eq. (9.13), we get that our invariants in unitary gauge read

X = 2A−2 cosh ξ , Y ≡ Y2 = 1 − 1
2(cosh ξ)2 , (9.47)

which, consistently with the residual rotational invariance, depend on A and ξ but not
on θ. Since F in (9.44) is a generic function of X and Y , we can consider it directly as a
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generic function of A and ξ, F = F (A, ξ). Notice that in the fluid case the matter action
would only depend on detBIJ = A−4, i.e., ∂ξF = 0. In this limit the system would still
be invariant under the full SL(2,R) group.

In summary, including the gravitational part (9.14) as well, we consider the action

S =
∫
dtA2

[ 1
N

(
− Ȧ2

A2 + ξ̇2

4 + θ̇2 sinh2 ξ

4
)

− NF (A, ξ)
]
, (9.48)

where for simplicity we have chosen 8πG = 1 units.
Now the only symmetry of this action is SO(2), acting as a constant shift of θ. The

associated charge is the angular momentum J = θ̇ A2 sinh2ξ (setting N = 1), and the
dynamics of θ are completely determined by its conservation:

θ̇ = J

A2 sinh2ξ
, J = const. (9.49)

Since we only have one symmetry generator—that associated with angular momentum—
there is no way now to use the symmetries of the action to set the angular momentum to
zero. This angular momentum is thus as physical as it can be, and a nonzero value for it
can be taken to mean, by definition, that the universe is rotating.

Denoting from now on the derivatives of F with respect to A or ξ by subscripts, the
other independent equations are the Hamiltonian constraint and the ξ equation of motion:

4H2 = ξ̇2 + J2

A4 sinh2ξ
+ 4F (9.50)

ξ̈ + 2Hξ̇ − J2 cosh ξ
A4 sinh3ξ

+ 2Fξ = 0 (9.51)

where H ≡ Ȧ/A.
For both numerical and qualitative analyses, it proves useful to condense the above

equations into a single second order one for ξ(N ), where N = lnA is the number of
e-folds and a prime denotes differentiation with respect to it:

ξ′′ + 2ξ′ − ξ′3

2 − ξ′

H2

(
J2

2A4 sinh2 ξ
− AFA

2

)
− J2 cosh ξ

H2A4 sinh3ξ
+ 2Fξ

H2 = 0 . (9.52)

With this notation, H2 stands for

H2 =
(
4 − ξ′2

)−1
(

J2

A4 sinh2ξ
+ 4F

)
. (9.53)
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Solutions with J ̸= 0, or, equivalently, θ̇ ̸= 0, are characterized by some “rotation”.
But rotation of what with respect to what? We should note that the solid’s volume
elements, which evolve in time following trajectories with ϕI = const, in fact follow
geodesics. Indeed, xi = const is always a geodesic for a metric of the form (9.4). Had
we left the shifts Ni (the g0i components of the metric) undetermined, the momentum
constraint in the presence of a solid would enforce Ni = 0 in unitary gauge (see Appendix
E). In other words, homogeneity of the cosmological solution seems to require that the
solid’s volume elements follow geodesics, as just stated. So there is no obvious sense in
which the solid is rotating. One can also calculate the invariant vorticity associated with
the solid’s velocity field and easily check that it vanishes. In Appendix C, we compute
the peculiar velocities in the Bianchi type I universe, and show how we can extract the
rotating motion from them.

By looking at (9.13), it is rather clear that what is rotating here is the principal axes
of expansion, with respect to the comoving frame xi = const. This is the case, at least,
when ξ̇ ̸= 0. However, our system can also support rotating solutions with ξ̇ = 0.

In more standard cases, a constant ξ solution simply corresponds to an FLRW universe
“in the wrong coordinates”. That is, a constant ξ can be set to zero by a coordinate
transformation, as a consequence of the SL(2,R) symmetries. We can see this explicitly
in our formalism as well, if we specialize (9.52) to non-rotating (J = 0), constant ξ
(ξ′ = 0) configurations. We obtain the condition

Fξ(ξ, A) = 0 . (10.1)

Recall that now A is effectively playing the role of time. So, the above condition must be
obeyed at all A’s. If it is also obeyed for all values of ξ, then we are in the fluid limit,
where the matter action only depends on the determinant of BIJ , which in unitary gauge
is A−4. So, in this case we have an enhanced symmetry (SL(2,R) vs. SO(2)) that allows
us to rescale ξ to zero. This the standard case, that of a fluid-driven cosmology.1

In the presence of rotation, J ̸= 0, it is still possible to fine-tune the action so that
there are solutions with constant ξ. This time, by looking at (9.52), we see that we need

1There is also the possibility that the condition (10.1) is obeyed only at a specific ξ = ξ0. In this case,
the geometry is that of an FLRW cosmology, but the action for cosmological perturbations will likely
be anisotropic.
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to impose the condition
J2 cosh ξ
A4 sinh3ξ

= Fξ . (10.2)

By choosing F = A−4f(ξ), the scale factor A drops out of (10.2) and the equation
becomes a condition for ξ only. The metric of the corresponding rotating solution is not
that of an FLRW space, as one can check by explicitly calculating the spatial components
of the Ricci tensor Rij and verifying that they are not proportional to the metric hij .
We are in the presence of a genuinely rotating, anisotropic solution. The scale factor
behaves like that of a kinetically dominated universe (p/ρ = 1). We are away from the
fluid limit and with just the SO(2) symmetry of the solid we cannot set the constant ξ
to zero. Equivalently, the solid is in an anisotropic state Y ̸= 1/2. Loosely speaking, in
this case the presence of angular momentum creates a centrifugal force that stabilizes
the anisotropy at a certain constant value ξ = ξ0.

10.1. A simple model for a solid

As an explicit example to use for a more in-depth study, we now specialize to the following
solid Lagrangian,

F (X,Y ) = Xϵ . (10.3)

This simple model generates, in the limit of zero shear and rotation (ξ = θ = 0),
inflation with constant slow-roll parameter ϵ ≡ −Ḣ/H2 [27]. Equivalently, on an FLRW
background, (10.3) enforces the constant equation of state p/ρ = ϵ − 1. Using (9.47),
eq. (9.52) reduces to

ξ′′ − ξ′(ϵ− 2) + ξ′3(ϵ− 2)
4 + ϵ(4 − ξ′2) tanh ξ

2 (10.4)

+ J2 e−4N

4H2 sinh2 ξ

[
(ϵ− 2)ξ′ − 4

tanh ξ

]
= 0 .

This equation can easily be solved numerically by substituting (9.53) in the second
line. The qualitative behavior of solutions can also be captured in different limits, as we
now show.

First, one should notice that the last term proportional to J2 becomes very rapidly
subdominant with respect to the other terms. So, it can be ignored to a very good
approximation, and one can concentrate on just the first line of (10.4). We will do so
from now on.

Second, after trial and error one discovers that the equation is more easily studied in
the variable

y(N ) ≡ log(sinh ξ(N )) , (10.5)

in terms of which the ξ eom reduces to

e2y
[
y′′ − (2−ϵ)

4 y′ 3 − ϵ
2y

′ 2 + (2 − ϵ)y′ + 2ϵ
]

+ y′′ + y′ 2 + (2 − ϵ)y′ + 2ϵ = 0 . (10.6)

Despite this equation’s looking complicated, it is quite easy to solve when y is large in
absolute value, thanks to the exponential factor in front of the bracket: for large positive
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y, the exponential is very large and the equation essentially reduces to the vanishing
of the combination inside the brackets. For large negative y, the exponential is very
small and the combination inside the bracket can be ignored. In both cases, the equation
reduces to a first-order ODE for y′—y itself disappears from the equation.

It so happens that in both limits the least decaying attractor solutions as N increases
evolve linearly in N , with only slightly different rates,2

y′(N ) ≃ − ϵ

1 − ϵ/2 = −ϵ+ O(ϵ2) , y → +∞ (ξ ≫ 1) (10.7)

y′(N ) ≃ ϵ/2 −
(
1 −

√
1 − 3ϵ+ ϵ2/4

)
= −ϵ+ O(ϵ2) , y → −∞ (ξ ≪ 1) . (10.8)

So, keeping only the leading order in ϵ, the least decaying solution for ξ(N ) has

sinh ξ ∼ e−ϵN for ξ ≫ 1 or ξ ≪ 1 , (10.9)

with a transient behavior around ξ ∼ 1 ( |y| ≲ 1), which our method is not able to resolve.
Fig. 10.1 shows the validity of our approximation for different values of ϵ.
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Figure 10.1.: We numerically integrate the system for a sufficient number of e-folds N
so that ξ evolves from ξ ≫ 1 to ξ ≪ 1. As expected, the large-anisotropy
regime is well approximated by (10.7), while the low-anisotropy regime by
the dominant mode in (10.8), which we have approximated at small ϵ with
∼ e−ϵN . Here ϵ = 0.05.

Once the approximated solutions for ξ are found, we can deduce θ by integrating
equation (9.49). By inspection, when the anisotropy has become small, ξ ≪ 1, we obtain
the asymptotic behavior

θ′ ∼ e−2(1+ϵ)N , (10.10)

with θ approaching its asymptotic value exponentially fast.

2At ξ ≫ 1 we find also the two behaviors y′(N ) = ±2. The growing mode corresponds to the vanishing
of one of the two principal expansion rates. This is a repeller from the point of view of dynamical
analysis. All configurations with y′(N ) > 2 are unstable and have expansion rates of opposite signs.
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10.2. Energy densities

It is useful to interpret the terms in the Friedmann equation (9.50) as the energy densities
associated with an isotropic background (ξ = θ̇ = 0), with anisotropy, and with rotation,

ρbkg = F |ξ=0 (10.11)

ρaniso = ρξ,kin + ρξ,pot ≡ ξ̇2

4 +
(
F − F |ξ=0

)
(10.12)

ρrot = J2

4A4 sinh2ξ
, (10.13)

hopefully with obvious notation. If we consider again our simple model (10.3) and work
for simplicity to lowest-order in ϵ we can deduce the behaviors of these energy densities
by looking at our explicit solutions.

Let’s start with the isotropic background. It has

ρbkg ∼ e−2ϵN . (10.14)

As a consistency check, notice that if this were the only contribution to the Friedmann
equation, we would have H ∼ e−ϵN , which corresponds to exactly constant −Ḣ/H2 = ϵ,
as advertised above for the model (10.3).

We can now assess the importance of anisotropy and rotation by comparing the
behaviors of their energy densities to that of the background. For anisotropy, notice that
ξ′2 is well approximated by a constant at ξ ≫ 1 and goes as e−2ϵN when ξ ≪ 1 (eqs. 10.7
and 10.8). As a consequence, the kinetic part of ρaniso goes through two different regimes
(Fig. 10.2, left panel),

ρξ,kin ∼ e−2ϵN (ξ ≫ 1) , ρξ,kin ∼ e−4ϵN (ξ ≪ 1) . (10.15)
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Figure 10.2.: On the left, the kinetic energy density ρξ,kin as a function of the number
of e-folds N = lnA, and on the right, the potential energy density ρξ,pot,
for ϵ = 0.05. As expected from the approximate solutions (10.7) and (10.8),
there are two distinct modes corresponding to high and small values of ξ.

The potential part of ρaniso also has two distinct modes depending on the anisotropy
regime. For small ϵ ≪ 1,

ρξ,pot ∼ e−2ϵN
(
αe

− ϵ2
1−ϵ/2 N − 1

)
(ξ ≫ 1) , ρξ,pot ∼ e−4ϵN (ξ ≪ 1) , (10.16)

with α some constant (see Fig. 10.2, right panel). So, as far anisotropies go, overall we
have

ρξ,aniso ∼ e−2ϵN (ξ ≫ 1) , ρξ,aniso ∼ e−4ϵN (ξ ≪ 1) . (10.17)

Then, the energy density associated with rotations behaves as

ρrot ∼ e−(4−2ϵ)N . (10.18)

We see that, in terms of energy densities, the contribution coming from rotation decays
much faster than that coming from anisotropy (Fig. 10.3); however, the latter scales
precisely as the isotropic background’s energy density in the high-anisotropy regime,
eq. (10.14), and decreases slightly faster in the low-anisotropy regime. In this simple
model, and in stark contrast with more standard cosmological models with vanishing
anisotropic stresses, the importance of anisotropies gets diluted very slowly by the Hubble
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expansion. This is in qualitative agreement with the conclusion of [28, 110], with a small
quantitative discrepancy likely due to our working in 2 + 1 dimensions.
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Figure 10.3.: The energy densities of the anisotropy ρaniso and the rotation ρrot, for
ϵ = 0.05 . The red and green dashed lines correspond resp. to the e−2ϵN

and e−4ϵN modes.
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Among the original motivations of this work was a better understanding of the two
main pillars of cosmology—homogeneity and isotropy—in a fully quantum mechanical
sense. We report some of our (persisting) confusion on the subject in the following
subsection. Then we concentrate on the much more modest task of quantizing the mini
superspace model that we are dealing with classically. This is a relatively simple quantum
system, whose “diagonal version” (i.e. without rotation) has been throughly studied in
the literature (see e.g. [111] and references therein). It seems to us that, even at this
mini-superspace level, the rules of the game are not completely clear. The domain of
validity of this approximation is not obvious, and neither is whether the corresponding
truncation of degrees of freedom makes sense quantum mechanically.

11.1. Spacetime symmetries in quantum gravity

It is hard to overestimate the role of spacetime symmetries. In particle physics Poincaré
invariance is nothing less than foundational. In cosmology an equally important role is
played by homogeneity and isotropy. However, when dynamical gravity if fully taken into
account, we do not seem to have a grasp of what spacetime symmetries even mean: a given
classical metric can have a number of isometries, but how do we characterize the spacetime
symmetries of a wavefunctional of metrics? One could argue that when (quantum) gravity
is dynamical, spacetime symmetries are simply lost. But this conclusion is probably
too rash. Presumably, there is a state of quantum gravity that corresponds to empty
Minkowski spacetime and enjoys the symmetries of the Poincaré group. Also, perturbative
calculations indicate that the quantum state of our universe exiting primordial inflation
is homogeneous and isotropic to an extremely high degree. Is there any non-perturbative
(i.e., beyond cosmological perturbation theory) characterization of this?

Part of the confusion stems from the fact that in quantum mechanics symmetry is a
property of the wavefunction. This represents an interesting twist on classical physics.
Let us consider the simple example of a scalar field ϕ in Minkowski space. The state of
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such a field is homogeneous if the wavefunction Ψ satisfies1

Ψ
[
ϕ(x⃗ )

]
= Ψ

[
ϕ(x⃗− a⃗ )

]
, (11.1)

for every vector a⃗. Notice that classical homogeneity (i.e., simply, ϕ(x⃗ ) = const.) has little
to do with the above statement. In classical field theory restricting to configurations with
certain spacetime symmetries implies a massive truncation of the phase space. No such a
truncation is implied by (11.1). As far as we know, classically homogeneous configurations
of the type ϕ(x⃗) = const. could even be absent from the quantum ensemble (11.1). In
other words, Ψ could vanish on each and every homogeneous configuration, and still be
homogeneous!

This is all well understood in the case of quantum fields on a given classical spacetime.
But what is the analogue of (11.1) for gravity? We should be able to pose this question—
albeit not necessarily to answer it—directly at the level of the low-energy effective theory.
In canonical gravity a state is a functional of the three-dimensional metric hij(x⃗ ) and
of the matter fields. The property displayed in eq. (11.1) is clearly meaningless when
applied to the metric field itself, because there is no such notion of “translated metric
hij(x⃗ − a⃗)” in the absence of a background classical spacetime: the x⃗ coordinates are
arbitrary, and the momentum constraint ensures that the wavefunction only depends on
invariant quantities. So, how do we characterize translations for a generic metric (with
no isometries) in a coordinate independent fashion?

While for translations we have nothing to say at the moment, for rotations we can use
the mini-superspace approach that we have been using so far in the thesis, and try to
make sense of it quantum-mechanically. As we have seen, mini-superspace corresponds
to a truncation of degrees of freedom already in the classical configuration space. As we
emphasized in Sec. 8, at the level of the classical variational problem this is a consistent
truncation. At the quantum level, however, the question is more subtle: the degrees
of freedom that we don’t keep still have their quantum “life”, which manifests itself in
nontrivial correlation functions/variances, even if we assume that those degrees of freedom
are in their vacuum. From the modern viewpoint, the sensible question seems to be
whether the mini-superspace action (perhaps with renormalized couplings) corresponds
to a consistent low-energy theory where all non-homogeneous degrees of freedom have
been integrated out.

The answer appears to be ‘no’. For a spatially infinite universe, the modes that are
not constant in x⃗ form a gapless continuum, and there is no hope of ending up with a
local derivative expansion upon integrating them out. For a spatially finite universe, say
compactified on a torus, the Kaluza-Klein (KK) modes are gapped, and in principle one
can integrate them out. However, one would like the physical size of the universe to be
larger than the Hubble radius, in which case the KK are lighter than the Hubble scale,
and cannot be ignored during the evolution of the universe—in particular, one can have
cosmological KK particle production.

In conclusion, as far as quantum cosmology goes, the mini-superspace approach should
not be thought of as a consistent truncation of the full theory in the same sense as
low-energy effective field theory is. Rather, it should be thought of as a toy model that

1Equivalently, and perhaps more famously, any n−point correlator of the field ⟨ϕ(x⃗1)ϕ(x⃗2) . . . ϕ(x⃗n)⟩
should only depend on the mutual distances among the points x⃗1, . . . , x⃗n, i.e. on their intrinsic
geometry, and not on their overall position.
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drastically simplifies the theory while retaining some of the puzzling difficulties associated
with gauge invariance.

With these qualifications in mind, we now proceed to consider the quantum mechanics
of our models (and more general ones) in mini-superspace.

11.1.1. Mini-superspace approach

The gravitational part of the Hamiltonian in d+ 1 dimensions reads

Hgrav = N h−1/2
(

ΠijΠij − Π2

d− 1

)
, (11.2)

where Πij is the momentum conjugate to hij , and indices are lowered by using hij itself.
To the Hamiltonian above, we should add the matter part, which we will discuss below.

As is well known, gravity is a constrained system where the only equations governing
the wave function are constraints. Variation with respect to N gives the Hamiltonian
constraint, or Wheeler DeWitt (WdW) equation. When applied to the wavefuntion,

HΨ = 0 , (11.3)

it enforces invariance under time reparameterizations.
One may wonder what happened to the momentum constraints, which are normally

obtained by varying with respect to the shifts Ni. In the classical theory, when one loses
some constraints because of a gauge choice implemented directly in the action, one should
make sure to impose the corresponding equations independently. Momentum constraints
represent the invariance of the wave function under spatial diffeomorphisms. As previously
mentioned, the remnant of this GR symmetry here is the (finite dimensional) special
linear group. In discussing classical solutions for cosmologies driven by a time-dependent
scalar field, so that there is no anisotropic stress, we have used this group to set the
angular momentum to zero. Can we thus interpret SL(d,R) as a gauge symmetry?
Should we impose “by hand” that Ψ(hij) be invariant under SL(d,R)? This sounds like
the correct mini-superspace analog of the momentum constraint.

However, it is not difficult to see that this would kill the theory altogether. For example,
in 2 + 1 dimensions, the configuration space is the two dimensional hyperboloid and
SL(2,R) ≃ SO(2, 1) can take a point on the configuration space into any other point.
Imposing the invariance of Ψ under SL(2,R) would mean to set it to a constant on the
entire hyperboloid. Apart from obvious normalization problems, this would mean dealing
with a Hilbert space of just one state. One might be temped to impose that Ψ be invariant
only under a compact subgroup of SL(2,R)—the rotations on the hyperboloid around
the origin. This would solve the normalization problem and would leave some non-trivial
dynamics to the system. But why should we restrict to this subgroup? We conclude that,
although SL(d,R) is morally the remnant of the full spatial gauge invariance of GR, we
cannot interpret it as a gauge symmetry at the mini-superspace level.

In the case of a solid-driven cosmology, things appear to be better defined. working
in unitary gauge we only have a residual SO(d) invariance. Moreover, as far as spatial
diffeomorphisms go, unitary gauge is a complete gauge-fixing. So, unless we decide to
interpret the internal rotational symmetry (9.41) also as a gauge symmetry, we can now
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use the residual SO(d) as a physical symmetry, and classify the physical states in terms of
the associated angular momentum, without restricting only to states that are annihilated
by it. It is then tempting to declare that the states that are isotropic in the quantum
mechanical sense are those with zero angular momentum, since they are invariant under
SO(d). However, among these, there are those whose wave-function is peaked around
isotropic cosmologies (ξ = 0, in the d = 2 case), and those whose wavefunction is perhaps
peaked around some highly anisotropic cosmology, but for which the anisotropy direction
has been averaged over. These are two very different cases, and only the former seems to
be the quantum analog of an isotropic cosmology. Clearly, at the moment we only have a
partial understanding of the quantum theory.

11.2. Ordering etc.

The WdW operator is the quantum version of the gravitational Hamiltonian (11.2), plus
the matter part. Since hij and Πij , as quantum operators, don’t commute, the expression
(11.2) is ambiguous at the quantum level.

Using the wave-function representation of the quantum state, Ψ = Ψ(hij), the momen-
tum conjugate to hij acts as a derivative:

Πij −→ −i ∂

∂hij
. (11.4)

So the question is: how are we to order the h fields and the derivatives with respect to
them when (11.2) acts on the wave function?

The most reasonable option seems to be that of building the Laplace-Beltrami operator
of the corresponding superspace metric [21, 63]. In other words, whenever we are in the
presence of a system (e.g. gravity + matter) whose Lagrangian/Hamiltonian can be cast
in the form (see eq. (9.18))

L = 1
2N GMN (X)ẊMẊN −NV (X) =⇒ H = N

(1
2 GMN ΠM ΠN + V

)
, (11.5)

it is natural to identify the kinetic part of the Hamiltonian with the Laplacian associated
with the metric GMN ,

∇2 = 1√
−G

∂

∂XM

√
−G GMN ∂

∂XM
. (11.6)

In the above expression the determinant of GMN has been assumed to be negative
because the conformal mode of the metric is a “time-like” direction in superspace (see
e.g. eq. (9.37)).

This choice of ordering has important advantages. It gives an operator that is Hermitian
with respect to the “standard” scalar product

⟨ψ1, ψ2⟩ =
∫
dnX

√
−G ψ∗

1(X)ψ2(X) , (11.7)

once appropriate boundary conditions are chosen.2 At the same time, and more impor-
2In order to interpret the WdW equation as a “time-evolution”, one should use one of the fields, say, X0,
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tantly, the field-space Laplacian (11.6) is a well-defined prescription, invariant under field
redefinitions. Other options (e.g. “push all derivatives to the right” ∼ GMN∂M∂N ) are
clearly dependent on a specific choice of coordinates in field space and therefore cannot
be considered as valid alternatives.

11.3. (In-)consistent truncations

One puzzling, potentially interesting, property of the choice (11.6) is that it depends
on the dimensions of the meta-universe, in the same way as the radial part of the
standard Laplacian is different if we work, say, in two rather than three dimensions. Take,
for example, the Hamiltonian (11.2) in 2+1 spacetime dimensions. The corresponding
Laplacian operator reads (see App. F for details)

∇2 = 1√
h

[
(hikhjl − hijhkl)

∂

∂hij

∂

∂hkl
+ 1

4hij
∂

∂hij

]
(pure gravity) . (11.8)

On the other hand, if we add a standard scalar field as in (9.26) we get

∇2
s = 1√

h

[
(hikhjl − hijhkl)

∂

∂hij

∂

∂hkl

]
+ 2√

h

∂2

∂ϕ2 (gravity + scalar). (11.9)

The point here is that adding a scalar field also modifies the piece of the Laplacian
containing derivatives with respect to the metric.

Something similar happens if we change the number of degrees of freedom that we
decide to keep in the metric itself. For instance, we can write the operator (11.9) more
explicitly in the A, ξ and θ variables introduced in our general parametrization of a d = 2
spatial metric, eq. (9.13):

∇2
s = 1

2A2

[
−A2

4 ∂2
A − 3

4A ∂A + ∂2
ξ + 1

tanh ξ ∂ξ + 1
sinh2ξ

∂2
θ + ∂2

ϕ

]
. (11.10)

However, if we consider an isotropic FLRW space instead of our Bianchi-type model,
then from (11.9), we get

∇2
s,FLRW = 1

2A2

[
−A2

4 ∂2
A − 1

4A ∂A + ∂2
ϕ

]
(gravity + scalar,FLRW) . (11.11)

Because classical FLRW solutions are special cases of Bianchi models, one might
have hoped to recover (11.11) in some isotropic limit of (11.10)—for instance when the
state Ψ does not depend on ξ or θ. But this is clearly not the case, because (11.11)
and (11.10) imply a different dependence of the wavefunction on A. In the structure of
the Laplacian, first derivatives with respect to A are sensitive to the total number of
fields involved, or even just on the number of symmetries that one wants to impose on the

as a time variable and think of ψ(X0, X1, . . . ) as a probability amplitude for the remaining variables,
“evolving” in the time X0. This approach would suggest a different scalar product than (11.7), the
so-called “Klein-Gordon” scalar product [21, 112]. In this case the probability for the remaining fields
X1, X2, . . . is guaranteed to be conserved in “time” for all solutions of the WdW equation.
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configuration space before quantization. In the beginning of this section we discussed how
the mini-superspace approach does not seem a consistent truncation of the full theory.
As an extreme example of this, we have just shown that the FLRW mini-superspace is
not even a consistent truncation of a Bianchi one!
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Conclusion and final remarks

The broad motivation of this thesis was (and is) to see how we can characterize the two
great symmetries of cosmology - homogeneity and isotropy - at the quantum level. More
specifically, at the level of the wavefunction of the universe.

The task turned out to be a huge undertaking, due to the complexity of the quantum
theory when all the degrees of freedom of the classical theory are maintained. Therefore,
we worked in a more modest framework. We considered metrics that are already
homogeneous from the onset, i.e. Bianchi models, and study how to implement isotropy
quantum mechanically.

The classical treatment of the model highlighted a new aspect of homogeneous cos-
mology, rotation, which is associated with anisotropy and with the way its main axes
evolve in time. The effect is physical only in the presence of anisotropic stress in the
energy momentum tensor. We have studied in some detail the case of solid matter, but
it would be interesting to extend the analysis to other media. In particular, we have
considered homogeneous and isotropic solids, characterized by a group of symmetry made
up of internal translations and rotations [eqs. (9.40) and (9.41)]. As discussed in Sec. 9.4,
this corresponds to breaking the SL(d,R) symmetry of the gravitational action down to
SO(d). However, it would be interesting to consider also less symmetric solids that are
not fully invariant under internal rotations (e.g. some “crystal” or “quasi-crystal”), for
instance along the lines of [113]. In 2+1 dimensions, this would correspond to a matter
Lagrangian that, in unitary gauge, explicitly depends on θ and not only on A and ξ
(these parameters are defined in Sec. 9.1).

Rotation could be a feature of some relevance in other inflationary models beside solid
inflation, such as chromo-natural [114] and gaugid [115] inflation. More generally, there
could be traces of rotation even in more recent cosmic epochs, whenever the matter
content of the universe features anisotropic stress. Although rotation is generally expected
to rapidly dilute away like in the solid model considered in this thesis, this does not need
to be always the case.

Finally, we have come back to the quantum mechanical description of these metrics and
pointed to some questions/puzzles. Among them, the structure of the Laplacian in field
space depends on the total number of fields involved. This directly affects the dependence
of the wave function on the scale factor. One might object that we are not forced to use
the Laplace-Beltrami operator as an ordering prescription for the Laplacian. However, it
is hard to conceive other equally sensible choices than the one that is invariant under
field redefinitions. A significant consequence of this feature is that we do not recover the
Wheeler-DeWitt equation of the quantized FLRW models from the isotropic limit of the
quantized Bianchi models. This reveals a potential inconsistency at the quantum level,
the FLRW mini-superspace is not even a consistent truncation of a Bianchi one!

It is tempting to wonder whether, in a more realistic scenario, also long-wavelength,
super-Hubble modes should be included in the degrees of freedom that affect the behavior
of the scale factor. More generally, we would like to better understand how to operate a
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consistent truncation of degrees of freedom in quantum cosmology, in the same way we
do in standard effective field theory: can we upgrade the mini-superspace approach to a
systematic effective theory of quantum cosmology?
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A. Symmetries of the 2+1 action

The gravitational action (9.14) is invariant under SL(2,R). By exponentiating the three
generators ℓ2, ℓ3, and ℓ4, we find that exp(λℓ2), exp(ϵℓ3) and exp(ηℓ4) produce the
coordinate transformations ξ → ξ′, θ → θ′, where, respectively,

ℓ2 : ξ′ = ξ (A.1)
θ′ = θ + λ (A.2)

ℓ3 : cosh ξ′ = cosh ξ cosh 2ϵ+ sinh ξ sinh 2ϵ cos θ (A.3)

sin θ′ = sin θ sinh ξ
sinh ξ′ (A.4)

ℓ4 : cosh ξ′ = cosh ξ cosh 2η + sinh ξ sinh 2η sin θ (A.5)

cos θ′ = cos θ sinh ξ
sinh ξ′ . (A.6)

Now we want to show that, if the matter action does not depend on ξ and θ and thus
respects all the SL(2,R) symmetries, all rotating solutions—i.e., those with a nonzero θ̇—
are equivalent to a non-rotating solution. Let us consider a non-rotating (“nr") solution
first, with θ = 0. By varying (9.14) we get that the eom for ξ simplifies to (A2ξ̇)˙ = 0. So

θnr = 0, ξ̇nr = b

A2 , (A.7)

is a solution of the system, for some constant b. The above non-rotating solution
expresses the well-known result that, for a perfect fluid, the energy density associated
with anisotropies ∼ ξ̇2 scales as A−2d in d + 1 dimensions. We want to show that all
other solutions with θ(t) ̸= 0 can be obtained by transforming the above. More generally,
the eom for θ gives

θ̇ = J

A2(sinh ξ)2 , (A.8)

for some constant J , which represents the conserved charge associated with rotations,
that is, the angular momentum.

Now, let us apply the transformation l4 to the solution (A.7) with some parameter η.
By using (A.5) and (A.6) we obtain a new solution ξ(t), θ(t) with

cosh ξ(t) = cosh ξnr(t) cosh 2η (A.9)

θ(t) = arccos
(sinh ξnr(t)

sinh ξ(t)

)
(A.10)

Differentiating the second expression with respect to time and using (A.9) we find

θ̇ = ξ̇nr sinh 2η
1 − (cosh ξnr)2(cosh 2η)2 = b sinh 2η

A2(sinh ξ)2 , (A.11)

where (A.7) and (A.9) have been used in the last step. It is clear that, by choosing η
such that b sinh 2η = J , any solution of the type (A.8) can be reproduced. One can then
combine this with a constant rotation to fix the correct initial condition for θ(t).
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B. Setting charges to zero by symmetry transformations

As we mentioned in the main text, there are general arguments that indicate that, given
a continuous symmetry group G and its associated conservation laws, for generic initial
conditions one can perform symmetry transformations that set to zero all charges apart
from those in the Cartan subalgebra—the subalgebra that generates the maximal abelian
subgroup of G 3.

In our specific cases, G = SL(d,R) or SO(d) acting on hij(t) as

h → gT · h · g , (B.1)

we can verify this claim explicitly. Let us rewrite the above transformation law at the
infinitesimal level using g = exp(αaTa) ≃ 1 + αaTa, where the T ’s are the generators of
G and the α’s are transformation parameters. We get

δh = αa(h · Ta + T T
a · h) . (B.2)

It is particularly convenient to work in the Hamiltonian formalism, where all symmetries
g ∈ G correspond to canonical transformations under which the Hamiltonian is invariant.
In particular, for g to be a canonical transformation to begin with, it must act on the
conjugate momenta pij as

p → g−1 · p ·
(
gT )−1

, (B.3)

so that
δp = −αa(p · T T

a + Ta · p) . (B.4)

Now, in phase-space the above infinitesimal canonical transformation must be generated
by a phase-space function Q = Q(h, p) = αaτa(h, p) as

δh = αa{h, τa(h, p)} , δp = αa{p, τa(h, p)} , (B.5)

where {·, ·} are the Poisson brackets. The τa’s are the conserved charges associated with
the generators Ta, expressed as functions of hij and pij . After trial and error, it is easy
to convince oneself that they must take the form

τa(h, p) = 2 tr
(
h · Ta · p

)
. (B.6)

Now the question is: assuming we start with generic initial conditions hij(0), pij(0),
how many τa(h, p)’s can we set to zero using only symmetry transformations?

There are two distinct cases:

• G = SL(d,R): In this case we can perform a transformation that sets hij(0)
proportional to the identity matrix. After we do so, we have

τa(h, p) ∝ tr
(
Ta · p(0)

)
, (B.7)

3This is, in fact, an upper bound on the number of nonzero charges that can survive. If the system’s
degrees of freedom make up a particularly small representation of G, one might be able to set even
more charges to zero. For example, for a single particle in a central potential in d dimensions, the
phase space is parametrized just by two d-vectors q⃗ and p⃗, and, up to rotations, for generic initial
conditions there is only one nonzero angular momentum—that which acts in the q⃗-p⃗ plane.
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and we are still allowed to perform SO(d) rotations, since those are—by definition—
the transformations in (B.1) that don’t change the identity matrix. With these, we
can make pij(0) diagonal,

p(0) = diag(P 1, . . . , P d) (B.8)

We thus get
τa(h, p) ∝

∑
i

(Ta)i
iP

i , (B.9)

and so, according to the classification of Sec. 9.1, we have that the only nonzero
charges are those associated with the diagonal shears, which, indeed, make up the
Cartan subalgebra of SL(d,R).

• G = SO(d): In this case the Ta generators are anti-symmetric and, using cyclicity
of the trace and the fact that h and p are symmetric, we get

τa(h, p) = tr
(
Ta · [ p, h ]

)
. (B.10)

Now, the [ p, h ] commutator is an anti-symmetric matrix, and can thus be block-
diagonalized (at t = 0) by a suitable rotation in SO(d). The resulting block-diagonal
(anti-symmetric) matrix has ⌊d/2⌋ antisymmetric 2 × 2 blocks along the diagonal,
and zeroes everywhere else. Plugging this structure into (B.10) and parametrizing
the rotation generators as in (9.9), we see that the only nonzero charges that survive
are those associated with the rotations that act within each of the aforementioned
2 × 2 blocks. These are precisely the generators of the Cartan subalgebra of SO(d).
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C. Peculiar velocities in general Bianchi type I

We compute the peculiar velocities in the three dimensional Bianchi type I spacetime,
where the general metric in the co-moving coordinates is

ds2 = −dt2 + hij(t)dxidxj . (C.1)

The relation between the proper time τ and the co-moving coordinates is given by:

dτ2 = dt2 − hij(t) dxidxj (C.2)
=⇒ t′2 = 1 + hij(t) x′ix′j (C.3)

with “ ′ ” denoting the derivative with respect to the proper time “ d
dτ ”.

The Killing vectors of Bianchi in the above gauge (C.1) are

ξj
(i) = (∂i)j , (C.4)

generating translations along xi. The associated conserved charges along the directions
x1 = x , x2 = y are given by 4:

P(i) = x′j (ξ(i))j (C.5)
P(i) = x′j hjk (ξ(i))k . (C.6)

Hence,

Px = x′ h11 + y′ h21 , (C.7)

Py = y′ h22 + x′ h12 . (C.8)

From (C.5) we find,

x′ = Py h12 − Px h22
h12 2 − h11h22

, (C.9)

y′ = Px h12 − Py h11
h12 2 − h11h22

. (C.10)

Now we can derive the relation between the peculiar velocities dx
i

dt
= ẋi and the conserved

4Reminder: d
dτ

(
x′j ξj

)
= x′l∇l

(
x′j ξj

)
= x′l∇lx

′j . ξj + x′lx′j . ∇lξj = 0. The first term vanishes
because of the geodesic equation x′l∇lx

′j = 0 , and the second one cancels since it is the trace of the
product of symmetric and anti-symmetric terms.
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charges as follows:

ẋ = x′

t′
= Py h12 − Px h22

(h12 2 − h11h22)
√

1 + h11 x′2 + h22 y′2 + 2h12 x′y′

= Py h12 − Px h22

(h12 2 − h11h22)
[
1 + h11

(
Py h12 − Px h22
h12 2 − h11h22

)2
+ h22

(
Px h12 − Py h11
h12 2 − h11h22

)2

+2h12

(
Py h12 − Px h22
h12 2 − h11h22

) (
Px h12 − Py h11
h12 2 − h11h22

)]1/2

(C.11)

Conclusion: by contrast with the FLRW universe, we notice a rotation in the peculiar
velocities. Indeed, let’s set initial conditions ẋ(t0) = V0x , ẏ(t0) = V0y , and hij(t0) = δij
5. Which yields the relations,

Px = V0x√
1 − V 2

0x − V 2
0y

, (C.12)

Py = V0y√
1 − V 2

0x − V 2
0y

. (C.13)

If V0x = 0, then

ẋ(t) = V0y h12

(h12 2 − h11h22)

√√√√1 − V 2
0y −

h11h
2
12V

2
0y

(h12 2 − h11h22)2 +
h22h

2
11V

2
0y

(h12 2 − h11h22)2

= V0y h12

(h12 2 − h11h22)
√

1 − V 2
0y −

h11V
2

0y

h12 2 − h11h22

, (C.14)

which means there is motion in the x direction even if it starts out with a velocity
V0x = 0 , while in the FLRW case, ẋ(t) remains null at all times t.

In FLRW:

ẋ(t) = Px

A2(t)
√

1 + P 2
x A−2(t) + P 2

y A−2(t)
, (C.15)

= V0x

A2(t)
√

1 + V 2
0x

A2(t)(1 −A2(t)) +
V 2

0y

A2(t)(1 −A2(t))
. (C.16)

For an initial condition V0x = 0 , ẋ(t) remains null at all times t.

5It is equivalent to setting A(t0) = 1 , ξ(t0) = 0 , θ(t0) = 0 .
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D. Rotating cosmologies in 3+1 dimensions

D.1. Parameterization of the metric

We still write the spatial metric, in matrix form, as

h(t) = RT (t) ·D(t) ·R(t) , (D.1)

where R is a rotation and D a diagonal matrix. We choose to write the rotation as

R(t) = ei θ⃗(t)·J⃗ , (D.2)

where (Ji)jk = iϵijk and [Ji, Jj ] = iϵijkJk. We find that the time derivative of R can be
written as

Ṙ = iRP+ = iP−R , (D.3)

where

P± = E⃗± · J⃗ (D.4)

≡ ˙⃗
θ · J⃗ + sin |θ⃗ | − |θ⃗ |

|θ⃗ |

[
˙⃗
θ · J⃗ −

(
θ⃗ · ˙⃗

θ
)(
θ⃗ · J⃗

)
|θ⃗ |2

]
±
[

1 − cos |θ⃗ |
|θ⃗ |2

](
θ⃗ ∧ ˙⃗

θ
)

· J⃗ (D.5)

In the gravitational action

Sgrav = 1
16πG

∫
dt

4N
√
h
(
hilhjm − hijhlm

)
ḣij ḣlm , (D.6)

there are two different structure. For that involving hij ḣij , only the diagonal part
survives,

hij ḣij = Tr
(
D−1Ḋ

)
. (D.7)

The other term is more complicated. We find

hij ḣjkh
klḣli = −2Tr

(
P 2

−

)
+ 2Tr

(
D−1P−DP−

)
+ Tr

(
D−1ḊD−1Ḋ

)
. (D.8)

The first term represents the kinetic terms and the self interactions of the θ-fields. Because
Tr(JlJm) = 2δlm, we get

Tr
(
P 2

−

)
= 2E⃗− · E⃗− (D.9)

The second term represents the coupling between the shear terms on the diagonal matrix
and the angles. In order to calculate this we introduce the matrices

M1 =

1 0 0
0 0 0
0 0 0

 , M2 =

0 0 0
0 1 0
0 0 0

 , M3 =

0 0 0
0 0 0
0 0 1

 . (D.10)

So that we can write the diagonal piece as

D(t) = αi(t)Mi . (D.11)
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The coupling term above contains M and J matrices alternated inside the trace. We find

Tr (JiMjJkMl) = δik|ϵijl| (D.12)

where no summation over i is intended. We get

Tr
(
D−1P−DP−

)
= E2

1

(
α2α

−1
3 + α3α

−1
2

)
+ E2

2

(
α3α

−1
1 + α1α

−1
3

)
+ E2

3

(
α1α

−1
2 + α2α

−1
1

)
.

(D.13)

Finally the gravitational action reads

S = 1
16πG

∫
dt

2N
[

− α̇1α̇2α3 − α̇1α2α̇3 − α1α̇2α̇3 − 2α1α2α3E
2
− (D.14)

+ E2
1α1(α2

2 + α2
3) + E2

2α2(α2
1 + α2

3) + E2
3α3(α2

1 + α2
2)
]
. (D.15)
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E. More on the solid’s Lagrangian and Hamiltonian

As we discussed, in order to build the Lagrangian of a solid it is useful to introduce
the Lorentz-scalar matrix BIJ ≡ ∂µϕ

I∂µϕJ . In d spatial dimensions I, J... take values
between 1 and d and the Lagrangian is a general function of the invariants built with
BIJ ,

Ssolid = −
∫
ddx dtN

√
h F

(
[B], [B2], . . . , [Bd]

)
, (E.1)

where [· · · ] is shorthand for the trace.
By using the ADM form for the metric (9.3), we can perfor a useful d+1 decomposition

of such a quantity:

BIJ = − 1
N2

(
ϕ̇I −N i∂iϕ

I
) (
ϕ̇J −N j∂jϕ

J
)

+ hij∂iϕ
I∂jϕ

J (E.2)

≡ −V IV J + bIJ . (E.3)

Note that on the second line we have implicitly defined V I = N−1(ϕ̇I − N i∂iϕ
I) and

bIJ = hij∂iϕ
I∂jϕ

J .
The perfect fluid limit of (E.1) corresponds to F depending only on the determinant

of BIJ ,
Sfluid = −

∫
ddx dtN

√
h F

(
detBIJ

)
. (E.4)

Such a determinant can be expressed as

detBIJ = 1
d ! ϵI1I2...Id

ϵJiJ2...Jd

(
−V I1V J1 + bI1J1

)
· · ·
(
−V IdV Jd + bIdJd

)
(E.5)

= 1
d ! ϵI1I2...Id

ϵJiJ2...Jd

(
−d V I1V J1bI2J2 · · · bIdJd + bI1J1 · · · bIdJd

)
(E.6)

= (det bIJ)
[
1 − (b−1)IJV

IV J
]
. (E.7)

In order to write the Hamiltonian of the solid one should calculate the conjugate
momentum ΠI = ∂L/∂ϕ̇I and invert this relation in favor of ϕ̇I . Such explicit calculation
does not seem to be possible except in sporadic cases. One notable case is that of
non-relativistic fluid, i.e., when F = (detBIJ)1/2. Then we get

ΠI = 2
√
h det b F ′(detBIJ)(b−1)IJV

J (E.8)

By using the ansatz V I = AbIJΠJ with A to be determined, the above relation can be
inverted to give

V I = bIJΠJ√
hdet b+ bKLΠKΠL

, (E.9)
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i.e.

ϕ̇I = N
bIJΠJ√

h det b+ bKLΠKΠL

+N i∂iϕ
I . (E.10)

Now we can express the Hamiltonian of the non-relativistic fluid,

Hfluid =
∫
ddx

(
NHfluid +N iHfluid

i

)
, (E.11)

with

Hfluid =
√
h det b+ bKLΠKΠL , (E.12)

Hfluid
i = ΠI∂iϕ

I . (E.13)

E.1. Momentum constraint

It is useful to look at the momentum constrain for the solid. In order to obtain its
explicit form in the Hamiltonian formalism we should be able to invert for ϕ̇I as in (E.10),
which does not seem to be doable in general. We can however calculate the momentum
constraint in the Lagrangian formalism, by simply varying the action (E.1) with respect
to N i.

First we note that

∂ [Bn]
∂N i

= n

N

(
Bn−1

)IJ (
∂iϕ

IV J + ∂iϕ
JV I

)
, (E.14)

where
(
Bn−1)IJ is the (n− 1)th power of the matrix BIJ (without tracing). This gives

∂L
∂N i

=
d∑

n=1
n

√
hF[Bn]

[
Bn−1

]IJ (
∂iϕ

IV J + ∂iϕ
JV I

)
= 0 . (E.15)

A simple and general solution of the above equation is V I = 0. That is,

ϕ̇I −N i∂iϕ
I = 0 . (E.16)

In unitary gauge, xi = ϕI , this simply reduces to the condition N i = 0.
We thus see that choosing the unitary gauge always implies N i = 0 as a consequence

of the momentum constraint, as anticipated in the main text.

124



11. Attempts at a quantum theory – F. Laplace-Beltrami operator in mini-superspace

F. Laplace-Beltrami operator in mini-superspace

We consider a general action of the type

S ∝ 1
2

∫
dt

N
GAB(X)ẊAẊB , (F.1)

and aim to calculate the Laplace-Beltrami operator associated with the metric GAB,

∇2 = 1√
−G

∂A

√
−G GAB∂B , (F.2)

where G = detGAB . In the absence of matter fields and up to an irrelevant normalization
factor, the metric GAB can be read off eq. (9.5),

GAB = h1/2
(
hikhjl − hijhkl

)
, (F.3)

where h = dethij and (lower) capital latin letters A, B stand for pairs of (upper)
symmetric indices, (ij) and (kl) respectively. The switch between lower and upper
indexes is due to the fact that we are considering the (covariant) spatial metric as a
generalized coordinate in field space, hij ∼ XA.

A simple scaling argument shows that

−G = h−3/2 , (F.4)

up to a positive constant factor, which cancels in (F.2). The inverse of GAB , on the other
hand, is given in d+ 1 spacetime dimensions by

GBC = 1
2h1/2

(
hkmhln + hknhml − 2

d− 1 hklhmn

)
, (F.5)

where, B = (kl) and C = (mn). One can check that by multiplying the RHS of (F.3)
by that of (F.5) one obtains the identity matrix δC

A , which, expressed in spatial i, j, . . .
indices, is just the symmetrized product of Kronecker delta’s,

1
2
(
hikhjl − hijhkl

) (
hkmhln + hknhml − 2

d− 1 hklhmn

)
= 1

2
(
δi

mδ
j
n + δi

nδ
j
m

)
. (F.6)

There are now all the ingredients to calculate (F.2),

∇2 = h3/4 ∂

∂hij
h−5/4

(
hikhjl − 1

d− 1 hijhkl

)
(F.7)

= h−1/2
[(
hikhjl − 1

d− 1 hijhkl

)
∂

∂hij

∂

∂hkl
+ 2d2 − 2d− 3

4(d− 1) hij
∂

∂hij

]
(F.8)

For d = 2 this expression gives the pure-gravity Laplacian displayed in eq. (11.8).
Alternatively, still in d = 2, we can parametrize hij in terms of the A, ξ, and θ variables

125



11. Attempts at a quantum theory – F. Laplace-Beltrami operator in mini-superspace

and obtain

∇2 = 1
2A2

[
−A2

4 ∂2
A − A

2 ∂A + 1
tanh ξ ∂ξ + ∂2

ξ + 1
sinh2ξ

∂2
θ

]
. (F.9)

As commented in Sec. 11, the structure of the above operators changes when includ-
ing additional matter degrees of freedom in the theory. This is why the pure-gravity
Laplacian (F.9) is different than that in the presence of a scalar field (11.10).
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