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Résumé

Ce travail de thèse est organisé autour de deux axes bien distincts : la conception
et la réalisation d’une structure 3D multistable et la conception et la réalisation
d’un drone monorotor. Le point de rencontre de ces deux axes est l’origami qui
permet de mettre en œuvre des structures mécaniques à la cinématique complexe
tout en conservant une simplicité de mise en œuvre et une grande légèreté. Les
mécanismes souples ont une grande variété d’applications pour la robotique : du
biomimétisme à l’assistance chirurgicale, de nombreux systèmes peuvent bénéficier
de l’utilisation de mécanismes souples. Les structures en origamis sont une sous-
classe des mécanismes souples qui peuvent être construits à partir d’une fine plaque
de matériau. Le projet OrigaBot a été lancé dans le but d’étudier des structures
en origamis et leurs applications en robotique. En particulier, pour la création
de robots volants autonomes. Dans cette thèse, j’ai d’abord réalisé une étude
exhaustive de différents origamis. En particulier, la “Magic Ball” a été étudiée pour
sa capacité à changer de forme, d’un sphéröıde à un cylindre, et la “tour de Kresling”
pour ses propriétés bistables. Le manque d’une structure origami à flexion bistable
dans la littérature nous a conduits à la conception de “l’Origami Bendy Straw”.
Cet origami présentant des propriétés de multistabilité unique pourra trouver de
nombreuses applications robotiques, notamment pour des grippers.

Dans un but de concevoir un nouveau type de robot volant autonome, nous avons
décidé de concevoir un drone monorotor et donc extrêmement minimaliste. L’absence
d’un second rotor fournissant un contre-couple fait tourner le robot constamment
dans une direction, ce qui constitue un vrai défi en termes de contrôlabilité. Ce-
pendant, l’utilisation d’ailettes qui profitent du flux d’air du rotor pour ralentir
la rotation a été étudiée. La structure origami appelée “tour de Kresling” a été
choisie pour orienter ces ailettes. Nous avons étudié un système sans pas cyclique
basé sur un rotor qui utilise une vitesse sinusöıdale pour contrôler la direction des
forces appliquées au robot.

Nous avons fait une étude théorique approfondie du monorotor et analysé les
équations du mouvement du drone avec l’équation de Poincaré, une alternative
à la méthode d’Euler-Lagrange. Nous avons aussi proposé une décomposition
de l’orientation du robot qui dissocie la rotation incontrôlable de la composante
contrôlable d’attitude réduite. Un contrôleur non linéaire agissant sur l’attitude
réduite est dérivé et démontré avec une fonction de Lyapunov. Enfin, j’ai développé
une simulation du système complet. Nous avons analysé des simulations dans
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lesquelles l’estimation du lacet est imprécise, un problème réel avec des gyroscopes
et compas peu fiables. Nous avons aussi proposé un observateur qui utilise la com-
posante d’orientation réduite contrôlable pour estimer l’erreur dans la composante
de rotation incontrôlable. Enfin, nous avons montré l’utilité d’un tel observateur
dans le but de détecter une instabilité introduite par le manque de fiabilité de
l’estimation de l’angle de lacet.

Mots clés : origami, tour de Kresling, Waterbomb, Bendy Straw, swashplateless,
quaternion, Équations de Mouvement, Poincaré, Euler-Lagrange, contrôle non-
linéaire, monorotor, contrôle sous-actionné
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Abstract

This work focuses on two distinct problems: the design of a multistable 3D structure
and the design of a single-rotor drone. The intersection of these two very distinct
ideas is origami, which makes it possible to implement mechanical structures with
complex kinematics while being lightweight and maintaining ease of implementation.
Soft mechanisms have a wide variety of applications for robotics: from biomimicry
to surgical assistance, many systems can benefit from the use of soft mechanisms.
Origami-based structures can be seen as a subclass of compliant mechanisms: they
are soft structures that can be assembled by folding a thin sheet of material. The
OrigaBot project was born with the goal of studying origami-based structures and
their applications in robotics. In particular, unmanned aerial vehicles (UAVs).
In this thesis, first, an extensive study of the different kinds of origami has been
carried on. In particular, the “Magic Ball” was studied for its ability to change
its shape from a spheroid to a cylinder, and the “Kresling Tower” for its bistable
properties. The lack of a bistable bending origami structure in the literature led
to the design of the “Origami Bendy Straw”. This origami structure with unique
multistable properties could find many robotic applications, especially for grippers.

In order to design a new type of autonomous flying robot, we decided to design
a monorotor and thus extremely minimalist drone. The lack of a second rotor
providing counter-torque makes the robot constantly spin in one direction, which
is a real challenge in terms of controllability. However, the use of passive “fins”
that take advantage of the rotor’s airflow to slow down the rotation has been
investigated. The origami structure called “Kresling tower” was chosen to control
the orientation of these fins. We have studied a swashplateless rotor system based
on the use of a sinusoidal speed to control the direction of the thrust forces applied
to the robot.

We made a thorough theoretical analysis of the monorotor and analyzed the
Equations of Motion of the UAV with the Euler-Poincaré equation, an alternative to
the Euler-Lagrange method. We also proposed a novel decomposition of the robot’s
orientation that uncouples the uncontrollable spin from the reduced controllable
attitude component. A non-linear controller acting on the reduced attitude is
derived and demonstrated with a family of Lyapunov functions. A closed-loop
simulation of the complete system is implemented. We analyzed simulations in which
the yaw estimation is inaccurate, a real problem with unreliable gyroscopes and
compasses. An observer that uses the controllable reduced orientation component
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to estimate the error in the uncontrollable spin component was studied. We have
demonstrated the usefulness of such an observer for the purpose of detecting an
instability introduced by the unreliability of the yaw angle estimate.

Keywords: origami, Kresling tower, Waterbomb, Bendy Straw, swashplateless,
quaternion, Equations of Motion, Poincaré, Euler-Lagrange, non-linear control,
monorotor, under-actuated control
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Introduction

Classical robotic systems are designed using rigid components, and most of their
control strategies are facilitated by the fact that the movements of each part in
an assembly can be analyzed separately. Soft robotics, on the other hand, focuses
on the design and control of robotic systems using soft / compliant components.
Designing robots with compliant mechanisms can be considerably harder: most
of the methods developed for the finite degrees of freedom of classical robots fail
to generalize to the continuous motion of a soft component. Larry Howell’s book
on Compliant Mechanisms [27] is a great resource that I would recommend to the
interested reader.

Despite the difficulties, there are numerous advantages that explain why compliant
robots are gaining such interest: for example, not only a flexible arm is capable
of gently manipulating objects, it can also be considerably less dangerous in case
of accidental contact when working in close contact with humans. For example,
[19] considers a particular compliant mechanism for a surgery-related application.
Robots made predominantly with soft material can be considerably more flexible
and impact-resistant. Furthermore, soft robotics is of great interest for biomimetics:
soft designs can take advantage of the millions of years nature has spent into finding
optimal solutions for a multitude of problems. Moreover, as it is usually the case
with biomimetics applications, the design and control of robots that mimic nature
can also give new insights into understanding how these natural solutions work in
nature.

Origami-based robotics can be seen, in many ways, as a sub-field of soft robotics.
Origami structures created by folding sheets of material can still present many of
the flexibility properties necessary for compliant mechanisms, while being usually
simpler to fabricate and control. Actuating only some necessary folds can be
enough to achieve many of the compliant and/or biologically-inspired properties
of interest. Rus and Sung predict that origami-based robotics will be used for
more customizability and adaptability on [53]. For example, [18] describes how a
simple vacuum system together with an origami pattern known as the waterbomb
tessellation1 can be used to design a surprisingly simple and efficient soft gripper.

1A famous origami based on the waterbomb tessellation is called the Magic Ball. Since this
particular origami is so well known, sometimes “waterbomb tessellation” and “magic ball” are
used interchangeably.
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The current research on origami-based structures includes very different and some-
times even surprising subjects. The lack of joints assembling multiple single
structures makes it possible, in theory, to create more precise movements all while
taking less space. For this reason, many researchers are interested on the use of
origami-based structures for the design of microscopic robots. This same property,
together with the fact that origami structures can be easily built, inspired many
studies on the use of origami for medical applications [28]. For example, the oriceps:
an origami-inspired forceps for surgery robots [20]. In a completely different context,

Figure 1.: Origami forceps illustrations. a) pattern and 3D illustration of folded structure. b)
pictures of prototype. Source: [20].

a disc-shaped origami called “flasher” which can be easily opened and closed2, has
been studied as an alternative for solar panel assemblies in satellites. Its ease of
actuation makes it a good candidate, since the solar panels must be deployed only
after the satellite is already in orbit, and not before or during launch.

The shape-shifting capabilities of origami-based structures are also central to
many projects aiming at constructing multi-modal flying and terrestrial robots.
For example, [36] shows yet another application of the magic ball / waterbomb
tessellation: a system of wheels that can change their shape and size to better
adapt to certain terrain. Multi-modal locomotion is the key idea that kick-started
the OrigaBot project: how can we take advantage of origami-based structures to
create a shape-shifting drone that can move in different ways, according to its
need?

The OrigaBot consortium, funded by the French National Agency for Research
(ANR), was created to study this exact problem. As stated in the original funding
proposal, “The aim of the OrigaBot project is to develop a brand-new class of
actuated origami-based structures”. The project also aimed at introducing the
origami-based design expertise into France, while developing a robotic unmanned
vehicle showing multi-modal locomotion, which means it can move in different ways
according to need, with the use of shape-shifting origami. The initial idea was
to make a flying drone that can also change into a terrestrial robot, according to

2And sometimes used by hobbyists to create an origami hat!
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need, as illustrated in the Figure 2. To account for different domains of expertise

Figure 2.: Illustration from the original OrigaBot proposal.

required for making such a project possible, the OrigaBot consortium was created.
Its key researchers are:

• Stéphane Viollet (Coordinator, ISM Biorobotics, Marseille): Control, au-
tonomous robots design and embedded systems;

• Pierre Renaud (ICube, Strasbourg): Mechatronics and mechanical design:

• Kanty Rabenorosoa (FEMTO-ST, Besançon): Micro-mechatronics and
kinematics.

Each one of them supervising a PhD student:

• Me, Evandro Bernardes, supervised by Stéphane Viollet: Preliminary
origami design, dynamical modelling and flight control;

• John Berre, supervised by Pierre Renaud: Origami design and mechanical
integration;

• Kejun Hu, supervised by Kanty Rabenorosoa: Micro actuators for origami
folds.

In this manuscript, I will document my work for the OrigaBot project.

Since I worked on two very different aspects of the project, that will eventually
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converge to a final project during the last year of the OrigaBot project, this
document will be roughly divided into two parts.

The first part will document my work and findings during my first year working for
the OrigaBot project, in which I was mostly implicated in the origami aspects of
the project, comprising Chapters 1 and 2. Chapter 1 will document my first steps
into origami design, the tools and processes I developed for designing origami, and
the particular origami designs of interest that were studied. Chapter 2 talks about
the origami bendy straw, a new origami design based on the bendy straw that was
developed at ISM Biorobotics and published at ASME Mechanical Design.

The second part of the manuscript will not discuss origami design. At some point
during the project, the choice for an extremely minimalist flying drone was chosen
instead of the original multi-modal terrestrial/aerial drone idea. We decided to
pursue the design of a monorotor flying drone which uses an origami structure to
control its rotation speed. Chapter 4 discuss the swashplateless rotor system used
for the motor. Chapter 5 gives an overview of each part of the drone, as conceived
during the project. Chapter 6 gives the modeling of the Equations Of Motion (EOM)
of the flying drone using the Euler-Poincaré equation, an alternative to the Euler-
Lagrange equation. Chapter 7 details how to decompose the rotation quaternion
of the robot into two parts: a controllable reduced part and an uncontrollable
spinning component. Chapter 8 derives the non-linear control law we plan on using
to stabilize the spinning robot. Chapter 9 assembles everything into a simulation of
the drone, and uses it to derive a possible estimator of the robot’s spin rotation.
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Origami studies
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1. Preliminary studies

Even though origami was, initially, a big part of the project, I ended up not working
much with it after the first few months, since this task was ultimately taken over
by the John Berre and our other partners from the ICube team. In this chapter, I
will discuss all the preliminary origami studies that I did during the first steps of
my thesis project, which culminated on the publication of my first article in this
project. If the reader is interested on the monorotor drone project, which ended
up being the focus of most of my thesis, he/she can safely jump to Chapter 4 and
start from there.

1.1. What even is origami?

In this section, I will define what the word “origami” means in the context of this
work, and some important basic origami definitions. Origami 1 is the name given
to the art of folding (and sometimes, also sculpting) paper to create structures or
sculptures. The modern definition of origami varies slightly according to different
origami artists. Some, more on the purist side, prefer to use the word “origami”
strictly for sculptures created from a square, uncut sheet of paper and without
the use of any kind of glue. According to the purist definition, even a single
cut on the pattern is enough to call the structure a “kirigami” instead of an
“origami”, even though kirigami is a very different form of art, albeit a related one.
However, as explained by Robert Lang on the first page of his excellent book on
mathematical origami [33], “. . . there are no fixed rules about paper, glue, or use
of cuts: traditional Japanese designs, many of which can be reliably dated to be
hundreds of years old, used various sizes and shapes of paper, sometimes multiples
sheets, and often used cuts.” Figure 1.1 shows a simple example of an origami
origami crease pattern, and Fig. 1.2 shows some very different styles of origami
used in art.

In this work, I consider origami as structures that can be created by folding a flat
sheet of material regardless of shape, glued or not. Moreover, if it has cuts, I will
still call it an origami and not a kirigami as long as the properties of interest of
the structure come from the folding itself (or from the folding-like assemblies, in
case of rigid-foldable origami).

1Literally “paper folding” in Japanese
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1. Preliminary studies – 1.1. What even is origami?

a) b) c)

Figure 1.1.: Waterbomb base crease pattern. a) The original origami crease pattern. b) Water-
bomb base after folding only its mountain fold. c) Same origami after folding every
fold.

In particular, for this work, I am interested in origami structures that can be
well defined using an origami origami crease pattern. Origami crease patterns are
diagrams that can be thought of as instructions on how to fold an origami structure.
In this work, blue lines represent valley folds (the flaps fold towards you) and red
lines represent mountain folds (the flaps fold away from you). Black lines represent
the edges of the paper, and occasionally, green colors represent cuts on the paper.
Intersection points between two or more crease patterns are called vertices.
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1. Preliminary studies – 1.1. What even is origami?

a) b)

c) d)

Figure 1.2.: Examples of different origami styles. a) The most classic origami structure, the crane.
Pure enough even for the most purist origami artist! b) St Paul’s Cathedral kirigami
model, showcasing how kirigami can be used for architectural reproduction. c) Erik
Demaine’s “Fugal Form” from his Beethoven Series, showcasing the use of curved
folds. d) A figurine by the late Éric Joisel. Adept of the wet folding method, he
called his art “jazz origami”, for his use of artistic improvisation.
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1. Preliminary studies – 1.2. Useful software

1.2. Useful software

In this section, I will briefly talk about two tools that greatly helped the study of
different origami structures.

1.2.1. OrigamiSimulator

OrigamiSimulator is a web app was built by Amanda Ghassaei and is based on
the simulation method2 published by herself and Erik Demaine on [24]. The web
app can be accessed on [23]. While this simulator lacks the ability of setting the
properties, thickness, etc. of the material used for the simulation, it compensates
with its ease of use. It takes either a FOLD file or an SVG vector image file in
order to define its patterns.

A FOLD file consists of a specialized JSON file that defines all the nodes, folds,
facets, etc. of a geometrical folded structure.

Using an SVG vector image file as an input is the simplest way of using it. A
simple drawing of the patterns can be used for starting the simulation. As stated
on the website, the most important instructions are:

• Mountain folds have red stroke - rgb(255, 0, 0), hex #ff0000.

• Valley folds have blue stroke - rgb(0, 0, 255), hex #0000ff.

• Boundary edges have black stroke - rgb(0, 0, 0), hex #000000 - use this edge
type for both the outline of the pattern, and any internal holes.

• Undriven (free) creases have magenta stroke - rgb(255, 0, 255), hex #ff00ff.

• The final fold angle of a mountain or valley fold is set by its opacity.

Figure 1.3 shows an example of simulation using an SVG file.

1.2.2. Inkscape and OrigamiPatterns extension

In order to quickly design different origami structures based on geometric patterns,
I developed an extension for the free vector graphical software Inkscape, named
OrigamiPatterns. This extension define classes that are used to easily implement
different origami patterns, with a common system for defining settings separately
for every kind of stroke (Mountains, Valleys, etc.)

Figure 1.4 illustrates a simple use for the extension. Figure 1.5 shows some complex
origami structures designed with OrigamiPatterns. The process used for creating
the thick origami of Figure 1.5 b), in particular, is described in Appendix B.

2This method considers a purely elastic model.
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a) b) c)

Figure 1.3.: OrigamiSimulator example. a) Origami pattern, saved as an SVG file. b) Pattern
loaded on OrigamiSimulator, 0% folded. c) 75% folded.

a) b)

c) d)

Figure 1.4.: OrigamiPatterns implementation of the Waterbomb tessellation. a) Specific options
for Waterbomb pattern. b) mountain fold options. c) Pattern generated for use with
OrigamiSimulator. d) Pattern generated for laser-cutting.

34



1. Preliminary studies – 1.2. Useful software

a) b)

c) d)

Figure 1.5.: Laser-cut origami structures designed with the help of OrigamiPatterns. a) Multiple
magic balls. b) Thick and rigid magic ball. c) Hexagonal hypar. d) Kresling tower.
Photos: E. Bernardes.

35



1. Preliminary studies – 1.3. Drone shapes and existing origami structures

1.3. Drone shapes and existing origami structures

One of the first steps of the OrigaBot project was a preliminary study of the
possible shapes for the robot, and which kind of existing origami structures can be
used for achieving the desired shapes. A big part of this step was done by John
Berre (first, as an intern for his master’s thesis and then again as a PhD student).
Figure 1.6 shows some possible shape-changing origami that exist in the literature.
We will discuss with more detail the properties of some of them.

a) Magic ball b) Kresling Tower

shape-changing wheels bistable, height change

c) Flasher d) Twisted Tower

easily deployable, radius change monostable and modular origami

Figure 1.6.: Different shape-changing origami structures. a) Illustration of a magic ball origami,
changing its shape from a cylinder into a spheroid, and finally into a disc. Source:
flickr.com/photos/26201012@N02/5411813561. b) Kresling tower, converts a rotation
into a height change and has two equilibrium points. c) Flasher, change of radius. It
was studied by John Berre for the OrigaBot project. d) Twisted tower, which has a
flexion but is a modular origami (which is harder to make) and is not bistable.

1.3.1. Change of shape with the “Magic Ball”

One of the main origami structures studied in the beginning of the project is the
Magic Ball. It consists on a tessellation of the waterbomb pattern, usually closed
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in order to create a cylinder, which can be seen in Fig. 1.6 a.

The magic ball is a good example of rigid and flat-foldable origami. A flat-foldable
origami crease pattern is a pattern that can be folded completely (every fold is
folded to 180◦) and creates a flat structure. In order for a pattern to be flat-foldable,
it must respect two rules:

• Maekawa-Justin Theorem: the number of mountains and valleys connected at
any vertex always differ by two. Figure 1.7 illustrates it on the two types of
vertices found on the magic ball’s crease pattern.

Figure 1.7.: Illustration of the Maekawa-Justin theorem.

• Kawasaki-Justin Theorem: at each vertex, the sum of all odd sector angles
must be equal to the sum of all even sector angles. Figure 1.8 illustrates it on
one of the vertex types of magic ball.

Figure 1.8.: Illustration of the Kawasaki-Justin theorem.

Moreover, the waterbomb tessellation is also rigid-foldable: it can be easily con-
structed with sheets of rigid material, and if each facet of the paper between its
folds is infinitely rigid (thus, they do not bent), the origami can still be folded.
This also means that the folds can be simulated in the form of rotational hinges
[17]. Rigid origami structures are, in a sense, easier to study: they can be analyzed
as a simple assembly of rigid elements. Figure 1.9 illustrates an example of a rigid
waterbomb tessellation constructed with the membrane technique. There are many
techniques for accommodating sheets of thick material [65, 80, 34], and the example

37



1. Preliminary studies – 1.3. Drone shapes and existing origami structures

on Fig. 1.9 uses a “membrane” on which the rigid facets are glued. Note how the
facets do not have all the same thickness: this make the completely folded structure
have a constant thickness by compensating the fact that, when completely folded,
not every part of the structure has the same amount of layers. Also, note how some
space is left in each valley fold according to the thickness of its neighboring facets.

a) b) c)

Figure 1.9.: Rigid 3× 1 waterbomb tessellation. a) Flat origami before folding. b) Completely
folded origami, showing how the waterbomb tessellation is flat-foldable: every fold is
folded at 180◦. c) Side view of the completely folded origami, showing its layers of
different thickness. Photos: E. Bernardes.

These properties, together, make the magic ball a very flexible structure. It can be
easily actuated, and its number of degrees of freedom is proportional to the number
of cells. A magic ball with many cells (and a high number of degrees of freedom)
was used to create a soft gripper [18], for example (see Fig. 1.10). This gripper is
actuated by a vacuum system and. Even though it closes when the vacuum system
is activated, it is still relatively soft in order to fit the shape of the object.

Another use for the magic ball is the origami wheel [36]. In this design, a relatively
stiffer magic ball with fewer cells was used to create a wheel that changes its
diameter, in order to better adapt to different types of terrain.

One of the initial ideas for the OrigaBot project was to study the possible use of a
magic ball structure for a shape-shifting drone. In the end, the flexibility of the
magic ball turned out not to be useful on the project.

1.3.2. Bi-stability with the Kresling tower

The second origami-based structure of interest I studied was the Kresling tower.
Arguably simpler to design than the magic ball, it is a structure that converts a
rotating movement into a linear movement.
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Figure 1.10.: Gripper system using Waterbomb tessellation origami. (a) The working principle of
the gripper. (b) Origami “magic-ball” skeleton. (c)-(d) Prototype of the gripper
from different perspectives. Source: [18].

According to [43], we can fully define a general Kresling tower pattern by three
parameters: n, the number of sides of the polygon defining the cylinder, R, the
circumradius of the polygon, and λ, the helical angle ratio. These parameters are
enough to define all the other variables shown in Figure 1.11.

a = 2R sin
(π

n

)

b =
(

l2 + a2 − 2la cos(λθ)
)1/2

θ =
π(n− 2)

2n
l = 2R cos (θ (1− λ))

ri = R sin (θ (1− λ)) (1.1)

This structure also appears naturally when gluing paper into a cylinder and applying
a torque. This is illustrated on Fig. 1.12. Appendix C shows an analysis of the
spatial constraints when closing the structure.

A very important aspect of the Kresling tower, that separates it from the magic
ball, is the fact that the Kresling tower is not rigid-foldable (it cannot be
constructed from an infinitely rigid material). In order to make a foldable Kresling
tower, the material has to be flexible and/or elastic enough for deformations to be
possible during the folding process. This may appear as a shortcoming, but it is
directly responsible for making the Kresling tower bistable, which is key property
of which we plan on taking advantage for this project. This happens because when
the tower is actuated from one state to the other, its fold lines are briefly distorted
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Figure 1.11.: Geometry of the Kresling tower structure [43]. A The origami crease pattern for
the polygonal origami structure shown in B which is derived from the Kresling
pattern. Mountain folds are shown by solid red lines and valley folds are shown by
dashed blue lines. The parameters are: n, the number of sides, a is the polygon side
length, l is the diagonal valley-crease length, b is the side panel length, the angle θ
is half the internal angle of the basal polygon, and λ, the angle ratio, is a metric
of transformation between open and closed states and can vary between 0.5 and
1. Also note the rotation angle α of the top polygon about the axis shown in B.
The internal radius, ri defined with respect to the cavity formed by the valley-folds
while in the closed position is also shown in C.

and the facets are bent, which creates a maximum of stored energy. When this
energy curve is sufficiently steep, some energy must be applied in order to make the
tower go from one state to the other, creating a structure that has two equilibrium
positions: One low energy stable position, the fully open tower, and one high energy
unstable equilibrium. When this unstable equilibrium is sufficiently stable, we
managed to effectively create a bistable structure. Various assemblies of Kresling
cells can also be multistable [42, 43]: the authors of several studies have described
how to control the bistability of Kresling cells [29, 77]. Mathematically, there are
only two possible positions which respect the relationships found in Eq. 1.1.

Figure 1.13 shows an example of a 5 sided Kresling tower with 3 cells. If height
bi-stability is desired without rotation between the two extremities of a tower, it is
possible to achieve this by inverting the chirality of half of the cells, as shown in
Fig. 1.14.

It can be hard to predict when a Kresling tower will be flexible enough to fold
without tearing and, at the same time, be rigid enough to be bistable. The hardest
parameters to study, are it usually happens when studying origami-based structures,
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a) b)

c) d)

Figure 1.12.: Natural occurrence of Kresling pattern. a) Paper cylinder glued into rigid bases.
b) Torque applied to both sides. c) Cylinder closed after application of torque. d)
Opening of structure after having closed it on purpose. We can observe that the
folds created on the paper resemble those of a Kresling tower. Photos: E. Bernardes.

are the thickness and properties of the material, since they are both not taken into
account in the geometrical design of the origami pattern. The geometric parameters
are more easily analyzed, though, and also take part in it. We can summarize with
the following:

• The thicker the material, the stiffer the tower will be.

• The bigger the radius R, the bigger the tower, and the less stiff the tower will
be (since the ratio between thickness / scale will be smaller.)

• The bigger the number of sides N , the less stiff the tower will be, since it will
have more folds.

• The bigger the angle ratio λ, the stiffer the tower will be, since the fold lines
will be almost perpendicular as λ approaches the limit of λ = 1.

As it was not defined in the literature, a purely geometrical analysis was done
(which can be seen with more detail in Appendix D) to show that there are two
possible solutions for the stable heights:

z+ =

√

(l2 + b2)2 − 4R2

z− = 0 (1.2)

The solution z = z+ is accurate according to height measurements of many paper
Kresling towers. The solution z = z− = 0, though, is very inaccurate, as shown
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a) b) c) d)

Figure 1.13.: 5-sided Kresling tower with 3 cells. From a), with 0 cells collapsed, to d) with all
cells collapsed. Photos: E. Bernardes.

from all the pictures. This is because the properties not taken into account on the
geometric parameters (like thickness) have a strong influence on the structure. In
fact, the solution of z = 0 would implicate an absolute compression of the layers
of material against one another! The relationship in Eq. 1.2 can still be used to
somehow predict the height of the uncollapsed tower, though. Figure 1.15 shows
the comparison of the theoretical height of different towers and the comparison
with the actual heights from different sets of towers built with different materials.

Usually, R is fixed by some kind of constraint given by the project. We can also
choose N according to practical considerations. For example, for higher values of N ,
we have more folds which can be hard and unpractical to fold, specially with thicker
material. Figure 1.5 d) shows a Kresling tower with multiple cells and N = 16. It
was a very hard model to fold properly! Low values of N can also be bad, though,
since they lead to very small values for ri. In my tests, I usually fixed N = 8 as a
practical number that is not very high (easy to fold) but sufficiently large so that
the polygon defining the geometry of the tower resembles a circle sufficiently well
so that its interior can be well represented by the radius. Finally, the remaining
parameter is λ, which can be set as a stiffness parameter. This parameter can be
set in order to find the optimal stiffness and consequential bi-stability for the tower.
Figure 1.16 shows a comparison for λ varying from 0.5 to 1.0. We observe that
the towers get taller with increasing values of λ, and their internal radius at the
collapsed stage get smaller. Moreover, we note that the towers with λ = 0.5 and
0.6 are not bistable, so they only have the open, tall state. The tower with λ = 0.7
is bistable, but barely: simply touching it can cause it to change back to its tall,
low energy equilibrium. The tower with λ = 0.8 is very stable in both states and
easy to fold, while the tower with λ = 0.9 (also very stable) starts to be very stiff:
much force is needed to make it collapse, and we can see that the paper gets very
deformed after a single collapsing movement. This particular tower with λ = 1.0
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a) b)

Figure 1.14.: 8-sided Kresling tower with 2 cells of inverse chirality. They can be opened (a)
or closed (b) without rotating the top base with respect to the bottom base, at
the expense of having both cells actuated at the same time in opposite directions.
Photos: E. Bernardes.

Figure 1.15.: Analytical solution of the Kresling tower heights, compared to real tests. Ratio h

2R

in function of λ, R = 25mm and n = 8.

was too stiff to be folded. The paper got very deformed, and it was not possible
to keep folding it. We can notice on Fig. 1.16a how the towers with λ = 1.0 and
λ = 0.9 are deformed. This hints that we must perform a proper study of the life
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cycle of such a structure.

a) b)

c) d)

Figure 1.16.: Comparison of Kresling towers. All towers have R = 25mm, N = 8 and are made of
bi-laminated paper with thickenss = 0.2mm. The values for λ are, counterclockwise
starting from bottom left, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0. a) Side view, all towers open.
b) Side view, all collapsed. c) Top view, open. d) Top view, collapsed. Photos: E.
Bernardes.

A more in depth study of the control of the material deformation of the Kresling
tower, apart from its geometric considerations, was done by John Berre. His work
can be seen in [7, 8].

1.3.3. Prototype 1: Pendulum-driven robot with Kresling tower

The Kresling tower was studied for the OrigaBot project because of its ease of
construction, simple shape and bistable property. Moreover, its cylindrical shape
with variable height makes it a great option for a shape-shifting drone. The first
briefly considered shape was based on a single wheel, using the internal mass and
inertia of the non rolling parts to roll the outer wheel without rolling the internal
components (a full work on this type of robots can be seen in [11]). Being able to
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control such a prototype is important: when a twin-wheel robot is moving straight
ahead without turning, controlling it is essentially the same problem. We made
a very simple prototype consisting of a single origami wheel structure, that can
be seen on Fig. 1.17. Note that both sides of the structure are connected in this
experiment, while each of them is connected to a different motor. The actual
connection between the motor and the structure was made to be very thin: this
way, if there is some speed difference between both motors, the structure will break
(instead of the motors). The internal structure of the electronics is made in such

a) b)

c)

{

Figure 1.17.: a) Kresling tower serving as the whole external body and wheel of the robot. b) Side
picture showing the interior after installing the electronics. c) Schematic showing
the distance between the axis of rotation and the center of mass of the electronic
components. Photos: E. Bernardes.

a way that its center of mass is not centered along the rotation axis. This way,
we effectively create a pendulum-driven robot: actuating both motors creates an
angle α that forces the robot to move by directly increasing the rolling speed ϕ̇.
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Assuming a perfect rolling movement without slipping, the linear velocity of the
robot can be given by ẋ = Rϕ̇, where R is the wheel’s radius, as shown in Fig.
1.18.

a) b)

ϕ̇

ẋ

l

α P

W C

Figure 1.18.: a) Free-body diagram for the monowheel. Changing the pendulum angle α has a
direct effect on the rolling speed ϕ̇. b) Illustration of the angle α created by the
pendulum during movement.

A mathematical analysis of this kind of pendulum-driven robots can be seen in [75].
One surprising fact of this prototype is that while we planned on doing a controller
that acted on setting a different angle α for a given desired rolling speed ϕ̇, the
prototype worked well enough without any need of feedback control. This was a
good indication that this prototype could be made without many complications.
Figure 1.19 shows pictures taken during the tests. The monowheel prototype was

a) b)

Figure 1.19.: a) Picture taken from the monowheel moments before the test. b) Frame taken
from a video of the monowheel. Note that we can see the pendulum angle. Photos:
E. Bernardes.

a single test to see if the configuration of the monowheel moving straight ahead
would be a problem. We decided to proceed to the next prototypes before working
on an actual controller for this terrestrial robot.
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1.3.4. Prototype 2: Kresling-based origami twin-wheel

While the monowheel is simple to build, its movements are very limited: it cannot
turn while rolling. For this reason, a different prototype separating the monowheel
into two different origami wheels was studied, as shown in Fig. 1.20. Each wheel

a) b)

Figure 1.20.: a) Simple CAD of Kresling-based twin-wheel robot. b) Separated full wheel.

was conceptualized in order to have a latch system that would make it possible for
the robot to pass from rolling to flying mode. This latch system can be seen in
Fig. 1.21. The motor’s stator is fixed to the center of the robot’s main body via
an actuated sliding joint, as seen in Fig. 1.21 a. This body is then connected to
the Kresling wheel’s bottom part via a loose ball joint, which can also be seen in
Fig. 1.21 a. While the robot is in flight mode, the motor’s rotor is disconnected
to any other part of the robot and free to rotate. When the robot must enter the
rolling mode, the stator’s slide joint is actuated, putting the motor in the direction
of the robot’s center. This connects the rotor’s latch hook (as seen in Fig. 1.21
b) into the Kresling wheel’s latch socket, rigidly connecting them (Fig. 1.21 c).
The wheel’s latch socket was conceptualized to have a particular shape in order to
guide the latch pin during this movement. Note that the rotor’s structure is a very
particular one, consisting of many components. This is the swashplateless system
that will be explained with more detail in another chapter. In practical terms, for
now, this system makes it possible to control the direction of the rotor’s airflow.

This possible configuration would have two different regular modes of operation,
and an added transition mode:

• Flying mode: The robot is in vertical position, with two sets of mo-
tors+helices rotating in opposite directions.

• Rolling mode: The robot is in horizontal position, and each rotor is used to
perform differential control on the wheels.

• Transition mode: The robot uses the motors to change from a horizontal
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to a vertical position, or vice-versa.

The transition mode should be made possible with the use of the thrust vector
controllability given by the swashplateless mechanism (which will be explained in
Chapter 4).

a) b)

c) d)

Figure 1.21.: CAD details for the latch system. a) Joint schematics. b) Rotor latch hook. c)
Rotor latch hook connected to the wheel’s latch socket. d) CAD of the latch
connection, showing all components.

1.3.5. Other shapes and final considerations

One problem, found in this particular twin-wheel prototype, is that the swashplate-
less system might not be powerful enough to make the robot transform from the
horizontal to vertical mode consistently. This is one of the reasons that led us to
think of other possibilities. In the end, the robot shape of choice was a completely
different one: the flying monorotor (that will be explained from Chapter 5 until
the rest of this thesis). This is ultimately a complete change from the initial goals
of the OrigaBot project.

A last consideration though, considered before switching to the monorotor idea,
was a flexion based rotor. Instead of Kresling towers, a structure that adjusts the
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direction in which the motors are facing would greatly simplify one of the problems
of our twin-wheel idea, namely the change from horizontal to vertical position.
This is because the robot would be always be horizontal, and only the motors
would change direction. Figure 1.22 shows an example of this: both the twin-wheel
robot configuration is well understood and easy to implement, and the bi-rotor
configuration has also already been studied in the literature.

Figure 1.22.: Ground mode with a twin-wheel type robot and flight mode with a bi-rotor. On
the left, a BALA-C PLUS balancing robot: an example of a twin-wheel robot, with
the normal vector of the rotors parallel to the ground. On the right, the V-Coptr
Falcon UAV, a flying bi-rotor with the normal vector of the rotors pointing up. Is
there an origami structure that would help go from one configuration to the other
effortlessly?

A survey of literature quickly showed that there are no satisfactory bistable origami-
based structure able to do this movement. For example, Fig. 1.6 d illustrates the
twisted tower, but this structure is hard to create (since it is a modular origami)
and is not bistable. The structure that would fit our requirements the best is
the bendy straw, which is not an origami structure. Seeing this opportunity, I
succeeded in creating a new class of origami structures that do exactly this: the
origami bendy straw. The next chapter will describe this structure.
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This section presents a soft cylindrical multistable origami structure based on
“bendy straws”, consisting of multiple conical frusta mimicking the structure of a
flexible drinking straw. These frusta are connected in such a way that the whole
structure is axially multistable, having a stable compressed state in which its
smallest frustum is collapsed. The bendy straw structure can also be modified
so that the smallest frustum collapses only partially, keeping the structure in a
bent state. We studied the geometry of a similar structure consisting of polygonal
frusta instead of conical ones, and used this geometry to design a non-rigid-foldable
origami pattern folding into a similar origami bendy straw structure. Most of
the origami structures presented so far have been modeled from rigid-foldable
origami patterns: these origami structures do not rely on local deformations of
the sheet, and cannot use it to their advantage; whereas the non-rigid origami
structure presented here features multi-stability. We have established that this
origami structure is not only axially multistable, but that it can also be kept in a
bent state, thanks to the use of a Pop-Through Defect (PTD). The origami bendy
straws studied here were made from paper (with a density of 90g/m2) bi-laminated
with a 42.5-micron thick plastic film. A digital dynamometer was used to study
the forces required to compress and expand a single origami bendy straw, create
and reverse a PTD, and bend an origami bendy straw using PTDs. This chapter is
largely based on the results published in [5].

2.1. Introduction

Most of the origami patterns used so far have been based on rigid-foldable designs,
as in the case of the waterbomb tessellation pattern introducted in Chapter 1 (see
[36, 35]). Tessellation origami patterns, whether they are rigid-foldable or not, can
have useful properties, and existing patterns can sometimes be modified to endow
them with even more desirable properties [55, 56]. Non-rigid-foldable origami
structures have some useful properties, and can adopt various mechanically stable
states. Origami tubes are one particular class of 3D origami structures that hold
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great promise in fields such as medical robotics [15] and robotic manipulation, where
they can serve as grippers [18]. Origami tubes have been thoroughly studied and
modeled in recent studies [22, 21]. Among these tubular structures, the Kresling
tower is an origami-based structure of particular interest.

It is worth noting that bi-stability and even multi-stability can also be observed
in soft structures such as the common bendy straw, which can be either bistable
or multistable as required [2]. This was the starting point of our study on the
design and construction of a multistable origami tube. The present bendy straw
structure consisting of non-identical conical frusta can easily be made to become
axially bistable, which means that it can adopt two different states: a tall stable
state and a compressed state in which its smallest frustum is inverted. It is also
possible to add another stable state: when the structure has some built-in stress,
its frustum can become partially inverted, giving the structure a bent shape, the
direction of which can be continuously varied while maintaining the bent state [2].

One of the advantages of origami structures over those based on conventional bendy
straws is that they can be constructed from folded sheets of thin material. Origami
structures can be quickly and easily prototyped with paper (or laminated paper
to obtain greater rigidity while still keeping it thin and flexible, as described in
[14]), and subsequently replacing paper with other materials gives these structures
a durable life cycle, better shock absorption properties [57] and a low mass, while
maintaining their flexibility without any need for conventional joints. Origami
structures can also be easily produced in large numbers: laser-cutting is a much
faster means of creating an origami pattern than 3D printing or casting, as well as
being more precise than 3D printing.

In this study, we analyzed the geometry of both the original bendy straw, a
polygonal approximation of the bendy straw, and study for the first time an
origami structure we have called the origami bendy straw. It is worth noting that
this origami pattern is very similar to the previously presented Reconfigurable
Expanding Bistable Origami (REBO) pattern [12], but we have described here how
to introduce Pop-Through Defects (PTDs) in order to obtain the original bendy
straw’s bent position, which has never been applied so far to a REBO-like pattern.
We have also established how to calculate the lengths and angles of each crease in
the origami pattern in order to replicate a given bendy straw.

This paper focuses on the geometrical and design parameters required to construct
an origami bendy straw structure with any given height, radius and bending angle,
while analyzing the conditions under which the structure will be multistable. In
the Section 2.2, we describe the geometry of the bendy straw and introduce the
origami bendy straw pattern. In the Section 2.3, the force required to compress
and expand an origami bendy straw cell is analyzed. In the Section 2.4, we describe
how to modify the creases of the origami in order to replicate the bent state of the
bendy straw, while also analyzing the force required to bend it.
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2.2. Geometry and characterization

The circular bendy straw cell (as described in [2]) consists of a pair of conical
frusta. These bendy straws can be described in terms of the following parameters:
R, the external radius of the cell, the ratio ρ = r

R
between the internal and external

radii, and α1 and α2, the angles between the XY plane and the top and bottom
conical frusta, respectively. As shown in Fig. 2.1a, R, ρ, α1 and α2 can be used to

a)

R

r

b)

c)

Figure 2.1.: a) Picture of commercial flexible straw, with one of its cells in the detail, and
cross-section of a bendy straw structure, designed to replicate a flexible straw. The
angles α1 and α2 are the angles between the XY plane and the surfaces of the top
and bottom frusta, respectively. b) 3D model of an octagonal origami bendy straw,
showing the geometry of the top facets (in blue) and bottom facets (in red). Left:
Perspective view of a polygonal bendy straw, showing its external and internal radii.
Middle: side view showing the cell heights h1 and h2, the side lengths S and s and the
cell angles α1 and α2. Right: the facets shown in red and blue are flattened, and the
lengths and angles of the lines are shown. Note that when n → ∞: S, s → 0, b1 → l1,
b2 → l2 and β1, β2 → π/2. c) Origami bendy straw pattern used to produce the same
structure. Valley folds are in blue, mountain folds are in red, and the dashed black
line stands for a virtual fold that was removed (ρ = 0.5, n = 8, α1 = 35◦, α2 = 45◦,
2 stages).
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calculate r, the internal radius, h1 and h2, the heights of the two frusta as follows:











r = ρR

h1 = (R− r) tanα1

h2 = (R− r) tanα2

(2.1)

A polygonal bendy straw structure can also be defined as a similar structure, the
conical frusta of which are replaced by pyramidal frusta (truncated pyramids)
defined by n-sided regular polygons. To test whether the polygonal version had
similar properties to those of the conventional bendy straw, a 3D printer (Ultimaker
White TPU) was used to obtain a 3-stages polygonal bendy straw (see Fig. 2.2
a), with R = 25mm, ρ = 0.4, α1 = 45◦, α2 = 35◦ (setting α1 − α2 = 10◦), n = 8,
and thickness t = 2mm. The polygonal bendy straw structure was axially bistable

a)

b)

c)

Figure 2.2.: a) Polygonal bendy straws 3D printed with Ultimaker White TPU. We observed that
3D printed polygonal bendy straws seem to have similar properties to those of the
circular bendy straws. These polygonal bendy straws were 3D printed for the sake
of comparison, whereas all the other bendy straws used in this study were origami
bendy straws made of bi-laminated paper. b) Origami bendy straw version with a
similar structure. c) 12-stage origami bendy straw with an “S” shape. Half of the
cells bend in one direction, and the other half in the opposite direction. Parameters:
R = 25mm, ρ = 0.4, n = 8, α1 = 45◦, α2 = 35◦.

right after being printed. After undergoing pressure in its compressed state for
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about 5 minutes (as explained in [2]), it continued to be stable in the bent position.
As shown in the Fig. 2.1 b, each frustum constituting the polygonal bendy straw
structure was composed of multiple isosceles trapezoids. The angles and dimensions
of each trapezoid were calculated as follows:































S = 2R sin π

n

s = ρS

βi = cos−1
(

cosαi sin
π

n

)

li = (R− r) 1
cosαi

bi = li sin βi

(2.2)

for i = 1, 2

The origami pattern shown in Fig. 2.1c was constructed using the parameters
defined in the Eq. 2.3. The vertices of the origami bendy straw pattern meet for
flat foldability conditions only when β1 = β2, which is equivalent to α1 = α2. For
the fully compressed and collapsed stable state to exist, α1 ≠ α2 is therefore a
necessary condition. Otherwise, compressing the origami bendy straw will flatten
it instead of collapsing one of the frusta.

Note that the parameters in Eq. 2.3 are defined in such a way that, for a given
set (S, s, n, β1, β2), the folded origami bendy straw will be similar to a circular
bendy straw with the parameters (R, ρ, α1, α2). The parameters S and s are the
side lengths of the outer and inner polygons, respectively, defining the pyramidal
frusta. The perimeter of the outer polygon is given by P = nS = n2R sin π

n
. For

sufficiently large n (n → ∞), π

n
approaches 0. Which leads to the circumference of

a circle with radius R as follows:

P = 2nR sin
(π

n

)

= 2nR
(π

n

)

= 2πR (2.3)

When n → ∞: β1 = β2 =
π

2
, which is also expected to be the case, since all the

folds become increasingly similar to vertical lines when at large values of n.

The behavior of a single origami bendy straw cell with the parameters (R = 25mm,
ρ = 0.4, n = 8, α1 = 45◦, α2 = 35◦) was found to be similar to that of the original
bendy straw. This behavior was tested both by using an Origami Simulator [24,
62] and by hand-folding an origami bendy straw using normal (90g/m2) paper
bi-laminated with a 42.5-micron plastic film, on which the pattern was engraved by
means of a laser-cut machine (Trotec Speedy 100). Examples of both procedures
are given in Fig. 2.3. The extremities of the cell were fixed to a rigid polygonal
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a) b) c)

Figure 2.3.: Top view, side view and the simulated model for an origami bendy straw cell
(R = 25mm, ρ = 0.4, n = 8, α1 = 45◦, α2 = 35◦). a) Completely deployed. b)
Middle position. c) Completely compressed, with its smaller frustum reversed. The
completely deployed and middle position images of the simulation were vectorized
for this image. We did not vectorize the image of the completely compressed bendy
straw because we note that the simulation breaks at the fully compressed state: some
facets pierce through others.

support made of wood (keeping the boundaries rigid in order to keep the shape
of the bendy straw). This structure was also found to be axially bistable, which
indicates that the bi-stability of the origami bendy straw does not depend on the
use of elastic material. The height in each state can be easily calculated. In the
middle position, the height hmiddle was defined as follows:

hmiddle = h1 + h2 (2.4)

In the case of axially bistable origami bendy straws, it was observed that the
smallest frustum was fully reversed in the compressed position, as expected to
occur in the case of the original bendy straw. This assumption does not always
hold true, however, as can be seen from the insert in Fig. 2.4c, where only part
of the frustum is turned inside out, but when it does hold, the compressed state
hcompressed can be calculated as follows:

hcompressed = |h1 − h2| (2.5)

Contrary to what occurs with the original bendy straw, there is also a third fully
unfolded state, the height of which was denoted hexpanded which can be defined as
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follows:
hexpanded = b1 + b2 (2.6)

The measurements of the heights of several origami bendy straws were compared
with the expected heights given by the Eqs. 2.4, 2.5 and 2.6, as shown in the Fig.
2.4. Only small errors were observed between the predicted and measured heights of
the origami bendy straws in the unfolded state (mean error µ = −0.61mm, standard
deviation σ = 0.17mm) and the middle state (µ = 2.15mm, σ = 2.29m). The
largest error was obtained on the compressed state (µ = 6.71mm, σ = 7.23mm),
especially with the tallest origami bendy straw (see Fig. 2.4c). The bigger error
values for the origami bendy straws with α1 = 60◦ and α2 = 50◦ at the fully
compressed state were due to the partial reversal of the smaller frusta. This was
observed with the largest values of α1 and α2 (which are both greater than 50◦),
which resulted in larger measurement errors in the height of the structure in the
compressed state.
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a) b) c)

Figure 2.4.: Comparison between predicted and measured heights of various sets of origami bendy
straws with n = 8, R = 25mm, ∆α = 10◦ and ρ ranging from 0.2 to 0.7, having the
following parameters: a) α1 = 30◦, b) α1 = 45◦ and c) α1 = 60◦. It is worth noting
that excessively small heights make it impossible for the compressed stable state to
exist (the absence of some markers indicates that these origami bendy straws were not
in a stably compressed state). We can also note the large difference between height
measurements of the origami bendy straws in the compressed state with α1 = 60◦

and α2 = 50◦. This occurs because the smallest frustum is not completely inverted,
as it can be seen in the insert.
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2.3. Force study

A test bench was set up in order to analyze the forces exerted on the origami
structure during its compression and expansion (Fig. 2.5). Figure 2.6 shows the

A B

C

DE

Figure 2.5.: The low-cost custom-made test bench used to measure the forces applied to the
origami structure in (A). The force bench consisted of: a Sauter FH-20 digital force
gauge (B), an Igus DLE-SA-0001 linear actuator (C) driven by a Gecko micro-step
driver (D), and an Arduino Mega (E) controlling the motor driver and delivering
the measurements from the force gauge to a computer. With this force bench, we
expanded and compressed the origami structure in 0.027mm steps while measuring
the forces with a resolution of 0.01N.

expansion/compression force curves recorded with several origami bendy straws
and the heights predicted based on the equations (2.6), (2.4) and (2.5). Both curves
had very similar shapes featuring a hysteresis, but upon analyzing the absolute
values of the forces, the expansion and compression behaviors of the origami bendy
straws were found to differ considerably.

Figures 2.4 and 2.6 were compared in order to determine why the origami bendy
straws did not all adopt a stable, compressed state. The origami bendy straw cell
with the parameters (ρ = 0.7, n = 8, α1 = 60◦, α2 = 50◦) shown in Fig. 2.4c
did not reach a stable compressed state, and it can be seen from Fig. 2.6d that
the first force peak recorded with all the similar origami bendy straw was always
negative. The origami bendy straw with the parameters (R = 25mm, ρ = 0.5,
n = 8, α1 = 30◦, α2 = 20◦) shown in Fig. 2.4 did not remain stable either in
the compressed state. The largest version of the origami bendy straw, having the
parameters R = 40mm, ρ = 0.5, n = 8, α1 = 30◦, α2 = 20◦), shown in Fig. 2.6b
reached this state, but it was not very stable: simply touching the structure could
make it “pop” into another more stable state. The Fig. 2.6b clearly shows that
the force corresponding to the first peak remained positive only very briefly.

When a fully compressed origami bendy straw was expanded by hand beyond its
first force peak, (between the first two red dots in Fig. 2.6), the origami bendy
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Figure 2.6.: Force curves corresponding to the expansion (green) and compression (blue) of various
origami bendy straws. Purple lines give the theoretical heights of the structure in
the stable position predicted by Eqs. 2.5, 2.4 and 2.6. The middle stable position
predicted by Eq. 2.4 lay close to a point at which the force along the expansion curve
was zero. The actual point of minimum energy located near the fully extended state
was always less than that predicted by Eq. 2.6, and the force necessary to expand
the structure any further increased sharply. The fully compressed height predicted
by Eq. 2.5 was always the farthest away from the actual stable position, as was to
be expected, since this equation does not take into account the non-zero thickness of
the material.

straw quickly “snapped” into the next stable position, releasing the energy stored in
the inverted frustum. We then kept on expanding the origami bendy straw further,
but it did not show the same sudden response, which means that the origami bendy
straw had to be actively expanded until it was fully deployed. Trying to expand the
origami bendy straw even further would only have damaged the origami structure.

This behavior was not observed when compressing a fully expanded origami bendy
straw structure: the fact that the force never changed its direction indicates that
a constant compression force was required in order to compress the structure
(the “snapping” movement that jumped it into the next state was weaker in this
direction).
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2.4. Multi-stability with pop-through defects

The origami bendy straw cell is axially stable, but does not naturally stay in a bent
position. The original bendy straw is easily bistable, and can become multistable
(having multiple equilibrium positions) when built-in stress is introduced into the
structure, as described by [2] (a new “bent” state is added, so the bendy straw
now has three different stable states, and thus becomes multistable). One way of
putting the origami bendy straw into a new stable position is to change the folding
of some creases. In order to introduce a similar bent position into the origami
bendy straw, while avoiding the need to make them out of elastic or stretchable
material, we studied the effects of inverting the folds of some creases.

A pop-through defect (PTD) [61] was used here: pressure was applied to some
vertices of the structure until it inverted its folds, popping into a different mechani-
cally stable state. By using a PTD to “program” the state of the material, some
parts of the structure can be made more rigid. Adding a PTD to one side of an
origami bendy straw (as in the Fig. 2.9) makes this side stiffer and keeps it in an
unfolded position. Instead of being compressed, the origami bendy straw bends
towards the opposite side. By choosing where to put the PTDs, more complex
structures can be created (see the Fig. 2.2c).

Our radially oriented paper origami bendy straw structure was then installed on
the force bench, and a force of about 1.5N was found to be required to either make
the vertex pop into a PTD or reverse it back into its original position. In the
Figures 2.9 a and b, comparison are made between the crease assignments observed
before and after creating a PTD: the Fig. 2.9d shows the force produced during
this process.

2.4.1. Bending angle

It was tricky to find an analytical expression for θstable, the angle of the stable bent
position, but the maximum bending angle θmax could be calculated (as in the Fig.
2.7) as follows:

cos(θmax) = 1−
(b1 + b2)

2 −∆L2

2L(L+∆L)
(2.7)

In which the exact expressions for both L and ∆L depend on whether n is an even
or odd number. With an even-numbered n, the bending movement occurs from
one side to the opposite side of the polygon. L is the diameter of the inscribed
circle of the polygon, as shown in Figure 2.7 c. The radius of this inscribed circle is
equal to the apothem of the polygon, which is A = R cos π

n
. In addition, the facets
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of height b1 and b2 touch when fully bent, giving the following expression for ∆L:

{

∆L = |b1 − b2|

L = 2R cos(π/n)
(2.8)

With an odd-numbered n, the bending angle occurs from one side of the polygon
to the opposite vertex. L is the sum of the radius of the inscribed circle (A) and
the radius of the circumscribed circle (R), as shown in Figure 2.7 d. Moreover, this
time, the lines of length l1 and l2 are touching, giving a different expression for ∆L:

{

∆L = |l1 − l2|

L = R(1 + cos(π/n))
(2.9)

It is worth noting that the Eq. 2.7 is always independent of R (both the numerator
and the denominator are proportional to R2). In addition, ∆L depends on α1 − α2.
As this difference becomes smaller, ∆L becomes negligible.

The Fig. 2.8 shows the measured stable and maximum θ recorded in the case of
several origami bendy straw cells. The measurements of the θmax matched the
predictions quite closely. In addition, the relationship between θstable and θmax was
found to depend on α1 and α2. With the samples made of bi-laminated paper,
we observed, as shown in Fig. 2.8, that with α1 = 45◦ and α2 = 35◦, we have
θmax ≈ 2 θstable. To design a mechanism using a different material (with different
mechanical properties, thickness, etc.), a similar study can be performed in order
to obtain the exact parameters required.

2.4.2. Using two equal frusta

In the case of applications that do not require the compressed state, we can set
α = α1 = α2. The origami bendy straw will not have a stable compressed state
in this case, since instead of having an inverted frustum, the origami bendy straw
cell will become flat-foldable. In this case, ∆L = 0 in both the even and odd cases,
and it can be established that:

sin(θmax/2) =
1− ρ

2 cos(π/n)

√

tan2(α) + cos2(π/n), for even n (2.10)

sin(θmax/2) =
1− ρ

1 + cos(π/n)

√

tan2(α) + cos2(π/n), for odd n (2.11)

This equation was used to find the ρ required to obtain a given set of α, θ and n
(Figure 2.7 e, f).

To study the force required to bend an origami bendy straw cell, we built a
mechanical support consisting of a sliding joint and a ball joint. This support was

61



2. Design of an origami bendy straw for robotic multistable structures – 2.4.

Multi-stability with pop-through defects

connected to the tip of the force gauge and to one of the ends of an origami bendy
straw, and the latter was then installed 2.5cm to the right so that the force was
applied off-center. While measuring the force, a camera mounted on top of the test
bench recorded the whole test. This video was then analyzed with Physlets Tracker
[67] in order to measure the bending angle of the origami bendy straw (Fig. 2.9).
The stable position was found to match one of the zeroes of the expansion curve,
and the maximum bending angle was found to be 35◦, as predicted by the Eq. 2.7.
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Figure 2.7.: Maximum banding angle of origami bendy straw. a) Origami bendy straw with
the parameters R = 40mm, ρ = 0.4, α1 = 50◦ and α2 = 35◦ forced to reach the
maximum bending angle. b) Simplified geometry of the maximum bending angle. c)
An even-numbered polygon, from which we can deduce that L = 2A = 2R cos(π/n)
(A is the apothem of the polygon, which is the equal to the radius of the inscribed
circle, drawn here in blue). d) An odd-numbered polygon, from which we can
derive that L = R+A = R (1 + cos(π/n)). e-f) Two different origami bendy straws
produced with R = 25mm, showing how many cells are required to obtain a 180◦

bent origami bendy straw. e) n = 6, ρ = 0.4558, α1 = α2 = 25◦, producing cells
with θ = 36◦. f) n = 7, ρ = 0.3624, α1 = α2 = 35◦, producing cells with θmax = 45◦.
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a) b) c)

Figure 2.8.: Measured stable and maximum bending angles in various sets of origami bendy straws
with n = 8, R = 25mm, ∆α = 10◦ and ρ ranging from 0.2 to 0.7, with the following
parameters: a) α1 = 30◦, b) α1 = 45◦ and c) α1 = 60◦. Note that in this case
(α1 = 60◦ and α2 = 50◦), the two bendy straws with ρ = 0.2 and ρ = 0.3 could not
be bent all the way to the theoretical max bending angle without tearing it.
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a) b) c)

d)

e)

Figure 2.9.: Force test of origami bendy straw during bending movement. a) Original origami
bendy straw before PTD. b) Same origami bendy straw after creating a PTD. c)
Use of the test bench with the custom-made sliding mechanical support, allowing
the origami structure to bend while the force is being measured. d) Force necessary
to compress/expand the vertex of the laminated paper origami bendy straw and to
pop it from one state into another. The dashed ellipses on the image indicate the
moment when the vertex popped into a different state, showing how the force suddenly
changed at that moment. e) Force curves measured while the origami bendy straw
was performing a bending motion: expansion (in green) and compression/bending (in
blue). We noted that the stable bending angle θstable measured (about 20◦), which is
indicated by the dotted red line, was close to the angle at which the force measured
on the expansion curve was equal to zero. Parameters: R = 40mm, ρ = 0.4, α1 = 45◦

and α2 = 35◦.
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2.5. Conclusion

Non-rigid-foldable origami patterns are rather complicated to analyze, but they
also promise to have some useful properties that are worth exploring. The origami
pattern presented here, which replicates the bendy straw structure, could be used
for many robotic applications. An origami bendy straw in which one of the sides of
each cell is rigidified with a PTD could be used for example to design robotic arms
[30]. Since a structure in this configuration naturally bends to the side opposite to
the PTD, it could be easily actuated, for example, using shape-memory alloy [31].
The possibility of easily constructing several bendy straw structures is liable to be
useful for prototyping future applications, since the large number of parameters
involved makes it difficult to predict all the properties of these structures without
testing them. The present origami version of the bendy straw takes much less time
to produce than large numbers of 3D printed bendy straws or a single large bendy
straw. In addition, PTDs provide a useful means of putting an origami bendy straw
structure in a new bent state that would otherwise not be stable. Thanks to the
use of PTDs, multi-stability and adjustable stiffness can be obtained much more
easily than with the built-in stress method based on the use of TPU material to
make soft bendy straws. In future studies, it is planned to investigate how PTDs
may serve to develop actuators such as shape-memory alloy actuators embedded in
a structure, making it possible to change its state dynamically as required.
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3. Introduction

Unmanned Aerial Vehicles (UAVs) are becoming ubiquitous, with their possible
uses ranging from professional, to personal or even rescue applications [1]. Fully
actuated multi-copters (and specially, quadcopters) are by far the most common
type of UAVs: they are cheap to build, mechanically simple, easily controllable and
the use of multiple rotors allows the thrust force and the torques to vary within a
broad range.

Nevertheless, different UAV configurations exist with different sets of advantages
and disadvantages. The Gemini [51] uses a bi-rotor configuration based on tandem
helicopters that is arguably more energetically efficient and easier to scale while
maintaining the same width for indoors applications. However, Gemini features a
relatively important mechanical complexity due to the use two additional servo-
motors in order to produce a roll motion. The Agile [52] is a quadcopter that
reduces its width temporarily by folding itself, maintaining at most times the easy
controllability of a quadcopter, at the cost of one servo motor and the need of
producing aggressive movements while folded.

Highly underactuated UAVs using a single rotor are also of great interest: they can
be easier to miniaturize, like the Piccolissimo [48], and even be designed in such a
way that an active control is not needed for achieving stable hovering flight [47].
An interesting subclass of these monorotor drones are mono-wing drones, like the
ones proposed in [74, 73]. These are usually inspired by the flight of the samara
winged fruit/seed [41]. Moreover, their power efficiency is also of great interest [25].

In [38] the authors also studied solutions for a relaxed definition of hover for
different configurations of motors pointing in the same direction. The same authors
also studied the related problem of controlling a quadcopter under the failure of
one or several motors [39]. In [78] and [79] an example of how to maintain position
control using a single motor is shown.

There are also different efforts for reducing the mechanical complexity while main-
taining full controllability. For example, [66] studies the design of a gyroscopically
controlled micro air vehicle. Another elegant effort to achieve the same controlla-
bility is cyclic flapping by torque modulation [45, 46]: By attaching the tip of each
blade of the rotor on a specialized kind of passive hinge assembly, and then cyclically
accelerating and decelerating the rotation speed of the rotor, a vector thrust control
is achieved without the need of additional servomotors or complicated swashplate
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mechanisms. A coaxial bi-rotor UAV based on this technology was demonstrated
[44], and more recently, the Gemini-II [50], a follow-up to [51] that replaces both
servomotors by a swashplateless cyclical system was also demonstrated successfully.

Most of the work in this study aims at developing a monospinner, i.e., a monorotor
UAV, capable of maintaining both reduced attitude and position control with a
single rotor. The following chapters in this work analyze different aspects of the
monospinner project:1

• Chapter 4 describes the swashplateless mechanisms and documents the process
of building it for the OrigaBot project.

• Chapter 5 describes the different parts of the monospinner vehicle, its general
working principles and properties.

• Chapter 6 develops the Equations of Motion used for the simulation and
describes the methodology used to derive them by means of the Euler-Poincaré
equation, a special form of the Euler-Lagrange equation that can be used
when the space of configurations is a member of a Lie group [49, 76] of
transformations.

• Chapter 7 a novel kind of quaternion decomposition intro uncontrollable spin
and controllable attitude components.

• Chapter 8 develops a non-linear family of control laws using the decomposition
developed in Chapter 7.

• Chapter 9 develops a closed-loop simulation of the complete monospinner
system submitted to disturbances.

As an extra, Chapter 10 describes a new formula for the direct conversion of a
quaternion variable to a set of Euler angles in any sequence.

Note that, in this work, we will not present any experimental results with a flying
monorotor: we focus on doing a thorough theoretical analysis of the problem of
modeling and controlling this proposed monorotor UAV.

1Chapters 5, 6, 7, 8 and 9 have been submitted for publication in [4].
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Nomenclature

eeex

Unit vector aligned with the x-axis. 188

eeey

Unit vector aligned with the y-axis. 188

eeez

Unit vector aligned with the z-axis. 188

fp

Thrust force from rotor. 84

τp

Thrust torque from rotor. 84

BBBτ

Matrix modeling the relationship between thrust force and total torque. 107,
235

kf

Constant ratio between thrust force from rotor and the square of the rotor
angular speed. 70, 84

kτ

Constant ratio between thrust torque from rotor and the square of the rotor
angular speed. 70, 84

k

Ratio between kτ and kf . 84

γ

Instantaneous angular position (revolution) of rotor blade. 71, 78, 99
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γ̇

Derivative of γ, angular velocity of the rotor around the z-axis in its own
frame. 100

β

Precession angle of rotor blade, and phase for swashplateless system. 78, 99

α

Nutation angle of rotor blade, related to the amplitude voltage for the swash-
plateless system. 99, 100

V

Constant voltage component, in Volts. 78

Ṽ

Sinusoidal voltage term, in Volts. 78

Ṽa

Input polar amplitude, in Volts. 78

Bb

Main drone body. 71, 96

Bs

Battery body. 71, 96

Bp

Rotor system body. 71, 96

FS

Frame attached to the battery body Bs. 96

FB

Frame attached to main drone body Bb. 96

FP

Virtual frame attached to rotor system body Bp. 96

FE

Inertial frame. 98
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hS

Distance between centers of mass of main body and battery. 96

hP

Distance between centers of mass of main body and rotor. 99

mb

Mass of main body. 96

ms

Mass of battery. 96

mp

Mass of rotor. 96

m

Total mass of drone. 103

∆m

Quantity modeling the pendulum-like effect of the masses away from the
center of mass of the main body: ∆m = mshS −mphP . It’s important to
note that mshS ≫ mphP . 104

JB
b

Inertia matrix of main body in body frame. 96

JS
s

Inertia matrix of battery in battery frame. 96

JP
p

Inertia matrix of rotor in virtual rotor frame. 96

JB
p

Inertia matrix of rotor in body frame. 102

JJJ

Total inertia matrix body frame in body frame. 103

RE
B

Rotation matrix from main body’s frame of reference to inertial frame, also
written as R for simplicity. 73, 98, 116
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R

Simplified notation for RE
B. 72, 116

RB
P

Rotation matrix from rotor’s virtual frame of reference to main body’s frame
of reference. 99

gEB

Full transformation from main body’s frame of reference to inertial frame,
also written g for simplicity. 73, 98, 116

g

Simplified notation for gEB . 73, 116

gBP

Full transformation from rotor’s frame of reference to main body’s frame of
reference. 99

qEB

Quaternion representing rotation from main body’s frame of reference to
inertial frame, also written as q for simplicity. 73, 116

q

Simplified notation for qEB . 73, 116

qa

Reduced attitude quaternion. 120

qs

Spin quaternion. 120

θs

Spin angle. 124

ωωωa

Angular velocity of reduced attitude quaternion. 120

ωωωs

Angular velocity of spin quaternion. 120
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Nomenclature

sssEB

Position of main body’s frame of reference in the inertial frame, also written
as sss for simplicity. 74, 98, 116

sss

Simplified notation for sssEB. 74, 116

ΩΩΩP
P/B

Full angular velocity between the body and the propeller in the propeller
frame, also written as ΩΩΩ for simplicity. 74, 100, 111

ΩΩΩ

Simplified notation for ΩΩΩP
P/B. 74, 103, 111

ωωωP
P/B

Angular velocity between of the virtual rotor frame w.r.t. the main body
frame, usually considered ≈ 000. 100

ωωωB
B

Total angular velocity of the main body frame of reference, also written as ωωω
for simplicity. 74, 98, 101, 111

ωωω

Simplified notation for ωωωB
B. 74, 111

vvvBB

Total linear velocity of the main body frame of reference, also written as vvv
for simplicity. 74, 98, 101, 111

vvv

Simplified notation for vvvBB. 74, 111

ηBB

Inertial twist of the body: ηBB =

[
ωωω
vvv

]
, also written as η for simplicity. 74, 103

η

Simplified notation for ηBB : η =

[
ωωω
vvv

]
. 74, 103

ΩΩΩP
P

Total angular velocity of the virtual rotor frame of reference w.r.t. the inertial
frame. 100
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Nomenclature

vvvPP

Total linear velocity of the virtual rotor frame of reference w.r.t. the inertial
frame. 100

PPP

Nonlinear attitude controller term. 136

KKKp

Proportional term of a PID controller. 137

KKKd

Differential term of a PID controller. 137

KKKi

Integral term of a PID controller. 137

Ad

Adjoint representation of a Lie group. 101

ad

Adjoint representation of a Lie algebra. 112

rrr

Thrust direction vector. 105

T

Total kinetic energy. 103

FB
ext

Sum of external forces acting on the main body. 104

nnnb

Normal vector. 76, 132

mmmmmmmmm

Middle (half-way) normal vector. 76, 122, 133

ωωωr

Desired angular velocity. 137

q̄

Desired orientation quaternion. 134
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Nomenclature

n̄nn

Desired normal vector nnnb. 134

m̄mmmmmmmm

Desired middle normal vectormmmmmmmmm. 134

τττ c

Attitude correction torque. 137

fff c

Attitude correction force. 137

ψ

Spin angle estimation error. 150
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4. Motor and vector control with
swashplateless system

Reducing the number of motors in a flying drone can drastically reduce the
vehicle’s controllability, and a monorotor is an extreme example of that. In order to
maintain some level of controllability while still using a single motor, a specialized
swashplateless system based on [45, 46, 44] was used in order to help us achieve
vector control of the thrust vector.

This type of swashplateless mechanisms can be very efficient in simplifying the
mechanical complexity of already existing systems. A good example of that can be
seen in the works of Qin: [51] describes the Gemini I, a bi-copter that relies on a
central servomotor system to tilt both rotors in order to have full controllability.
On the other hand, [50] describes the Gemini II: a revised bi-copter drone published
by the same team, in which they greatly simplified the construction of their drone
by using swashplateless mechanisms and removing the need of a servomotor to tilt
the motors.

In this chapter, we will describe the steps done to reproduce this swashplateless
system for the OrigaBot project, which was a crucial part of the monorotor project.

4.1. Working principle

In order for a pilot to be able to control the flight of a helicopter, their commands
must be translated into movements on the rotor blades. The swashplate mechanism
is a crucial mechanical device that enables this control of the helicopter. This device
is a rather complicated mechanical assembly, consisting of many pieces (see Fig.
4.1). But when properly set up, it allows the pilot to adjust the radial orientation
of one or more blades to create various pitching and rolling movements.

In contrast with traditional helicopter design, most small indoor UAVs are quadro-
tors. These drones use multiple identical rotors to create both thrust and torques
necessary for position and attitude control. The OrigaBot project was mainly
interested in developing new drone designs that take advantage of the shape-shifting
capabilities of origami structures and their easy fabrication in order to lower both
the number of actuators (using fewer rotors than a conventional quadrotor) and
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Figure 4.1.: Swashplate on a radio-controlled helicopter. 1 Non-rotating outer ring (blue); 2
Turning inner ring (silver); 3 Ball joint; 4 Control (pitch) preventing turning of outer
ring; 5 Control (roll); 6 Linkages (silver) to the rotor blade. Source: Wikipedia.

complex mechanisms (like the swashplate). This is the reasons why a big part of
my work was focused on the reproduction of a swashplateless mechanism as first
published by James Paulos and Mark Yim in [45].

This mechanism works by replacing all the complicated mechanical assemblies of a
swashplate (and their respective actuators) and replacing them by a simple passive
hinge assembly, as seen in Fig. 4.2. The key to make this work is a specialized
motor control: instead of controlling the rotor’s rotation to a constant speed, a
sinusoidal term is added to it, with a frequency equal to 1/rev. As seen in [44], the
sinusoidal voltage Ṽ term added to the rotor controller can be expressed as:

Ṽ = Ṽa cos(γ − β − β0) (4.1)

And the total voltage is:

Vtotal = V + Ṽ (4.2)

Where V is the constant voltage component, Ṽa is the input polar amplitude, γ is
the instantaneous rotor angle, β is the derived input phase and β0 is a constant
angle accounting for the orientation of the motor with respect to the drone. We can
clearly note from Eq. 4.1 that the exact position of the rotor must be measured,
which is achieved with a magnetic encoder.

By having an oscillating rotation speed for the motor, the inertia of the blades will
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full rotor system

a)

b)

Figure 4.2.: a) Hinged propeller components for swashplateless system. Source: [45]. b) Schematic
showing the hinges. Adapted from [46].

naturally actuate the lag-pitch hinge (as shown in Fig. 4.2b): each blade will go to
a maximum of inclination in one direction when γ − β − β0 = 0 and again in the
opposite direction when γ−β−β0 = π. The lag-pitch is inclined, thus creating the
flapping motion as desired. Note that the flap hinges also have an important job:
to relieve the kinematic constraints on the assembly and allowing for a smoother
sinusoidal flapping motion [46].

4.2. Reproduction of full rotor system

To reproduce a fully working swashplateless system, two distinct parts must be
manufactured:

1. The motor, with its controller and necessary encoders.

2. The swashplateless assembly.
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full rotor system

Instead of reproducing the motor with its necessary magnetic encoder and con-
troller, we instead ordered a set of motors from Vertiq1. The company, started by
the researchers behind the original swashplateless publications, sell motors with
everything already integrated, including an easy-to-use firmware and the necessary
connections for UART messaging with an autopilot. This greatly simplified the
complexity of the project, making it possible for us to spend more time working on
other aspects of the drone. Figure 4.3 shows both motor modules used during the
project. First, we used a F20 II motor with added custom controller and firmware

Figure 4.3.: Motors provided by Vertiq (former IQ-Motion). On the left, a F 20 II motor with a
custom magnetic encoder, controller, and firmware installed by Vertiq. On the right,
a Vertiq module.

from Vertiq, smaller than their regular products (on the left in Fig. 4.3). Then we
decided to stick to their slightly bigger regular module (on the right in Fig. 4.3).

The swashplateless assembly, however, was not yet available to buy from Vertiq2,
so we had to make our own. The reproduction of this device was one of our main
tasks. The first versions built for the product were made by Yahia Mallem during
his internship at the ISM Biorobotics team in 2019. As seen in Figure 4.4, these
first versions were rather small (30mm total length), and were created using a
Formlabs Form 23 resin printer.

Figure 4.4.: First swashplateless assemblies produced at ISM Biorobotics.

1Formerly known as IQ-Control: https://www.vertiq.co
2According to their website (last accessed on November 23rd 2022), a first commercial version is
planned to be released in Q1 2023.

3https://formlabs.com/
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These first versions were too fragile to be used in an actual drone, even a small
one: they only lasted for some minutes of testing. But they were resistant enough
to prove, during Mr. Mallem’s master thesis, that this system worked as expected.
Many new and different swashplateless devices were 3D printed and assembled
after Mr Mallem’s work was done, mostly using more standard filament printers.
Some of them can be seen on Fig. 4.5. A key difference we adopted is to follow the
design used in [44]: instead of two separate flap hinges, we use a single teetering
hinge. We assembled a simple gimbal system for preliminary experiments with

Figure 4.5.: Some 3D printed swashplateless assemblies. The one on the left was printed on an
Ultimaker S5 using ABS plastic. The assembly on the right was printed on a Volumic
MKII printer, using PLA plastic.

these swashplateless assemblies (see Fig. 4.6).

These new swashplateless assemblies needed to be bigger and more resistant, in
order to assess the problem of longevity of the first smaller versions. When the
decision to make a monorotor drone was made, it was clear that the pieces would
have to be even tougher: a single rotor would have to be able to produce enough
thrust for the flying vehicle, which is only possible by greatly increasing the rotor
mean velocity. To illustrate this, supposing the rotor follows the usual thrust
model:

fp = kf |ΩΩΩ|
2 (4.3)

And supposing the hover condition:

∑
fp = mg (4.4)

Then, with two motors, supposing m = 0.4kg, g = 9.8m/s2 and assuming a
measured value of kf = 2,48 · 10−5N/(rad/s):

2fp = mg

2kf |ΩΩΩ|
2 = mg

|ΩΩΩ| =

√
mg

2kf

|ΩΩΩ| ≈ 281rad/s (4.5)
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a)

b)

Figure 4.6.: First gimbal system used to test the swashplateless device. a) Unloaded. b) Loaded
with a Pixhawk Mini 4 card controlling the Vertiq module.

While with a single motor:

fp = mg

kf |ΩΩΩ|
2 = mg

|ΩΩΩ| =

√
mg

kf

|ΩΩΩ| ≈ 397rad/s (4.6)

This larger velocity greatly affects the longevity of the swashplateless device. After
some months of testing, we decided that it would be easier and safer to have the
new pieces made of aluminum instead of plastic. On Fig 4.7 we can see some
swashplateless devices made of metallic parts built by our colleges at the ICube
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lab in Strasbourg4. These swashplateless parts were very resistant: even after 4
months of intensive tests, they were still holding, albeit with clear marks of use
around the axes5.

a) b)

c) d)

Figure 4.7.: Aluminum swashplateless devices made and assembled at ICube. a) First version,
side view. b) First version, bottom view. c) Second version, side view. d) Second
version, bottom view (note the use of 4 small screws).

A last problem with these pieces from Fig. 4.7 a and b is that they are mounted on
the motors using a single central screw. This has one big disadvantage: every time
the piece is mounted on the motor, the exact angle with respect to the motor’s
stator must be calculated. Otherwise, it is impossible to correctly produce thrust
and torques in the required direction. In technical terms, we need to recalculate
the parameter β0 as shown in Eq. 4.1. I have tried, at first, to create a software
solution6 to this, by using the internal IMU’s rotation estimation to calculate it.
A much better solution to this was to ask for our ICube colleges a new modified
piece which is mounted with 4 screws instead. This greatly simplifies the problem,
and the only possible values for the angle are: β0 ∈ [0◦, 90◦, 180◦, 270◦]. This new
modified piece can be seen in Fig. 4.7 c and d.

4In particular, I would like to thank Mr Léo Wurtz for his precious help with this task
5Our axes were simple thin aluminum rods. A real ball joint could be used for more longevity.
6And it was a frustratingly bad idea.
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4.3. Motor characterization

The firmware provided by Vertiq/IQ Motion Control can be controlled with any of
its 4 available APIs: Python, MATLAB, Arduino, and C++7. In order to simplify
the future integration with the drone, I decided to make all of my tests using the
C++ API8. Details concerning the integration with the autopilot can be read on
Appendix E. Both the rotor’s thrust and torque are usually modeled with a square
relationship on the rotor mean rotation speed:

fp ≈ kf |ΩΩΩ|
2

τp ≈ kτ |ΩΩΩ|
2 (4.7)

Where kf and kτ are constants. We also define their ratio k:

k =
kτ
kf

(4.8)

In order to estimate the parameters fp and τp, which mostly depend on the wings,
we used a Series 1580 Test Stand from Tyto Robotics. This particular test bench
can “Measure up to 5 kgf of thrust and 2 Nm of torque. . . ”, which was more than
enough for our needs. Figure 4.8 shows one of our Vertiq modules mounted on our
Series 1580 Test Stand. Figure 4.9 shows the curves for both the thrust force and
torque produced by our motor and blades.

Figure 4.8.: Vertiq module on Tyto Robotics Series 1580 Test Stand.

A last useful characterization made with the test stand was the voltage / speed
ratio. The Vertiq firmware accepts both a required mean rotation speed |ΩΩΩ| or the

7The C++ API can be found here: https://github.com/iq-motion-control/iq-module-
communication-cpp

8The code I used can be found here: https://github.com/evbernardes/IQ Motor CPP/
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mean voltage V as an input. For consistency with the pulsating voltage Ṽ , we
decided to use the voltage mode. We compared both values using an optical probe
also provided by Tyto Robotics9. Figure 4.10 shows the curves. We notice that the
relationship is linear:

|ΩΩΩ| ≈ c · V (4.9)

For our particular system (rotor + blades), the coefficient is: c ≈ 134 (rad/s)/V .
In comparison, the same test with the unloaded Vertiq module (no swashplateless
device or blades) gives c ≈ 202 (rad/s)/V .

Figure 4.9.: Thrust force and torque curves measured with test stand. In this particular test, we
see that we can estimate kf = 2,48 · 10−5 and kτ = 5,01 · 10−6, which give k ≈ 0.2.

9https://www.tytorobotics.com/products/optical-rpm-probe-v2-2-for-series-1580
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Figure 4.10.: Rotor speed / Voltage curve. In this particular test, the relationship was practically
linear and the ratio was about c = 134.875, with a coefficient of determination
R2 = 0.9831 and a maximum error of 30rad.
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4.4. Vertiq module command method

This section discusses how to map the controller output to desired rotor commands,
namely, the rotor mean velocity γ̇, its corresponding mean voltage V , the pulse
voltage amplitude Ṽa and the pulse phase β.

To control the motor and swashplateless mechanism, the following parameters were
set on our custom PX4 fork:

• PROP MAX SPEED: the maximum rotation speed of the rotor, in rad/s. Typi-
cally, around 1000rad/s.

• VOLTAGE COEF: the measured ratio between the resulting motor speed γ̇ and
applied mean voltage V , given in (rad/s)/V . Typicality between 130 and 200.

• PROP MIN PULSE: the minimum pulse voltage Ṽmin, in volts. Typically, around
0.2 volts.

• PROP MAX VOLTAGE: the maximum allowed voltage V + Ṽa, in volts. This
security parameter is used to limit the total peak voltage, acts by limiting Ṽ
if their sum is bigger than the max voltage. Typically, around 8 volts (must
be bigger or equal to PROP MAX SPEED/VOLTAGE COEF).

Internally, PX4 passes the desired control output as a 4 valued vector called
actuator control, in which:

• actuator control[0]: roll, manually, or calculated from the controller. Values
in range: [−1, 1].

• actuator control[1]: pitch, manually, or calculated from the controller.
Values in range: [−1, 1].

• actuator control[2]: yaw, not used in this project, since we cannot directly
control the yaw.

• actuator control[3]: thrust, passed directly from the manual control. Values
in range: [0, 1].

Calculating the mean voltage is simple:

γ̇ ← actuator control[3] ∗ PROP MAX SPEED

V ← min [PROP MAX VOLTAGE, γ̇/VOLTAGE COEF] (4.10)

The pulse phase is also very simple to calculate, but we must make some special
care to account for frame transformations:10

β ← atan2 (−actuator control[1], actuator control[0]) (4.11)

10PX4 uses the North-East-Down (NED) frame convention instead of East-North-Up (ENU).

87



4. Motor and vector control with swashplateless system – 4.4. Vertiq module

command method

The pulse voltage Ṽa, though, is slightly harder. We know it is proportional to the
following amplitude variable:

a←

√
actuator control[0]2 + actuator control[1]2

2
(4.12)

In which a ∈ [0, 1]. We then tested two methods:

4.4.1. Direct voltage amplitude input

In this first method, the variable a from Eq. 4.12 is used directly. First, we set the
following new parameter:

• PROP MAX PULSE: Maximum value for pulse voltage, usually around 3V .

Then we calculate the pulse directly, set it to zero if smaller than lower bound, and
limit it if bigger than total accepted voltage:

Ṽa ← a ∗ PROP MAX PULSE

Ṽa ← 0 , if Ṽa < PROP MIN PULSE

Ṽa ← min
[
Ṽa, V

]

Ṽa ← min
[
Ṽa, V − PROP MAX VOLTAGE

]
(4.13)

This method is direct and simple, but has a fundamental problem: The pulse voltage
has no direct relationship with the mean voltage V or, equivalently, the motor
mean velocity γ̇. For example, when controlling the motor with γ̇ = 200rad/s at a
velocity-voltage ratio of 130, the mean voltage is around 2 volts. If the maximum
pulse voltage PROP MAX PULSE is around 3.2 volts, then even at half the max voltage,
the pulse is already as big as the mean voltage, creating a pulse that is so big that
the instantaneous velocity of the motor reaches 0. This creates an unstable flapping
movement on the swashplateless device. Conversely, when turning the motor at
higher mean velocities, the pulse voltage to mean voltage ratio might be too small,
creating a flapping motion that is not strong enough. To solve this, the following
alternative strategy was implemented:

4.4.2. Proportional voltage amplitude input

In this strategy, the following parameters are introduced:

• PROP MAX COEF: Maximum value for the ratio between the pulse voltage and
the mean voltage, maximum value is 1. Usually around 0.3.
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• PROP POWER PULSE: Exponent of power, 1, 2 or 3 (linear, quadratic or cubic
relationship). More on this later.

This time, first the ratio Vratio is calculated from the input:

Vratio ← a(PROP POWER PULSE)

(4.14)

And then it is used to calculate the amplitude:

Ṽa ← V ∗min [Vratio, PROP MAX COEF] (4.15)

And then the same bound checks are performed:

Ṽa ← 0 , if Ṽa < PROP MIN PULSE

Ṽa ← min
[
Ṽa, V

]

Ṽa ← min
[
Ṽa, V − PROP MAX VOLTAGE

]
(4.16)

This assures that the pulse will be automatically set according to the input rotor
velocity. The parameter PROP POWER PULSE was estimated using the experiments
from the next section.
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4.5. Swashplateless inclination characterization

In this final section of the study of the swashplateless device, we will describe how
we tried to quantify its ability to control the direction of the air flux.

4.5.1. Test bench

All the subsequent tests were made using a new 3-axes test bench designed by the
ICube team11 and reproduced by us at ISM Biorobotics. This test bench can be
seen in Fig. 4.11. The reasons behind this particular test bench are:

• Putting the swashplateless system at a larger distance from the ground
helps to remove ground effect, better simulating the properties of the system
mid-flight.

• Having a 3-axes system was very helpful in letting us study both the isolated
swashplateless system or the full spinning robot (by blocking or not the yaw
axis from spinning, as seen in Fig. 4.11 c).

a) b)

c)

Figure 4.11.: 3-axes test bench designed by ICube and constructed at ISM. a) The test bench.
Note its height, useful for reducing aerodynamic ground effect. b) The 3 axes of
rotation allowed by the test bench. c) A 3D printed blocker used to fix any of the
axes if should not be free for a test. It was mostly used to block the spin rotation
during tests for the swashplateless device, as shown in the image.

11Once again, I’d like to thank Mr Wurtz for this.
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4.5.2. High-speed camera tests

In order to accurately test the torque caused by actuating the swashplateless device
and account for the loss in thrust power, we would need a proper test bench that
could accurately measure forces in any direction. Sadly, we did not have at ISM
Biorobotics any kind of measuring device that could be used for this. We decided to
do a study on the resulting inclination angle of the rotation plane, and we suppose
in our model that the swashplateless device’s effect is to simply rotate the thrust
vector12.

In order to test this, a Phantom high speed camera13 was used. Using this camera,
we can closely follow each rotation of the motor, even when it is being actuated on
high speed. Figure 4.12 shows two frames of a test of the motor + swashplateless
setup. Note that for these experiments, every axis of the test bench was
blocked. With this camera, the following test strategy was used:

Figure 4.12.: Snapshots from Phantom high-speed camera during swashplateless tests.

a) White tape was glued on one of the sides of the motor, in order to easily
detect when the same side is facing the camera.

b) More white tape was glued on the tips of both blades.

c) A black background was put to maximize contrast between the white tape
and the rest of the image.

d) The settings of the camera were changed to have finer time resolution instead
of high image quality (which, for us, was not very important).

12Which is, most definitely, a very crude approximation...
13https://www.phantomhighspeed.com/
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e) Each experiment with this setup was performed with a constant mean voltage
and increasing pulse voltage amplitude.

f) A Python script was used to calculate the luminosity of the square defining
the expected position of the white tape from step a) in each frame, and save
a new video containing only the snapshots corresponding to peaks in the
luminosity.

These steps are illustrated on Fig. 4.13. Frames of the new video containing only
the desired snapshots can be seen on Fig. 4.14.

Figure 4.13.: Frames from swashplateless tests with white tape. We can note that the low quality
of the image is not a problem for this test strategy. a) White tape on the motor, to
easily take a snapshot when the motor is facing the camera. b) White tape on tips
of blades. c) Back side of the motor, without tape.

4.5.3. Angle measurements with Physlets Tracker

The final videos corresponding to these snapshots were then analyzed with Tracker14,
a free video analysis tool “built on the Open Source Physics (OSP) Java framework”.
The following steps were performed:

A) The image is imported into Tracker.

14https://physlets.org/tracker/
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Figure 4.14.: Saved snapshots from swashplateless tests with white tape.

B) A Brightness filter is created. The contrast glider is set to 100%, creating a
binary image. The brightness glider is then manually set so that both blade
tips are very visible, and no noise is around them.

C) Two mass objects are created and, on the first frame, their positions are
manually set to coincide with the initial positions of the blade tips.

D) The tracking process is started. If everything goes as planned, the position
of each mass is measured for the whole video. Some twitching might be
necessary for the tracking algorithm, and if everything fails, the position can
be manually set at each point when the algorithm fails to measure the next
step. This did not happen often, thanks to the black background and white
tape on blades.

E) Finally, a tape object is created, and its ends are attached to each mass. This
measurement object directly gives the distance between the two mass objects
and the angle of the straight line passing by both points.

Figure 4.15 shows some elements of the Graphical User Interface of Tracker.

4.5.4. Angle / pulse characterization

The last step was to set up a Python script to assemble these angle measurements
and synchronize them with the known voltage amplitude Ṽa. Each experiment
had a constant mean rotor velocity γ̇ and a corresponding mean voltage V . A
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a)

b) c)

Figure 4.15.: Elements used in Tracker for angle measurement. a) Two masses are created on the
first frame, and their positions are automatically tracked until the end of the video.
A tape object is then created between the two masses, to calculate their angle. b)
The y component of the position of mass A. c) The distance and angle measured by
the tape object. We only need the angle.

polynomial fit of order equal to the parameter PROP POWER PULSE was used to fit
the data, with different values for PROP POWER PULSE. The order that better fit the
data was a polynomial of order 3:

α ≈ f

(
Ṽa
V

)

≈ k0 + k1

(
Ṽa
V

)
+ k2

(
Ṽa
V

)2

+ k3

(
Ṽa
V

)3

(4.17)

Nevertheless, for each different mean velocity, the fit function f was a different
polynomial. This is not a problem for us for the following reasons:

• Usually, only one appropriate mean velocity will be used for the drone most
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of the time.

• These tests were not meant to be a precise measurement of the angle, mostly I
was interested in measuring the kind of relationship between linear, quadratic,
cubic, etc.

Ultimately, the following much simpler fit was implemented:

α ≈ k3

(
Ṽa
V

)3

(4.18)

Figure 4.16 shows the measurements and fit for two different mean velocity values.
Note that for a single term, the constant k3 is irrelevant, since this will be directly
multiplied by the PID parameters.

Model: α ≈ k3

(
Ṽa/V

)3

a) γ̇ = 325rad/s, V = 1.61Volts b) γ̇ = 520rad/s, V = 2.57Volts

Figure 4.16.: Relationship between inclination angle of Swashplateless and the voltage ratio, and
fit assuming a third-order model with a single term. Two mean rotor speeds: a)
356rad/s and b) 520rad/s.

4.6. Final thoughts

In this chapter, we described the process of reproducing a version of the swashplate-
less mechanism that was well-suited for our needs in the OrigaBot project. As a
direct consequence of the successful reproduction of this system for our project, we
decided on proposing a monorotor UAV that will be described in the next chapter.
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Following the successful reproduction of the swashplateless system described in the
last chapter, we decided on pursuing the creation of an extremely minimalistic drone:
a monorotor drone. In this chapter, the monospinner vehicle will be described.
Section 5.1 presents the different bodies of the monospinner, along with their masses
and inertia matrices. Section 5.2 will describe the dynamics of the monospinner,
developing the linear and angular velocities of each part and using them to develop
the complete expression of the kinetic energy. Section 5.3 analyzes the external
forces acting on the monospinner. This chapter has been submitted as a part of [4].

5.1. System overview

The robot is composed of 3 separated rigid bodies, as seen on Figure 5.1:

• The main body Bb, defining a frame of reference FB at its center of mass. It
comprises most of the body and all the electronics including the stator;

• The power supply Bs, defining a frame of reference FS. It is located at the
bottom and consists of the battery, which is a big part of the overall mass;

• The propeller Bp, defining a frame FP that can rotate with 3 degrees of
freedom with respect to the main body frame FB. It is composed of only the
parts of the rotor that rotate freely with 3 DoF w.r.t. the main body frame.

There are two main reasons for choosing to analyze the battery mass at the bottom
as a separate body: first, it keeps the main center of mass close to the electronics
and inboard IMUs, and second, to help stabilize the robot’s attitude passively using
gravity. Analyzing it as a separate body also makes it easier to study the effect of
the distance hS between the centers of mass of the main body and the battery.

The bodies Bb, Bs and Bp have masses mb, ms and mp and inertia matrices JB
b ,

JS
s and JP

p , respectively. In their own reference frames, these inertia matrices are
constant and approximately diagonal. For Bb and Bs:

JB
b = diag(Jbx, Jby, Jbz)

JB
s = JS

s = diag(Jsx, Jsy, Jsz) (5.1)
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a) b)

xE yE

zE
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Figure 5.1.: a) Illustration of the 3 separated bodies that compose the monorotor, and the
distances between their centers of mass. Bp is the propeller’s body, Bb is the main
body and Bs is the power supply body. b) Diagram showing the inertial coordinate
frame FE , the main body frame FB , the power supply frame FS and the propeller
frame FP . The green circle defines the virtual propeller frame.

For the propeller’s inertia matrix, since the angular speed of the rotor is large
compared to all the other angular velocities, we approximated the propeller by
averaging its inertia matrix around one rotation around the z-axis. For a tedious
and over-complicated reasoning for this, see Appendix G.

The real inertia matrix of the propeller is:

JP∗

p∗ = diag(Jpx, Jpy, Jpz) (5.2)

Where, in general, Jpx ̸= Jpy. We use calculate instead the mean of JP∗

p∗ in a full
revolution:

JP
p =

1

2π

∫ 2π

0

Rz(γ)
(
JP∗

p∗

)
Rz(γ)

Tdγ (5.3)

which gives:
JP
p = diag(Jpd, Jpd, Jpz) (5.4)

With Jpd = (Jpx+Jpy)/2. Moreover, the propeller inertia matrix can be represented
in the body frame FB with the following transformation:

JB
p = RB

P J
P
p (RB

P )
T (5.5)
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5.2. Pose, velocities, and kinetic energies

In this section, the expression of the linear and angular velocities of each body will
be analyzed and the kinetic energy of the whole system will be calculated.

5.2.1. Body pose and velocities

The inertial pose gEB of the body is defined as the homogeneous transformation
from frame FB to the inertial frame FE:

gEB =

[
RE

B sssEB
000T 1

]
(5.6)

Where RE
B is the rotation matrix between the body frame FB and the inertial frame

FE, and sss
E
B is the position of the body in the inertial frame. Defining ωωωB

B and vvvBB
the angular and linear velocities of Bb in FB, we can define Bb’s inertial twist η

B
B

as:

ηBB =

[
ωωωB

B

vvvBB

]
(5.7)

And the body’s kinetic energy is:

TB =
mb

2
(vvvBB)

TvvvBB +
1

2

(
ωωωB

B

)T
JB
b ωωω

B
B

=
1

2

[
ωωωB

B

vvvBB

]T [
JB
b 000
000 mbI

] [
ωωωB

B

vvvBB

]
(5.8)

For sake of clarity, we expand Eq. 5.8 in the following form:

TB =
1

2



ωωωB

B

vvvBB
ΩΩΩP

P/B




T 

JB
b 000 000
000 mbI 000
000 000 000






ωωωB

B

vvvBB
ΩΩΩP

P/B


 (5.9)

5.2.2. Rotor pose and velocities

In order to generate vector thrust control with a single motor, we can use a
swashplateless system that works by producing cyclic flapping by torque modulation
[45, 46], as explained in Chapter 4. This technology consists of attaching the blades
on passive asymmetric lag-pitch hinges (as seen in Fig. 5.2), that are excited by
using a motor speed controller that adds a sinusoidal speed component of frequency
equals to 1/rev.

The passive hinges oscillate by the inertia of the blade assembly, giving an inclination
to the rotor disc. By raising the amplitude of this sinusoidal term, the rotor disc
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a)

b)

Figure 5.2.: 3D model of Swashplateless assembly. a) The lag-pitch hinge rotations (detailed
in red) are responsible for creating the oscillatory flapping due to their inclination
angle. The center teetering hinge helps to reduce higher order components on the
oscillation. b) Angle α between the plane created by the wings and the horizontal
plane in our approximate model (note that this plane is horizontal w.r.t. to FB , and
not the inertial frame). This model considers the teetering hinge as the center of the
controlled inclination. This approximates well the behavior of the system.

inclination is more pronounced. By changing the phase of this term, we can
effectively control the direction of this inclination. In this work, we modeled the
rotor by considering it as a simple motor connected to two revolute joints.

The rotor is fixed at a distance hP from the center of FB. The rotation matrix RB
P

from the propeller frame FP to the body frame FB is:

RB
P ≡ Rz(β)Ry(α) =



cαcβ −sβ sαcβ
cαsβ cβ sαsβ
−sα 0 cα


 (5.10)

Where α is the inclination angle, β is the direction angle, sx = sin(x) and cx =
cos(x). We also define γ as the angle around the z-axis in which the rotor wings
are continuously rotated. We can then define the inertial pose gBP of the frame FP

with respect to FB as an element of SE(3) as follows:

gBP =

[
RB

P hPeeez
000T 1

]
(5.11)

Where eeez = [0, 0, 1]T . For a = [ax, ay, az]
T , we define the hat operator (̂·) giving
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the skew-symmetric matrix form of the cross product (see Appendix A):

â =




0 −az ay
az 0 −ax
−ay ax 0


 (5.12)

Such that a1 × a2 = â1a2 for any a1 and a2 in R
3. In particular:

êeez =



0 −1 0
1 0 0
0 0 0


 (5.13)

We define ΩΩΩP
P/B

1 as the full angular velocity between the propeller and the body in

the rotor frame FP
2:

ΩΩΩP
P/B = ωωωP

P/B + γ̇eeez (5.14)

Where γ̇ is the mean velocity of the rotor around the z-axis, and ωωωP
P/B is the angular

velocity of the virtual rotor frame FB (the rotor’s disc) w.r.t. the body frame FB:

ωωωP
P/B =



−sαβ̇
α̇

cαβ̇




ṘB
P = RB

P ω̂ωω
P
P/B (5.15)

Note that α, α̇ and β̇ are very small compared to γ̇. Moreover, the kinetic energy
component generated by the inertia of the rotor blades is negligible. Therefore, we
consider ωωωP

P/B ≈ 0 and:

ΩΩΩP
P/B ≈ γ̇eeez (5.16)

To find the kinetic energy, we must find the angular velocity ΩΩΩP
P and the linear

velocity vvvPP of FP w.r.t. the inertial frame FE. To transform an inertial twist

η =

[
ωωω
vvv

]
represented in a frame Fi to a frame Fj , both related by a transformation:

gji =

[
Rj

i sssji

000T 1

]
(5.17)

Where sji is the position of Fi in Fj and R
j
i is the rotation matrix from Fi to Fj,

1As seen in Appendix A, the subscript P/B indicates the angular velocity between the rotor
and the body, and the superscript P indicates it is expressed in the propeller FP frame

2See Appendix F.2 for a derivation of the full angular velocity on the ZYZ sequence, and
Appendix G for an argument supporting the virtual frame approximation.
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we define the Ad operator (Eq. A.15):

Adj
i =

[
Rj

i 0

ŝssjiR
j
i Rj

i

]
(5.18)

And the inverse operation is:

Adi
j =

[ (
Rj

i

)T
0

−
(
Rj

i

)T
ŝssji

(
Rj

i

)T

]
(5.19)

Moreover, by composition of velocities (Eq. A.14), we can state that:

ηjj = Adj
i η

i
i + ηjj/i (5.20)

Considering ωωωB
B and vvvBB, respectively, the angular and linear velocities of the main

body frame FB w.r.t. to the inertial frame FE, we can calculate the final rotor
velocities w.r.t. to the inertial frame as:

ηPP =
(
AdP

B

)
ηBB + ηPP/B

=
(
AdB

P

)−1
ηBB + ηPP/B

[
ΩΩΩP

P

vvvPP

]
=

[ (
RB

P

)T
0

−hP
(
RB

P

)T
êeez

(
RB

P

)T
] [
ωωωB

B

vvvBB

]
+

[
ΩΩΩP

P/B

000

]
(5.21)

Which leads to:

ΩΩΩP
P =

(
RB

P

)T
ωωωB

B +ΩΩΩP
P/B

vvvPP =
(
RB

P

)T
vvvBB − hP

(
RB

P

)T
êeezωωω

B
B (5.22)

And the rotor’s kinetic energy is:

TP =
mp

2

(
vvvPP
)T
vvvPP +

1

2

(
ΩΩΩP

P

)T
JP
p ΩΩΩP

P

=
1

2

[
ΩΩΩP

P

vvvPP

]T [
JP
p 000
000 mpI

] [
ΩΩΩP

P

vvvPP

]
(5.23)

Introducing Eq. 5.21 into Eq. 5.23, we can state:

TP = A+B + C +D (5.24)
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In which:

A =
1

2

[
ωωωB

B

vvvBB

]T (
AdP

B

)T
[
JP
p 000
000 mpI

] (
AdP

B

) [ωωωB
B

vvvBB

]

=
1

2

[
ωωωB

B

vvvBB

]T [
RB

P J
P
p

(
RB

P

)T
−mph

2
P (êeez)

2 mphP êeez
−mphP êeez mpI

] [
ωωωB

B

vvvBB

]
(5.25)

The second term is:

B =
1

2

[
ΩΩΩP

P/B

000

]T [
JP
p 000
000 mpI

] [ (
RB

P

)T
000

−hP
(
RB

P

)T
êeez

(
RB

P

)T
] [
ωωωB

B

vvvBB

]

=
1

2

(
ΩΩΩP

P/B

)T (
RB

P J
P
p

)T
ωωωB

B (5.26)

The third term is:

C =
1

2

[
ωωωB

B

vvvBB

]T [
RB

P hP êeezR
B
P

000 RB
P

] [
JP
p 000
000 mpI

] [
ΩΩΩP

P/B

000

]

=
1

2

(
ωωωB

B

)T (
RB

P J
P
p

)
ΩΩΩP

P/B (5.27)

And the fourth and final term is:

D =
1

2

(
ΩΩΩP

P/B

)T
JP
p ΩΩΩP

P/B (5.28)

Finally, adding all terms together, we can express the propeller’s kinetic energy as:

TP =
1

2



ωωωB

B

vvvBB
ΩΩΩP

P/B




T 

JB
p −mph

2
P (êeez)

2 mphP êeez RB
P J

P
p

−mphP êeez mbI 000(
RB

P J
P
p

)T
000 JP

p






ωωωB

B

vvvBB
ΩΩΩP

P/B


 (5.29)

Where JB
p = RB

P J
P
p (RB

P )
T .

5.2.3. Power supply velocities

The power supply mass and frame can also be analyzed in the exact same way as
the propeller using Eqs. 5.18 and 5.20, with translation −hSeeez, rotation R

B
S = I

and ηSS/B = 000:

ηSS =
(
AdS

B

)−1
ηBB + ηPS/B[

ΩΩΩS
S

vSS

]
=

[
I 0

hS êeez I

] [
ωωωB

B

vvvBB

]
(5.30)
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Which leads to:

ΩΩΩS
S = ωωωB

B

vSS = hSêeez ωωω
B
B + vvvBB (5.31)

And the power supply’s kinetic energy is:

TS =
mp

2

(
vSS
)T
vSS +

1

2

(
ΩΩΩS

S

)T
JS
s ΩΩΩ

S
S

=
1

2

[
ΩΩΩS

S

vSS

]T [
JS
s 000
000 msI

] [
ΩΩΩS

S

vSS

]
(5.32)

Introducing Eq. 5.30 into Eq. 5.32, and expanding it as before, we get:

TS =
1

2

[
ωωωB

B

vvvBB

]T [
I −hS êeez
000 I

] [
JS
s 000
000 msI

] [
I 000

hS êeez I

] [
ωωωB

B

vvvBB

]

=
1

2



ωωωB

B

vvvBB
ΩΩΩP

P/B




T 

JS
s −msh

2
S (êeez)

2 −mshSêeez 000
mshSêeez msI 000

000 000 000






ωωωB

B

vvvBB
ΩΩΩP

P/B




T

(5.33)

5.2.4. Total kinetic energy

The expression for the total kinetic T energy can be given as:

T = TB + TP + TS

(5.34)

Defining η= ηBB as the inertial twist of the body such that η =

[
ωωωB

B

vvvBB

]
, with ΩΩΩ= ΩΩΩP

P/B

as the rotor’s angular velocity in respect to FB. The extra inertia component
created by the point masses is:

JB
m = (msh

2
S +mph

2
P )
(
−êeez

2
)

= (msh
2
S +mph

2
P )



1 0 0
0 1 0
0 0 0


 (5.35)

And we also define JJJ = JB
b +JB

s +JB
p +JB

m, the inertia matrix of the whole assembly,
m= mb +ms +mp the sum of all masses.
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Inserting Eqs. 5.9, 5.29 and 5.33 into Eq. 5.34, and defining ∆m= mshS −mphP
3,

we get:

T =
1

2

[
η
ΩΩΩ

]T
M

[
η
ΩΩΩ

]
(5.36)

Where:

M =




JJJ −∆mêeez RB
P J

P
p

∆mêeez m I 0(
RB

P J
P
p

)T
0 JP

p


 (5.37)

5.3. External forces

In this section, we will analyze the external forces FB
ext and torques acting on the

drone. There are three components:

FB
ext = FB

grav + FB
p + FB

aero (5.38)

Where FB
grav represents the external forces and torques generated by gravity, FB

p

represents the forces and torques generated by the rotor and FB
aero represents the

aerodynamic torque generated by friction with the air.

5.3.1. Gravity force

The 6× 1 vector of the sum of torques and forces caused by gravity in all three
bodies is:

FB
grav =

[
0

mbggg
B

]
+

[
RB

P hP êeezR
B
P

0 RB
P

] [
0

mpggg
P

]

+

[
RB

S −hSêeezR
B
S

0 RB
S

] [
0

msggg
S

]

=

[
−∆mêeezR

TgggE

mRTgggE

]
(5.39)

Assuming gggE = (0, 0,−g) = −geeez where g is the gravitational constant.

3Note that mshS ≫ mphP .
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5.3.2. Motor thrust and torque

The thrust direction vector rrr in FB is controlled using the swashplateless solution.
It is given by:

rrr = RB
P eeez =



sαcβ
sαsβ
cα


 (5.40)

And the motor thrust force fff p and torque τp are:

fffB
p = fprrr

τ
B
p = τprrr (5.41)

The magnitudes of both the motor thrust and torque can be modeled as a quadratic
function of the propeller’s rotation speed w.r.t. the inertial frame, which is:

∣∣ΩΩΩP
P

∣∣2 =
∣∣∣
(
RB

P

)T
ωωωB

B +ΩΩΩP
P/B

∣∣∣
2

(5.42)

And taking into account that:

∣∣ΩΩΩP
P/B

∣∣≫
∣∣ωωωB

B

∣∣ (5.43)

We can simplify the expression of the rotor velocity as:

∣∣ΩΩΩP
P

∣∣ ≈
∣∣ΩΩΩP

P/B

∣∣ (5.44)

We then model the magnitudes as:

|fff p| = fp ≈ kf
∣∣ΩΩΩP

P/B

∣∣2

|τp| = τp ≈ kτ
∣∣ΩΩΩP

P/B

∣∣2

(5.45)

As seen in [77], we assume that the propeller torque is linear w.r.t. to the propeller
thrust. Defining:

k =
kτ
kf
, (5.46)

We can express the torque τ
B
p as a linear function of the thrust force fffB

p :

τ
B
p = kfffB

p (5.47)

Moreover, given hP eeez the position vector of the propeller in the body frame FB,
there is also a crossed thrust torque term that is added, as seen in Fig. 5.3:

τ
B
cross = hP eeez × fff

B
p (5.48)
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Adding both terms of torque, we have:

Figure 5.3.: Forces and torques produced by the rotor. Thrust vector (in red) considered to be
proportional to the square of the rotor mean angular speed. First torque component
(in green) considered linear in the thrust force. Second torque component (in magenta)
generated by the distance between the propeller thrust center and the center of mass
of the body.

τ = τ
B
p + τ

B
cross

= BBBτfff p (5.49)

With:

BBBτ = (kI+ hP êeez) =



k −hP 0
hP k 0
0 0 k


 (5.50)
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It is interesting to note that the matrix BBBτ is invertible, as seen in Appendix I.
And finally, the 6× 1 vector of all torques and forces produced by the propeller is:

FB
p =

[
BBBτfprrr
fprrr

]
(5.51)

5.3.3. Aerodynamic drag

The aerodynamic drag can be modeled as:

FB
aero =

[
−
∣∣ωωωB

B

∣∣KKK ωωωB
B

000

]
(5.52)

Where KKK is a diagonal positive definite matrix. At the equilibrium, the angular
velocity of the body frame FB reaches a steady-state velocity with direction opposed
to the rotor velocity: ωωωB

B = ωzeeez, and we can assume KKK ≈ diag (0, 0, Kz), which
leads to:

∣∣ωωωB
B

∣∣KKK ωωωB
B = sign(ωz)Kz ω

2
z eeez (5.53)

The rotor torque τp and the aerodynamic drag will cancel each other at equilibrium,
and rrr = eeez, leading to:

Kz = sign(ωz)kτ

(
1 +

γ̇

ωz

)2

(5.54)

Where γ̇/ωz, the ratio between the steady-state angular velocity of the body and
the rotor velocity, can be estimated experimentally. Even though this study does
not present a real mono spinner, preliminary tests have shown that the steady-state
angular velocity of the monorotor drone’s body was higher than the limits of the
Pixracer’s IMU. In order to overcome this problem, several fins were attached
to the main body of a prototype to add drag, and then the rotation speed was
measured with its integrated IMUs, as shown in Fig. 5.4. We used our prototype
containing a Pixracer card with PX4 firmware to test the steady-state velocity of
the monospinner with different numbers of fins, and compared it with measurements
from a Phantom high-speed camera. We made the motor’s rotation speed vary
from 80 to 800 rad/s, and the results can be seen on Fig. 5.5. As expected, we
noted that adding more fins drastically reduce the steady-state angular velocity.
Moreover, we also noted that two fins were not sufficient to reduce the monorotor’s
angular velocity to the IMU’s gyroscope’s range.
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a) b)

Figure 5.4.: Anti-torque fins. a) Dimensions of fins used for tests. b) 3D model of prototype with
8 fins installed radially.

5.3.4. Sum of external forces

Introducing Eqs. 5.39, 5.51 and 5.52 into Eq. 5.38, we have the total expression of
the external forces:

FB
ext = FB

grav + FB
p + FB

aero

=

[
fpBBBτrrr +∆mgêeezR

Teeez −
∣∣ωωωB

B

∣∣KKK ωωωB
B

fprrr −mgR
Teeez

]
(5.55)

5.4. Final thoughts

In this chapter, a monorotor UAV is proposed, and a complete analysis of its overall
shape, kinetic energy and external forces is given. For this model, we took special
care of making a minimal set of assumptions and approximations, which makes it
possible for us to derive a rather complete expression of the Equations of Motion.
These Equations of Motion can, of course, be derived with classical Lagrangian
mechanics by using the expressions of the kinetic energies described here. However,
as will be seen in Chapter 6, we have decided to use the Euler-Poincaré method to
find the solution for our problem.
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5. Flying monorotor overview – 5.4. Final thoughts

a) High-speed camera b) Pixracer’s IMU

Figure 5.5.: Steady-state angular velocity of monorotor with 2, 4 and 8 fins, while varying the
motor’s speed from 80 to 800 rad/s. a) Angular velocity measured from a Phantom
high-speed camera. b) Angular velocity measured from the monorotor’s IMU’s rate
gyro. The latter saturates at around 35.68 rad/s.
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6. Equations of Motion of the
complete system with
Euler-Poincaré method

In this chapter, we will apply the Euler-Poincaré equations to the monorotor drone
described in Chapter 5 to obtain its Equations Of Motion (EOM). A simplified
version of this chapter has been submitted to publication as a part of [4]. The
main difference, as will be clear later on, is that this chapter takes into account the
movement of the virtual rotor plane. As this is mostly negligible, I have omitted it
from the submission in [4].

While the direct application of the Newton-Euler equations is also possible, this
approach that makes direct use of vectors and angular pseudo-vectors can become
confusing and prone to errors when analyzing a complex multi-body system with
additional internal degrees of freedom. This method has, however, the advantage of
producing a parameter-invariant solution in terms of the velocities of the system in
the moving body-frame. The Newton-Euler equations were used for example for the
PULSAR spinner [13]. However it is worth noting that the spinner was considered
in this case as a single body. The model of the dynamics did not take into account
all the degrees of freedom of the rotor. Lagrangian mechanics, on the other hand,
provides an arguably more systematic method by allowing the derivation of the
dynamical model of the system from the knowledge of its Lagrangian (which is a
scalar) and the model of the external (non-conservative) forces. First, a concise set
of “generalized coordinates”, usually denoted by qqq, must be defined. Then we can
state the Euler-Lagrange equations as:

d

dt

(
∂L

∂q̇qq

)
−
∂L

∂qqq
= QQQ (6.1)

Where the Lagrangian L = L(qqq, q̇qq, t) is the difference between the kinetic and
potential energies, expressed in terms of the generalized coordinates, and QQQ is the
generalized forces vector. One downside of the direct use of the Lagrange equations
is that it requires a choice of parameters beforehand. For a simple rotating system,
for instance, both Euler angles or a rotation quaternion can be used. However,
this is known to introduce artificial nonlinearities and singularities in the case of
UAVs whose configuration Lie group is SO(3) or SE(3): the final equations are
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6. Equations of Motion of the complete system with Euler-Poincaré method – 6.1.

Poincaré equation

coupled and dependent on the parameters chosen. Moreover, the term ∂L
∂qqq
, the

direct derivative of the Lagrangian in terms of qqq, can be very cumbersome. A
quaternion-based model of the pure rotation of a single-body using Lagrangian
mechanics can be seen in [68]. The term QQQ that models the generalized forces can
also be very complicated to calculate. An effort to express the generalization of
this term can be seen in [69].

Any solution to Eq. 6.1 is also a solution to the Euler Poincaré equations [9].
Similarly to the Euler-Lagrange equations, the Euler-Poincaré equations allow us
to develop the Equations of Motion of a system submitted to conservative forces
in a systematic manner. Unlike the Lagrangian equations, however, in the Euler-
Poincaré equations, both the energies and the final dynamic equations are directly
expressed in terms of the velocities of the system in its moving frame of reference.
In practical terms, the Euler-Poincaré equations provide a systematic energy-based
approach that is similar to an analysis based on the Euler-Lagrange equations,
while producing the same parameter-agnostic formulations usually derived with
the direct application of the Newton-Euler equations, which are free from artificial
singularities and nonlinearities. We could, naturally, also model the system by
using the Newton-Euler equations for the external degrees of freedom of the system
together with the Euler-Lagrange equations for the internal degrees of freedom.
Using the Euler-Poincaré equations, however, all the degrees of freedom of the
system are captured simultaneously in a unified approach. Moreover, note that
the product of two Lie groups is also a Lie group. In order to derive a more
complex model that takes into account, for instance, a variable battery distance
hS or a more complete swashplateless mechanism model, this generalization would
be straightforward without requiring a profound knowledge of Lie group theory.
These are some of the reasons why we believe that the Euler-Poincaré equations,
although still largely unknown to the robotics community, are the most natural
tool for capturing the dynamics of these types of UAVs.

6.1. Poincaré equation

For simplicity, in this chapter, we will denote ωωω=ωωωB
B, vvv=vvv

B
B and ΩΩΩ=ΩΩΩP

P/B. The

Euler-Poincaré equations on the configuration Lie group SE(3) 1 of our system, are:

d

dt

(
∂T

∂η

)
− adT

η

(
∂T

∂η

)
= FB

ext (6.2)

Where the ad operator is given by [40]:

adη =

[
ω̂ωω 0
v̂vv ω̂ωω

]
(6.3)

1The Special Euclidean group in 3 dimensions: 3 dimensions of position and a full 3D rotation.
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Time derivatives

And, as a reminder, from Eq. 5.36:

T =
1

2

[
η
ΩΩΩ

]T
M

[
η
ΩΩΩ

]
(6.4)

Where:

M =




JJJ −∆mêeez RB
P J

P
p

∆mêeez m I 0(
RB

P J
P
p

)T
0 JP

p


 (6.5)

And:

mmm× ≡ ∆m

[
0 −êeez
êeez 0

]
(6.6)

Applying the partial derivative w.r.t. the inertial twist gives:

∂T

∂η
= Dη +

[
RB

P J
P
p ΩΩΩ

000

]
(6.7)

Where:

D =

[
JJJ −∆mêeez

∆mêeez m I

]
=

[
JJJ 0
0 m I

]
+mmm× (6.8)

6.2. Time derivatives

Differentiating 6.7 w.r.t. time yields:

d

dt

(
∂T

∂η

)
=

d

dt

(
Dη +

[
RB

P J
P
p ΩΩΩ

000

])

= Ḋη +Dη̇ +

[
RB

P

(
ω̂ωωP

P/BJ
P
p ΩΩΩ + JP

p Ω̇ΩΩ
)

000

]
(6.9)

Noting that J̇JJ = ˙JB
p :

Ḋ =
d

dt

([
JJJ 0
0 m I

]
+mmm×

)
=

[
˙JB
p 0
0 0

]

(6.10)

In which:

˙JB
p = RB

P

(
ω̂ωωP

P/BJ
P
p − J

P
p ω̂ωω

P
P/B

)
(RB

P )
T (6.11)

Inserting Eqs. 6.7 and 6.9 into 6.2, the left-hand side of the equation can be
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Analyzing the rotor inertial torque

rewritten as:

d

dt

(
∂T

∂η

)
− adT

η

(
∂T

∂η

)
= Dη̇ +Cη + T (6.12)

Where we define:

C = Ḋ− adT
ηD (6.13)

And the term T models the full torque generated by the angular velocity of the
rotor:

T =

[
RB

P

(
ω̂ωωP

P/BJ
P
p ΩΩΩ + JP

p Ω̇ΩΩ
)

000

]
− adT

η

[
RB

P J
P
p ΩΩΩ

000

]
(6.14)

6.3. Analyzing the rotor inertial torque

We can simplify the term T by noticing that:

−adT
η

[
RB

P J
P
p ΩΩΩ

000

]
=

[
ω̂ωωRB

P J
P
p ΩΩΩ

000

]

=

[
RB

P (R
B
P )

T ω̂ωωRB
P J

P
p ΩΩΩ

000

]

=

[
RB

P

(
ωωωP × JP

p ΩΩΩ
)

000

]
(6.15)

Where ωωωP = (RB
P )

Tωωω is the main body’s angular velocity as seen from the rotor
frame FP . Defining τττB

FP
as the torque generated in the main body Bb by the

rotation of the virtual rotor frame FP :

τττB
FP
≡ RB

P

(
ωωωP

P/B × (JP
p ωωω

P
P/B) + JP

p ω̇ωω
P
P/B

)
(6.16)

Inserting the fact that ΩΩΩ = ωωωP
P/B + γ̇eeez:

[
RB

P

(
ω̂ωωP

P/BJ
P
p ΩΩΩ + JP

p Ω̇ΩΩ
)

000

]
=

[
RB

P

(
ω̂ωωP

P/BJ
P
p

(
ωωωP

P/B + γ̇eeez

)
+ JP

p

(
ω̇ωωP

P/B + γ̈eeez
))

000

]

=

[
τττB
FP

+RB
P

(
ω̂ωωP

P/BJ
P
p (γ̇eeez) + JP

p γ̈eeez

)

000

]
(6.17)
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Analyzing the rotor inertial torque

Introducing Eqs. 6.15 and 6.17 into Eq. 6.14:

T =

[
RB

P

(
ω̂ωωP

P/BJ
P
p ΩΩΩ + JP

p Ω̇ΩΩ
)

000

]
− adT

η

[
RB

P J
P
p ΩΩΩ

000

]

=

[
τττB
FP

+RB
P

(
ω̂ωωP

P/BJ
P
p (γ̇eeez) + JP

p γ̈eeez +ωωωP × JP
p ΩΩΩ

)

000

]

=

[
τττB
FP

+RB
P

(
ω̂ωωP

P/BJ
P
p (γ̇eeez) + JP

p γ̈eeez +ωωωP × JP
p ωωω

P
P/B +ωωωP × JP

p γ̇eeez

)

000

]

=

[
τττB
FP

+RB
P

(
ω̂ωωP

P/BJ
P
p (γ̇eeez) +ωωωP × JP

p γ̇eeez + JP
p γ̈eeez

)
+RB

P

(
ωωωP × JP

p ωωω
P
P/B

)

000

]

(6.18)

Noticing that JP
p eeez = Jpzeeez and RB

Peeez = rrr we can state:

RB
P

(
ω̂ωωP

P/BJ
P
p γ̇eeez + ω̂ωωPJP

p γ̇eeez + JP
p γ̈eeez

)
= JpzR

B
P

((
ω̂ωωP

P/B + ω̂ωωP
)
γ̇eeez + γ̈eeez

)

(6.19)

In which we can identify two different terms, one given by the acceleration of the
rotor mean velocity:

τττBacc = Jpzγ̈ rrr (6.20)

And one extra term generated by the rotor mean velocity:

τττBvel = JpzR
B
P

(
ω̂ωωP + ω̂ωωP

P/B

)
γ̇eeez

= Jpzγ̇R
B
P

(
ω̂ωωP + ω̂ωωP

P/B

)
(RB

P )
TRB

Peeez

= Jpzγ̇
(
ωωω +ωωωB

B/P

)
× rrr (6.21)

Where ωωωB
B/P = RB

P ωωω
P
P/B is the angular velocity of between FP and FB expressed

in the body frame FB. We can finally express the torque term T as:

T =

[
τττB
FP

+ τττBvel + τττBacc
000

]
(6.22)
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Complete Equations of Motion

6.4. Complete Equations of Motion

To summarize, the complete Equations of Motion of the monorotor drone in Eq.
6.2 can finally be stated as:

Dη̇ +Cη + T = FB
ext (6.23)

In which:

D =

[
JJJ 0
0 m I

]
+mmm×

C = Ḋ− adT
ηD

FB
ext =

[
fpBBBτrrr +∆mg eeez × nnn

E
b − |ωωω|KKKωωω

fprrr −mg nnn
E
b

]
(6.24)

Where, as a reminder:

m = mb +ms +mp

∆m = mshS −mphP

mmm× = ∆m

[
0 −êeez
êeez 0

]

adη =

[
ω̂ωω 0
v̂vv ω̂ωω

]
(6.25)

And the extra torque terms from the rotor are:

T =

[
τττB
FP

+ τττBvel + τττBacc
000

]
(6.26)

With:

τττB
FP

= RB
P

(
ωωωP

P/B × (JP
p ωωω

P
P/B) + JP

p ω̇ωω
P
P/B

)

τττBacc = γ̈Jpz rrr

τττBvel = γ̇Jpz
(
ωωω +ωωωB

B/P

)
× rrr

(6.27)
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Integration

6.5. Integration

Isolating the angular accelerations, we have the following equation, which will be
useful for the simulation implementation:

η̇ = D−1
(
FB
ext −Cη − T

)
[
ω̇ωω
v̇vv

]
= D−1

(
FB
ext −C

[
ωωω
vvv

]
− T

)
(6.28)

Which, as expected, expresses the evolution of the system as a function of its
velocities. For η̂ as defined in Eq. A.12:

η̂ =

[
ωωω
vvv

]̂
=

[
ω̂ωω vvv
0 0

]
(6.29)

For g= gEB , sss=sss
E
B and R=RE

B, we can use the reconstruction equations:

ġEB = g η̂
[
Ṙ ṡss
000T 0

]
=

[
R sss
000T 1

] [
ω̂ωω vvv
000T 0

]

[
Ṙ ṡss
000T 0

]
=

[
Rω̂ωω Rvvv
000T 0

]

(6.30)

And finally:

dsss

dt
= Rvvv

dR

dt
= Rω̂ωω (6.31)

Instead of directly using rotation matrices however, we parameterize the orientation
of the drone using quaternions (more precisely, classical Hamilton quaternions [63]).
Quaternions are an extension of the complex numbers, consisting of 4 components,
and form an excellent set of parameters for rotations, being fast to compute,
easy to normalize and having no singularity-related problems [32]. A summary
of quaternion algebra can be seen in Appendix A. In this work, we will denote
quaternions as 4-vectors. Supposing q= qEB represents the rotation from FB to FE:

q =

[
qr
qqq

]
(6.32)
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Simplified equation for simulation

Where qr and qqq are, respectively, the scalar (or real) and vector (or imaginary)
parts of q. Then, for some vector a ∈ R

3:

[
0
a
E

]
= q ⊙

[
0
a
B

]
⊙ q∗ (6.33)

Where ⊙ is the Hamilton product (see Appendix A). Finally, to integrate the
orientation quaternion, we can use the following rotation reconstruction equation:

q̇ =
1

2
q ⊙

[
0
ωωω

]
(6.34)

6.6. Simplified equation for simulation

As expressed in Chapter 5, α, α̇ and β̇ are very small compared to γ̇. Therefore,
we consider ωωωP

P/B ≈ 0, leading to Eq. 5.16:

ΩΩΩP
P/B ≈ γ̇eeez (6.35)

Apart from that, we also assume that the mean rotor velocity should not change
much from the set rover velocity, leading to γ̈ ≈ 0. Both of these approximations
are possible because the inertia of the blades is very small2.

These assumptions greatly simplifies the simulations, since we assume we can
control RB

P instantaneously. Moreover, this leads to:

τττB
FP
≈ 000

τττBacc ≈ 000

τττBvel ≈ γ̇Jpz ωωω × rrr

C ≈ −adT
ηD (6.36)

Leading to the simplified equations used in [4] and in Chapter 9:

D

[
ω̇ωω
v̇vv

]
+C

[
ωωω
vvv

]
+

[
γ̇Jpz ωωω × rrr

0

]
= FB

ext (6.37)

And isolating for integration:

[
ω̇ωω
v̇vv

]
= D−1

(
FB
ext + adT

ηD

[
ωωω
vvv

]
−

[
γ̇Jpz ωωω × rrr

0

])
(6.38)

2Note that the thrust and torque from the rotor, both taken into account as external forces,
come from air displacement, not from inertia.
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Final thoughts

6.7. Final thoughts

In this chapter, we applied the Euler-Poincaré equation to the monorotor presented
in Chapter 5, in order to get the final expression of its Equations of Motion. The
use of this method greatly simplified the derivation of the EOM, providing us with
a simpler and systematic method that produces a complete solution without relying
on too many approximations.

The Euler-Poincaré equation is a powerful mathematical tool, albeit largely unknown
from the literature. For this reason, we also believe that this analysis contributes
with an interesting application of this method, and hope it can have some (small)
effect in popularizing it as an alternative to classical Lagrangian mechanics.
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7. Quaternion decomposition into
normal vector and spin angle

In this chapter, I will study the problem of decomposing a quaternion rotation
into two separate quaternions, in order to separate the component representing the
uncontrollable spin. This decomposition was, at first, inspired by the decomposi-
tion idea used in [70] to implement a complementary filter to estimate a robot’s
orientation. I will present here a complete generalization of this decomposition,
provide a simple closed formula for it and analyze the resulting components.1

7.1. Decomposition into two quaternions

Suppose two frames, a body-fixed frame FB and another frame FE (for example, the
inertial frame). We have a body that spins around an axis eb. In the body frame,
this vector is equivalent to a constant unit vector eB

b ≡ eee. Suppose q = [qr, qqq
T ]T

is the unit quaternion that defines the rotation from the body frame FB to the
inertial frame FE. If we note e

E
b as the vector eb in the inertial frame, we know

that:
[
0
e
E
b

]
= q ⊙

[
0
e
B
b

]
⊙ q∗

= q ⊙

[
0
eee

]
⊙ q∗ (7.1)

Or simply: eE
b = ReB

b = Reee, where R = R(q), and as seen in Eq. A.55:

e
E
b =

(
I+ 2

(
qrq̂qq + q̂qq2

))
eee (7.2)

And, as defined in Eq. A.2:

q̂qq =




0 −qz qy
qz 0 −qx
−qy qx 0


 (7.3)

1This chapter was originally submitted as an appendix in [4].
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quaternion

Moreover, notating ωωω as the angular velocity of the body in the body frame, we
know that:

q̇ =
1

2
q ⊙

[
0
ωωω

]
(7.4)

We will suppose the existence of two unit quaternions, qa (called here the “reduced
attitude quaternion”) and qs (“spin quaternion”) such that:

qa =

[
ar
aaa

]

qs =

[
sr
sss

]

q = qa ⊙ qs (7.5)

We also define ωωωa and ωωωs as the angular velocities of both qa and qs such that:

q̇a =
1

2
qa ⊙

[
0
ωωωa

]

q̇s =
1

2
qs ⊙

[
0
ωωωs

]
(7.6)

And we add the constraint that both qa and qs are unit quaternions:

|qa|
2 = a2r + |aaa|

2 = 1

|qs|
2 = s2r + |sss|

2 = 1 (7.7)

7.2. Attitude quaternion

Since the quaternion qa has four components, but the spin is already represented
by qs, a new constraint must be chosen for qa, otherwise the system is under-
determined. A natural choice for this constraint, to assure that no rotation around
eee is done with qa, is:

aaa · eee = 0 (7.8)

Using this constraint:

qa ⊙

[
0
eee

]
=

[
−eee · aaa

areee+ aaa× eee

]

=

[
0

(arI+ âaa)eee

]
(7.9)
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quaternion

So, definingmmmmmmmmm = (arI+ âaa)eee, we know that qa has the form:

qa =

[
0
mmmmmmmmm

]
⊙

[
0
eee

]∗

qa = −

[
0
mmmmmmmmm

]
⊙

[
0
eee

]
(7.10)

Moreover, since |qa| = |eee| = 1, we know that |mmmmmmmmm| = 1. Introducing Eq. 7.10 into
Eq. 7.1:

[
0
e
E
b

]
= q ⊙

[
0
eee

]
⊙ q∗

= qa ⊙

[
0
eee

]
⊙ q∗a

=

[
0
mmmmmmmmm

]
⊙

[
0
eee

]
⊙

[
0
eee

]
⊙

[
0
eee

]
⊙

[
0
mmmmmmmmm

]

= −

[
0
mmmmmmmmm

]
⊙

[
0
eee

]
⊙

[
0
mmmmmmmmm

]
(7.11)

Multiplying both sides on the right by −

[
0
mmmmmmmmm

]
:

−

[
0
e
E
b

]
⊙

[
0
mmmmmmmmm

]
= −

[
0
mmmmmmmmm

]
⊙

[
0
e
B
b

]

[
mmmmmmmmm · eB

b

mmmmmmmmm× e
B
b

]
=

[
e
E
b ·mmmmmmmmm

e
E
b ×mmmmmmmmm

]
(7.12)

From Eq. 7.12 we know that:

mmmmmmmmm× e
B
b = e

E
b ×mmmmmmmmm

mmmmmmmmm×
(
e
E
b + e

B
b

)
= 000

mmmmmmmmm× ((R + I)eee) = 000 (7.13)

Which means that, for some constant λ, we know that:

mmmmmmmmm = λ
(
e
E
b + e

B
b

)
= λ ((R + I)eee) (7.14)

Choosing λ > 02 and noting that |mmmmmmmmm| = 1:

λ =
|mmmmmmmmm|

|(R + I)eee|
=

1

|(R + I)eee|
(7.15)

2Choosing λ < 0 would lead to the same final solution.
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And finally:

mmmmmmmmm =
e
E
b + e

B
b

|eE
b + e

B
b |

=
(R + I)eee

|(R + I)eee|
(7.16)

We note thatmmmmmmmmm=mmmmmmmmmE is the unit vector exactly in the middle of the normal vector
before and the normal vector after the rotation, as seen in FE. We denotemmmmmmmmm as the
“middle normal vector”. This is directly related to the fact that the rotation
quaternion’s real and imaginary parts are respectively cosines and sines of half of
the final rotation angle. Moreover:

∣∣
e
E
b + e

B
b

∣∣ =
√
2 (eB

b · e
E
b + 1)

=
√

2 (eee ·Reee+ 1)

= 2
√
1− |qqq × eee|2

= 2
√
q2r + (qqq · eee)2 (7.17)

Finally, the attitude quaternion qa can be given as:

qa = −

[
0
mmmmmmmmm

]
⊙

[
0
eee

]
(7.18)

Note that this equation has a singularity when e
E
b = −eB

b = −eee (mmmmmmmmm is undetermined).
This happens because there are infinite rotations of 180◦ that transform eee into −eee.
In order to address this in real-time, we can check if:

mmmmmmmmm · eee ≈ 0 (7.19)

In these cases, we can simply update the measurement ofmmmmmmmmm by removing its (small)
component in the direction of eee and normalizing it:

mmmmmmmmmk+1 ←
mmmmmmmmmk − (mmmmmmmmmk · eee)eee

|mmmmmmmmmk − (mmmmmmmmmk · eee)eee|
(7.20)

We can see on Fig. 7.1 the domains of both e
E
b = Reee andmmmmmmmmm.
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7. Quaternion decomposition into normal vector and spin angle – 7.3. Spin

quaternion

Figure 7.1.: On the left, the domain (in blue) of Reee, with a red dot representing the singularity
point where Reee = −eee. On the right, the upper hemisphere represents the domain of
mmmmmmmmm. We can see that the whole equator between both hemispheres correspond to the
case Reee = −eee, which means thatmmmmmmmmm is undefined in this case.

7.3. Spin quaternion

Considering that qs is the quaternion representing only the rotation that creates
the constant spin around eee:

qs ⊙
[
0
eee

]
⊙ q∗s =

[
0
eee

]

qs ⊙
[
0
eee

]
=

[
0
eee

]
⊙ qs

[
eee · sss
eee× sss

]
=

[
eee · sss
−eee× sss

]
(7.21)

Which gives eee× sss = −eee× sss, meaning that:

eee× sss = 000 (7.22)

So we know that, for a real scalar s:

sss = seee (7.23)

And noting sr = c, we can rewrite qs as:

qs =

[
c
seee

]
(7.24)
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quaternion

With the constraint that |qs|2 = c2 + s2 = 1. Defining a spin angle θs, this leads to
the natural definition as:

c = cos(θs/2)

s = sin(θs/2) (7.25)

But to find these parameters for a given q, we can use 7.5 and 7.18 to find that:

qs = q∗a ⊙ q

|(R + I)eee|
[
0
eee

]
⊙

[
c
seee

]
=

[
0

(R + I)eee

]
⊙

[
qr
qqq

]

|(R + I)eee|
[
−s
ceee

]
=

[
−qqq · (R + I)eee

(qrI− q̂qq) (R + I)eee

]
(7.26)

Remembering Eq. 7.2:

(R + I)eee = 2 (I+ (qrI+ q̂qq) q̂qq)eee

= 2
(
I+ qrq̂qq + q̂qq2

)
eee (7.27)

To find s:

|eEb + e
B
b |s = qqq · (eEb + e

B
b )

= 2qqq · (I+ q̂qq (qrI+ q̂qq))eee

= 2
(
qqq · eee+

(
qqqT q̂qq

)
(qrI+ q̂qq)eee

)

= 2qqq · eee (7.28)

And finally:

s =
2

|(R + I)eee| qqq · eee (7.29)

For c:

|(R + I)eee| ceee = (qrI− q̂qq) (R + I)eee (7.30)

After some tedious algebra, we find that:

|(R + I)eee| c = 2eeeT (qrI+ 2q̂qq)eee

= 2qr

(7.31)

Which gives:

c =
2

|(R + I)eee| qr (7.32)
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And noting that c2 + s2 = 1 leads to |(R + I)eee| = 2
√
q2r + (qqq · eee)2:

qs =
2

|(R + I)eee|

[
qr

(qqq · eee)eee

]

=
1√

q2r + (qqq · eee)2

[
qr

(qqq · eee)eee

]
(7.33)

Which gives:
θs = 2 atan2(qqq · eee, qr) (7.34)

In Appendix K, we demonstrate an equivalence between θs and Proper Euler angles.
We can also note that:

[
0
mmmmmmmmm

]
= q ⊙

[
c
−seee

]
⊙

[
0
eee

]
(7.35)

Which gives:

mmmmmmmmm = sqqq + c(qrI+ q̂qq)eee

=
(qqq · eee)qqq + qr(qrI+ q̂qq)eee√

q2r + (qqq · eee)2
(7.36)

Taking the dot product of Eq. 7.36 with eee gives:

mmmmmmmmm · eee = (qqq · eee)qqq · eee+ qr(qreee · eee+ (qqq × eee) · eee)√
q2r + (qqq · eee)2

=
(qqq · eee)2 + q2r√
q2r + (qqq · eee)2

=
√
q2r + (qqq · eee)2 (7.37)

Which leads to the interesting relationship:

|eEb + e
B
b | = 2mmmmmmmmm · eee (7.38)

7.4. Derivatives

Just as the orientation quaternion q can be decomposed into two components, the
angular velocity ωωω can also be decomposed as the angular velocity of these two
components. We will study this in this section.
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7.4.1. Derivative of spin quaternion

Analyzing the derivative of qs:

q̇s =
d

dt

([
cos(θs/2)
sin(θs/2)eee

])

=

[
− sin(θs/2)
cos(θs/2)eee

]
θ̇s
2

=
1

2

[
cos(θs/2)
sin(θs/2)eee

]
⊙

[
0

θ̇seee

]
(7.39)

And defining ωωωs = θ̇seee, we can finally write:

q̇s =
1

2
qs ⊙

[
0
ωωωs

]
(7.40)

Using Eq. 7.34:

d

dt
(tan θs/2) =

d

dt

(
qqq · eee
qr

)

1

2c2
θ̇s =

qrq̇v − q̇rqqq
q2r

· eee (7.41)

Moreover, we know that:

q̇ =

[
q̇r
q̇v

]
=

1

2

[
qr
qqq

]
⊙

[
0
ωωω

]

=
1

2

[
−ωωω · qqq

(qrI+ q̂qq)ωωω

]

Which gives:

q2r
c2
θ̇s = (qr(qrI+ q̂qq)ωωω + (ωωω · qqq)qqq) · eee

= qr(qrI+ q̂qqωωω) · eee+ (ωωω · qqq)(qqq · eee)
= ωωωT qr(qrI+ q̂qq)Teee+ωωωTqqqqqqTeee

= ωωωT
(
qr(qrI− q̂qq) + qqqqqqT

)
eee

= ωωωT
(
(q2r + |qqq|2)I− qrq̂qq + q̂qq2

)
eee

= ωωωT
(
I− qrq̂qq + q̂qq2

)
eee (7.42)
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And noting that:

I− qrq̂qq + q̂qq2 =
2I− 2qrq̂qq + 2q̂qq2

2

=
I+

(
I+ 2qrq̂qq + 2q̂qq2

)T

2

=
I+RT

2

=
RT (I+R)

2
(7.43)

And according to Eqs. 7.27 and 7.32:

θ̇s =
c2

q2r
ωωω · R

T (eEb + e
B
b )

2

θ̇s = 2
(eEb + e

B
b )

|eEb + e
B
b |2
·Rωωω

=
mmmmmmmmm ·Rωωω
mmmmmmmmm · eee (7.44)

And we can finally state that:

ωωωs = 2

(
(eEb + e

B
b ) ·Rωωω

|eEb + e
B
b |2

)
eee

=

(
mmmmmmmmm ·Rωωω
mmmmmmmmm · eee

)
eee (7.45)

7.4.2. Derivative ofmmmmmmmmm

By definition:

[
0
mmmmmmmmm

]
= −q ⊙ q∗s ⊙

[
0
eee

]∗
(7.46)
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Which leads to:
[
0
ṁmmmmmmmm

]
= −q̇ ⊙ q∗s ⊙

[
0
eee

]∗
− q ⊙ q̇∗s ⊙

[
0
eee

]∗

= −1

2
q ⊙

[
0
ωωω

]
⊙ q∗s ⊙

[
0
eee

]∗
+

1

2
q ⊙

[
0
ωωωs

]
⊙ q∗s ⊙

[
0
eee

]∗

= −1

2
q ⊙

[
0

ωωω −ωωωs

]
q∗s ⊙

[
0
eee

]∗

=
1

2
q ⊙

[
0

ωωω −ωωωs

]
q∗ ⊙

[
0
mmmmmmmmm

]

=
1

2

[
0

R(ωωω −ωωωs)

]
⊙

[
0
mmmmmmmmm

]
(7.47)

Which gives:

[
0
ṁmmmmmmmm

]
=

1

2

[
0

R(ωωω −ωωωs)

]
⊙

[
0
mmmmmmmmm

]

=
1

2

[
−mmmmmmmmm ·R(ωωω −ωωωs)
−mmmmmmmmm×R(ωωω −ωωωs)

]
(7.48)

Which finally gives:

ṁmmmmmmmm = −1

2
mmmmmmmmm×R (ωωω −ωωωs) (7.49)

Moreover, sincemmmmmmmmm ·R(ωωω −ωωωs) = 0, we can also write Eq. 7.48 as:

[
0
ṁmmmmmmmm

]
= −1

2

[
0
mmmmmmmmm

]
⊙

[
0

R(ωωω −ωωωs)

]
(7.50)

7.5. Middle normal vector in rotating body frame

If instead of Eq. 7.5, we can also invert the order of rotations, defining instead:

q = q′s ⊙ q′a (7.51)

To quickly derive this, we will use the solution found using the definition of Eq. 7.5.
For a rotation q, with a corresponding rotation matrix of R, we have the following
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decomposition:

q = −
[

0
mmmmmmmmmE

]
⊙

[
0
eee

]
⊙ qs

= −
[

0
(R+I)eee
|(R+I)eee|

]
⊙
[
0
eee

]
⊙ 1

|(R + I)eee|

[
qr

(qqq · eee)eee

]
(7.52)

Then, for q∗ =
[
qr −qqqT

]T
, with a corresponding rotation matrix of RT :

q∗ = −
[

0
(RT+I)eee
|(RT+I)eee|

]
⊙

[
0
eee

]
⊙ 1

|(RT + I)eee|

[
qr

−(qqq · eee)eee

]
(7.53)

We note that:

(RT + I)eee = (RT +RTR)eee

= RT (I+R)eee (7.54)

And |(RT + I)eee| = |(R + I)eee|, leading to:

(RT + I)eee

|(RT + I)eee| = RT (R + I)eee

|(R + I)eee|
= RTmmmmmmmmmE

=mmmmmmmmmB (7.55)

We can then rewrite Eq. 7.53 as:

q∗ = −
[

0
mmmmmmmmmB

]
⊙

[
0
eee

]
⊙ q∗s (7.56)

Which leads to:

q = −
([

0
mmmmmmmmmB

]
⊙
[
0
eee

]
⊙ q∗s

)∗

= −qs ⊙
[
0
eee

]∗
⊙
[

0
mmmmmmmmmB

]∗

= −qs ⊙
[
0
eee

]
⊙
[

0
mmmmmmmmmB

]
(7.57)
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And finally:

q′s = qs

q′a = −
[
0
eee

]
⊙

[
0
mmmmmmmmmB

]
(7.58)

Moreover, we can redefine the derivatives as:

ωωωs =

(
mmmmmmmmm ·Rωωω
mmmmmmmmm · eee

)
eee

=

(
RTmmmmmmmmm ·ωωω
RTmmmmmmmmm ·RTeee

)
eee

=

(
mmmmmmmmmB ·ωωω
mmmmmmmmmB ·RTeee

)
eee (7.59)

And using the fact that:

mmmmmmmmmE = RmmmmmmmmmB

ṁmmmmmmmmE = Rω̂ωωmmmmmmmmmB +RṁmmmmmmmmB

ṁmmmmmmmmE = R
(
ṁmmmmmmmmB −mmmmmmmmmB ×ωωω

)
(7.60)

We show that:

ṁmmmmmmmmE = −1

2
(RRTmmmmmmmmmE)×R (ωωω −ωωωs)

R
(
ṁmmmmmmmmB −mmmmmmmmmB ×ωωω

)
= −1

2
R
(
mmmmmmmmmB × (ωωω −ωωωs)

)

ṁmmmmmmmmB =
1

2
mmmmmmmmmB × (ωωω +ωωωs) (7.61)

Which is slightly simpler than Eq. 7.49, since it does not have an added multipli-
cation with R. I suspect that this form of the decomposition might be useful for
analyzing the equations of motion in the body frame, given the lack of the added
R term. This is arguably less practical from a control point of view, though, since
both the actual and desired middle normal vectors are constantly changing with
a spin rotation when represented in the moving body frame. In the fixed frame,
however, if only the spin rotation is changing, both the actual and desired middle
vectors are constant.

7.6. Final thoughts

In this chapter, a novel decomposition of the quaternion representing a full 3D
rotation is given: the rotation can now be given by the quaternion product between
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the middle normal vectormmmmmmmmm, and a term dealing the spin rotation. This decompo-
sition allows us to completely decouple the 2 controllable degrees of freedom of the
rotation, expressed bymmmmmmmmm, and the uncontrollable degree of freedom given by the spin
angle. Moreover, the middle normal vectormmmmmmmmm has a clear geometrical interpretation
and has a simple expression. In Chapter 8, we will present a non-linear controller
that acts directly onmmmmmmmmm and corrects it, pointing the drone’s normal vector to the
desired direction while completely ignoring the spin rotation. We will also show
that this controller renders the system asymptotically stable.
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8. Controller architecture

In this section, we developed the cascaded controller architecture used for the
simulations. This architecture consists of an inner non-linear attitude control loop,
followed by an outer angular rate PID controller. This uncoupled controller is easier
to implement, and compatible with commonly used flight controller architectures.
The PX4 Flight Controller [37], for example, implements a nonlinear attitude
controller based on [10] followed by an angular rate PID controller as well. This
chapter has been submitted as a part of [4].

8.1. Middle normal vector and rotation

decomposition

The system is underactuated, and we cannot control its yaw rotation (the robot
will spin at all times around the z-axis). Instead of controlling the full attitude,
we decomposed the rotation quaternion q to extract the uncontrollable spin, and
control the remaining reduced attitude. We define a normal vector nnnb that points
upwards in the body frame FB:

nnnBb ≡ eeez =



0
0
1


 (8.1)

In this case, this vector in the inertial frame FE can be calculated as:

[
0
nnnEb

]
= q ⊙

[
0
nnnBb

]
⊙ q∗

= q ⊙
[
0
eeez

]
⊙ q∗ (8.2)

Giving:

nnnEb =



2(qxqz + qrqy)
2(qyqz − qrqx)
2 (q2r + q2z )− 1


 (8.3)
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Defining the middle normal vectormmmmmmmmm as the unit vector half-way between nnnBb and
nnnEb :

mmmmmmmmm =
nnnEb + nnnBb
|nnnEb + nnnBb |

=
1√

q2r + q2z



qxqz + qrqy
qyqz − qrqx
q2r + q2x


 (8.4)

Note that this has a singularity when in nnnEb = −nnnBb = −eeez, as seen in Chapter 7.
This position is usually not be plausible for the flying monospinner, but to address
this problem in real-time, we can check ifmmmmmmmmm · eee ≈ 0 (Eq. 7.19) and apply 8.5:

mmmmmmmmmk+1 ←
mmmmmmmmmk − (mmmmmmmmmk · eeez)eeez
|mmmmmmmmmk − (mmmmmmmmmk · eeez)eeez|

(8.5)

We also define:

qs =

[
cs
sseeez

]
=

[
cos(θs/2)
sin(θs/2)eeez

]

θs = 2 atan2(qz, qr) (8.6)

Or, more directly:

qs =
1√

q2r + q2z




qr
0
0
qz


 (8.7)

And, as seen in Chapter 7, we can decompose q as:

q = −
[
0
mmmmmmmmm

]
⊙

[
0
eeez

]
⊙ qs (8.8)

Moreover:

q̇s =
1

2
qs ⊙

[
0
ωωωs

]
(8.9)

Where:

ωωωs =

(
mmmmmmmmm ·Rωωω
mmmmmmmmm · eeez

)
eeez (8.10)

Also, we can definemmmmmmmmm with respect to qs as follows:

[
0
mmmmmmmmm

]
= q ⊙ q∗s ⊙

[
0
eeez

]
(8.11)
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Moreover, its derivative can be given by:

ṁmmmmmmmm = −1

2
mmmmmmmmm×R (ωωω −ωωωs) (8.12)

8.2. Rotation error definition

Define q̄ as the desired orientation, and n̄nn= n̄nnE as the corresponding normal vector,
and m̄mmmmmmmm as the corresponding middle normal vector. We know that:

q̄ = −
[
0
m̄mmmmmmmm

]
⊙

[
0
eeez

]
⊙ q̄s (8.13)

But since we cannot control the rotation around the z-axis, we just set the goal
q̄s = qs:

q̄ = −
[
0
m̄mmmmmmmm

]
⊙

[
0
eeez

]
⊙ qs (8.14)

To calculate the rotation quaternion between the desired quaternion and the current
orientation, we can define a quaternion difference as:

q∆ = q ⊙ q̄∗

= −
[
0
mmmmmmmmm

]
⊙

[
0
eeez

]
⊙ q̄s ⊙ q∗s ⊙

[
0
eeez

]∗
⊙

[
0
m̄mmmmmmmm

]

= −
[
0
mmmmmmmmm

]
⊙
[
0
m̄mmmmmmmm

]

=

[
m̄mmmmmmmm ·mmmmmmmmm
m̄mmmmmmmm×mmmmmmmmm

]
(8.15)

Or equivalently:

q∆ =
1

|nnn+ eeez||n̄nn+ eeez|

[
(n̄nn+ eeez) · (nnn+ eeez)
(n̄nn+ eeez)× (nnn+ eeez)

]
(8.16)

When the robot’s orientation is at the goal orientation, we know that, by definition,

q∆ =
[
1 0 0 0

]T
. At this state, we know that:

[
m̄mmmmmmmm ·mmmmmmmmm
m̄mmmmmmmm×mmmmmmmmm

]
=

[
1
000

]
(8.17)

And:
m̄mmmmmmmm ·mmmmmmmmm = 1 (8.18)
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Or, equivalently:

(nnn+ eeez) · (n̄nn+ eeez) = |nnn+ eeez||n̄nn+ eeez| (8.19)

Which implies that nnn = n̄nn.

8.3. Non-linear attitude controller

Consider the following family of Lyapunov candidate functions:

V = V (mmmmmmmmm,κ) ≡




− ln (mmmmmmmmm · m̄mmmmmmmm2) , if κ = 0

2Sκ
κ

(
1

mmmmmmmmm · m̄mmmmmmmmκ − 1

)
, if κ > 0

(8.20)

Where S = sign(mmmmmmmmm · m̄mmmmmmmm) and κ ∈ N is a given parameter. We can see that, for any
value of κ:

• V = 0 ⇐⇒ mmmmmmmmm = m̄mmmmmmmm, (the case when nnn = n̄nn);

• V > 0 for any other value ofmmmmmmmmm;

• lim
mmmmmmmmm→−m̄mmmmmmmm

V (mmmmmmmmm) = +∞.

Moreover, we can see that, for any value of κ:

V̇ = −2 Sκ

mmmmmmmmm · m̄mmmmmmmmκ+1 m̄mmmmmmmm · ṁmmmmmmmm

= −2 1

|mmmmmmmmm · m̄mmmmmmmm|κ
m̄mmmmmmmm · ṁmmmmmmmm
mmmmmmmmm · m̄mmmmmmmm (8.21)

Introducing Eq. 8.12 into Eq. 8.21 gives:

V̇ =
1

|mmmmmmmmm · m̄mmmmmmmm|κ
m̄mmmmmmmm · (mmmmmmmmm×R (ωωω −ωωωs))

mmmmmmmmm · m̄mmmmmmmm
(8.22)

Using the fact that aaa · (bbb× ccc) = ccc · (aaa× bbb), and that aaa ·Rbbb = RTaaa · bbb, we can further
simplify the expression as:

V̇ = (ωωω −ωωωs) ·
(

1

|mmmmmmmmm · m̄mmmmmmmm|κR
T m̄mmmmmmmm×mmmmmmmmm
mmmmmmmmm · m̄mmmmmmmm

)

(8.23)
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Which leads to the natural definition that, for any 3× 3 positive-definite matrix PPP ,
setting:

ωωω −ωωωs = −PPP
(

1

|mmmmmmmmm · m̄mmmmmmmm|κR
T m̄mmmmmmmm×mmmmmmmmm
mmmmmmmmm · m̄mmmmmmmm

)
(8.24)

Defining:

mmmmmmmmm′ =
1

|mmmmmmmmm · m̄mmmmmmmm|κR
T

(
m̄mmmmmmmm×mmmmmmmmm
mmmmmmmmm · m̄mmmmmmmm

)
(8.25)

We have:

V̇ = −mmmmmmmmm′ · (PPPmmmmmmmmm′) ≤ 0

(8.26)

Which is always negative, proving that V is a Lyapunov function and showing this
system is asymptotically stable. Isolating ωωω gives:

ωωω = ωωωs +PPP

(
1

|mmmmmmmmm · m̄mmmmmmmm|κR
Tmmmmmmmmm · m̄mmmmmmmm
mmmmmmmmm · m̄mmmmmmmm

)

(8.27)

In particular, setting m̄mmmmmmmm = n̄nn = eeez, we know that S is always equal to +1, leading
to:

ωωω =

(
mmmmmmmmm ·Rωωω
mmmmmmmmm · eeez

)
eeez +

PPP

|mmmmmmmmm · eeez|κ
RT

(
mmmmmmmmm× eeez
mmmmmmmmm · eeez

)
(8.28)

Arbitrarily choosing the simplest case with κ = 0 leads to the controller:

ωωω =
(mmmmmmmmm ·Rωωω)eeez +PPPRT (mmmmmmmmm× eeez)

mmmmmmmmm · eeez
(8.29)

Note however that different values of κ would create more aggressive controllers.

8.3.1. Angular rate controller

We can completely control the drone by setting the output of the attitude controller
given by Eq. 8.27 as the input of an angular rate controller, given that the
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separation principle holds1. We then a desired angular velocity ωωωr:

ωωωr = ωωωs +
PPP

|mmmmmmmmm · m̄mmmmmmmm|κR
T

(
mmmmmmmmm× m̄mmmmmmmm
mmmmmmmmm · m̄mmmmmmmm

)
(8.30)

And:
∆ωωω = ωωωr −ωωω (8.31)

And the correction torque τττ c can be calculated as:

1

hP
τττ c =KKKp∆ωωω +KKKd

d∆ωωω

dt
+KKKi

∫
∆ωωω dt (8.32)

Where KKKp, KKKd and KKKi are the 3 PID terms. According to the motor’s model, we
know that the relationship between the thrust force and the torque is:

τp = BBBτ fff p

= (kI+ hP êeez)fff p (8.33)

We assumed that the control force fff c and control torque τττ c are given by the cross
product part (see Fig. 5.3 and Eq. 5.48). Moreover, we also assumed that eeez ·fff c = 0.
This leads to:

τττ c = hP êeez fff c

êeez τττ c = hP êee
2
z fff c

êeez τττ c = hP (eeezeee
T
z − I)fff c

êeez τττ c = hP (eeez(eeez · fff c)− fff c) (8.34)

And finally:

fff c =
1

hP
τττ c × eeez

=

(
KKKp∆ωωω +KKKd

d∆ωωω

dt
+KKKi

∫
∆ωωω dt

)
× eeez (8.35)

Adding a constant thrust term in the z direction, for some constant Ω:

fff p = fff c + kfΩ
2eeez

=



+τc,y/hP
−τc,x/hP
kfΩ

2


 (8.36)

1The frequency of the inner rate controller is much higher than the frequency of the outer
attitude controller.

137



8. Controller architecture – 8.4. Final thoughts

Noting fff p =
[
fx fy fz

]T
, finally the motor velocity γ̇, phase β and inclination

angle α are calculated as:

β = atan2(fy, fx)

α = acos

(
fz
|fff p|

)
= atan

( |fff c|
fz

)

γ̇ =

√
|fff p|
kf

=
Ω√
cos(α)

(8.37)

Moreover, since eeez × ωωωs = 000, we can simplify the desired angular velocity to:

ωωωr =
PPP

|mmmmmmmmm · m̄mmmmmmmm|κR
T

(
mmmmmmmmm× m̄mmmmmmmm
mmmmmmmmm · m̄mmmmmmmm

)
(8.38)

8.3.2. Influence of the controller order κ

Considering the error angle ψ between nnn and n̄nn, we know that:

sin(ψ/2) = |mmmmmmmmm× m̄mmmmmmmm|
cos(ψ/2) =mmmmmmmmm · m̄mmmmmmmm (8.39)

For a given controller order κ, we know that:

|mmmmmmmmm′| =
∣∣∣∣
mmmmmmmmm× m̄mmmmmmmm
mmmmmmmmm · m̄mmmmmmmmκ+1

∣∣∣∣ = tan

(
ψ

2

)
secκ

(
ψ

2

)
(8.40)

Figure 8.1 compares the relation between the magnitude |mmmmmmmmm′| to the error angle ψ.
For higher orders of κ, the controller will be increasingly aggressive for bigger error
angles, while staying relatively the same for smaller error angles.

8.4. Final thoughts

In this chapter, a full cascaded controller architecture based on the middle normal
vector decomposition is presented. This controller, together with the swashplateless
system, makes it possible for us to control a reduced form of the drone’s attitude. In
the next chapter, we will show this controller and the equations of motion derived
in Chapter 6 were all implemented in a single closed-loop simulation, demonstrating
how this controller can stabilize the proposed UAV.
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0

1

4

9

Figure 8.1.: Relation between the magnitude |mmmmmmmmm′| to the error angle ψ for 4 different values of
the controller order κ: 0, 1, 4 and 9.
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9. Simulation and spin drift study

In order to test the controller shown in Chapter 8, a closed-loop simulation of
the Equations of Motion shown in Chapter 6 was implemented using Python1. In
this section, we will analyze some implementation details and use the simulation
to analyze the effect of a bad yaw estimation. A part of this chapter has been
submitted in [4].

9.1. Controller

As shown in Chapter 8, the desired controller force is given by (according to Eq.
8.35):

fff c =

(
KKKp∆ωωω +KKKd

d∆ωωω

dt
+KKKi

∫
∆ωωωdt

)
× eeez (9.1)

Where:

∆ωωω = ωωωr −ωωω

ωωωr = PPP

(
RT 1

|mmmmmmmmm · m̄mmmmmmmm|κ
mmmmmmmmm× m̄mmmmmmmm
mmmmmmmmm · m̄mmmmmmmm

)
(9.2)

And the positive definite matrices PPP , KKKp, KKKd and KKKi and the controller order
κ ∈ N

+ are all adjusted parameters. The full propeller force is:

fff p = fff c + kfΩ
2eeez (9.3)

1See github.com/evbernardes/monospinner simulator
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9. Simulation and spin drift study – 9.1. Controller

And according to Eq. 8.37, the rotor commands are calculated as (noting fff p =[
fx fy fz

]T
):

β = atan2(fy, fx)

α = atan

( |fff c|
kfΩ2

)

γ̇ =
Ω√
cos(α)

(9.4)

In a real robot, Ω would be manually controlled by the pilot. In our simulation, it
was set as the necessary force for hover:

Ω =

√
mg

kf
(9.5)

To simulate the physical constraints of the system, two new parameters are in-
troduced: αmax, the max inclination angle supposed to be 30 degrees, and Λ, the
security angular velocity deviation ratio from Ω, fixed at 1.2. The motor control
signals are then calculated as:

β = atan2(fy, fx)

α = min

{
atan

( |fff c|
kfΩ2

)
, αmax

}

γ̇ = Ω

[
min

{
1√

cos(α)
, Λ

}]

(9.6)

And the propeller thrust force is then calculated as follows:

rrr =



sαcβ
sαsβ
cα




fff p = kf γ̇
2rrr (9.7)
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9.2. Equations of Motion and integration

We use the equations from Eq. 6.37, supposing that the torques generated by ωωωBB/P ,
the angular velocity of FP w.r.t. FB is negligible. As a reminder:

D

[
ω̇ωω
v̇vv

]
− adTηD

[
ωωω
vvv

]
+

[
γ̇Jpz ωωω × rrr

0

]
= FB

ext (9.8)

With :

D =

[
JJJ 0
0 m I

]
+∆m

[
0 −êeez
êeez 0

]

FB
ext =

[
fpBBBτrrr +∆mg eeez × nnnEb − |ωωω|KKKωωω

fprrr −mg nnnEb

]
(9.9)

And:

m = mb +ms +mp

∆m = mshS −mphP

adη =

[
ω̂ωω 0
v̂vv ω̂ωω

]
(9.10)

These equations are used to calculate the angular and linear accelerations:

[
ω̇ωω
v̇vv

]
= D−1

(
FB
ext + adTηD

[
ωωω
vvv

]
−
[
γ̇Jpz ωωω × rrr

0

])
(9.11)

In order to test the robustness of the theoretical modelling of the equations of
motion, all while simplifying the implementation, we decided to use the simplest
and most basic method for numerical integration: the Euler method.

ωωωk+1 = ωωωk +∆t ω̇ωωk

vvvk+1 = vvvk +∆t v̇vvk (9.12)

With ∆t the sampling time of the simulation. The orientation and position can
then be reconstructed by applying the following equations:

q̇k =
1

2
qk ⊙

[
0
ωωωk

]

qk+1 = qk +∆t q̇k

sssk+1 = sssk +∆t R(qk)vvvk (9.13)

Note that an extra normalization step is needed for q.
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9.3. Full closed-loop simulation diagram

Figure 9.1 shows a diagram of the whole control scheme.

(R(q̄)+I)eeez
|(R(q̄)+I)eeez |

PPP

(
RTmmmmmmmmm× m̄mmmmmmmm

mmmmmmmmm · m̄mmmmmmmm

)
(

KKKp ∆ωωω +KKKd
d∆ωωω
dt

+KKKi

∫

∆ωωωdt

)

× eeez Motor model

D−1

(
FBext + adTηD

[
ωωω
vvv

]
−
[
γ̇Jpz ωωω × rrr

0

])∫

(R(q)+I)eeez
|(R(q)+I)eeez |

∫

q̄ m̄mmmmmmmm +ωωωr ∆ωωω fff c

ω̇ωω

−

ωωωq

mmmmmmmmm
β α γ̇

Figure 9.1.: Simulation diagram with a cascaded controller architecture. Controller (in red)
composed of a non-linear reduced attitude controller cascaded with a simple PID for
angular rate control, and finally the swashplateless motor model is used to extract the
necessary commands to the motor. Equations of motion (in green) used to simulate
the full system dynamics. Integration steps are used to extract the angular velocity
and orientation. Purple blocks correspond to the extraction ofmmmmmmmmm and m̄mmmmmmmm from q and
q̄, respectively.
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9.4. Parameters

The parameters are all based on a prototype designed at ISM, using 8 anti-torque
fins as shown in Chapter 5. The physical and controller parameters are given
respectively in Tables 9.1 and 9.2.

mb 0.2100kg
ms 0.2007kg
mp 0.0067kg
hP 0.083m
hS 0.145m
Jbx 0.0010026 kg m2

Jby 0.0010026 kg m2

Jbz 0.0001831 kg m2

Jsx 0.0001794 kg m2

Jsy 0.0000387 kg m2

Jsz 0.0001928 kg m2

Jpd 0.0000052 kg m2

Jpz 0.0001061 kg m2

kf 0.0000052400 kg m
kτ 0.0000000108 kg m2

Kz 0.0000280908 kg m2

Table 9.1.: Physical characteristics.

κ 1
PPP diag(1, 1, 1)
KKKp 0.7
KKKd 0.0
KKKi 0.0
Ω 945rad/s

Table 9.2.: Controller parameters.

9.5. Inputs and outputs

For simplicity, the inputs in the simulation are given as Euler angles in the ZYZ
sequence. As seen in Chapter 7, the rotation can be decomposed as:

RE
B = R(θ3eeez) R(θ2eeez) R(θ1eeez) (9.14)

Where the θ1, θ2 and θ3 (the precession, nutation and revolution respectively) are
given by:

θ1 = atan2(qz, qr)− atan2(−qx, qy)
θ2 = acos

(
2
(
q2r + q2z

)
− 1

)

θ3 = atan2(qz, qr) + atan2(−qx, qy)
(9.15)
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9. Simulation and spin drift study – 9.5. Inputs and outputs

Equation 9.14 can be rewritten as:

RE
B = R ((θ1 + θ3)eeez) R(θ1eeez)

T R(θ2eeez) R(θ1eeez) (9.16)

And analyzing Eqs. 8.6, 9.15 and 9.16, we note that:

θ1 + θ3 = 2 atan2(qz, qr)

= θs (9.17)

We will then use the angles θs instead of θ3 to represent the robot’s spin, since
θs is consistent with the quaternion decomposition and Eq. 8.6. Moreover, θs is
uniquely defined when θ2 is near 0 and arguably more representative of the actual
geometrical spin. A discussion of this can be seen in Appendix K. The inputs for
the the simulation’s goal orientation will be given as precessions and nutations:

θθθ = (θ1, θ2) (9.18)

So that:

n̄nnE =



cos(θ1) sin(θ2)
sin(θ1) sin(θ2)

cos(θ2)


 (9.19)

And2:

m̄mmmmmmmm =
n̄nnE + eeez
|n̄nnE + eeez|

=



cos(θ1) sin(θ2/2)
sin(θ1) sin(θ2/2)

cos(θ2/2)


 (9.20)

2Note that sin(x)/(cos(x) + 1) = tan(x/2)
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9.6. Simulations

In this section, we will analyze some simulations with different inputs and conditions.

9.6.1. Simulation 1: orientation tracking without noise

This first simulation starts with the robot at rest. Then 4 orientation points in
Table 9.3 are tracked in sequence, before going back to the initial orientation. In Fig.

θ1 θ2
45

◦

0
◦

45
◦

90
◦

45
◦

180
◦

45
◦ −90◦

45
◦

0
◦

Table 9.3.: Orientation inputs for simulation 1.

9.2 a) and b) we can see how the controller manages to track all the points easily,
acting directly on (mmmmmmmmmx,mmmmmmmmmy), the components perpendicular to eeez, and taking the
shortest path. Figure 9.2 c) shows the angular velocities. The component around
eeez approaches the theoretical steady-state velocity, while the other components
approach zero. Figure 9.2 d) shows the calculated inputs to the motors. Both
the inclination angle α and the rotor velocity γ̇ have peaks whenever the goal is
changed, limited by the physical constraints. Figure 9.3 shows the trajectory of
the projection ofmmmmmmmmm in the XY plane. Figure 9.4 shows the motor phase. We can
note how the phase keeps increasing continuously to counter the monorotor’s spin,
with discontinuities when the goal changes.

146



9. Simulation and spin drift study – 9.6. Simulations

a) b)

c) d)

Figure 9.2.: Responses of the simulated mono spinner to changes in attitude angles. a) Time
course of each component of mmmmmmmmm. b) shows the Euler angles representation of the
orientation on the ZYZ sequence: θ1 is the precession (first rotation around the z-axis,
representing the direction in which the robot is inclined), θ2 represents the nutation
(rotation around the y-axis, representing the inclination angle), and θs = θ1 + θ3
is the uncontrollable spin. c) Angular velocity. d) Motor inclination and rotation
velocity.

147



9. Simulation and spin drift study – 9.6. Simulations

Figure 9.3.: Simulation of monorotor without noise, top view projection of (mmmmmmmmmx,mmmmmmmmmy). The dashed
circles indicate the values of (mmmmmmmmmx,mmmmmmmmmy) when θ2 = π (in black) and θ2 = π/2 (in gray).

Figure 9.4.: Motor phase.
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9.6.2. Simulation 2: vertical stability with random/impulsive

noise

The second simulation starts with the robot at rest, then multiple random impulse
torques with magnitude up to 26Nm. It also contains random torques of up to
0.09Nm at all times. In Fig. 9.5 a) and b) we can see how the controller manages
to compensate for these impulses. Figure 9.5 d) shows the motor inputs, and we
note the effect of a noisy angular velocity. This may not be a problem in real
systems where a low pass filter is usually applied to the orientation estimators, but
an additional low pass filter might also be necessary in the controller output.

a) b)

c) d)

Figure 9.5.: Responses of the simulated mono spinner to perturbations. a) Time course of each
component ofmmmmmmmmm. b) Euler angles in ZYZ sequence. c) Angular velocity. d) Motor
inclination, phase, and rotation velocity.
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9.7. Spin drift

Even thoughmmmmmmmmm is uncoupled from the spin angle in FE, a good measurement of
the spin angle is still necessary for the control. Supposing there is an error of angle
ψ in the measurements, generating a rotation qψ, whose equivalent rotation matrix
is Rψ, the measured rotation q′ and R′ are:

q′ = q ⊙ qψ
R′ = RRψ (9.21)

Where:

qψ =

[
cos(ψ/2)
sin(ψ/2)eeez

]

Rψ =



cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1


 (9.22)

These wrong measurements consequently generate a flawed desired angular velocity:

ωωω′

r = PPP

(
RT
ψR

T 1

|mmmmmmmmm · m̄mmmmmmmm|κ
mmmmmmmmm× m̄mmmmmmmm
mmmmmmmmm · m̄mmmmmmmm

)
(9.23)

Which generates a flawed control output fff ′

c.

9.7.1. Simulation 3: different spin angle errors

In this section, multiple simulations were performed starting the robot with an
extreme inclination angle of 90◦, and multiple simulated spin angle errors. The
goal input was θθθ = (0, 0). Figure 9.6 shows the top view of mmmmmmmmm for spin errors
ranging from 0◦ to 75◦. The arrows showing the evolution movement are plotted
at t = 0.4s, giving also an idea of how long each simulation took to converge to
the goal destination. We can see how the trajectory of mmmmmmmmm approaches different
spirals. In Fig. 9.7 we clearly see the spiral generated by a spin error of 85◦. In
Fig. 9.8 we note that, as expected, errors greater than 90◦ cause the system to be
completely unstable. These simulations indicate two things: first, that low values
of spin measurement error might slow down convergence without rendering the
system completely unstable, and second, that an analysis of the trajectory ofmmmmmmmmm
might give an indication of the current spin error.
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Figure 9.6.: Top view ofmmmmmmmmm for multiple simulated spin error angles. The arrows show the direction
of the movement and are plotted at t = 0.4s for all the tests.

9.7.2. Spiral analysis

In this section, we will analyze the spiral generated by the projection ofmmmmmmmmm in the
xy-plane. We define:

ρρρ = −êee2zmmmmmmmmm = (I− eeezeeeTz )mmmmmmmmm =



mmmmmmmmmx

mmmmmmmmmy

0


 (9.24)

And for a goal m̄mmmmmmmm, we also define ρ̄ρρ = −êee2z m̄mmmmmmmm. We also define the errors:

∆mmmmmmmmm =mmmmmmmmm− m̄mmmmmmmm
∆ρρρ = ρρρ− ρ̄ρρ = −êee2z∆mmmmmmmmm (9.25)

And finally, the radius and phase of the spiral can be defined as:

r = |∆ρρρ| =
√
∆mmmmmmmmm2

x +∆mmmmmmmmm2
y

φ = atan2(∆mmmmmmmmmy,∆mmmmmmmmmx) (9.26)

We are interested in finding a function f such that:

r = f(φ) (9.27)

151



9. Simulation and spin drift study – 9.7. Spin drift

Figure 9.7.: Top view ofmmmmmmmmm for ψ = 85◦.

And with φ = φ(t), the spiral can be found by:

∆mmmmmmmmmx = f(φ) cos(φ)

∆mmmmmmmmmy = f(φ) sin(φ) (9.28)

Using the same Figure 9.9 shows that ln(r), after the acceleration at the beginning of
the simulation, approaches a straight line with negative slope in case of convergence
and positive slope in case of divergence. Moreover, both ψ and −ψ were observed
to produce the same curve for r, hinting at an even relationship between r and
ψ. This indicates that r, as expected, decays (or grows) exponentially. Figure
9.10 shows the same for φ, showing it also approaches a straight line. We can also
note that the slope for −ψ is the negative of the slope for ψ, hinting at an odd
relationship between φ and ψ. Supposing that both a = −d ln r

dt
and b = dφ

dt
are

constant, we can find the following formula for f :

r = f(φ)

= r0 exp

(
−(φ− φ0)

b/a

)
(9.29)

Figure 9.11a) and b) show the plot of a and b calculated for simulations with drift
angle ψ varying from −180◦ to 180◦. Figure 9.11c) shows the plot of b/a, and we
can note how the curve strongly resembles a tangent function. Figure 9.11d) shows
the plot of atan2(b, a), which shows that at least for ψ ∈ [−90, 90]◦, we can state:

ψ = atan2(b, a) (9.30)
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Figure 9.8.: Top view ofmmmmmmmmm for multiple simulated extreme spin errors.

Top view ofmmmmmmmmm for multiple simulated extreme spin errors.

And finally:

r = r0 exp

(
−(φ− φ0)

tan(ψ)

)
(9.31)
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Figure 9.9.: Plot of the logarithm of r, illustrating that it approaches a straight line.

Figure 9.10.: Plot of the phase φ, illustrating that it also approaches a straight line.
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a) b)

c) d)

Figure 9.11.: a) plot of a, the slope of − ln(r). b) plot of b, φ. c) plot of the ratio b/a, suggesting
a tangent-like relationship between ψ and this ratio. d) plot of atan2(b, a) further
demonstrating this relationship.
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9.7.3. Simplification of spin error formula

In this section, we will analyze the terms a and b of the spin error estimate and
derive a more direct formula. By definition:

a = − d

dt
(ln r)

= −1

2

d

dt

(
ln r2

)

= − 1

2r2
d

dt
(∆ρρρ ·∆ρρρ)

= −∆ρρρ ·∆ρ̇ρρ
r2

(9.32)

Which is equivalent to:

a =
(∆mmmmmmmmm · eeez)(∆ṁmmmmmmmm · eeez)−∆mmmmmmmmm ·∆ṁmmmmmmmm

r2

= −(eeez ×∆mmmmmmmmm) · (eeez ×∆ṁmmmmmmmm)

r2
(9.33)

Noting that, since ∆ṁmmmmmmmm = ṁmmmmmmmm, if m̄mmmmmmmm = 000, then the factor ∆mmmmmmmmm ·∆ṁmmmmmmmm is equal to zero.

By definition:

b =
d

dt
(atan2(∆ρρρy,∆ρρρx))

=
1

∆ρρρ2x +∆ρρρ2y

(
∆ρρρx∆ρ̇ρρy −∆ρρρy∆ρ̇ρρx

)

=
1

r2
(∆mmmmmmmmmx∆ṁmmmmmmmmy −∆mmmmmmmmmy∆ṁmmmmmmmmx)

=
1

r2
(∆ṁmmmmmmmm · (eeez ×∆mmmmmmmmm))

(9.34)

And finally:

b =
eeez · (∆mmmmmmmmm×∆ṁmmmmmmmm)

r2
(9.35)

Using Eqs. 9.33 and 9.35, and noting that r2 is positive and can be ignored inside
the arc tangent function:

ψ = atan2 (eeez · (∆mmmmmmmmm×∆ṁmmmmmmmm) , − (eeez ×∆mmmmmmmmm) · (eeez ×∆ṁmmmmmmmm))

= atan2 (eeez · (∆mmmmmmmmm×∆ṁmmmmmmmm) , (∆mmmmmmmmm · eeez)(∆ṁmmmmmmmm · eeez)−∆mmmmmmmmm ·∆ṁmmmmmmmm) (9.36)
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9.7.4. Test of spiral fit

Figure 9.12 uses Eq. 9.31 to predict the trajectory of mmmmmmmmm in a simulation with
ψ = 80◦ for a starting at two different points. We can see how the prediction is
better when we do not pick the first point as the initial point, since the both a and
b must first converge to their values. We can note, however, from Figure 9.12a)
that even when the fit is not perfect, it can still predict the trajectory very well.

a) b)

Figure 9.12.: Prediction of mmmmmmmmm trajectory for a simulation with ψ = 80◦, starting with a 90◦

inclination. a) fit starting at t = 0.002s, and b) fit starting at t = 1.25s.

9.7.5. Simulation 4: drifting spin error

In this simulation, we aim to analyze the most common case of spin error: the case
of a drifting error. We will start the simulation at the extreme case of θθθ = (0◦, 150◦)
and the goal is θθθ = (0◦, 0◦). The spin error start at ψ = 0◦, but it will keep
increasing with ψ̇ = 25◦/s (an extreme drift, but useful to analyze the results of our
spin error estimation). Figure 9.13 showsmmmmmmmmm for this test. We can see the controller
starts well, but then something happens, and the system becomes unstable. This
is expected, since the error ψ will arrive at some point at a value that is too high
for the system to be able to converge. Figure 9.14 shows the estimated ψ for
simulation 4. In green, the safe region where |ψ| < 90◦. In blue, the unsafe region
where |ψ| > 90◦. Note that even though our model did not predict the formula
would work in these cases, it still sometimes works, but it is not reliable. In red,
the region where r < 10−5. In this region, the robot has converged to the desired
goal and no more movement is expected (apart from the spin). This means that
a = 0, b = 0 and atan2(b, a) is undefined, meaning that we will only get numerical
floating point noise.
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Figure 9.13.: Simulation 4. We see that the controller manages to stabilize the system at first,
but then it gets out of control when the drift error gets too big.

Figure 9.14.: Drift estimation for simulation 4. In green, the safe region where |ψ| < 90◦. In
blue, the unsafe region where |ψ| > 90◦. Note that even though our model did not
predict the formula would work in these cases, it still sometimes works, but it is not
reliable. In red, the region where r < 10−5.

9.7.6. Theoretical analysis of spin error formula

In this section, we will demonstrate that the formula from Equation 9.36 can be
easily demonstrated with a few simple assumptions. The controller designed in
Chapter 8 works, in the ideal case, by directly approaching ρρρ to ρ̄ρρ, minimizing ∆ρρρ
by a straight line. shown in Fig 9.15 a). Denoting the unit vector that goes from ρρρ
to ρ̄ρρ as nnn, we know that:

nnn = − ∆ρρρ

|∆ρρρ| (9.37)
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9. Simulation and spin drift study – 9.7. Spin drift

And in the ideal case, shown in Fig 9.15 b), the unit vector in the direction of ∆ρ̇ρρ
is aligned with it:

∆ρ̇ρρ

|∆ρ̇ρρ| = nnn (9.38)

For some spin error ψ, we can expect that the controller force will be rotated by
RT
ψ , equivalent to a rotation by −ψ around the axis eeez. We show this in Fig 9.15

c).

Figure 9.15.: Diagrams for theoretical analysis of spin drift effect. a) Plot of ρρρ, the projection of
mmmmmmmmm in the xy-plane, ρ̄ρρ the goal, and ∆ρρρ, the difference between them. b) Optimal
scenario: the controller works as expected, and ρρρ approaches ρ̄ρρ, and ∆ρ̇ρρ point in the
direction of −∆ρρρ. c) Spin error scenario: the controller has an angle error of ψ.

Defining λ = |∆ρρρ|/|∆ρ̇ρρ|, we can state:

−λ∆ρ̇ρρ = cψ∆ρρρ+ sψ(∆ρρρ× eeez)
(9.39)

Calculating the cross product with ∆ρρρ, and noting that ∆ρρρ · eeez = 0:

−λ∆ρρρ×∆ρ̇ρρ = sψ∆̂ρρρ
2
eeez

= sψ
(
(∆ρρρ · eeez)eeez − |∆ρρρ|2eeez

)

= −sψ|∆ρρρ|2eeez
(9.40)

Applying now the dot product with eeez yields:

sψ =
λ

r2
eeez · (∆ρρρ×∆ρ̇ρρ) (9.41)

Moreover:

∆ρρρ×∆ρ̇ρρ = (∆mmmmmmmmm− (∆mmmmmmmmm · eeez)eeez)× (∆ṁmmmmmmmm− (∆ṁmmmmmmmm · eeez)eeez)
= ∆mmmmmmmmm×∆ṁmmmmmmmm− (∆mmmmmmmmm · eeez)(eeez ×∆ṁmmmmmmmm)− (∆ṁmmmmmmmm · eeez)(∆mmmmmmmmm× eeez)

(9.42)
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And finally:

sψ =
λ

r2
eeez · (∆mmmmmmmmm×∆ṁmmmmmmmm) (9.43)

Calculating this time the cross product of 9.39 with eeez:

−λ∆ρ̇ρρ× eeez = cψ(∆ρρρ× eeez) + sψ(∆ρρρ× eeez)× eeez
(9.44)

And calculating now the dot product with (∆ρρρ× eeez):

−λ(∆ρ̇ρρ× eeez) · (∆ρρρ× eeez) = cψ|∆ρρρ× eeez|2
(9.45)

Noting that |∆ρρρ× eeez|2 = |∆ρρρ|2 and that (∆ρ̇ρρ× eeez) = (∆ṁmmmmmmmm× eeez):

cψ = − λ
r2
(eeez ×∆mmmmmmmmm) · (eeez ×∆ṁmmmmmmmm) (9.46)

Using Eqs. 9.43 and 9.46, and noting that λ/r is a common positive factor, we can
finally state that:

ψ = atan2 (eeez · (∆mmmmmmmmm×∆ṁmmmmmmmm), −(eeez ×∆mmmmmmmmm) · (eeez ×∆ṁmmmmmmmm)) (9.47)

Note that the theoretically demonstrated Eq. 9.47 and the simplified experimental
formula from Eq. 9.36 are the same.

9.8. Final thoughts

In this chapter, the full simulation of the proposed monorotor UAV was described.
Here we present all the theoretical and practical details used for the creation of
a closed-loop simulation assembling the work detailed in the previous chapters:
the model of the motor system equipped with the swashplateless mechanism,
the equations of motion derived with the Euler-Poincaré equations, the rotation
decomposition and subsequent non-linear controller architecture. We were able to
show that this controller has the exact desired effect on the robot’s rotation: it
acts directly on the middle vectormmmmmmmmm, while ignoring the spin rotation.

Moreover, we also used this simulation to study the effect of a poor estimation of
the spin rotation on the controller’s performance. This led to the expression of a
new observer that uses the dynamics of the controllable part of the rotation to
improve the estimation of the uncontrollable spin.
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10. A concise and general formula
for the direct conversion
between a quaternion and the
Euler angles in any sequence

Current methods of the conversion between a rotation quaternion and Euler angles
are either a complicated set of multiple sequence-specific implementations, or a
complicated method relying on multiple matrix multiplications. In this paper, a
general formula is presented for extracting the Euler angles in any desired sequence
from a unit quaternion. This is a direct method, in that no intermediate conversion
step is required (no quaternion-to-rotation matrix conversion, for example) and it
is general because it works with all 12 possible sequences of rotations. A closed
formula was first developed for extracting angles in any of the 12 possible sequences,
both “Proper Euler angles” and “Tait-Bryan angles”. The resulting algorithm was
compared with a popular implementation of the matrix-to-Euler angle algorithm,
which involves a quaternion-to-matrix conversion in the first computational step.
Lastly, a single-page pseudocode implementation of this algorithm is presented,
illustrating its conciseness and straightforward implementation. With an execution
speed 30 times faster than the classical method, our algorithm can be of great
interest in every aspect. Then, we will see how this can be extended to the other
six sequences with a simple transformation.

This work has been published in [6]1, and the official SciPy development branch
has since replaced the algorithm on [58] with this algorithm.

10.1. Introduction

When dealing with 3D orientation problems, many formalisms can be used to
describe a given rotation [60], each of which has its own set of advantages and
shortcomings. Arguably the most direct representation of a 3D rotation is a matrix
R ∈ SO(3), where SO(3) is the group of invertible 3 × 3 matrices such that for

1Sadly, some minor (but annoying) definition errors passed the reviews and were published.
These errors were corrected for this chapter.
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any R, det(R) = 1 and RRT = RTR = I, where I is the identity matrix. These
rotation matrices represent direct linear transformations such that, with vvv ∈ R

3:

vvvrotated = Rvvv (10.1)

Apart from being simple to use, a rotation matrix also has the advantage of being
continuous, and a simple matrix multiplication can be used to compose rotations:
R = R2 R1 is the rotation matrix corresponding to a rotation by R1 followed by a
rotation by R2. 3D rotation matrices have some numerical shortcomings, however.
For example, as many as 9 numbers (and 6 constraints) are required to represent a
3 degree of freedom rotation, and it can be difficult and computationally costly to
orthogonalize a rotation matrix numerically [54] (i.e., to check that the matrix has
its determinant equal to 1 and its inverse equal to its transpose, which is necessary
to compensate for the accumulated floating point errors).

However, it is possible to parametrize this rotation matrix with a smaller set of
numbers [64]. One of the most usual set of parameters are the Euler angles. The
approach consists in decomposing the 3D rotation matrix into the product of three
rotations:

R = Rθ3 eee3 Rθ2 eee2 Rθ1 eee1 (10.2)

Where Rθ eee is a rotation by the angle θ around the axis eee, and the consecutive axes
are orthogonal (eee1·eee2 = eee2·eee3 = 0). The advantages of using Euler angles include the
fact that only three numbers have to be stored, and due to their familiarity, they can
be more easily understood, which explains why they are still being so widely used,
even in cases where other forms of representation may be more appropriate. The use
of Euler angles also has several disadvantages. For example, they are discontinuous,
and it is difficult to directly compose two 3D rotations expressed in Euler angles.
Euler angles are also affected by the phenomenon commonly called “gymbal lock”:
when two axes become aligned, making the system underdetermined, special care
has to be taken. In addition, since there are 12 possible axis sequences (24, when
considering the difference between “intrinsic” and “extrinsic” rotations), the correct
sequence has to be checked in the case of each application. An arguably preferable
parametrization are quaternions. A quaternion is a hypercomplex number defined
by one real part and three distinct imaginary parts (which can also be regarded as
the vector part). When the norm of a quaternion is equal to 1, quaternions are a
useful and efficient representation of 3D orientation: they can be composed as easily
as rotation matrices, they are continuous, and they are easily constructed from
the axis-angle representation. In addition, quaternions can be normalized trivially,
which is much more efficient than having to cope with the corresponding matrix
orthogonalization problem. For these reasons, most 3D graphical applications
and rotation engines carry quaternions under the hood. Besides these advantages,
Euler angles are still being preferred by many authors: Euler angles are the most
familiar concept to most engineers and researchers. In addition, in the case of many
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problems in which there exists only one degree of freedom, angles can suffice.

To be able to perform fast calculations with quaternions and at the same time
analyze rotations using angles, it might be necessary to have an efficient method of
converting the one set of parameters to the other. Calculating the corresponding
quaternion (or rotation matrix) for a given set of Euler angles is trivial. Extracting
the Euler angles is much harder, however. One of the following two methods has
generally been used up to now. The first method consists in adopting a different
set of formulas for each possible angle sequence [26], which is difficult to implement
and debug. The second method is that described in [58]. SciPy [71], for example, a
widely used scientific library for the Python programming language, implements this
method. It converts rotation matrices into Euler angles and involves many matrix
multiplications, including the inverse trigonometric functions required, which are
naturally computationally costly. In addition, if rotations are stored in the form
of quaternions (as is usually the case in many of the 3D rendering software tools
dealing with rotations), an additional conversion step from quaternions to rotation
matrices is necessary.

Since many robotic, graphic and other high-level applications involve the use of
quaternions (even if they are hidden from the user), it can be necessary to have a
concise, efficient method for the conversion between quaternions and Euler angles.
The direct conversion formula from quaternions to Euler angles presented here
requires fewer computational steps and less expensive computational resources.
Moreover, this conversion formula is much simpler to implement and debug, making
it a great option for any new applications needing to implement this kind of
conversions.

10.2. Formula development

In the section, the formula for the conversion between a quaternion and any of
the 6 proper Euler angle sequences is derived, and then an adaptation for the 6
remaining Tait-Bryan sequences is demonstrated.

10.2.1. Case 1: Proper Euler angles

Assuming q = [qr, qqq
T ]T is unit and known, it can be decomposed as follows:

q =

[
c3
s3eee

]
⊙
[
c2
s2eee

′

]
⊙
[
c1
s1eee

]
(10.3)
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In which (for 0 ≤ θ2 ≤ π):

s1 ≡ sin (θ1/2), c1 ≡ cos (θ1/2)

s2 ≡ sin (θ2/2), c2 ≡ cos (θ2/2)

s3 ≡ sin (θ3/2), c3 ≡ cos (θ3/2) (10.4)

Where s2 ≥ 0, c2 ≥ 0. Note that we choose a solution in which c2 > 0 and s2 > 0.
Appendix J shows how we can come up with a different set of solutions. Taking eee
and eee′ to be orthogonal unit vectors (eee · eee′ = 0), there is a third unit vector which
is orthogonal to the other two, such that:

eee′′ ≡ εeee× eee′ (10.5)

Where ε = (eee×eee′) ·eee′′ = ±1. Together, eee, eee′ and eee′′ form an orthonormal basis. We
also define:

θ+ =
θ3 + θ1

2

θ− =
θ3 − θ1

2
(10.6)

And:

s+ ≡ sin (θ+) = c1s3 + s1c3

s− ≡ sin (θ−) = c1s3 − s1c3
c+ ≡ cos (θ+) = c1c3 − s1s3
c− ≡ cos (θ−) = c1c3 + s1s3 (10.7)

Analyzing Eq. 10.3:

q =

[
c3
s3eee

]
⊙
[
c2
s2eee

′

]
⊙
[
c1
s1eee

]

= c2

[
c3
s3eee

]
⊙
[
c1
s1eee

]
+ s2

[
c3
s3eee

]
⊙
[
0
eee′

]
⊙
[
c1
s1eee

]

= c2

[
c+
s+eee

]
+ s2

[
0

c−eee
′ + s−eee× eee′

]
(10.8)

And noting that eee× eee′ = εeee′′:

q =

[
c2c+

c2s+eee+ s2c−eee
′ + s2s−εeee

′′

]
(10.9)
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Defining the following four components:




a
b
c
d


 ≡




qr
qqq · eee
qqq · eee′
ε qqq · eee′′


 (10.10)

We obtain:



a
b
c
d


 =




c2c+
c2s+
s2c−
s2s−


 (10.11)

Alternatively, we can see that
[
b c d

]T
is simply a permutation of the components

of qqq:



b
c
d


 =

[
eee eee′ eee× eee′

]T
qqq (10.12)

10.2.1.1. Extraction of angles

Using complex numbers, we can define:

z+ ≡ a+ ib = c2(c+ + is+)

z− ≡ c+ id = s2(c− + is−) (10.13)

Since c2, s2 ≥ 0, we know that |z+| = c2, arg(z+) = θ+, |z−| = s2 and arg(z−) = θ−.
We can then rewrite:

z+ = a+ ib = c2 exp (iθ+)

z− = c+ id = s2 exp (iθ−) (10.14)

And we know that:

θ+ =
θ3 + θ1

2
= arg{a+ ib} = atan2(b, a)

θ− =
θ3 − θ1

2
= arg{c+ id} = atan2(d, c) (10.15)

10.2.1.2. Singularities

There are two different singularities in these expressions. When θ2 = 0, we have
s2 = 0 and θ− is undefined. When θ2 = π, we have c2 = 0 and θ+ is undefined. In
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both cases, one degree of freedom is lost, and we can argue that θ1 (or alternatively,
θ3) loses its geometrical meaning. We can then either set θ1 to zero, or keep it
fixed in its latest value (for example, when updating an estimator, for the sake of
continuity). Defining:

θ1 ≡ θ̂1 , if θ2 = 0 or θ2 = π (10.16)

Taking θ̂1 to be some constant (zero or otherwise), we can calculate:

{
θ3 = 2atan2(b, a)− θ̂1 , when θ2 = 0

θ3 = 2atan2(d, c) + θ̂1 , when θ2 = π
(10.17)

10.2.1.3. General formula for θ1 and θ3 in the absence of singularities

If θ2 ̸= 0 and θ2 ̸= π, multiplying z+ and z− yields:

z+ z− = (a+ ib)(c+ id)

= c2s2 exp

(
i
θ3 + θ1 + θ3 − θ1

2

)

= c2s2 exp(iθ3) (10.18)

On similar lines, multiplying z+ and the conjugate of z− yields:

z+ z
∗

−
= (a+ ib)(c− id)
= c2s2 exp(iθ1) (10.19)

The angles can then be obtained using:

θ1 = arg(z+ z
∗

−
) = arg((a+ ib)(c− id))

θ3 = arg(z+ z−) = arg((a+ ib)(c+ id))

(10.20)

Or, more simply, from Eq. 10.15:

θ1 = arg(a+ ib)− arg(c+ id)

θ3 = arg(a+ ib) + arg(c+ id) (10.21)

Or:

θ1 = θ+ − θ−
θ3 = θ+ + θ−

(10.22)
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It is worth noting that Eq. 10.21 requires fewer operations than Eq. 10.20: only 2
calls to atan2, one addition and one subtraction, but a final wrapping step may be
required in order to either keep the angles either in (−π, π] or [0, 2π).

10.2.1.4. General formulas for calculating θ2

From Eq. 10.14, we know that:

c2 = cos (θ2/2) = |z+| =
√
a2 + b2

s2 = sin (θ2/2) = |z−| =
√
c2 + d2 (10.23)

And we can use any of the following equivalent formulas obtained directly from the
definition:

θ2 = 2asin

(√
c2 + d2

n2

)
= 2acos

(√
a2 + b2

n2

)
= 2atan

(√
c2 + d2

a2 + b2

)
(10.24)

Where the factor n2 = a2 + b2 + c2 + d2 = |q|2 can be ignored if the quaternion is
already normalized. Using the properties of inverse trigonometric functions, we
can also find the following formula, which avoids the need for a square root:

θ2 = acos

(
2
a2 + b2

n2
− 1

)
(10.25)

Discussions during the implementation of this algorithm in the SciPy library led
me to realize that usual implementations of acos and asin might lead to problems
near zero. The consequence is that using an atan2 formula for θ2 is also preferred,
not for set problems but rather for numerical reasons2:

θ2 = 2atan2
(√

c2 + d2,
√
a2 + b2

)
(10.26)

10.2.2. Case 2: Tait-Bryan angles

We now define:

q =

[
c3
s3eee

′′

]
⊙
[
c2
s2eee

′

]
⊙
[
c1
s1eee

]
(10.27)

2I would like to personally thank maintainer Nikolay Mayorov for pointing that out:
https://github.com/scipy/scipy/pull/17392
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Where −π/2 < φ2 < π/2. Again assuming that eee, eee′ and eee′′ are orthogonal unit
vectors and eee′′ = εeee× eee′, where ε = (eee× eee′) · eee′′ = ±1, we define:

λ ≡
[
cos(π/4)
sin(π/4)eee′

]
=

1√
2

[
1
eee′

]
(10.28)

We note that:

λ∗ ⊙
[
c3
s3εeee

]
⊙ λ =

[
c3

s3εeee× eee′
]

=

[
c3
s3eee

′′

]
(10.29)

Which gives:

q =

[
c3
s3eee

′′

]
⊙
[
c2
s2eee

′

]
⊙
[
c1
s1eee

]

q = λ∗ ⊙
[
c3
s3εeee

]
⊙ λ⊙

[
c2
s2eee

′

]
⊙
[
c1
s1eee

]

q′ =

[
c′3
s′3eee

]
⊙
[
c′2
s′2eee

′

]
⊙
[
c1
s1eee

]
(10.30)

Where:

s′2 ≡ sin θ′2/2 (≥ 0)

c′2 ≡ cos θ′2/2 (≥ 0)

s′3 ≡ sin θ′3/2

c′3 ≡ cos θ′3/2 (10.31)

Where θ′2 = θ2 + π/2 and θ′3 = εθ3, and:

q′ ≡ λ⊙ q

=
1√
2

[
1
eee′

]
⊙
[

a
beee+ ceee′ + deee′′

]

=
1√
2

[
a− c

(b+ d)eee+ (c+ a)eee′ + (d− b)eee′′
]

(10.32)

Using Eq. 10.32, we can define:




a′

b′

c′

d′


 =

1√
2




a− c
b+ d
c+ a
d− b


 (10.33)
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And then calculate θ1, θ
′

2 and θ′3 using the formulas obtained in the proper case.
Using the acos formula for θ2, we have:

θ2 = θ′2 − π/2 = acos

(
2
a′2 + b′2

n′2
− 1

)
− π/2

= acos

(
a′2 + b′2 − c′2 − d′2

n′2

)
− π/2 (10.34)

Moreover, using the fact that acos(x)− π/2 = asin(−x):

θ2 = asin

(
−2 a

′2 + b′2

n′2
+ 1

)

= asin

(
c′2 + d′2 − a′2 − b′2

n′2

)
(10.35)

Which results in singularities when θ′2 = 0 or θ′2 = π, which is equivalent to
θ2 = −π/2 or θ2 = π/2, as was to be expected. In addition, we know that when no
singularities are present:

θ1 = atan2(b′, a′)− atan2(d′, c′)

θ3 = ε (atan2 (b′, a′) + atan2 (d′, c′)) (10.36)

10.2.3. Example of a proper sequence: ZYZ

If we decide to use the sequence ZYZ, then eee = eeez, eee
′ = eeey and eee′′ = eeez × eeey = −eeex.

This leads to:



a
b
c
d


 =




qr
qz
qy
−qx


 (10.37)

And the general formulas for θ1, θ2 and θ3 (when no singularities are present, and
assuming q to have been normalized) are:

θ1 = atan2(qz, qr)− atan2(−qx, qy)
θ2 = acos

(
2
(
q2r + q2z

)
− 1
)

θ3 = atan2(qz, qr) + atan2(−qx, qy) (10.38)
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10.2.4. Example of a Tait-Bryan sequence: ZYZ

Using the sequence XYZ, equivalent to the common aeronautical angles, then
eee = eeex, eee

′ = eeey and eee′′ = eeez. This leads to:




a′

b′

c′

d′


 =

1√
2




qr − qy
qx + qz
qy + qr
qz − qx


 (10.39)

And the general formulas for θ1, θ2 and θ3 are:

θ1 = atan2(qx + qz, qr − qy)− atan2(qz − qx, qy + qr)

θ2 = acos
(
(qr − qy)2 + (qx + qz)

2 − 1
)
− π/2

θ3 = atan2(qx + qz, qr − qy) + atan2(qz − qx, qy + qr) (10.40)

10.3. Complete algorithm

Algorithm 1, presented in this section, implements the conversion method from
this work. Assuming that our inputs are q ∈ R

4, the rotation quaternion and i,
j and k ∈ N, an array of integers defining the sequence of angles (for example,
[i, j, k] = [323] is equivalent to the sequence ZY Z). A Python implementation can
be found on [3].3

Many operations are required to convert a quaternion into a rotation matrix. Using
the homogeneous formula from Eq. A.51, for example, if special care is taken in
order not to repeat any operations, we have to perform at least 42 = 16 floating
point multiplications (all the possible products between two different components of
the quaternion, plus all the squares of each component), 4× 3 = 12 multiplications
by 2 and 3× 3 + 6 = 15 additions/subtractions. This conversion step alone is more
than enough to make an algorithm based on [58] much slower than the proposed
method. In addition, multiple matrix multiplications also have to be computed. By
comparison, our algorithm replaces all the conversions and matrix multiplications
by a simple permutation of the quaternion elements and in the case of Tait-Bryan
angles, only 5 additional additions/subtractions and possibly a sign change are
required.

3Note that this algorithm handles gymbal lock by setting θ1 = 0.
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Input: q ∈ R
4, and i, j, k ∈ {1, 2, 3}, where i ̸= j, j ̸= k

Output : θ1, θ2, θ3
if i == k then

not proper ← False
k ← 6− i− j // because i+ j + k = 1 + 2 + 3 = 6

else
not proper ← True

end
ε← (i− j)× (j − k)× (k − i)/2 // equivalent to the Levi-Civita symbol

if not proper then
a← q[0]− q[j]
b← q[i] + q[k]× ε
c← q[j] + q[0]
d← q[k]× ε− q[i]

else
a← q[0]
b← q[i]
c← q[j]
d← q[k]× ε

end

θ2 ← 2 atan2
(√

c2 + d2,
√
a2 + b2

)

θ+ ← atan2(b, a)
θ− ← atan2(d, c)
switch value of θ2 do

case 0 do
θ1 ← 0 // For simplicity, we are setting θ̂1 = 0

θ3 ← 2× θ+ − θ1
case π do

θ1 ← 0
θ3 ← 2× θ− + θ1

otherwise do
θ1 ← θ+ − θ−
θ3 ← θ+ + θ−

end

end
if not proper then

θ3 ← ε× θ3
θ2 ← θ2 − π/2

end
θ1, θ3 ← wrap(θ1, θ3) // ‘‘wrap’’ assures θ1, θ3 ∈ (−π, π] or θ1, θ3 ∈ [0, 2π)

Algorithm 1: Complete implementation of conversion between a rotation
quaternion and Euler angles in any sequence, setting θ1 = 0 in case of singularity.
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10.4. Results

In this section, a performance comparison between our method and the Shuster
method is presented. We adapted the SciPy library in order to compile the
algorithm as described in Section 10.3. A real data set comprising the orientation
of a spinning object with 3284 data points was used to compare the efficiency of
the two algorithms. The full implementation and data set can be downloaded from
[3]. First we noted that both methods give the same results: adding the absolute
value of the differences between the two methods in a whole data set gives an error
of the order of 10−12. The execution times required in our tests for each sequence
(and their ratios) are presented in the Table 10.1. From this test, it can be clearly
seen that the method presented here is about 30 times faster.

seq new method [58] implemented in [71] ratio

ZYZ 0.487 s 13.770 s 28.261
ZXZ 0.384 s 13.361 s 34.805
XYX 0.382 s 13.381 s 34.998
XZX 0.414 s 13.187 s 31.832
YXY 0.359 s 13.029 s 36.262
YZY 0.375 s 13.078 s 34.884
ZYX 0.371 s 13.152 s 35.408
ZXY 0.364 s 13.124 s 36.048
XYZ 0.373 s 13.170 s 35.291
XZY 0.385 s 13.157 s 34.213
YXZ 0.365 s 13.087 s 35.838
YZX 0.425 s 13.122 s 30.844

Table 10.1.: Comparison of execution times between the two methods. The Python module timeit

was used to check the execution time required to convert the whole data set 500
times on an Intel® Core™ i3-4030U CPU with a 1.90GHz clock speed.

10.5. Conclusion

The Euler angles are still a useful intuitive 3D orientation parametrization. A fast
method of conversion to/from any other set of parameters can therefore be of great
interest for displaying or analyzing data, for instance. In this study, we therefore
developed a general formula for this conversion which is concise, easy to implement
and easy to debug. In addition, the fact that our method is about 30 times faster
than the method proposed by [58], which required an intermediate conversion into
rotation matrices, we believe that our proposed method can be of great interest.
This faster execution time also makes this method suitable for use in embedded
real time applications such as inertial measurement units (IMUs). We propose
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that this method could be adopted as the new standard method for converting
quaternions into Euler angles, and we are now planning to contributing to several
scientific libraries accordingly.

10.6. Extra: generalization for Davenport angles

This section, left out from the article, shows how to generalize the formula for the
generalized Euler angles [16], also known as Davenport angles. The decomposition
studied will be of the form:

q =

[
c3
s3eeek

]
⊙
[
c2
s2eeej

]
⊙
[
c1
s1eeei

]
(10.41)

Where:

s1 ≡ sin (θ1/2), c1 ≡ cos (θ1/2)

s2 ≡ sin (θ2/2), c2 ≡ cos (θ2/2)

s3 ≡ sin (θ3/2), c3 ≡ cos (θ3/2) (10.42)

As seen in [59], the following properties of Euler angles are also required when
generalizing the Euler angles to Davenport angles:

eeei · eeej = eeej · eeek = 0 (10.43)

This extra relation is required for Euler angles:

eeei · eeek =
{
0 , in case of the Proper Euler angles

±1 , in case of the Tait-Bryan angles
(10.44)

For the Davenport angles, the value eeei · eeek can be any value. As a consequence of
Eq. 10.43, and eeek can be transformed in eeei by a simple rotation of an angle the
angle θλ around the axis eeej, as seen in Fig. 10.1:

eeek = cos (θλ)eeei + sin (θλ) (eeei × eeej) (10.45)

Figure 10.1.: Illustration of angle between Davenport axes.
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From Eq. 10.45, we note that:

cos (θλ) = eeek · eeei
sin (θλ) = eeek · (eeei × eeej) (10.46)

And:

θλ = atan2 (eeek · (eeei × eeej) , eeek · eeei) (10.47)

We note from Eq. 10.46 that the formula for sin (θλ) is exactly the formula for the
parity ε! Except that, in this case, it can be any value between −1 and 1. Defining
cλ = cos(θλ/2), sλ = sin(θλ/2) and λ the quaternion that rotates eeek into eeei, we
have, from Fig 10.1:

[
0
eeei

]
= λ⊙

[
0
eeek

]
⊙ λ∗

[
0
eeek

]
= λ∗ ⊙

[
0
eeei

]
⊙ λ (10.48)

λ =

[
cos(θλ/2)

sin(θλ/2)(−eeei)× (eeei × eeej)

]
(10.49)

From Eq. 10.43 we can note that:

(−eeei)× (eeei × eeej) = −êeei 2eeej
= −

(
eeeieee

T
i − I

)
eeej

= −
(
eeeieee

T
i − I

)
eeej

= eeej (10.50)

And we can then state that:

λ =

[
cos(θλ/2)
sin(θλ/2)eeej

]
(10.51)

And we note that Eq. 10.28 and Eq. 10.51 are equivalent in the case where
θλ = π/2, as expected. Analyzing Eqs. 10.41, 10.48 and 10.51 we can state that:

q =

[
c3
s3eeek

]
⊙
[
c2
s2eeej

]
⊙
[
c1
s1eeei

]

= λ∗ ⊙
[
c3
s3eeei

]
⊙ λ⊙

[
c2
s2eeej

]
⊙
[
c1
s1eeei

]
(10.52)
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And finally:

q′ =

[
c3
s3eeei

]
⊙
[
c′2
s′2eeej

]
⊙
[
c1
s1eeei

]
(10.53)

Where:

q′ ≡ λ⊙ q ≡
[
q′r
qqq′

]

s′2 ≡ sin

(
θ2 + θλ

2

)

c′2 ≡ cos

(
θ2 + θλ

2

)
(10.54)

And we suppose θ2 + λ > 0. And as seen in this chapter, we can solve Eq. 10.53
(in the general case without singularities) with:

θ2 + λ = 2asin

(√
c2 + d2

n2

)
= 2acos

(√
a2 + b2

n2

)
= 2atan

(√
c2 + d2

a2 + b2

)

= acos

(√
2
a2 + b2

n2
− 1

)
(10.55)

And:

θ3 + θ1
2

= atan2(b, a)

θ3 − θ1
2

= atan2(d, c) (10.56)

Where:

a = q′r

b
c
d


 =

[
eeei eeej eeei × eeej

]T
qqq′

n2 = a2 + b2 + c2 + d2 (10.57)

Note that using this general Davenport solution for the computation of Euler angles
(specially Tait-Bryan angles) might lead to a set problem, since the angles are not
unique. Appendix J explains this problem and shows a solution.
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Origami and robot shape We made an extensive review of the existing origami
structures of interest in the literature. In order to rapidly design and create the
structures, a Pattern-drawing extension for the graphical software Inkscape was
implemented, and different ways of assembling origami structures were tested.
With the help of the ICube team, different possible shape changing structures were
analyzed according to their possible use cases, in specific:

• Magic ball : rigidly-foldable origami, very flexible, useful if a big shape change
is needed. We decided not to continue studying this particular structure since
it would not be particularly useful for the project.

• Flasher : mostly studied by ICube, this origami structure can be easily
deployed, changing its diameter. We also decided not to use this particular
origami structure for the OrigaBot project.

• Kresling tower : this structure transforms a rotational movement into a linear
displacement and vice-versa, all while being a bistable structure that, when
well built, does not need a constant source of power in order to stay in one of
its two possible states. This structure was chosen for the prototypes.

We decided to concentrate our efforts into developing a monorotor spinning drone
that uses a Kresling tower as its main body. In order to create this monorotor
drone, we decided to re-implement a swashplateless solution as described in [46,
44] in order to have a vector control of the rotor’s torque and thrust force.

Origami Bendy Straw We noticed that the literature lacked a simple origami-
based structure that bends. This lead us to the development of the Origami Bendy
Straw, a multistable origami structure that, when modified with a Pop-Through
Defect, has a stable bending position. This structure was implemented in the
Pattern-drawing Inkscape extension, as a FOLD file generator, and a low-cost
force-measuring bench was created in order to test the forces necessary to deploy a
set of paper origami bendy straws.

Decomposition of orientation quaternion Rotary wing aircraft vehicles, be
they manned or unmanned, usually have an even number of rotary wings, half
of them spinning clockwise and half of them spinning counterclockwise. This is
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a critical design decision that is important in order to neutralize the total torque
produced to the body. A monorotor drone will normally have a non-zero torque
in one constant direction, making it spin. In order to control the 2 controllable
degrees-of-freedom of the rotation, while accepting that our robot will spin freely
and uncontrollably around the z-axis, we analyzed alternative ways of representing
the orientation. We have showed that, for some constant axis eee, any orientation
quaternion can be decomposed into two independent components: A component
that purely represents the rotation around the axis eee (which, for us, is uncontrollable)
and a vectormmmmmmmmm (the middle normal vector) that represents the other two controllable
degrees of freedom. The vector mmmmmmmmm is simply the middle vector between eee before
and after the full rotation, as represented in the inertial frame. This is closely
related to the fact that a quaternion’s elements are proportional to the sine and
cosine of half of the rotation angles. Moreover, we analyzed the derivatives of both
decomposed elements and showed some of their properties.

Nonlinear control Using the normal middle vectormmmmmmmmm as the rotation variable,
we derived a fully nonlinear control law that stabilizes the system while ignoring
its spin around the z-axis, proving it via a Lyapunov function. This control law
gives the goal angular velocity as output. We then derived a complete orientation
controller composed of the formerly discussed controller as an inner loop, and a
PID controller as an outer loop. We have decided on this architecture because it
is well-known and easy to implement on the PX4 flying controller (as a matter of
fact, the external PID loop is already implemented). The output of this controller
was then adapted to be used with the single rotor attached to a swashplateless
mechanism.

Equations of Motion with Euler-Poincaré Equation We decided to make a
complete analysis of the robot’s movement without any linearization and with a
minimal set of simplifying assumptions. We did this modeling using the Euler-
Poincaré method. This method is an alternative form of the energy-based Euler-
Lagrange method that can be used when the generalized coordinates of the system
can be described as an element of a Lie group. In our case, we are studying the
linear and rotational degrees of freedom of a flying drone, which can both be
represented as elements of SE(3). This method is arguably more straightforward
than the usual Euler-Lagrange, but is also less known by the scientific community.

Simulation and findings We implemented a Python class for the simulation of
the whole system, integrating our Poincaré method-derived equations of motion,
quaternion decomposition-based nonlinear control architecture, swashplateless
mechanism model and parameters derived from a real prototype. We used the
simulation to further indicate that the controller architecture can be used to stabilize
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the robot’s orientation. Moreover, the simulation was used to analyze the effect
of a bad orientation estimation on the robot’s stabilization. The rapid spinning
of the robot, together with the limits of the IMU integrated circuits, can lead to
a rapid degrading of the robot’s spin (or yaw) estimation. We did an extensive
simulation study of the effect of spin estimation error on the trajectory of the
reduced attitude middle vectormmmmmmmmm. This study was used to derive an observer that
could theoretically use the trajectory ofmmmmmmmmm (equivalent to roll and pitch, which are
usually more precise) to estimate an error on the estimation of the spin (or yaw,
which is almost always less precise).

Quaternion to Euler angles conversion As an extra to the monorotor project,
I was able to derive a new formula for the direct conversion of an orientation
quaternion to three Euler angles in any of the possible 12 sequences. This formula
has the convenience of being much simpler and more concise to implement than the
other available methods, and has the slight advantage of being more than 30 times
faster than the very well-known conversion method described by [58]. Moreover,
it is a direct mathematical formula, making it possible to use it in theoretical
development. Since the first publication of this formula and algorithm in November
2022, it has already been merged into both SciPy and SymPy, among other smaller
open source projects.

Future The next steps for the OrigaBot project are, firstly, experimental tests in
order to confirm all the theoretical development made during my thesis project.
Not only the dynamical model and the control architecture need to be proved,
but also the observer that estimates spin error must be implemented and tested.
Moreover, the OrigaBot project’s initial ambitions were that of creating a fully
multi-modal vehicle that can either fly, for full mobility, or roll on the ground,
for battery-saving purposes. It would be interesting to dedicate the next steps,
after the ending of the monorotor project, to study the problem of designing and
constructing such a multi-modal robot.
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and simulation of a single rotor UAV with swashplateless torque modulation”.
In: Aerospace Science and Technology (2023, submitted) (cit. on pp. 69, 96,
110, 117, 119, 132, 140).
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A. Mathematical Definitions

A.1. Useful matrices, vectors, and operations

1. eeex, eeey and eeez are the unit base vectors in the x, y and z axes respectively:

eeex =



1
0
0


 , eeey =



0
1
0


 , eeez =



0
0
1


 (A.1)

2. For aaa, bbb ∈ R
3, âaa = (aaa)̂ is a 3× 3 skew-symmetric matrix such that aaa× bbb = âaabbb,

given by:

âaa =




0 −az ay
az 0 −ax
−ay ax 0


 (A.2)

3. For any rotation matrix R, the hat operator (·)̂ has the following property1:

(Raaa)̂= RâaaRT (A.3)

4. êeex, êeey and êeez are, according to Eq. A.2:

êeex =



0 0 0
0 0 −1
0 1 0


 , êeey =




0 0 1
0 0 0
−1 0 0


 , êeez =



0 −1 0
1 0 0
0 0 0


 (A.4)

5. (·)q is the inverse of (·)̂ such that:

(ω̂ωω)q= ωωω (A.5)

6. The rotation matrix equivalent to a rotation of an angle θ around an axis eee is
denoted by Rθeee. Moreover, the rotation matrices around the canonical axes

1https://math.stackexchange.com/questions/4252273/if-a-times-is-a-matrix-such-that-a-times-b-a-

4252360#4252360
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are also denoted by:

Rθeeex = Rx(θ) =



1 0 0
0 cos θ − sin θ
0 sin θ cos θ




Rθeeey = Ry(θ) =




cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ




Rθeeez = Rz(θ) =



cos θ − sin θ 0
sin θ cos θ 0
0 0 1


 (A.6)

7. In is the n× n identity matrix, and I is a shorthand notation for I3 (the 3× 3
identity matrix).

8. 000n (note: the boldface type) is the n× 1 zero vector. For example, 0003 is the

3× 1 zero vector: 000 =



0
0
0


.

9. 000n,m is the n×m zero matrix (n lines and m columns).

10. 000 (without any subscripts) is used as a shorthand notation to either 000n or
000n,m when the dimensions are obvious from context (mostly used in place of
0003 and 0003,3).

11. (̃·) means the “quaternion version” of its value. When applied to a real
number a:

ã =

[
a
000

]

And when applied to a vector vvv ∈ R
3:

ṽvv =

[
0
vvv

]

12. Defining RB
P the rotation matrix from FP to FB and sBP the position of FP in

FB, the total transformation gBP ∈ SE(3) from frame FP to FB is given by:

gBP =

[
RB
P sssBP

000T 1

]
(A.7)

13. Superscripts on a vector (linear or angular) indicate the frame of reference,
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for example:
vvvB ≡ vector vvv in frame FB (A.8)

14. Subscripts on a velocity vector (linear or angular) explicitly indicates the
frames (or, sometimes, bodies):

ωωωP/B ≡ angular velocity vector ωωω of frame FP w.r.t. FB (A.9)

15. A single subscript indicates the velocity is w.r.t. the inertial frame FE:

ωωωP ≡ ωωωP/E ≡ angular velocity of frame FP w.r.t. FE (A.10)

16. Both superscripts from 13 and subscripts from 14 and 15 can be used together:

ωωωPP ≡ ωωωPP/E ≡ angular velocity of frame FP w.r.t. FE, represented in FP

(A.11)

17. For the inertial twist defined in 18, η̂ is a 4× 4 matrix given by:

η̂ =

[
ωωω
vvv

]̂
=

[
ω̂ωω vvv
000T 0

]
(A.12)

18. For ωωω,vvv ∈ R
3 representing, respectively, the angular and linear velocity

vectors, we define the inertial twist:

η =

[
ωωω
vvv

]
(A.13)

19. Defining gBP the transformation from some frame FP to some frame FB (as
seen in 12), to transform a twist η from one frame to another, by composition
of velocities, we can state:

ηBP = AdBP η
P
P + ηPP/B (A.14)

Where, as seen in [40], the Ad operator is given by:

AdBP ≡
[
RB
P 0

ŝssBPR
B
P RB

P

]

(
AdBP

)−1
= AdPB ≡

[ (
RB
P

)T
0

−
(
RB
P

)T
ŝssBP

(
RB
P

)T

]
(A.15)
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A.2. Matrix calculus definitions

Since there are many conventions on how to define the derivatives of matrices
and vectors in relation to matrices and vectors2, we will give in this chapter the
definitions (and some properties) used throughout this work. For a scalar a ∈ R,
column vectors xxx,vvv,www ∈ R

n and matrix A ∈ R
m×n:

xxx =
[
x1 x2 . . . xn

]T

vvv =
[
v1 v2 . . . vn

]T

www =
[
w1 w2 . . . wn

]T

A =




A11 A12 . . . A1n

A21 A22 . . . A2n
...

...
. . .

...
Am1 Am2 . . . Amn


 =




AT(1)
AT(2)
...

AT(m)


 (A.16)

Where:
AT(i) =

[
Ai1 Ai2 . . . Ain

]
(A.17)

A.2.1. Definitions

In this work, our definitions will be mostly compatible with the denominator layout
convention3

1. ∀A = A(a):

∂A

∂a
=



∂A11

∂a
. . . ∂A1n

∂a
...

. . .
...

∂Am1

∂a
. . . ∂Amn

∂a


 (A.18)

2. From Eq. A.18, we know that ∀a = a(xxx):

∂a

∂xxx
=




∂a
∂x1
∂a
∂x2
...
∂a
∂xn


 (A.19)

2As can be seen, for example, in: https://en.wikipedia.org/wiki/Matrix_calculus#

Notation
3Since, for the Partial Differential Equations presented in this work, I find it more practical to
define the derivatives as column vectors.
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A. Mathematical Definitions – A.2. Matrix calculus definitions

3. ∀vvv = vvv(a):

∂vvv

∂a
=




∂v1
∂a
∂v2
∂a
...
∂vn
∂a


 (A.20)

And:
∂vvv

∂a

T

=
[
∂v1
∂a

∂v2
∂a

. . . ∂vn
∂a

]
(A.21)

4. from Eq. A.19, we know that ∀vvv = vvv(xxx), ∂vi
∂xxx

=
[
∂vi
∂x1

∂vi
∂x2

. . . ∂vi
∂xn

]T
, so:

∂vvv

∂xxx
=




∂v1
∂x1

. . . ∂vn
∂x1

...
. . .

...
∂v1
∂xn

. . . ∂vn
∂xn




And finally:

∂vvv

∂xxx
=




∂vvvT

∂x1
...

∂vvvT

∂xn


 =

[
∂v1
∂xxx

. . . ∂vn
∂xxx

]
(A.22)

Note that:
∂xxx

∂xxx
= In (A.23)

Where In is the n× n identity matrix.

A.2.2. Useful properties

1. ∀vvv = vvv(xxx), ∀www = www(xxx) and d = www · vvv = wwwTvvv:

d =
[
w1 w2 . . . wn

]




v1
v2
...
vn




= w1v1 + · · ·+ wnvn
∂d

∂x1
=
∂w1

∂x1
v1 +

∂v1
∂x1

w1 + · · ·+ ∂wn
∂x1

vn +
∂vn
∂x1

wn
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Rearranging:

∂d

∂x1
=
[
∂w1

∂x1
. . . ∂wn

∂x1

]


v1
...
vn


+

[
∂v1
∂x1

. . . ∂vn
∂x1

]


w1
...
wn




=

(
∂www

∂x1

)T
vvv +

(
∂vvv

∂x1

)T
www

∂d

∂xxx
=

[
∂d
∂x1
∂d
∂xn

]

=




(
∂www
∂x1

)T

...(
∂www
∂xn

)T


vvv +




(
∂vvv
∂x1

)T

...(
∂vvv
∂xn

)T


www

And finally:
∂www · vvv
∂xxx

=
∂www

∂xxx
vvv +

∂vvv

∂xxx
www (A.24)

2. If A is a constant matrix and vvv = vvv(xxx), and defining www = Avvv:

www =




AT(1)
AT(2)
...

AT(m)


vvv

=




AT(1)vvv

AT(2)vvv
...

AT(m)vvv




For every i, using Eq. A.24, and remembering that A is constant:

∂wi
∂xj

=
∂vvv

∂xj

T

A(i) = AT(i)
∂vvv

∂xj

∂www

∂xj
=



AT(1)

∂vvv
∂xj
...

AT(m)
∂vvv
∂xj


 = A

∂vvv

∂xj
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And from Eq. A.22:

∂www

∂xxx
=
[
∂www
∂x1

. . . ∂www
∂xn

]T

=
[
A ∂vvv
∂x1

. . . A ∂vvv
∂xn

]T

=
[
∂vvv
∂x1

. . . ∂vvv
∂xn

]T
AT

And finally:
∂Avvv

∂xxx
=
∂vvv

∂xxx
AT (A.25)

3. If A is constant and square (m = n), vvv = vvv(xxx) and defining e = vvvTAvvv, and
using Eq. A.24:

∂e

∂xxx
=
∂vvv · (Avvv)

∂xxx

=
∂vvv

∂xxx
Avvv +

∂Avvv

∂xxx
vvv

Using Eq. A.25:

∂e

∂xxx
=
∂vvv

∂xxx
Avvv +

∂vvv

∂xxx
ATvvv

And finally:
∂vvvTAvvv

∂xxx
=
∂vvv

∂xxx

T

(A+ AT )vvv (A.26)

And from Eqs. A.23 and A.26:

∂xxxTAxxx

∂xxx
= (A+ AT )vvv (A.27)

A.3. Quaternion algebra summary

The orientation of the robot can (and will, in this work) be expressed as a unit
quaternion. Since the definitions concerning quaternion algebra are not perfectly
consistent in the literature, we will show in this section some important notation
and definitions used in this work.

A quaternion q is a hypercomplex number composed of four components:

q = qr + qxiii+ qyjjj + qzkkk (A.28)
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Where qr, qx, qy, qz ∈ R. And all the properties of quaternions can be derived using
the properties:

• iii2 = jjj2 = kkk2 ≡ −1.

• iiijjj = −jjjiii = kkk.

• jjjkkk = −kkkjjj = iii.

• kkkiii = −iiikkk = jjj.

Using the properties above, the product of two quaternions q and p can be given
by the Hamilton product:

q p = (prqr − pxqx − pyqy − pzqz) + (prqx + pxqr − pyqz + pzqy) iii (A.29)

+ (prqy + pxqz + pyqr − pzqx) jjj + (prqz − pxqy + pyqx + pzqr)kkk

For simplicity, quaternions will be written in this work as 4× 1 vectors:

q =




qr
qx
qy
qz


 (A.30)

And the Hamilton product between two quaternions in 4-vector form will be written
as4:

q ⊙ p =




qr
qx
qy
qz


⊙




pr
px
py
pz


 (A.31)

Defining qr as the real part and qqq =
[
qx qy qz

]T
the imaginary/vector part of q,

we can rewrite q as:

q =

[
qr
qqq

]
(A.32)

And the Hamilton product between two quaternions in 4-vector form can be denoted
by:

q ⊙ p =

[
qr
qqq

]
⊙
[
pr
p

]
=

[
qrpr − qqq · p

qrp+ prqqq + qqq × p

]
(A.33)

Defining the conjugate q∗ =

[
qr
−qqq

]
and the absolute value as |q| =

√
q2r + q2x + q2y + q2z ,

the inverse q−1 of q is given by:

q−1 =
q∗

|q|2 (A.34)

4When ⊙ notation is not used, consider common matrix/vector products.
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And for any quaternion q:

q ⊙ q−1 = q−1 ⊙ q =




1
0
0
0


 (A.35)

A.3.1. Matrix representation of the Hamilton product

The product q⊙ p can be also rewritten as a simple product between a 4× 4 matrix
and quaternion 4-vector:

q ⊙ p = L(q)p = R(p)q (A.36)

Where L(·) represents a Hamilton product from the left and R(·) represents a
Hamilton product from the right. Both of these matrices have multiple possible
definitions5, but we will use:

L(q) =




qr −qx −qy −qz
qx qr −qz qy
qy qz qr −qx
qz −qy qx qr


 = qr I4 +

[
0 −qqqT
qqq q̂qq

]

R(q) =




qr −qx −qy −qz
qx qr qz −qy
qy −qz qr qx
qz qy −qx qr


 = qr I4 +

[
0 −qqqT
qqq −q̂qq

]
(A.37)

Note the very useful basic properties:

L(q∗) = L(q)T

R(q∗) = R(q)T

L(λ q) = λL(q)
R(λ q) = λR(q) (A.38)

For λ ∈ R. The following reduced definitions are also useful to keep in mind:

L1 = L1(q) =



qx qr −qz qy
qy qz qr −qx
qz −qy qx qr


 =

[
qqq (qr I+ q̂qq)

]

R1 = R1(q) =



qx qr qz −qy
qy −qz qr qx
qz qy −qx qr


 =

[
qqq (qr I− q̂qq)

]
(A.39)

5https://en.wikipedia.org/wiki/Quaternion#Matrix_representations
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Such that:

L(q) =
[
(q∗)T
L1

]

R(q) =

[
(q∗)T
R1

]
(A.40)

These multiplicative properties are important:

L(q ⊙ p) = L(q)L(p)
R(q ⊙ p) = R(p)R(q)

L(q)R(p) = R(p)L(q) (A.41)

Defining the conjugation matrix C =

[
1 000
000 −I

]
, we can state:

q∗ = C q (A.42)

And we can use it to find the following relationships:

L(q) = C R(q)T C
R(q) = C L(q)T C

(A.43)

A final practical definition used in this work6:

E(q) = L(q)T = L(q∗)

=




qr qx qy qz
−qx qr qz −qy
−qy −qz qr qx
−qz qy −qx qr




=

[
qT

E1

]
(A.44)

Where:

E1 = E1(q) =



−qx qr qz −qy
−qy −qz qr qx
−qz qy −qx qr


 (A.45)

6Useful definition for consistency with [Udwadia2010].
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And we can note that:

L(q) = E(q)T =

[
qT

E1

]T

=
[
q ET

1

]
(A.46)

A useful property:

L1(q)q
∗ = R1(q)q

∗ = E1(q)q = 000

(A.47)

And if |q| = 1:

L(q)L(q)T = R(q)R(q)T = E(q)E(q)T = I4

L1(q)L1(q)
T = R1(q)R1(q)

T = E1(q)E1(q)
T = I

(A.48)

A.3.2. Unit quaternions as rotations

If q is a unit quaternion7, meaning that |q| = 1, it can be used to represent the
rotation between two frames of reference. Also, in this case:

q−1 = q∗ (A.49)

Denoting vvvA and vvvB a vector vvv in frames A and B respectively and q = qBA the
unit quaternion that represent the rotation from A to B:

[
0
vvvB

]
= qBA ⊙

[
0
vvvA

]
⊙ (qBA )

∗ (A.50)

The equivalent rotation matrix is given by8:

RB
A =



q2r + q2x − q2y − q2z −2qrqz + 2qxqy 2qrqy + 2qxqz
2qrqz + 2qxqy q2r − q2x + q2y − q2z −2qrqx + 2qyqz
−2qrqy + 2qxqz 2qrqx + 2qyqz q2r − q2x − q2y + q2z


 (A.51)

7Also known as the S3 group
8This is just one of the possible forms for this matrix. Many others can be found given the
constraint that |q|2 = 1.
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Which can be found using:

[
0
vvvB

]
= q ⊙

[
0
vvvA

]
⊙ q∗

= L(q)R(q∗)

[
0
vvvA

]

= L(q)R(q)T
[
0
vvvA

]

=

[
(q∗)T

L1

] [
q∗ RT

1

] [ 0
vvvA

]

=

[
(q∗)T q∗ (q∗)TRT

1

L1q
∗ L1RT

1

] [
0
vvvA

]

=

[
q · q (R1q

∗)T

L1q
∗ L1RT

1

] [
0
vvvA

]

(A.52)

And from Eq. A.47:

[
q · q (R1q

∗)T

L1q
∗ L1RT

1

]
=

[
|q|2 0
0 L1RT

1

]
(A.53)

So:
[
0
vvvB

]
=

[
0

L1RT
1 vvv

A

]
,

R(q) = L1(q)R1(q)
T (A.54)

Which gives (noting that for any vvv ∈ R
3, we have vvvvvvT = |vvv|2I+ v̂vv2):

R(q) = (q2r − |qqq|2)I+ 2qqqqqqT + 2qrq̂qq

= I+ 2qrq̂qq + 2q̂qq 2 (A.55)

A.3.3. Derivative of rotation quaternion and angular velocity

Defining RB
A and q = qBA the rotation matrix and quaternion respectively from

Frame A to frame B, and ω = ω
A
A/B as the angular velocity of Frame A in respect

to B (as seen from frame A), we have the relation9:

q̇ =
1

2
q ⊙

[
0
ω

]
(A.56)

9If ω is the velocity seen from frame B, the relationship is different, but this will not be used in
this work.
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Or: [
0
ω

]
= 2q∗ ⊙ q̇ (A.57)

Equation A.57 can be rewritten as:

[
0
ω

]
= 2L(q)T q̇

= 2E(q)q̇ = 2

[
q
E1

]
q̇ (A.58)

Or simply:.

ω = 2E1q̇ (A.59)

Finally, from A.59, we can also observe:

q · q̇ = 0 (A.60)

Alternatively, Eq. A.59 can also be rewritten as:

[
0
ω

]
= 2




q̇r q̇x q̇y q̇z
q̇x −q̇r −q̇z q̇y
q̇y +q̇z −q̇r −q̇x
q̇z −q̇y q̇x −q̇r


 q (A.61)

Which can be rewritten, thanks to Eq. A.60, as:

[
0
ω

]
= 2




−q̇r −q̇x −q̇y −q̇z
q̇x −q̇r −q̇z q̇y
q̇y +q̇z −q̇r −q̇x
q̇z −q̇y q̇x −q̇r


 q

= 2E(−q̇)q (A.62)

(A.63)

And finally:
ω = −2Ė1q (A.64)

Both Eqs. A.59 and A.64 will be useful.
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B. Designing thick origami with

OrigamiPatterns

In this section, a simple method to use Inkscape and the OrigamiPatterns extension
for the design of thick origami with the membrane method will be explained,
step-by-step. First, we will see every step needed to draw each of the necessary
laser-cut cuts. Then, we will see how to cut this with a laser-cutting machine.

The material used was monolayer acrylic1 with 0.8mm of thickness. The original
pattern we want to design can be seen in Fig. B.1.

Figure B.1.: Original pattern used as a guideline for the construction of a thicker version.

B.1. Drawing each cut

In this section, we will describe the procedure used to generate all the necessary
cut drawings with the aid of Inkscape’s built-in functions.

1Trotec TroLase ADA Signage
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B.1.1. Cut 1

1. Draw valleys with width equal to twice the thickness of the material (in
this case, 1.6mm), mountains to some thin width (0.1mm, for example), the
vertices with radius sufficiently big (2.0mm in this example), getting Fig.
B.2a.

2. Ungroup once to separate valleys, mountains, and vertices in three groups
Object -> Ungroup.

3. Select vertices, ungroup until each vertex is separated, then combine them on
a same path object with Path -> Combine.

4. Repeat for valley strokes and then for mountain strokes.

5. Selecting the valleys (that are now a single path), select Path -> Stroke to

Path. Then select Object -> Fill and Stroke, remove the fill and add a
thin contour. The result will be the one on Fig. B.2b.

6. Combine valleys and mountains.

7. First, assuring that the vertices are above the valleys, select Object -> Clip

-> Set Inverse (LPE). You will have, finally, the result from B.2c.

a) b) c)

Figure B.2.: Steps for Cut 1.

B.1.2. Cut 2

1. Draw valleys (same thick as before width), edges (same width as valleys) and
vertices (same radius as before). See Fig. B.3a.

2. Repeat steps 2 and 3 as seen in the instructions for Cut 1.

3. Select valleys and edges and combine them in a single image, then repeat step
5 from Cut 1, getting Fig. B.3b.

4. Selecting everything, apply Path -> Union, getting Fig. B.3c.
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5. Select Path -> Break Apart, delete the outer edge, then combine again with
Path -> Combine, finally getting Fig. B.3d.

a) b)

c) d)

Figure B.3.: Steps for Cut 2.

B.1.3. Cut 3 (optional)

1. Copy Cut 1.

2. Go to Object -> Fill and Stroke, go to Stroke style options and change
stroke type to dashed. See Fig. B.4.

Figure B.4.: Steps for Cut 3. This cut is optional.
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B.1.4. Cut 4

1. Draw thin edges and vertices with the same radius as before.

2. Option 1: Simply combine everything, getting Fig. B.5a, and the Cut is done.

3. Option 2: Combine every vertex, then select edges and apply Path ->

Intersection. Then draw new edges, combine everything together and
get Fig. B.5b.

a) b)

Figure B.5.: Cut 4. Either do Step 1 and Step 2 to get a), or do Step 1 and Step 3 to get b).

l

B.2. Assembling and cutting

1. Organize cut images in this order:

a) Cut 1: Thick material settings (acrylic);

b) Cut 2: Paper settings;

c) Cut 3: Membrane settings (also paper, in this case), optional;

d) Cut 4: Thick material settings (acrylic), this should be able to pierce
every layer. Cut multiple times if necessary.

In our particular laser-cutting machine, the material is chosen according to
the color of the strokes. We assembled everything in a same image, every cut
with a different color, as seen in Fig. B.6.

2. Put thick material (acrylic) in laser-cutting machine and apply Cut 1 with
thick material settings. See Fig. B.7.

3. Cover with membrane material (paper) and glue borders with scotch tape,
see Fig. B.8a.
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Figure B.6.: Every cut images assembled.

Figure B.7.: Applying Cut 1.

4. Apply Cut 2 with paper settings, see Fig. B.8b.

5. Remove paper free pieces and leave everything that is connected to the glued
borders. The remaining paper layer (Fig. B.8c) will stop the scotch layer
from attaching to small pieces that should be removed, and from gluing parts
when folded.

a) b) c)

Figure B.8.: a) Covered with paper. b) Applying Cut 2 and c) Unattached paper parts removed.

6. Cover with double-layer scotch tape. See Fig. B.9a.
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7. Cover with membrane. See Fig. B.9b.

8. Optional. Apply Cut 3. See Fig. B.9c.

a) b) c)

Figure B.9.: a) Covered with double-layer scotch tape. b) Cover with membrane material and c)
apply Cut 3.

9. Apply Cut 4 with thick material settings, liberating the piece. This cut
has to pierce every layer (thick material, paper, scotch tape and membrane).
Apply multiple times if needed. See Fig. B.10a.

10. Remove liberated piece. See Fig. B.10b.

11. Fold membrane according to pattern. Mountains can only be folded in one
direction. See Fig. See Fig. B.10c.

a) b) c)

Figure B.10.: a) Apply Cut 4. b) Finished flipped piece before folding and c) after folding.
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C. Radial ratio for Kresling tower

origami

The external radius is usually the parameter that defines the whole scale of the
Kresling tower. The internal radius, however, also has some practical importance:
in order to fit all the necessary elements of the drone inside the structure (electronics,
battery, etc.), we must be sure the internal radius of the closed structure is big
enough. In this subsection, I will briefly document an analysis of this internal
radius.

Defining the new variable:

γ =
ri
R

(C.1)

We can interpret it as a ratio between the internal and external radii of the Kresling
tower. Using the relationships in Eq. 1.1, we can show that:

γ = sin

(
π(n− 2)

2n
(1− λ)

)

Or, equivalently:

γ = sin

(
π

(
1

2
− 1

n

)
(1− λ)

)
(C.2)

C.1. Maximum and minimum values

Since 1
2
≤ λ ≤ 1, we can derive that:

0 ≤ 1− λ ≤ 1

2
(C.3)

And since n ≥ 3 (otherwise it wouldn’t define a polygon), we can also show that:

1

6
≤
(
1

2
− 1

n

)
≤ 1

2
(C.4)

207



C. Radial ratio for Kresling tower origami – C.2. Required n for given γ

Figure C.1.: Max radial ratio γmax for Kresling towers of different number of sides n.

With this, we can conclude that:

0 ≤ π

(
1

2
− 1

n

)
(1− λ) ≤ π

4
(C.5)

We know that:
d

dx
sin(x) ≥ 0, for x ⊂ [0, π/4] (C.6)

We can conclude that the greater the biggest possible value for γ happens at the
biggest possible value of π

(
1
2
− 1

n

)
(1− λ). Moreover, we know from Eq. C.5 that:

0 ≤ sin

(
π

(
1

2
− 1

n

)
(1− λ)

)
≤ 1√

2
(C.7)

So we know that the minimum possible value for γ is γmin = 0 for λ = 0.5, and that
the maximum theoretical value is γmax =

1√
2
≈ 0.707 for λ = 1 and a very large n.

C.2. Required n for given γ

For a given constant n, the highest possible value of γ still happens when λ = 0.5
(Eq. C.6) and has a value of:

γnmax = sin

(
π

2

(
1

2
− 1

n

))
(C.8)

This is plotted on Figure C.1. Inverting Eq. C.8 we can find the minimum n needed
for a given γ:

nmin =

⌈
2π

π − 4 sin−1(γ)

⌉
(C.9)
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C. Radial ratio for Kresling tower origami – C.3. Computing all the other
parameters

n Maximum γ

3 0.25881
4 0.38268
5 0.45399
6 0.50000
7 0.53203
8 0.55557
9 0.57357

Table C.1.: Minimum n needed for a desired γ.

Where ⌈x⌉ is the ceiling function. We can see on Table C.1 the minimum n needed
for a desired γ.

C.3. Computing all the other parameters

Using the definition of γ in Eq. C.10, we can invert the equation to find that:

λ = 1− 2n

π(n− 2)
sin−1(γ) (C.10)

So, knowing n and γ, we also know λ. If we also know R, then we have all we need
([43]).
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D. Kresling tower height/rotation

relationship

In this chapter, I will study the relationship between the height of a Kresling tower
cell and its rotation angle.

D.1. Node position

α
Ti =

(
R cos

(
2π
N i+ α

)
, R sin

(
2π
N i+ α

))2π
NR

Bi =
(
R cos 2π

N i, R sin 2π
N i
)

Figure D.1.: Projection of top (in red) and bottom (in black) polygons on the XY plane.

Analyzing the projections of the top and bottom polygons of a single Kresling
tower cell on Figure D.1, and taking into account the height z of the Kresling tower
cell, defined as the difference in the z direction between both planes, we can define
the full 3D position of each point with the following equations:

Bi = R




cos 2π
N
i

sin 2π
N
i

0




(D.1)

Ti = R




cos
(
2π
N
i+ α

)

sin
(
2π
N
i+ α

)

z
R



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D. Kresling tower height/rotation relationship – D.2. Relationship between R and
z

D.2. Relationship between R and z

In order to find the theoretical relationship, we must find some kind of assumption.
We will explore the two easiest assumptions (which are but approximations of the
real tower).

D.2.1. Constant l

Assuming the length of each l is constant during the whole movement of the tower,
and analyzing the tower, we can state that:

l2 = |Ti+2 − Bi|2 = R2

∣∣∣∣∣∣∣∣∣∣




cos
(
2π
N
(i+ 2) + α

)
− cos

(
2π
N
i
)

sin
(
2π
N
(i+ 2) + α

)
− sin

(
2π
N
i
)

z
R




∣∣∣∣∣∣∣∣∣∣

2

(D.2)

Fixing i = 0 (any value of i will simplify to the same result), we can rewrite Eq.
D.2 as the following:

l2 = R2

∣∣∣∣∣∣∣∣∣∣




cos
(
4π
N

+ α
)
− 1

sin
(
4π
N

+ α
)

z
R




∣∣∣∣∣∣∣∣∣∣

2

l2

R2
=

(
cos

(
4π

N
+ α

)
− 1

)2

+

(
sin

(
4π

N
+ α

))2

+
z2

R2

l2 − z2

R2
=

(
cos

(
4π

N
+ α

))2

− 2 cos

(
4π

N
+ α

)
+ 1 +

(
sin

(
4π

N
+ α

))2

l2 − z2

R2
= 2

(
1− cos

(
4π

N
+ α

))

And finally, we can write it in the following final form:

2
l2 − z2

(2R)2
= 1− cos

(
4π

N
+ α

)
(D.3)

or:

α = acos

(
1− 2

l2 − z2

(2R)2

)
− 4π

N
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D. Kresling tower height/rotation relationship – D.3. l and b constant

D.2.2. Constant b

If we decide instead to assume that b is constant:

b2 = |Ti+1 − Bi|2 (D.4)

we can find by the same kind of development the following formula:

2
b2 − z2

(2R)2
= 1− cos

(
2π

N
+ α

)
(D.5)

or:

α = acos

(
1− 2

b2 − z2

(2R)2

)
− 2π

N
(D.6)

D.3. l and b constant

If we assume both l and b are constant, then we can cross both functions and find
the low-energy configurations of the tower cell (since the cell will have no elastic

potential energy stored when all the sides are not curved). Defining B =
√
b2−z2
2R

and L =
√
l2−z2
2R

for simpler of notation, and substituting α on Eq. D.3 by the
expression found on Eq. D.6, we can state that:

2L2 = 1− cos

(
2π

N
+ acos

(
1− 2B2

))
(D.7)

Using the property acos(1− 2x2) = 2 asin(|x|), we can simplify it as:

2L2 = 1− cos
(
2
( π
N

+ asin(B)
))

(D.8)

Using the property 1− cos x = 2 sin2 x, it can be once again rewritten as:

2L2 = 2 sin2
( π
N

+ asin(B)
)

(D.9)

And finally, using property sin(a+ b) = sin a cos b + cos a sin b and cos (asin x) =√
1− x2:

L =
√
1− B2 sin

( π
N

)
+B cos

( π
N

)
(D.10)
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D. Kresling tower height/rotation relationship – D.3. l and b constant

Defining S = sin
(
π
N

)
and C = cos

(
π
N

)
for simplicity, we can rewrite the equation

as:

L =
√
1− B2S +BC

L− BC =
√
1− B2S

(L− BC)2 = (1− B2)S2

L2 − 2LBC +B2C2 = S2 − B2S2

L2 +B2 − S2 = 2LBC

Since both B and L are defined as square roots, we can square the equation once
again to simplify it:

(L2 +B2 − S2)2 = 4L2B2C2

(L2 +B2)2 − 2(L2 +B2)S2 + S4 = 4L2B2C2

Defining K =
√
l2+b2

2R
, P =

√
lb

2R
and h = z

2R
, we can show the following relationships:

L2 +B2 = K2 − 2h2

L2B2 = P 4 −K2h2 + h4

And the equation can be rewritten as:

(K2 − 2h2)2 − 2(K2 − 2h2)S2 + S4 = 4(P 4 −K2h2 + h4)C2

K4 − 4K2h2 + 4h4 − 4K2S2 + 4h2S2 + S4 = 4P 4C2 − 4K2h2C2 + 4h4C2

4(1− C2)h4 + (K4 − 2K2S2 + S4) + (4K2C2 − 4K2 + 4S2)h2 = 4P 4C2

And finally:

4(1− C2)h4 +
[
4K2(C2 − 1) + 4S2

]
h2 + (K2 − S2)2 − 4P 4C2 = 0

S2h4 +
[
S2(1−K2)

]
h2 +

[
(K2 − S2)2

4
− P 4C2

]
= 0

Which is a biquadratic equation for h and can be solved using the quadratic formula:

h2 =
S(K2 − 1)± C

√
4P 4 −K4 + S2

2S
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D. Kresling tower height/rotation relationship – D.4. Numerical simulations

Using the fact that the height is non-negative, we can eliminate the 2 possible
negatives solutions:

h =

√
S(K2 − 1)± C

√
4P 4 −K4 + S2

2S
(D.11)

D.4. Numerical simulations

To test the solution, here is the plot of both functions (constant l and constant
b) with two vertical bars representing the analytical solutions using Eq. D.11: To

Figure D.2.: Numerical solution of the Kresling tower heights.

test the effect of the parameter λ, we plotted on Figure 1.15 the results of h for λ
varying between 0.5 and 1: Here we can observe that:

• One of the solutions appears to be always equal to 0;

• One of the solutions tends towards 0 when λ tends towards 0.5.

Analyzing Eq. D.11, if one of the solutions is always equal to zero, we can state
that:

S(K2 − 1) = C
√
4P 4 −K4 + S2 (D.12)
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D. Kresling tower height/rotation relationship – D.4. Numerical simulations

Which leads to the following simplification:

h2 =
S(K2 − 1)± C

√
4P 4 −K4 + S2

2S

h2 =
S(K2 − 1)± S(K2 − 1)

2S

h2 =
(K2 − 1)

2
(1± 1)

And finally:

h+ =
√
K2 − 1

h− = 0 (D.13)

Or:

z+ = 2R

√(
l2 + b2

2R

)2

− 1 =

√
(l2 + b2)2 − 4R2

z− = 0 (D.14)
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E. Autopilot technical details

To better match the end goal of a lightweight drone, the chosen hardware was
an important decision. Our first choice was to use the Elle0 card produced
by 1BitSquared 1, seen in Fig. E.1a. This card has a 32bit ARM Cortex M4
microprocessor and its size is only 30.5mm× 30.5mm. In the end, we decided to
switch to a Pixracer card produced by mRobotics2. This card has an equivalent
32-bit STM32F427 Cortex M4 processor and has size 36mm× 36mm (Fig. E.1c.).

a) b)

c) d)

Figure E.1.: Autopilots for the project. a) Elle0 autopilot by 1BitSquared (discontinued), that
uses the Parapazzi UAV b). c) Pixracer autopilot by mRobotics, that uses the PX4
UAV d).

Even though it is (slightly) bigger, this choice was motivated by their software:
while the Elle0 is powered by Paparazzi3, the Pixracer card is powered by PX4 4.

1https://1bitsquared.com/products/elle0-autopilot
2https://store.mrobotics.io/mRo-PixRacer-R14-Official-p/auav-pxrcr-r14-mr.htm
3https://wiki.paparazziuav.org/wiki/Main Page
4https://px4.io/
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E. Autopilot technical details

PX4 has two advantages for us in the project: it is more widely used and known,
making it easier to develop, and, more importantly, PX4 is the Autopilot firmware
used by the original developers of Vertiq. This made it possible for us to use their
original code as an inspiration for our own PX4 fork, implementing the integration
of the Vertiq module firmware into the Autopilot firmware5.

For wireless telemetry and communication with the drone, the Pixracer card comes
bundled with an ESP8266 Wi-Fi chip6, flashed with the MavESP8266 firmware7.
The messaging protocol used for communications between PX4 and the Ground
Control is called MavLink8. The MavESP8266 is a specialized firmware that
transforms the Wi-Fi Access Point into a MavLink bridge.

The connection with the ESP8266 chip worked well in the beginning of the project,
before I tried integrating everything in the Flying Arena (see Fig. E.2), a space
equipped with Vicon9 infrared motion-capture cameras used for flight tests at the
ISM Biorobotics.

Figure E.2.: a) CAD of the Flying Arena composed of a motorized metallic tubular structure
equipped with 17 T-40s Vicon cameras. b) The Flying Arena during the calibration
process. Source: http://www.ism.univ-amu.fr/viollet/arena english.html.

Integrating the usual communications exchange between the Pixracer card with
Ground Control with the Flying Arena position/orientation data and the extra
commands needed for testing the Swashplateless ended up being more challenging
than expected, and the ESP8266 chip was not powerful enough to handle all
communication with it reliably. We decided instead to add an extra RaspberryPi
Zero W 2 10 to the drone (see Fig. E.3). This low-cost11 miniature Linux computer
has a size of only 65mm× 30mm, weights only 11g and has integrated Wi-Fi. This
board running Raspberry Pi OS12, connects directly by an UART connection to the

5My fork can be found here: https://github.com/evbernardes/PX4-Autopilot
6https://en.wikipedia.org/wiki/ESP8266
7https://github.com/dogmaphobic/mavesp8266
8https://docs.px4.io/main/en/middleware/mavlink.html
9https://www.vicon.com/

10https://www.raspberrypi.com/products/raspberry-pi-zero-2-w/
1115 euros in pre-COVID times.
12A specialized Linux distribution made for Raspberry Pi, formerly called Raspbian:

https://www.raspberrypi.com/software/
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E. Autopilot technical details

Figure E.3.: Raspberry Pi Zero W2 board.

Pixracer board using MAVROS13, a compatibility layer that translates MavLink
messages into ROS messages and vice-versa. This makes it possible to make a direct
connection from the Drone to the Flying Arena system without an intermediate
connection with a ground computer, making the connection much more robust.

13http://wiki.ros.org/mavros
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F. Relationship between angular

velocity and derivative of Euler

angles

In this appendix, we will analyze the derivatives of full rotation matrices when
decomposed into any sequence of Euler angles, and then develop a general solution to
the problem of computing the derivative of Euler angles from the actual orientation
and the robot’s angular velocity.

F.1. Derivative of full rotation matrix

We suppose a rotation matrix R = RE
B represents the orientation of some body. We

know that for a matrix Rφuuu representing the rotation of an angle φ around some
axis uuu:

dRφuuu

dt
=

dφ

dt
Rφuuu ûuu (F.1)

The rotation matrix R can then be decomposed as:

R = R3 R2 R1 (F.2)

Where:

R1 = Rθ1 eee1

R2 = Rθ2 eee2

R3 = Rθ3 eee3 (F.3)

And defining ωωω the body’s angular velocity in the body frame:

dR

dt
= Rω̂ωω (F.4)
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F. Relationship between angular velocity and derivative of Euler angles – F.1.
Derivative of full rotation matrix

This leads to:

Rω̂ωω =
dR

dt

=
dR3

dt
R2 R1 +R3

dR2

dt
R1 +R3 R2

dR1

dt

= θ̇3R3 êee3 R2 R1 + θ̇2R3 R2 êee2 R1 + θ̇1R3 R2 R1 êee1 (F.5)

Multiplying both sides by RT = RT
1 R

T
2 R

T
3 on the left:

ω̂ωω = θ̇3R
T
1 R

T
2 êee3 R2 R1 + θ̇2R

T
1 êee2 R1 + θ̇1êee1 (F.6)

And applying the (·)q operator define in Eq. A.5:

ωωω = (ω̂ωω)q= θ̇3
(
RT

1 R
T
2 êee3 R2 R1

)q
+ θ̇2

(
RT

1 êee2 R1

)q
+ θ̇1 (êee1)

q (F.7)

And noting (Raaa)̂= RâaaRT for any rotation R and aaa ∈ R
3:

ωωω = θ̇3
(
RT

1 R
T
2

)
eee3 + θ̇2

(
RT

1

)
eee2 + θ̇1eee1 (F.8)

Noting that R3 eee3 = RT
3 eee3 = eee3, we can also rewrite Eq. F.8 as:

ωωω = θ̇3R
Teee3 + θ̇2R

T
1 eee2 + θ̇1eee1 (F.9)

Or, in matrix form:

ωωω = RT
1 R

T
2



(R2 eee1)

T

(eee2)
T

(eee3)
T





θ̇1
θ̇2
θ̇3


 (F.10)
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F. Relationship between angular velocity and derivative of Euler angles – F.2.
Derivative of full rotation matrix in ZY Z sequence

F.2. Derivative of full rotation matrix in ZY Z

sequence

In this section, we will apply the result in Eq. F.8 to a rotation matrix defined in
the ZYZ sequence. For the ZY Z sequence, we can note:

eee1 = eee3 = eeez, eee2 = eeey, and (θ1, θ2, θ3) = (γ, α, β) (F.11)

Where eeey and eeez are unit vectors along axes y and z. As defined in Eq. A.6, the
rotation matrix of an angle θ around axis y and z are, respectively:

Ry(θ) =




cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


 , Rz(θ) =



cos θ − sin θ 0
sin θ cos θ 0
0 0 1


 (F.12)

Notating Rβ = Rz(β), Rα = Ry(α) and Rγ = Rz(γ), and defining ΩΩΩzyz as the
angular velocity, we have:

R = Rβ RαRγ

Ṙ = R Ω̂ΩΩzyz (F.13)

And inserting the definitions in Eqs. F.11 and F.13 into Eq. F.8:

ΩΩΩzyz = θ̇3
(
RT

1 R
T
2

)
eee3 + θ̇2

(
RT

1

)
eee2 + θ̇1eee1

= β̇
(
RT
γ R

T
α

)
eeez + α̇

(
RT
γ

)
eeey + γ̇eeez

= RT
γ

(
RT
α β̇eeez + α̇eeey

)
+ γ̇eeez (F.14)

Or:

ΩΩΩzyz =



− sinα cos γ sin γ 0
sinα sin γ cos γ 0
cosα 0 1





β̇
α̇
γ̇


 (F.15)

Also note that we can define:

ωωωzy = RT
α β̇eeez + α̇eeey =



− sinα 0 0

0 1 0
cosα 0 0





β̇
α̇
0


 (F.16)

And noting that RT
γ eeez = eeez, we can write, for the general case:

ΩΩΩzyz = RT
γ (ωωωzy + γ̇eeez) (F.17)
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F. Relationship between angular velocity and derivative of Euler angles – F.3.
General relationship between angular velocity and angles in matrix form

F.3. General relationship between angular velocity

and angles in matrix form

As a reminder, Eq. F.9 states that:

ωωω = θ̇3R
Teee3 + θ̇2R

T
1 eee2 + θ̇1eee1 (F.18)

Or, equivalently:

R2R1ωωω = θ̇3eee3 + θ̇2eee2 + θ̇1R2 eee1 (F.19)

Moreover, we remember that for any Euler angles sequence chosen (or, more
generally, any Davenport decomposition), eee2 must be orthogonal to both eee1 and eee3:

eee2 · eee1 = eee2 · eee3 = 0 (F.20)

And it is trivial to show that:
eee2 ·R2 eee1 = 0 (F.21)

Calculating the dot product of both sides of Eq. F.19 with R2 eee1 gives:

(R2 eee1) ·R2R1ωωω = θ̇3eee3 · (R2 eee1) + θ̇1 (F.22)

Calculating the dot product with eee2:

eee2 ·R2R1ωωω = θ̇2 (F.23)

And finally, calculating the dot product with eee3:

eee3 ·R2R1ωωω = eee3 + θ̇1 eee2 ·R2 eee1 (F.24)

To summarize, Eqs. F.22, F.23 and F.24 can be rewritten in matrix form as:

AAAωωω = BBB θ̇̇θ̇θ (F.25)

Where θ̇̇θ̇θ =
[
θ̇1 θ̇2 θ̇3

]T
, and:

AAA ≡



(R2 eee1)

T

(eee2)
T

(eee3)
T


R2R1, BBB ≡




1 0 eee3 · (R2 eee1)
0 1 0

eee3 · (R2 eee1) 0 1


 (F.26)
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F. Relationship between angular velocity and derivative of Euler angles – F.4.
Derivative of angles by matrix inversion

F.4. Derivative of angles by matrix inversion

In this section, we will develop a formula for θ̇̇θ̇θ. The system degenerates and is
under-determined when the rotation around eee2 aligns eee1 with eee3. As seen in Chapter
10, it can be useful to define:

θ+ = (θ3 + θ1)/2

θ− = (θ3 − θ1)/2 (F.27)

Such that:

θ3 = θ+ + θ−

θ1 = θ+ − θ− (F.28)

And we can finally rewrite θ̇̇θ̇θ as:

θ̇̇θ̇θ = CCC θ̇̇θ̇θ′ (F.29)

Where:

CCC =



1 0 −1
0 1 0
1 0 1




θ̇̇θ̇θ′ =



θ̇+
θ̇2
θ̇−


 (F.30)

We can then rewrite Eq. F.25 as:

BBBCCC θ̇̇θ̇θ′ = AAAωωω

θ̇̇θ̇θ′ = (BBBCCC)−1 AAAωωω (F.31)

Where, defining Λ = eee3 · (R2 eee1):

BBBCCC =



1 + Λ 0 −(1− Λ)
0 1 0

1 + Λ 0 1− Λ




(F.32)

And:

(BBBCCC)−1 =
1

2




1
1+Λ

0 1
1+Λ

0 2 0
−1
1−Λ

0 1
1−Λ


 (F.33)
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F. Relationship between angular velocity and derivative of Euler angles – F.4.
Derivative of angles by matrix inversion

Where, as expected, either θ+ or θ− is undefined (when Λ = −1 or Λ = 1,
respectively). As seen in Eq. 10.47, defining:

θλ = atan2 (eee3 · (eee1 × eee2) , eee3 · eee1) (F.34)

We can state that eee1 = Rθλeee2 eee3, and:

eee3 · (R2 eee1) = eee3 · (R2Rθλeee2 eee1)

= eee3 · (R(θ2+θλ)eee2 eee3)

(F.35)

Using, for example, Rodrigues’ formula for R(θ2+θλ)eee2 gives:

R(θ2+θλ)eee2 =
(
cos(θ2 + θλ)I+ êee2 sin(θ2 + θλ) + eee2eee

T
2 (1− cos(θ2 + θλ))

)
(F.36)

And finally:

Λ = eee3 · (R2 eee1) = cos(θ2 + θλ) (F.37)

Note that for symmetric / proper Euler sequences, θλ = 0 or θλ = π, while for
symmetric / Tait-Bryan sequences, θλ ± π/2.

As seen in Chapter 10, in any of these cases, we can set any constant value for θ1,
define θ̇1 = 0 and:

• θ̇3 = 2θ̇+ when Λ = 1, or θ2 + θλ = 2kπ for k ∈ Z.

• θ̇3 = 2θ̇− when Λ = −1, or θ2 + θλ = (2k − 1)π for k ∈ Z.

For all the other cases, then:

θ̇̇θ̇θ = CCC θ̇̇θ̇θ′ = CCC (BBBCCC)−1 AAAωωω

= BBB−1AAAωωω (F.38)

Where:

BBB−1 =




1
1−Λ2 0 −Λ

1−Λ2

0 1 0
−Λ

1−Λ2 0 1
1−Λ2


 (F.39)

And the full matrix can be given as:

MMM = BBB−1AAA =




1
1−Λ2 0 −Λ

1−Λ2

0 1 0
−Λ

1−Λ2 0 1
1−Λ2





(R2 eee1)

T

(eee2)
T

(eee3)
T


R2R1 (F.40)
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F. Relationship between angular velocity and derivative of Euler angles – F.4.
Derivative of angles by matrix inversion

Which can be used to generate the desired formulas. 1

The SymPy code from Listing F.1 calculates the derivative matrix for the usual
roll, pitch, and yaw angles, and returns the formula used, for example, in [79]:

MMM =



1 sin (θroll) tan (θpitch) cos (θroll) tan (θpitch)
0 cos (θroll) − sin (θroll)
0 sin (θroll)/ cos (θpitch) cos (θroll)/ cos (θpitch)


 (F.41)

from sympy import Matrix, symbols, trigsimp

from sympy import rot axis1 , rot axis2 , rot axis3

# de f i n i n g ang l e s as symbo l i c v a r i a b l e s
ang1, ang2, ang3 = symbols(

’\\theta {\\text{roll}},’
’\\theta {\\text{pitch}},’
’\\theta {\\text{yaw}}’)

e1 = Matrix([1, 0, 0]) # e x t r i n s i c ZYX sequence
e2 = Matrix([0, 1, 0]) # i s e q u i v a l e n t to i n t r i n s i c xyz
e3 = Matrix([0, 0, 1])

R1 = rot axis1(−ang1) # r o t a x i s [ 1 , 2 , 3 ] are implemented
R2 = rot axis2(−ang2) # in SymPy as c l o c kw i s e r o t a t i on s ,
R3 = rot axis3(−ang3) # hence the n e g a t i v e s i g n s

lamb = e3.dot(R3 ∗ R2 ∗ e1)

if abs(lamb) == 1:

raise ValueError(’Degenerate case’)

A = Matrix.hstack(R2∗e1, e2, e3).T ∗ R2 ∗ R1

B = Matrix([

[ 1, 0, lamb],

[ 0, 1, 0],

[lamb, 0, 1]])

M = B.inv() ∗ A

M = trigsimp(M) # s imp l i f y w i th t r i g onome t r i c i d e n t i t i e s

Listing F.1: SymPy code generating the derivative matrix for roll, pitch, and yaw angles, for
non-degenerate cases.

1Note that 1− Λ2 = sin2(θ2 + θλ).
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G. Validity of disc approximation

In Chapter 5, specifically in Eq. 5.3, it is stated that we use and approximated
form for the expression of the rotor’s inertia matrix by averaging its inertia matrix
around one full rotation around the z-axis. In this section, we will demonstrate
this.

G.1. Exact kinetic energy

In order to analyze the real system, we must do the following modifications: First,
instead of the virtual frame FP , we will define everything in the real frame FP∗,
and the rotation from FP∗ to FP is: RP

P∗ = Rz(γ), giving the full rotation matrix
seen in Appendix F.2. We include a third term in the rotation between FP and
FB, replacing R

B
P by RB

PRz(γ):

RB
P∗ ≡ RB

PRγ

= Rz(β)Ry(α)Rz(γ) (G.1)

And we define Rγ ≡ Rz(γ) for simplicity. Defining the angular velocity of the
virtual frame FP w.r.t. FB as:

ωωωPP/B ≡
(
(RB

P )
T dR

B
P

dt

)∨

(G.2)

The full expression for the angular velocity of Bp w.r.t. Bb in FP∗ is1:

ΩΩΩP∗
P/B ≡

(
(RB

P∗)
T dR

B
P∗

dt

)∨

= RT
γ (ωωω

P
P/B + γ̇eeez)

= RT
γΩΩΩ

P
P/B (G.3)

1This comes directly from the final solution of Appendix F.2 with ΩΩΩP∗

P/B = ΩΩΩzyz and ωωωP
P/B = ωωωzy.
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G. Validity of disc approximation – G.1. Exact kinetic energy

And finally, we suppose the propeller’s diagonal inertia matrix has three distinct
values:

JP∗
p∗ =



Jpx 0 0
0 Jpy 0
0 0 Jpz


 (G.4)

In which, in general, Jpx ≠ Jpy. The new full velocities of the propeller w.r.t. to
the Inertial frame on the frame FP∗ is:

[
ΩΩΩP∗
P

vvvP∗
P

]
=
(
AdP∗

B

) [ωωωBB
vvvBB

]
+

[
ΩΩΩP∗
P/B

000

]

=

[ (
RB
PRγ

)T
0

−hP
(
RB
PRγ

)T
êeez

(
RB
PRγ

)T
] [
ωωωBB
vvvBB

]
+

[
RT
γΩΩΩ

P
P/B

000

]

=

[
(Rγ)

T
(
RB
P

)T
0

−hP (Rγ)
T
(
RB
P

)T
êeez (Rγ)

T
(
RB
P

)T
] [
ωωωBB
vvvBB

]
+

[
RT
γΩΩΩ

P
P/B

000

]

=

[
RT
γ 000
000 RT

γ

]([ (
RB
P

)T
0

−hP
(
RB
P

)T
êeez

(
RB
P

)T
] [
ωωωBB
vvvBB

]
+

[
ΩΩΩP
P/B

000

])
(G.5)

And finally:

[
ΩΩΩP∗
P

vvvP∗
P

]
=
(
AdP∗

P

) [ΩΩΩP
P

vvvPP

]
(G.6)

Where: (
AdP∗

P

)
=

[
RT
γ 000
000 RT

γ

]
(G.7)

Which leads to: And the rotor’s exact kinetic energy then is:

TP∗ =
mp

2

(
vvvP∗
P

)T
vvvP∗
P +

1

2

(
ΩΩΩP∗
P

)T
JP∗
p∗ ΩΩΩP∗

P

=
1

2

[
ΩΩΩP∗
P

vvvP∗
P

]T [
JP∗
p∗ 000
000 mpI

] [
ΩΩΩP∗
P

vvvP∗
P

]

=
1

2

[
ΩΩΩP
P

vvvPP

]T (
AdP∗

P

)T
[
JP∗
p∗ 000
000 mpI

] (
AdP∗

P

) [ΩΩΩP
P

vvvPP

]

=
1

2

[
ΩΩΩP
P

vvvPP

]T [
Rγ 000
000 Rγ

] [
JP∗
p∗ 000
000 mpI

] [
RT
γ 000
000 RT

γ

] [
ΩΩΩP
P

vvvPP

]
(G.8)

Finally giving:

TP∗ =
1

2

[
ΩΩΩP
P

vvvPP

]T [
RγJ

P∗
p∗ (Rγ)

T 000
000 mpI

] [
ΩΩΩP
P

vvvPP

]
(G.9)
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G. Validity of disc approximation – G.2. Time approximations

Following the same steps as described in Section 5.2.2, we get that:

TP∗ =
1

2



ωωωBB
vvvBB

ΩΩΩP
P/B




T

MMMP∗



ωωωBB
vvvBB

ΩΩΩP
P/B




MMMP∗ =



JBp∗ −mph

2
P (êeez)

2 mphP êeez RB
P J

P
p∗

−mphP êeez mbI 000(
RB
P J

P
p∗

)T
000 JPp∗


 (G.10)

Where JPp∗ = RγJ
P∗
p∗ (Rγ)

T and JBp∗ = RB
P J

P
p∗(R

B
P )

T = RB
PRγJ

P∗
p∗ (Rγ)

T (RB
P )

T . Fi-
nally, the total kinetic energy of the system is:

T ∗ = TB + TS + TP∗ (G.11)

G.2. Time approximations

We make two key assumptions in order to find the approximation. First, the mean
speed γ̇ of the rotor is much greater than vvvBB, ωωω

B
B, β̇ and α̇, such that in the time

interval T that γ takes for a complete revolution (from 0 to 2π), all the other
variables can be considered constant. Moreover, γ̇ is considered approximately
constant. Inserting Eq. G.11 into 6.2:

d

dt

(
∂T ∗

∂η

)
− adTη

(
∂T ∗

∂η

)
= FB

ext (G.12)

Our objective is to replace each term of Eq. G.12 by its average on a full revolution
of γ. We define the average as:

mean (·) = 1

T

∫ T

0

(·)dt (G.13)

But since all the terms are approximated as constants in the small interval T = 2π
γ̇
,

an easier way is to define:

meanγ (·) =
1

2π

∫ 2π

0

(·)dγ (G.14)

228



G. Validity of disc approximation – G.2. Time approximations

Defining T = meanγ (T
∗) and applying Eq. G.14 to G.12 leads to:

meanγ

(
d

dt

(
∂T ∗

∂η

)
− adTη

(
∂T ∗

∂η

))
= meanγ

(
FB
ext

)

d

dt

(
∂

∂η
(meanγ (T

∗))

)
− adTη

(
∂

∂η
(meanγ (T

∗))

)
= FB

ext

1

2π

∫ 2π

0

1dγ

d

dt

(
∂T

∂η

)
− adTη

(
∂T

∂η

)
= FB

ext

(G.15)

Which is equivalent to Eq. 6.2. Analyzing meanγ (T
∗), we see that the only terms

of T ∗ that depend on γ is the term TP∗:

T = meanγ (T
∗)

= meanγ (TB + TS + TP∗)

= TB + TS +meanγ (TP∗)

(G.16)

Calculating the mean of the rotor kinetic energy:

TP = meanγ (TP∗)

=
1

2



ωωωBB
vvvBB

ΩΩΩP
P/B




T

meanγ (MMMP∗)



ωωωBB
vvvBB

ΩΩΩP
P/B




=
1

2



ωωωBB
vvvBB

ΩΩΩP
P/B




T

MMMP



ωωωBB
vvvBB

ΩΩΩP
P/B


 (G.17)

Where:

MMMP = meanγ (MMMP∗)

=



meanγ

(
JBp∗

)
−mph

2
P (êeez)

2 mphP êeez RB
P

[
meanγ

(
JPp∗

)]

−mphP êeez mbI 000(
RB
P

[
meanγ

(
JPp∗

)])T
000 JPp∗


 (G.18)
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G. Validity of disc approximation – G.2. Time approximations

And the only integral we must compute is meanγ
(
JPp∗

)
= 1

2π

∫ 2π

0
JPp∗dγ. Defining:

JPp ≡ meanγ
(
JPp∗

)

=
1

2π

∫ 2π

0

JPp∗dγ

=
1

2π

∫ 2π

0

RγJ
P∗
p∗ R

T
γ dγ

=
1

2π

∫ 2π

0

RγJ
P∗
p∗ R

T
γ dγ

=
1

2π

∫ 2π

0



cγ −sγ 0
sγ cγ 0
0 0 1





Jpx 0 0
0 Jpy 0
0 0 Jpz





cγ sγ 0
−sγ cγ 0
0 0 1


 dγ

=
1

2π

∫ 2π

0



Jpxc

2
γ + Jpys

2
γ (Jpx − Jpy)sγcγ 0

(Jpx − Jpy)sγcγ Jpxs
2
γ + Jpyc

2
γ 0

0 0 Jpz


 dγ (G.19)

We can use the following relationships:

∫ 2π

0

(sin t)2dt =

∫ 2π

0

(cos t)2dt = π

∫ 2π

0

sin t cos tdt = 0 (G.20)

To find that:

JPp =
1

2π



Jpxπ + Jpyπ (Jpx − Jpy)0 0
(Jpx − Jpy)0 Jpxπ + Jpyπ 0

0 0 2πJpz




=



Jpx+Jpy

2
0 0

0 Jpx+Jpy
2

0
0 0 Jpz


 (G.21)

Moreover, we get:

JBp ≡ meanγ
(
JBp∗

)

= meanγ
(
RB
P J

P
p∗(R

B
P )

T
)

= RB
P

[
meanγ

(
JPp∗

)]
(RB

P )
T

= RB
P J

P
p (R

B
P )

T (G.22)
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G. Validity of disc approximation – G.2. Time approximations

Which proves that, as expected, the disc approximate inertia matrix JPp ’s terms
for x and y are identical. We can finally state that:

TP =
1

2



ωωωBB
vvvBB

ΩΩΩP
P/B




T 

JBp −mph

2
P (êeez)

2 mphP êeez RB
P J

P
p

−mphP êeez mbI 000(
RB
P J

P
p

)T
000 JPp∗






ωωωBB
vvvBB

ΩΩΩP
P/B




(G.23)
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H. Derivative of a rotated vector

with respect to the rotation

quaternion

In this section, we will derive the derivative of a rotated vector in respect to the
rotation quaternion. 1

H.1. Derivative expression

Defining q = [qr, qqq
T ]T a unit rotation quaternion, vvv ∈ R

3 and vvv′ the vector vvv rotated
by q, we know that:

ṽvv′ = q ⊙ ṽvv ⊙ q∗ (H.1)

Where ṽvv =

[
0
vvv

]
and ṽvv′ =

[
0
vvv′

]
. For a parameter t, we know that:

∂ṽvv′

∂t
=

∂

∂t
(q ⊙ ṽvv ⊙ q∗)

=
∂q

∂t
⊙ ṽvv ⊙ q∗ + q ⊙ ṽvv ⊙ ∂q∗

∂t
(H.2)

Using the definitions in Eq. A.37, we can rewrite Eq. H.2 in Matrix form:

∂ṽvv′

∂t
= R(ṽvv ⊙ q∗)

∂q

∂t
+ L(q ⊙ ṽvv)

∂q∗

∂t
(H.3)

And:

∂ṽvv′

∂q
= R(ṽvv ⊙ q∗)

∂q

∂q
+ L(q ⊙ ṽvv)

∂q∗

∂q
(H.4)

1Originally, a version of the EOM was derived using the Euler-Lagrange method and had a
quaternion variable as the generalized coordinates vector, and a Passivity-Based controller
that depended on the results of this Appendix was derived for it. Since I could not find this
derivation elsewhere in the literature, I decided to leave it here, even though it is not used
anymore in this work.

232



H. Derivative of a rotated vector with respect to the rotation quaternion – H.1.
Derivative expression

We know that:

∂q

∂q
= I4

∂q∗

∂q
= C (H.5)

Where, from Eq. A.42:

C =

[
1 000T

000 −I

]
(H.6)

Which gives:
∂ṽvv′

∂q
= R(ṽvv ⊙ q∗) + L(q ⊙ ṽvv) C (H.7)

Using Eq. A.43, we know that:

L(q ⊙ ṽvv) = C R ((q ⊙ ṽvv)∗) C
= −C R (ṽvv ⊙ q∗) C

(H.8)

Adding that to Eq. H.7, and noting that C2 = I4:

∂ṽvv′

∂q
= R(ṽvv ⊙ q∗)− C R (ṽvv ⊙ q∗)

= (I4 − C)R(ṽvv ⊙ q∗)

=

([
1 000T

000 I

]
−

[
1 000T

000 −I

])
R(ṽvv ⊙ q∗) (H.9)

And finally:

∂ṽvv′

∂q
= 2

[
0 000T

000 I

]
R(ṽvv ⊙ q∗) (H.10)

And its transpose is:

(
∂ṽvv′

∂q

)T

= 2R ((ṽvv ⊙ q∗)∗)

[
0 000T

000 I

]

= −2R (q ⊙ ṽvv)

[
0 000T

000 I

]
(H.11)

233



H. Derivative of a rotated vector with respect to the rotation quaternion – H.2.
Dot product

H.2. Dot product

Supposing a vector www ∈ R
3 and w̃ww = (0,wwwT )T , the dot product vvv′ · www can be

rewritten as:

vvv′ ·www =

[
0
vvv′

]
·
[
0
www

]

= ṽvv′ · w̃ww (H.12)

Using Eq. A.24:

∂

∂q
(vvv′ ·www) = ∂

∂q
(ṽvv′ · w̃ww)

=

(
∂ṽvv′

∂q

)T

w̃ww (H.13)

According to Eq. H.11:

∂

∂q
(vvv′ ·www) = −2R(q ⊙ ṽvv) w̃ww

= −2 w̃ww ⊙ q ⊙ ṽvv (H.14)
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I. Inverse of BBBτ

The matrix BBBτ = (kI+ hP êeez) is of the form:

MMM = aI+ b̂bb =



a −bz by
bz a −bx
−by bx a


 (I.1)

With a = k and bbb = hP eeez. Any matrix MMM of the form in Eq. I.1, with a ∈ R,
a ̸= 0 and bbb ∈ R

3 has an inverse of the form:

MMM−1 =
aMMMT + bbbbbbT

a(a2 + |bbb|2) (I.2)

To prove this, we can multiply Eq. I.1 and Eq. I.2:

MMMMMM−1 =
(
aI+ b̂bb

) (
aMMMT + bbbbbbT

)

a(a2 + |bbb|2)

=
(
aI+ b̂bb

)
(
a2I− ab̂bb+ bbbbbbT

)

a(a2 + |bbb|2)

=

(
a2I+ bbbbbbT − b̂bb

2
)

a2 + |bbb|2 (I.3)

And since bbbbbbT − b̂bb
2
= |bbb|2I:

MMMMMM−1 =
(a2I+ |bbb|2I)
a2 + |bbb|2

=
a2 + |bbb|2
a2 + |bbb|2 I

= I (I.4)
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J. Non-uniqueness of Euler and

Davenport angles

For a quaternion q, and three unit axes eeei, eeej and eeek, we have seen that, if
eeei · eeej = eeej · eeek = 0, Eq. 10.41 shows that we can decompose q as:

q =

[
c3
s3eeek

]
⊙

[
c2
s2eeej

]
⊙
[
c1
s1eeei

]
(J.1)

Where:

s1 ≡ sin (θ1/2), c1 ≡ cos (θ1/2)

s2 ≡ sin (θ2/2), c2 ≡ cos (θ2/2)

s3 ≡ sin (θ3/2), c3 ≡ cos (θ3/2) (J.2)

Moreover, for θλ = atan2 (eeek · (eeei × eeej) , eeek · eeei), Eq. 10.51 shows that by defining:

λ =

[
cos(θλ/2)
sin(θλ/2)eeej

]
(J.3)

We can rewrite Eq. J.1 as Eq. 10.53:

q′ = λ⊙ q =

[
c3
s3eeei

]
⊙

[
c′2
s′2eeej

]
⊙

[
c1
s1eeei

]

s′2 ≡ sin ((θ2 + θλ)/2), c
′
2 ≡ cos ((θ2 + θλ)/2) (J.4)

Defining qqq′ as the vector part of q, we obtain, as seen in Eqs. 10.10 and 10.11:




a
b
c
d


 ≡




q′r
qqq′ · eeei
qqq′ · eeej

qqq′ · (eeei × eeej)


 =




c′2c+
c′2s+
s′2c−
s′2s−


 (J.5)

Then, as seen in Eq. 10.13:

z+ ≡ a+ ib = c′2(c+ + is+) = c′2 exp (iθ+)

z− ≡ c+ id = s′2(c− + is−) = s′2 exp (iθ−) (J.6)
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J. Non-uniqueness of Euler and Davenport angles – J.1. Case 1: Positive-Positive

Where:

θ+ = (θ1 + θ3)/2

θ− = (θ1 − θ3)/2 (J.7)

The only added assumption done in the last sections was to suppose c′2 > 0 and
s′2 > 0. In the following subsections, we will consider every possible case.

J.1. Case 1: Positive-Positive

Assuming c′2 > 0 and s′2 > 0 leads to:

|z+| = c′2
|z−| = s′2

arg(z+) = θ+

arg(z−) = θ− (J.8)

Which can be rewritten as:

c′2 =
√
a2 + b2

s′2 =
√
c2 + d2

θ+ = atan2(b, a)

θ− = atan2(d, c) (J.9)

Which leads to the original solutions:

θ1 = θ+ − θ−

θ2 = 2atan2(|z−|, |z+|)− θλ

θ3 = θ+ + θ− (J.10)

Or:

θ1 = atan2(b, a)− atan2(d, c)

θ2 = 2atan2(
√
c2 + d2,

√
a2 + b2)− θλ

θ3 = atan2(b, a) + atan2(d, c) (J.11)
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J. Non-uniqueness of Euler and Davenport angles – J.2. Case 2: Positive-Negative

J.2. Case 2: Positive-Negative

Assuming c′2 > 0 and s′2 < 0:

z− ≡ c+ id = s′2(c− + is−) = s′2 exp (iθ−) (J.12)

We know that −s′2 is positive, so:

z− = (−s′2)(−(c− + is−)) (J.13)

Its absolute value is:

s′2 = −|z−|
= −

√
c2 + d2 (J.14)

Using Eq. J.14 to calculate θ2 now leads to:

θ2 + θλ = 2atan2(−|z−|, |z+|)
= −2 atan2(|z−|, |z+|)
= −2 atan2(

√
c2 + d2,

√
a2 + b2) (J.15)

Moreover, the phase of z− is:

arg z− = arg (−(c− + is−))

= arg ((c− + is−)(−1 + i0))

= arg (c− + is−) + arg (−1 + i0)

= θ− + π (J.16)

Leading to:

θ− = arg z− − π

= atan2(d, c)− π (J.17)

Putting it all together:

θ1 = atan2(b, a)− atan2(d, c) + π

θ2 = −2 atan2(
√
c2 + d2,

√
a2 + b2)− θλ

θ3 = atan2(b, a) + atan2(d, c)− π (J.18)

Note that both θ1 and θ3 have a difference of π compared to case PP, and θ2 has
a change in sign.
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J. Non-uniqueness of Euler and Davenport angles – J.3. Case 3: Negative-Positive

J.3. Case 3: Negative-Positive

In this case, assuming c′2 < 0 and s′2 > 0:

z+ ≡ a+ ib = c′2(c+ + is+) = c′2 exp (iθ+) (J.19)

We know that −c′2 is positive, so:

z+ = (−c′2)(−(c+ + is+)) (J.20)

Its absolute value is:

c′2 = −|z+|
= −

√
a2 + b2 (J.21)

Using Eq. J.21 to calculate θ2 now leads to:

θ2 + θλ = 2atan2(|z−|,−|z+|)
= 2 (π − atan2(|z−|, |z+|))
= 2π − 2 atan2(

√
c2 + d2,

√
a2 + b2) (J.22)

For the phase, similarly:

arg z+ = arg (−(c+ + is+))

= θ+ + π (J.23)

And:

θ+ = arg z+ − π

= atan2(b, a)− π (J.24)

Putting it all together:

θ1 = atan2(b, a)− atan2(d, c)− π

θ2 = −2 atan2(
√
c2 + d2,

√
a2 + b2)− θλ + 2π

θ3 = atan2(b, a) + atan2(d, c)− π (J.25)

Note, however, that if we consider our angles between [0, 2π] or [−π, π] (which is
the case, in order to use the atan2 function), the additional 2π term can be ignored.
Moreover, both adding and subtracting a term of π have the exact same effect.
This means that the solutions for cases PN and NP are equivalent.
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J.4. Case 4: Negative-Negative

In this case, we assume c′2 < 0 and s′2 < 0 and combine results from both cases PN

and NP. The absolute values are:

c′2 = −|z+| = −
√
a2 + b2

s′2 = −|z−| = −
√
c2 + d2 (J.26)

Using Eq. J.26 to calculate θ2 now leads to:

θ2 + θλ = 2atan2(−|z−|,−|z+|)
= 2 (π + atan2(|z−|, |z+|))
= 2π + 2 atan2(

√
c2 + d2,

√
a2 + b2) (J.27)

For the phases, similarly:

arg z+ = θ+ + π

arg z− = θ− + π (J.28)

Or:

θ+ = atan2(b, a)− π

θ− = atan2(d, c)− π

(J.29)

Putting it all together:

θ1 = atan2(b, a)− atan2(d, c)

θ2 = 2atan2(
√
c2 + d2,

√
a2 + b2)− θλ + 2π

θ3 = atan2(b, a) + atan2(d, c)− 2π (J.30)

Note that, again, the additional 2π terms can be ignored. This means that the
solutions for cases PP and NN are equivalent.
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J.5. Comparison between both sets

As seen in the last sections, from the 4 possibilities, only two of them are unique:

1. The original solution, equivalent to both cases PP and NN, given by:

θ1 = atan2(b, a)− atan2(d, c)

θ2 = 2atan2(
√
c2 + d2,

√
a2 + b2)− θλ

θ3 = atan2(b, a) + atan2(d, c) (J.31)

2. An alternative solution, equivalent to both cases PN and NP, given by:

φ1 = atan2(b, a)− atan2(d, c)− π

φ2 = −2 atan2(
√
c2 + d2,

√
a2 + b2)− θλ

φ3 = atan2(b, a) + atan2(d, c)− π (J.32)

We can convert from one set to the other with:

φ1 = θ1 ± π

φ2 + θλ = −(θ2 + θλ)

φ3 = θ3 ± π (J.33)

We define ε1 = ±1 and ε3 = ±1. By noticing that:

[
cos((θ + επ)/2)
sin((θ + επ)/2)eeei

]
=

[
cos(θ/2)
sin(θ/2)eeei

]
⊙

[
cos(επ/2)
sin(επ/2)eeei

]
=

[
cos(θ/2)
sin(θ/2)eeei

]
⊙
[
0
εeeei

]

(J.34)

Where

[
0
εeeei

]
, independent of the sign of ε, is a rotation of π radians around the

axis eeei. We can insert Eq. J.33 into Eq. J.4 to show how they are equivalent:

q′ =

[
cos((θ3 + ε3π)/2)
sin((θ3 + ε3π)/2)eeei

]
⊙

[
cos(−(θ2 + θλ)/2)
sin(−(θ2 + θλ)/2)eeej

]
⊙

[
cos((θ1 + ε1π)/2)
sin((θ1 + ε1π)/2)eeei

]

= −ε1ε3
[
c3
s3eeei

]
⊙

[
0
eeei

]
⊙
[

c′2
s′2(−eeej)

]
⊙

[
0
eeei

]∗
⊙

[
c1
s1eeei

]
(J.35)

Since eeei · eeej = 0, we know that:

[
0
eeei

]
⊙
[

c′2
s′2(−eeej)

]
⊙

[
0
eeei

]∗
=

[
c′2
s′2eeej

]
(J.36)

241
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And since −ε1ε3 = ±1, we find:

q′ = ±
[
c3
s3eeei

]
⊙

[
c′2
s′2eeej

]
⊙

[
c1
s1eeei

]
(J.37)

Which show the equivalency, since both +q and −q represent the same rotation.

J.6. Using the general Davenport formula to

compute Tait-Bryan angles

If the sequence has odd parity, we know that ε = eeek · (eeei × eeej) = −1. To calculate
the Euler angles in the YXZ sequence, for example, we suppose eeei = eeey, eeej = eeex
and eeek = eeez.

We can calculate θλ as:

θλ = atan2 (eeek · (eeei × eeej) , eeek · eeei)
= atan2 (−1, 0) = −π/2 (J.38)

If we use the formula from the cases PP and NN, we find:

θ2 = 2atan2(
√
c2 + d2,

√
a2 + b2)− θλ

= 2atan2(
√
c2 + d2,

√
a2 + b2) + π/2 (J.39)

In this case, θ2 will belong to the interval [π/2, 3π/2]. This is not what is usually
expected: Normally, Tait-Bryan angles are in the interval [−π/2,+π/2]. The
alternative set of angles, though, give the correct range: [−3π/2, π/2] which is
equivalent to [−π/2,+π/2].
A practical way of implementing the Euler angles with the general Davenport
formula is the following algorithm:

1. Calculate θλ.

2. If θλ is negative, replace eeej by −eeej (and consequently, θλ by −θλ) and set a
flag: invert = True.

3. Calculate the angles with the original formula.

4. If invert == True, replace the solution θ2 by −θ2.
This algorithm gives a fast and concise way of always having the simplest solution
without needing to implement both formulas.
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K. Analyzing the singularities of

proper Euler angles: an

alternative set of angles

From the 12 possible sequences for Euler angles decomposition, 6 of them are called
the Proper Euler angles: those with a symmetric sequence, such as ZYZ, YXY, etc.
These angles can be very useful, but having the first and third axes align leads to a
very unfortunate singularity: one that is located at the origin of the second angle.
Here, I will show how this singularity arises from an unnatural definition on these
angles. I will propose a more natural and arguably geometrically more meaningful
definition.

Moreover, this definition leads to a connection with the spin decomposition presented
in Chapter 7. Particularly, we show a direct relationship between Proper Euler
angles and the spin angle given by Eq. 7.34:

θs = 2 atan2(qqq · eee, qr) (K.1)

K.1. Singularity problem

Define R the rotation matrix representing the total rotation of some body, and q
the equivalent rotation quaternion. We define1:

• The function φφφxyz : R3×3 → R
3 as the decomposition of a rotation in the

sequence XYZ, such that φφφxyz {R} = (φ1, φ2, φ3) and:

R = Rz(φ3)Ry(φ2)Rx(φ1)

q =

[
c(φ3/2)
s(φ3/2)eeez

]
⊙

[
c(φ2/2)
s(φ2/2)eeey

]
⊙

[
c(φ1/2)
s(φ1/2)eeex

]
(K.2)

• The function θθθzyz : R3×3 → R
3 as the decomposition of a rotation in the

1Note that in this section, we use extrinsic rotations, meaning that the first rotation is the
rightmost rotation matrix / quaternion.
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sequence ZYZ, such that θθθzyz {R} = (θ1, θ2, θ3) and:

R = Rz(θ3)Ry(θ2)Rz(θ1)

q =

[
c(θ3/2)
s(θ3/2)eeez

]
⊙

[
c(θ2/2)
s(θ2/2)eeey

]
⊙

[
c(θ1/2)
s(θ1/2)eeez

]
(K.3)

To represent a simple pitch rotation Ry(ψpitch), the angles are the same in both
representations:

φφφxyz {Ry(ψpitch)} = (0, ψpitch, 0)

θθθzyz {Ry(ψpitch)} = (0, ψpitch, 0)

(K.4)

Decomposing a simple roll rotation Rx(ψroll) is also straightforward in the XYZ
sequence. However, in the ZYZ sequence this is slightly more complicated:

1. First, a rotation of −π
2
around the z-axis is needed in order to align the body’s

y-axis with the x-axis of the inertial frame.

2. Then, a rotation of ψroll around the (rotated) y-axis is applied.

3. Finally, the first rotation is reversed with a rotation of π
2
around the z-axis.

This gives:

φφφxyz {Rx(ψroll)} = (ψroll, 0, 0)

θθθzyz {Rx(ψroll)} =
(π
2
, ψroll,−

π

2

)
(K.5)

Adding a final yaw rotation Rz(ψyaw) gives:

φφφxyz {Rz(ψyaw)Rx(ψroll)} = (ψroll, 0, ψyaw)

θθθzyz {Rz(ψyaw)Rx(ψroll)} =
(π
2
, ψroll,−

π

2
+ ψyaw

)
(K.6)

What is arguably even worse, a pure yaw rotation Rz(ψyaw) is not completely
defined in ZY Z without any extra assumption. As seen in Chapter 10, this
happens because when θ2 = 0, there is a singularity in this decomposition, and the
only uniquely2 defined value is:

θ1 + θ3 = ψyaw (K.7)

2In the range [−π
2
, π
2
].
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Adding, arbitrarily, the extra assumption that θ1 ≡ b3, we can state for any value
of b that:

φφφxyz {Rz(ψyaw)} = (0, 0, ψyaw)

θθθzyz {Rz(ψyaw)} = (b, 0,−b+ ψyaw) (K.8)

This hints at an unnecessary coupling between the first and third angles in proper
Euler sequences.

K.2. Rotation around a rotated axis

We can generalize both the simple roll and the simple pitch rotation in a Proper
sequence (like the ZYZ sequence) in the following way: Suppose an axis eeej in which
we want to rotate the body with an angle of ψ. This rotation is represented by the

quaternion

[
c(ψ/2)
s(ψ/2)eeej

]
.

Now, define eee′j as a rotated version eeej around axis eeei by an angle −θ1, where
eeei · eeej = 0. We can state that:

[
0
eee′j

]
=

[
c(θ1/2)
s(θ1/2)eeei

]∗
⊙

[
0
eeej

]
⊙

[
c(θ1/2)
s(θ1/2)eeei

]
(K.9)

The quaternion q′ representing the full rotation of an angle θ2 around the rotated
axis eee′j is given by:

q′ =

[
c(θ2/2)
s(θ2/2)eee

′
j

]

= c(θ2/2)

[
1
000

]
+ s(θ2/2)

[
0
eee′j

]

= c(θ2/2)

[
1
000

]
+ s(θ2/2)

[
c(θ1/2)
s(θ1/2)eeei

]∗
⊙

[
0
eeej

]
⊙

[
c(θ1/2)
s(θ1/2)eeei

]

=

[
c(θ1/2)
s(θ1/2)eeei

]∗
⊙

(
c(θ2/2)

[
1
000

]
+ s(θ2/2)

[
0
eeej

])
⊙

[
c(θ1/2)
s(θ1/2)eeei

]

=

[
c(θ1/2)
s(θ1/2)eeei

]∗
⊙
[
c(θ2/2)
s(θ2/2)eeej

]
⊙

[
c(θ1/2)
s(θ1/2)eeei

]

(K.10)

3Usually the chosen value is b = 0.
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And the equivalent rotation matrix R′ is4:

R′ = (Rθ1eeei)
T Rθ2eeejRθ1eeei

= R−θ1eeeiRθ2eeejRθ1eeei (K.11)

And defining θθθiji : R
3×3 → R

3 the decomposition of a rotation R in the Euler
sequence IJI, we know that:

θθθiji {R′} = (θ1, θ2,−θ1) (K.12)

Supposing that the sequence IJI is equivalent to the sequence ZYZ, if θ1 = 0 we
find Eq. K.4 and if θ1 = −π

2
we find Eq. K.5

K.3. Definition of a new set of angles

We redefine, more generally, θθθ : R3×3 → R
3, the decomposition of a rotation in any

Proper sequence, such that θθθ {R} = (θ1, θ2, θ3) and:

R = Rθ3eeeRθ2eee′ Rθ1eee

q =

[
c(θ3/2)
s(θ3/2)eee

]
⊙

[
c(θ2/2)
s(θ2/2)eee

′

]
⊙

[
c(θ1/2)
s(θ1/2)eee

]
(K.13)

Inspired by Eq. K.7, we define θ̃3 such that:

θ̃3 = θ1 + θ3

θ3 = θ̃3 − θ1 (K.14)

Inserting Eq. K.14 into Eq. K.13, we have:

R = R(θ̃3−θ1)eeeRθ2eee′ Rθ1eee

= Rθ̃3eee
(R−θ1eeeRθ2eee′ Rθ1eee) (K.15)

And, in quaternion form:

q =

[
c((θ̃3−θ1)/2)
s((θ̃3−θ1)/2)eee

]
⊙

[
c(θ2/2)
s(θ2/2)eee

′

]
⊙

[
c(θ1/2)
s(θ1/2)eee

]

=

[
c(θ̃3/2)
s(θ̃3/2)eee

]
⊙

([
c(θ1/2)
s(θ1/2)eee

]∗
⊙
[
c(θ2/2)
s(θ2/2)eee

′

]
⊙

[
c(θ1/2)
s(θ1/2)eee

])
(K.16)

4Unsurprisingly, this is a conjugation operation, as studied in Group Theory [72].
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In both forms, the term inside the parentheses are equivalent to the rotation by a
rotated axis in Eq. K.11

Defining a new decomposition operation θ̃θθiji : R
3×3 → R

3, such that θ̃θθiji{R} =
(θ̃3, θ2, θ1), and applying it in the simple roll, pitch and yaw rotation examples in
the ZYZ sequence, we have:

θ̃θθzyz {Rx(ψroll)} =
(π
2
, ψroll, 0

)

θ̃θθzyz {Ry(ψpitch)} = (0, ψpitch, 0)

θ̃θθzyz {Rz(ψyaw)} = (b, 0, ψyaw)

θ̃θθzyz {Rz(ψyaw)Rx(ψroll)} =
(π
2
, ψroll, ψyaw

)

θ̃θθzyz {Rz(ψyaw)Ry(ψpitch)} = (0, ψpitch, ψyaw) (K.17)

Where, for the pure yaw rotation, θ1 = b, as before, can be any value. The difference
is that θ̃3 is now uncoupled from θ1, and its value is independent of b5.

Moreover, the actual general value of θ̃3 is:

θ̃3 = 2 atan2(qqq · eee, qr) (K.18)

This is, unsurprisingly, the same formula for the spin (or twist) angle found in
Chapter 7! Which is yet another indication that the angle θ̃3 has, in fact, a more
meaningful geometrical interpretation than θ3.

5This is not valid for the singularity at θ2 = π, but this is arguably a less common and less
important singularity.
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