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Résumé en français

En sciences informatiques, un circuit est une structure utilisée pour représenter de nombreux types de
fonctions, et vers laquelle de nombreuses autres structures peuvent être réduites, dont les diagrames de
décision binaires (ou BDD pour « binary decision diagrams » ), les arbres de décisions, les formules sous
forme normal conjonctive (ou formules CNF pour « conjunctive normal form » ), les polynômes, etc. Le
calcul d’une fonction par un circuit est divisé en plusieurs étapes correspondant aux portes du circuit, de
sorte que le circuit agit comme un programme de calcul pour cette fonction. L’analogie entre circuits
et programmes de calcul transparait jusque dans le nom de certains types de cirucits et diagrames, par
exemple les programmes de branchement (« branching program », une autre appellation des BDD) et les
programmes-(+,×) (« (+,×)-programs », le nom donné par Valiant aux circuits arithmetiques [Val80]).
Ainsi il y a une correspondance entre la taille du plus petit circuit d’un type donné représentant une
fonction et la longueur du plus court programme correspondant pour calculer cette fonction.

En plus de permettre le calcul de la fonction pour n’importe quelles affectations de variables, certains
circuits simplifient la détermination de plusieurs informations sur la fonction, par exemple son nombre
de solutions (ou modèles) dans le cas d’une fonction Booléenne. De tels circuits, parfois désignés en
anglais par « tractable circuits » [VCL+21, Dar22] (grossièrement traduit par « circuits abordables »)
sont au cœur de la compilation de connaissances. La compilation de connaissances traite de situations
où une base de connaissances, connue en avance, est prétraitée lors d’une phase coûteuse en ressource
mais hors-ligne appelée phase de compilation, avant son utilisation lors d’une phase d’exécution. Dans
l’idéal, le coût de la compilation est amorti par les gains de temps obtenus en phase d’exécution pour
manipuler et répondre aux différentes requêtes sur la base compilée, en particulier lorsque le nombre de
requêtes à traiter est élevé. Dans ce contexte, les classes de circuits abordables forment des langages de
compilation: quand la base initiale prend la forme d’une fonction, la compilation consiste à trouver un
circuit dans cette classe qui calcule la fonction.

Parmi les langages de compilation introduits durant ces dernières vingt années pour les fonctions
Booléennes, la classe des circuits sous forme normal négative décomposable, dits circuits en DNNF
(pour « Decomposable Negation Normal Form »), occupe une place centrale [Dar01a]. De tous les types
de circuits à notre disposition, les circuits DNNF sont parmis les plus généraux permettant un traitement
un temps linéaire des requêtes d’implication clausale. Cette requête demande, pour une clause donnée,
si cette clause est satisfaite par toutes les solutions du circuit. L’implication clausale est une requête
historiquement importante en compilation de connaissances [SK96, Sin02], au point que l’existence
d’un algorithme polynomial du test d’implication clausale est, selon certaines sources, une condition
nécessaire pour définir les langages de compilation [DM02]. Ainsi la classes de circuits en DNNF, que
l’on appellera désormais le langage DNNF, est un des langages de compilation les plus généraux qui ait
été étudié. L’intérêt pour la classe des circuits en DNNF s’explique aussi par l’existence de différentes
sous-classes utiles pour le comptage de modèles [Dar11, LM17], pour la résolution de problèmes Max-
SAT [PD07], pour l’énumération de modèles [ABJM17], pour la résolution de QBF [CM19], etc.

Cette thèse est centrée autour du langage DNNF. Elle peut être vue comme un florilège de l’analyse
de circuits en DNNF et de leurs applications, même si la majorité des contributions sont des résultats
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Résumé en français

« négatifs ». Après une section de préliminaires, la thèse est divisée en trois parties. Dans la première
parties, nous étudions la complexité de la compilation dans le langage DNNF en prouvant de nouvelles
bornes inférieures sur la taille minimale de circuits en DNNF représentant exactement, ou de manière
approchée, des fonctions particulières. Ces bornes inférieures dépendent de manière exponentielle du
nombre de variables de la fonction ou d’un paramètre de la fonction, ce sont donc des résultats négatifs
et inconditionels pour la compilation des fonctions étudiées en circuits DNNF. Les résultats négatifs ne
sont pas toujours une fin en soi et, dans la seconde partie de la thèse, nous donnons des applications de
nos bornes inférieures à la fois pour la compilation de connaissances et pour des domaines en apparence
sans connexion avec la compilation de connaissances. Enfin, dans la troisième partie, nous explorons de
nouveaux horizons pour la compilation de connaissances. Cela passe par l’étude de nouvelles requêtes
pour les sous-langages de DNNF et par l’étude de langages de compilations pour représenter des fonc-
tions non-Booléennes. Dans le reste de cette section, nous décrivons plus en détails le langage DNNF et
ses sous-langages. Puis nous présentons les sujets étudiés et nos contributions pour chaque sujet.

DNNF et ses sous-langages. Un circuit sous forme normale négative, ou circuit en NNF (pour « Nega-
tion Normal Form ») est un graphe acyclique orienté dont les nœuds sont étiquetés par des opérateurs
∨ ou ∧, et dont les feuilles sont étiquetées soit par des constantes Booléennes 0 (faux) ou 1 (vrai), soit
par des litéraux sur des variables Booléennes. Un circuit sous forme normale négative décomposable,
ou circuit en DNNF (pour « Decomposable NNF »), est un circuit NNF dont les nœuds ∧ respectent la
propriéte dite de décomposabilité, qui est que les ensembles de variables apparaissant sous les fils d’un
même nœud ∧ sont deux-à-deux disjoints [Dar01a]. Les deux circuits représentés sur la figure suivante
sont des exemples de circuits en DNNF.

∨

∧ ∧

∨

∧ ∧ ∧ ∧

x y w s z w s x

Un circuit en DNNF

∨

∧ ∧

∨ ∨ ∨

∧ ∧ ∧ ∧

x y x y z w z w

x y z w

vtree

Un circuit en str-DNNF avec son vtree.

Le langage DNNF est la classes des circuits en DNNF. Ce langage contient plusieurs autres circuits
et formules connus – dont les formules DNF – et est complet dans le sens où toute fonction Booléenne
sur un nombre fini de variables admet une représentation en un circuit en DNNF. La décomposabilité
est une restriction sur la structure du circuit grâce à laquelle plusieurs requêtes, pour lesquelles il est
peu probable qu’il existe un algorithme fonctionnant en temps polynomial pour n’importe quel circuit,
deviennent faisable en temps polynomial. En particulier, décider la satisfiabilité d’un circuit en DNNF et
déterminer si ses modèles satisfont une clause donnée sont deux requêtes faisables en temps linéaire en
la taille du circuit (le nombre d’arêtes du graphe). En plus de la décomposabilité, d’autres restrictions sur
la structure des circuits ont été inventées, notamment la decomposabilité structurée et le déterminisme,
que nous utilisons à plusieurs reprises dans la thèse.

La décomposabilité structurée est une variante de la décomposabilité qui ajoute une contrainte sur la
manière selon laquelle l’ensemble des variables d’un nœud ∧ est partitionné entre ses fils [PD08]. Pour
l’instant nous en omettons la définition formelle. Nous nous contentons de mentionner que l’agencement
des variables dans circuits en NNF respectant la décomposabilité structurée, ou circuits en str-DNNF

2



(pour « structured DNNF »), est décrit par un vtree: un arbre binaire muni d’une bijection entre ses
feuilles et les variables du circuit. Un exemple de vtree est visible pour le deuxième circuit de la figure
précédente. La classe des circuits en str-DNNF est le langage str-DNNF. Comparée à la simple dé-
composabilité, la décomposabilité structurée rend plus de manipulations des circuits faisables en temps
polynomial, notamment les opérations entre deux circuits respectant le même vtree.

Le déterminisme est une propriété sur les nœuds ∨ des circuits. Un nœud ∨ est dit déterministe quand
il n’existe aucune affectation de variables pouvant satisfaire un même temps les fonctions représentées
par n’importe quels deux de ses fils [Dar01a]. Les circuits en DNNF dont les nœuds ∨ sont déterministes,
ou circuits en d-DNNF (pour « deterministic DNNF »), forment le langage d-DNNF. La combinaison
de la décomposabilité et du détermisme rend possible le calcul du nombre de solutions d’un circuit en
d-DNNF en temps polynomial, ce qui fait de d-DNNF l’un des langages les plus usités. Une manière
simple d’assurer le déterminisme des nœuds ∨ est faire en sorte qu’ils calculent des décompositions de
Shannon, c’est-à-dire que chaque nœud ∨ soit de la forme (x ∧ ·) ∨ (x ∧ ·) avec x une variable. Les
circuits en d-DNNF dont les nœuds ∨ sont de cette forme sont appelés circuits en dec-DNNF (pour «
decision DNNF ») et la classse de ces circuits est le langage dec-DNNF.

Nous finissons cette brève présentation des langages de compilation en évoquant le cas des dia-
grammes de décision. De nombreuses type diagrammes de décision, notamment les diagrammes de
decision binaire ordonnés (OBDD) [Bry86, Weg00], les diagrammes de decision binaire dits « read-once
» (FBDD) [SW95] et les diagrammes de décision sentencielle (SDD) [Dar11] peuvent être ré-écrit en
circuits en d-DNNF en temps linéaire. Ainsi les classes de ces diagrammes (en particulier OBDD, FBDD
et SDD) sont souvent vues comme des sous-langages de d-DNNF.

La taille minimale de fonctions dans DNNF. Étant donné L un langage de compilation, la taille mini-
male d’une fonction dans L est la taille de la plus petite representation de la fonction dans L. L’existence
de classes entières de fonctions dont la taille minimale dans L évolue raisonablement selon le nombre
de variable est un argument en faveur de l’utilisation de L comme langage de compilation en pratique.
Par exemple on définit pour les formules CNF un graphe dit primal, dont les sommets sont les vari-
ables de la formule et tel qu’une arête relie deux variables si et seulement si elles apparaissent ensemble
dans une même clause. Or, pour une constante fixée c, les formules CNF dont le graphe primal a une
treewidth bornée par c ont une taille minimal dans DNNF qui est polynomiale en le nombre de variables
(la treewidth d’un graphe étant un paramètre bien connu dont nous omettons la définition) [Dar01a]. Il
est également utile d’avoir à se disposition un certains nombres de fonctions dont la taille minimale dans
L dépend plus que polynomialement du nombre de variables. De telles fonctions permettent notamment
de comparer L avec d’autres langages en termes d’efficacité spatiale: quand une famille infinie de fonc-
tions est telles que leur taille minimale dans L est exponentiellement plus grande que leur taille minimale
dans un autre langage L′, on peut dire que L′ permet une représentation plus efficace, car plus concise,
de ces fonctions que L. À titre d’exemple, Wegener donne dans les chapitres 4 et 6 de [Weg00] plusieurs
familles de fonctions dont la taille minimale dans OBDD est exponentiellement plus grande que la taille
minimale dans FBDD. Plus générallement, la comparaison de circuits en termes d’efficacité spatiale est
un des trois axes utilisés pour comparer les langages dans la carte de compilation de connaissances, un
compendium de langages de compilation introduit par Darwiche et Marquis [DM02].

Le premier résultat négatif sur la taille minimale de fonctions dans DNNF précède, en un sens, la
création du langage puisque Selman et Kautz ont montré dans les années 90 qu’à moins que NP ⊆
P/poly, s’il existe un test d’implication clausal fonctionnant en temps polynomial pour des fonctions
représentées dans un certain langage de compilation (ce qui est le cas pour DNNF), alors la taille mini-
male de toute formule Booléenne dans ce langage ne peut pas être bornée par un polynôme en la taille
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de la formule [SK91, SK96]. C’est un résultat valable pour tous les langages de compilation, mais qui
a le défaut d’être conditionel ( « à moins que NP ⊆ P/poly » ). Bien après les travaux de Selman et
Kautz, une séparation exponentielle et inconditionelle a été montrée entre la classe des formules CNF et
le langage DNNF [BCMS14]. Pour expliquer ce qui rend une formule difficile à compiler vers DNNF,
une première direction consiste à déterminer des caractéristiques des fonctions Booléennes en lesquelles
la taille minimale dans DNNF dépend exponentiellement [JS12, RP13, STV14, BS17a]. Une autre ligne
de recherche consiste à étudier la compilation de fonctions spécifiques vers DNNF. Cette recherche a
permi d’identifier des classes de fonctions simples à compiler vers DNNF, par exemple les formules
CNF dont la treewidth du graphe primal est bornée par une constante [Dar01a] ou les formules CNF
dites variable-convexes [BS17b]. Mais elle a aussi généré des résultats négatifs qui, la plupart du temps,
prennent la forme de bornes inférieures exponentielles sur la taille minimale dans DNNF, notamment
pour les formules CNF monotones [ACMS20] ou pour des systèmes d’équations linéaires [Men16]. Les
résultats que nous présentons dans le chapitre 1 s’inscrivent parmi ces résultats négatifs. Nous montrons
des bornes inférieures exponentielles sur la taille minimale de certaines contraintes pseudo-Booléennes
dans DNNF [dC20] et sur la taille minimale de formules CNF dites de Tseitin (qui seront définies plus
loin) dans DNNF [dCM21a]. Après un état de l’art sur la compilation vers DNNF, deux sections sont
dédiées aux preuves de chaque des bornes inférieures. La première borne montre que la compilation
vers DNNF de contraintes pseudo-Booléennes de la forme w1x1 + · · · + wnxn ≥ θ, où w1, . . . , wn, θ
sont des nombres réels et x1, . . . , xn sont des variables Booléennes, peut générer des circuits beaucoup
trop grands pour être manipulés en pratique. Pourtant la compilation de telles contraintes en DNNF
est utile, par exemple pour la génération d’encodage CNF des contraintes ayant des propriétés désirées
en programmation par contraintes [AGMS16, KS19]. La deuxième borne inférieure resulte d’un travail
commun avec Stefan Mengel. Elle traite de formules de Tseitin. Ces formules jouent un rôle important
dans cette thèse. Ce sont des formules CNF representant des systèmes de contraintes de parité structurés
par des graphes. Pour un grapheG non-orienté, on associe à chaque sommet v une valeur 0 ou 1 que l’on
notera c(v). Les arêtes de G correspondent aux variables de la formule et chaque sommet v est associé
à une contrainte de parité χv sur les variables x1, . . . , xk correspondant aux arêtes e1, . . . , ek incidentes
à v. La contrainte de parité est χv : x1 + · · · + xk = c(v) mod 2. Elle peut être représentée par une
formule CNF contenant 2k−1 clauses, toutes de taille k. La formule de Tseitin pour le graphe G et le
choix des étiquettes c(v) pour chaque sommet v est la conjonction des formules CNF pour chacun de ses
sommets. On la note T (G, c). Un exemple de formule de Tseitin est donné par le graphe G suivant où
les sommets blancs sont étiquetés par 1 et les sommets gris par 0.

u

v

w

x
z

y

χu : x+ y = 0 mod 2 ≡ (x ∨ y) ∧ (x ∨ y)
χw : y + z = 1 mod 2 ≡ (y ∨ z) ∧ (y ∨ z)
χv : x+ z = 1 mod 2 ≡ (x ∨ z) ∧ (x ∨ z)
T (G, c) = (x ∨ y) ∧ (x ∨ y) ∧ (y ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (x ∨ z)

Nous montrons dans le chapitre 1 que, pour toute constante ∆, la taille minimale de telles formules
dans DNNF, quand les graphes sont de degré maximum au plus ∆, est exponentielle en la treewidth du
graphe. Des applications pour cette borne inférieure sont données dans les chapitres 2, 3 et 4.

La taille minimale d’approximations dans d-DNNF. Quand une fonction a une taille minimale
dans DNNF trop grande pour que la compilation soit viable, il est parfois envisageable de compiler
une approximation de la fonction dans l’espoir que sa taille minimale dans DNNF soit plus petite.
Avec Stefan Mengel, nous avons étudié la compilation de connaissances approchée vers le langage
d-DNNF [dCM20]. Le principal attrait de d-DNNF comparé à DNNF est que le nombre de modèles
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de circuits en d-DNNF est calculable en temps polynomial [DM02]. En contrepartie, compiler vers d-
DNNF est généralement beaucoup plus coûteux que compiler vers DNNF, puisque la taille minimale
des fonctions dans d-DNNF est généralement exponentiellement plus grande que leur taille minimale
dans DNNF [BCMS16]. Il existe plusieurs stratégie pour la compilation approchée vers différents lan-
gages [SK96, Dar01a, BSW02, PD07] qui, à l’exception de celle décrite dans [BSW02], ne permet-
tent pas de mesurer précisement de la qualité de l’approximation. Nous avons considéré deux notions
d’approximation offrant différentes garanties sur l’erreur d’approximation. Nous appelons ces notions
l’approximation faible et l’approximation forte. L’approximation faible a été étudié par Bollig, Sauer-
hoff et Wegener pour la compilation vers le langage OBDD [BSW02]. On peut résumer l’approximation
faible de la manière suivante: pour une fonction f , la fonction f̃ ayant les même variables est appelée
une ε-approximation faible de f quand la probabilité que f(a)f̃(a), pour a une affectation aléatoire des
variables, est inférieure à ε. Grace aux travaux de Bollig et al. [BSW02], il est connu qu’il existe des
fonctions dont les approximations faibles ont toutes une taille minimale dans OBDD qui est exponentielle
en leur nombre de variables. Dans le chapitre 2, nous présentons nos contributions pour la compilation
de connaissances approchée. Après une section d’état de l’art sur la compilation approchée, nous mon-
trons que les résultats négatifs prouvés par Bollig et al. pour le langage OBDD s’étendent au langage
d-DNNF, ce qui n’est pas trivial puisque les circuits en d-DNNF sont generalement exponentiellement
plus petits que n’importe quels OBDD représentant la même fonction. Nous expliquons ensuite que
l’approximation faible s’avère insuffisante de nombreux cas, puisqu’elle permet d’approximer des fonc-
tions par la fonction qui vaut tout le temps zéro. Une telle approximation étant inutile dans beaucoup
de situation, par exemple pour le comptage de modèles approché. Dans une troisième section, nous
définissons l’approximation forte pour résoudre ce problème. Celle-ci a été conçue pour le comptage de
modèles approché, elle garantie que le nombre de modèle de l’approximation est bornée de chaque côté
par le nombre de modèles de la fonction initiale fois un facteur constant. Nous montrons qu’il existe
des classes de fonctions qui peuvent être faiblement approximées par la fonction zéro, mais dont la taille
minimale dans d-DNNF de leurs approximations fortes est toujours exponentielle en le nombre de vari-
ables. Vers la fin du chapitre 2, nous utilisons les bornes inférieures sur la taille minimale de formules
de Tseitin dans DNNF obtenues au chapitre 1 pour prouver que notre résultat s’applique notamment à
certaines classes de formules CNF.

Analyser la compilation ascendante vers str-DNNF. Même quand il existe un petit circuit représen-
tant une fonction donnée dans un langage, générer un tel circuit peut être extrêmement coûteux selon la
méthode de compilation utilisée. Dans le chapitre 3, nous utilisons nos résultats du chapitre 1 sur la taille
minimale de formules de Tseitin dans DNNF pour construire des exemples de fonctions exhibant ce com-
portement pour la compilation ascendante (ou compilation « bottom-up » ). La compilation ascendante
est un des deux paradigmes majeurs pour la compilation avec la compilation descendante (ou « top-down
» ). Dans une compilation descendante, un circuit représentant la fonction initiale est construit comme la
trace d’un algorithme explorant la quasi-intégralité de l’espace des modèles de la fonctions [HD05]. En
compilation ascendante, on suppose souvent que la fonction initiale est un système de constraintes, par
exemple une formule CNF où les contraintes sont des clauses. L’approche se schématise en deux étapes
: premièrement, chaque contrainte est individuellement compilée dans le langage, et deuxièmement, les
circuits ainsi obtenus sont combinés deux-à-deux jusqu’à obtenir un circuit représentant la fonction ini-
tiale. La deuxième étape requière que la conjonction de deux circuits du langage soit faisable en temps
polynomial, ce qui n’est generalement possible que quand les circuits en question sont des circuit en
str-DNNF respectant le même vtree [PD08]. Ainsi la compilation ascendante est essentiellement une
méthode pour compiler vers le langage str-DNNF qui, rappelons-le, généralise les langages OBDD et
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SDD [Dar11]. La figure suivante représente une compilation ascendante dans le langage OBDD de la
formule CNF (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3). Cette compilation utilise
trois instructions : Compile pour compiler une clause en OBDD en spécifiant l’ordre π d’apparition des
variables, Apply qui permet de réaliser la conjonction de deux OBDD, et Restructure qui permet de
modifier un OBDD sans changer la fonction qu’il représente.

B1 = Compile(x1 ∨ x2, π)

B2 = Compile(x1 ∨ x2, π)

B3 = Apply(B1, B2,∧)

B4 = Compile(x1 ∨ x2 ∨ x3, π′)

B5 = Compile(x1 ∨ x2 ∨ x3, π′)

B6 = Apply(B4, B5,∧)

B7 = Restructure(B3, π
′)

B8 = Apply(B6, B7,∧)

où π(x1) < π(x2) < π(x3)

et π′(x2) < π′(x1) < π′(x3)

x1

x2

10

x1 ∨ x2

Compile

x1

x2

10

x1 ∨ x2

Compile

x1

x2 x2

10

Apply(B1, B2, ∧)

Restructure

x2

x1 x1

10

x2

x1

x3

10

x1 ∨ x2 ∨ x3

Compile

x2

x1

x3

10

x1 ∨ x2 ∨ x3

Compile

x2

x1 x1

x3 x3

0 1

Apply(B4, B5, ∧)

x2

x1 x1

x3 x3

0 1

Apply(B6, B7, ∧)

Une compilation ascendante dans le langage OBDD

Comme décrit précédemment, la compilation ascendante génère des circuits intermédiaires, lesquels peu-
vent être beaucoup plus grands que le système initial et que le circuit obtenu à l’issue de la compilation.
Ce phénomène a été observé en pratique [NW07] et prouvé pour la compilation ascendante vers OBDD
de différentes formules CNF [Kra08, Seg08, FX13, IKRS20]. Le chapitre 3 de la thèse décrit nos contri-
butions dans l’analyse de la compilation ascendante vers str-DNNF [dCM22b]. Dans les deux premières
sections, nous formalisons la compilation ascendante et nous dressons un état de l’art de la compilation
ascendante en théorie et en pratique. Dans le reste du chapitre, il est montré comment utiliser la borne
inférieure obtenue dans le chapitre 1 sur la taille minimale dans DNNF des formules de Tseitin pour con-
struire des formules CNF de taille polynomiale en le nombre de variables, et dont la taille minimale dans
str-DNNF est constante, mais telles que toute compilation ascendante vers str-DNNF génère des circuits
intermédiaires de taille exponentielle en la treewidth de leur graphe primal. Le formalisme que nous util-
isons pour décrire la compilation ascendante permet que des modifications arbitraires soient apportées
aux circuits intermédiaires à certains moments de la compilation, tant que ces modifications préservent
les fonctions représentées (c’est le rôle de la méthode Restructure dans l’exemple de la figure). Grace
à cette particularité, le fonctionnement des compilateurs utilisant l’approche ascendante [Rud93, CD13]
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s’inscrit dans notre modèle et nos résultats s’appliquent à ces compilateurs. À notre connaissance, seules
les bornes inférieures prouvées par Itsykson, Knop, Romashchenko et Sokolov pour les OBDD utilisent
un tel modèle de compilation [IKRS20]. Nous commençons par prouver notre résultat pour la compila-
tion ascendante de formules de Tseitin non-satisfiables, puis nous étendons le résultat à des formules CNF
satisfiables construites sur ces formules de Tseitin. Avec notre formalisme, la compilation ascendante de
formules non-satisfiable génère une séquence de circuits qui constitue une preuve de la non-satisfiabilité
de la formule, ou une réfutation de la formuler. Ainsi notre principale contribution est l’obtention de
bornes inférieures sur la taille des réfutations de formules de Tseitin non-satisfiables dans des systèmes
de preuve à base de circuits en str-DNNF (ce qui inclue les systèmes de preuve à base d’OBDD et de
SDD). Itsykson et al. ont également étudié des formules de Tseitin pour obtenir les résultats publiés
dans [IKRS20]. Nos résultats généralisent les leurs de deux manières : premièrement, nous considérons
des circuits en str-DNNF, lesquels peuvent être considérablement plus petits que les OBDD équivalents
(mais pas l’inverse), et deuxièmement, leurs résultats ne s’appliquent qu’à des formules de Tseitin dont
les graphes sont restreints à une classe particulière, alors que les nôtres sont des résultats paramétrés mais
qui s’appliquent aux formules de Tseitin pour n’importe quel graphe.

La compilation de connaissances rencontre la complexité de preuves. Une dernière application
de notre borne inférieure sur la taille minimale des formules de Tseitin dans DNNF est donnée dans
le chapitre 4. Cette application fait le lien entre la compilation de connaissances et la complexité de
preuves, qui est le domaine historiquement lié aux formules de Tseitin. Les formules de Tseitin non-
satisfiables ont été introduites par Grigori Tseitin dans les années 60 comme des exemples de formules
difficiles à réfuter dans le système de preuve par résolution [Tse68, Tse83]. Ce système de preuve
est basé sur une seule règle d’inférence appelée la règle de résolution, selon laquelle une formule qui
satisfait deux clauses C ∨ x et C ′ ∨ x satisfait également la clause C ∨ C ′. La clause C ∨ C ′ est
appelée la résolvante de C ∨ x et C ′ ∨ x et est notée C ∨ C ′ = Resolution(C ∨ x,C′ ∨ x, x). Toute
formule CNF non-satisfiable a une réfutation dans le système de preuve par résolution, c’est-à-dire, une
séquence de clauses dont la dernière est la clause vide (signe que la formule est non-satisfiable) et telle
que chaque clause soit vient directement de la formule, soit est la résolvante de deux clauses apparaissant
précédemment dans la séquence. Par exemple la figure ci-après montre une résolution par réfutation de
la formule (x ∨ y) ∧ (x ∨ y) ∧ (x ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (y ∨ z), avec sa représentation sous forme
de graphe acyclique orienté.

C1 = x ∨ y
C2 = x ∨ z
C3 = y ∨ z
C4 = y ∨ z
C5 = x ∨ y
C6 = x ∨ z
C7 = Resolution(C1, C2, x) = y ∨ z
C8 = Resolution(C5, C6, x) = y ∨ z
C9 = Resolution(C3, C7, z) = y

C10 = Resolution(C4, C8, z) = y

C11 = Resolution(C9, C10, y) = ∅

x ∨ y x ∨ z y ∨ z y ∨ z x ∨ y x ∨ z

y ∨ z y ∨ z

y y

∅

x x x x

z

z

z

z

y y
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L’intuition de Tseitin était que les réfutations de formules de Tseitin dans le système de preuve par
résolution ne peuvent être constituées d’un nombre polynomial de clauses. Cette intuition a été confirmée
par Urquhart pour des formues de Tseitin non-satisfiables dont les graphes sont des expanseur (en anglais
« expander graphs » ) [Urq87]. Caractériser les formules de Tseitin non-satisfiables dont les réfutations
par résolution sont de taille plus que polynomiale en le nombre de variables reste un problème ouvert,
en dépit de plusieurs avancées sur la question [AR11, IO13, GTT20]. En particulier, pour le système de
preuve plus restrictif dit par resolution régulière, Alekhnovic et Razborov ont montré que les formules
de Tseitin non-satisfiables peuvent être réfutées en utilisant au plus 2O(tw(G))poly(n) clauses ou n est le
nombre de variables et tw(G) est la treewidth du graphe [AR11]. On comparaison, Itsykson et al. ont
montré que toute réfutation par résolution régulière de ces même formules, quand leurs graphes sont de
degré maximal borné par une constante, nécessitent au moins 2Ω(tw(G)/ log(n))) clauses [IRSS21] . Notre
principale contribution, avec Stefan Mengel, a été d’utiliser notre borne inférieure sur la taille minimale
des formules de Tseitin satisfiables dans DNNF pour améliorer la borne inférieure de [IRSS21]. Notre
borne montre que, quand les graphes sont de degré maximal borné par une constante, les réfutations
par résolution régulière de formules de Tseitin non-satisfiable génèrent au moins 2Ω(tw(G))poly(1/n)
clauses. Pour ces formules, nous atteignons donc la borne supérieur d’Alekhnovic et Razborov. Par
conséquent, le nombre minimal de clauses dans une réfutation par résolution régulière de formules de
Tseitin non-satisfiables dont les graphes sont de dégré bornés, est polynomial en le nombre de variables
n si et seulement si la treewidth du graphe est en O(log(n)) [dCM21a]. La preuve de ce résultat est
l’objet du chapitre 4. La première section du chapitre donne une description formelle de la résolution par
réfutation régulière. S’ensuit une section où nous rappelons les bornes existantes sur le nombre minimal
de clauses nécessaires pour réfuter une formule de Tseitin dans ce système de preuve. Les sections suiv-
antes détaillent une réduction pour passer du poblème consistant à déterminer la taille minimale d’une
réfutation par résolution régulière de formules de Tseitin non-satisfiables, au problème dans lequel l’on
cherche à déterminer la taille minimale d’une formule de Tseitin satisfiable dans DNNF.

Des requêtes d’énumération pour les circuits en dec-DNNF. Le processus de compilation n’est
qu’une partie de la compilation de connaissances, la seconde partie étant l’utilisation de la forme com-
pilée pour répondre aux requêtes pendant la phase d’exécution. Bien que la thèse soit principalement
axée autour du processus de compilation, des résultats ont été obtenus sur la complexité des requêtes
d’énumération sur des circuits des langages de compilation. Ces résultats proviennent de travaux réalisés
avec Pierre Marquis [dCM22a]. Les requêtes d’énumération diffèrent des requêtes de décision (comme
le test d’implication clausale) et des requêtes fonctionnelles (comme le comptage de modèles) en ce que
la requête n’a pas une seule réponse mais une liste de solutions. Par exemple, lister toutes les affectations
de variables satisfaisant un circuit est une requête d’énumération qui a déjà été étudiée pour des circuits
de langages de compilation [DM02, ABJM17, CS21]. Un petit circuit peut être satisfait par un nombre
exponentiel d’affectations de ses variables, cet exemple montre que pour analyser l’efficacité d’un algo-
rithme d’énumération, il convient de prendre en compte à la taille de l’entrée (ici, la taille du circuit) et la
taille de la sortie. La théorie de la complexité d’énumération a été conçue spécialement pour catégoriser
les problèmes d’énumération selon leur difficulté [Str19]. Cette théorie est présentée dans la première
section du chapitre 5. Pour notre étude, nous nous sommes limités aux classes de complexité OutputP
et IncP. OutputP regroupe les problèmes d’énumération pour lesquels l’ensemble des solutions peut
être obtenu en temps polynomial en la taille de l’entrée plus la taille de la sortie (donc la taille cumulée
de toutes les solutions). IncP est une sous-classe de OutputP qui contient exactement les problèmes
d’énumération pour lesquels il existe un algorithme permettant de lister un nombre donné k de solutions
en temps polynomial en la taille de l’entrée et k. L’avis général est qu’il existe des problèmes dans Out-
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putP qui ne sont pas dans IncP, mais il n’existe à notre connaissance aucun problème « naturel » pour
lequel cela ait été prouvé [Str19]. Dans la seconde et la troisième section du chapitre 5, nous étudions
des requêtes d’énumération qui consistent à lister les impliquants premiers et les impliqués premiers de
circuits en dec-DNNF. En particulier, nous montrons qu’énumérer tous les impliquants premiers (respec-
tivement les impliqués premiers) de tels circuits est un problème dans OutputP, et même dans IncP.
Dans la quatrième section, nous considérons l’énumération d’impliquants premiers particuliers appelés
raisons suffisantes et explications abductives minimales pour l’inclusion, deux notions utilisées en intelli-
gence artificielle (IA), et plus particulièrement en IA explicable [SL90, EG95, SCD18b, DH20, INM19].
Alors que nous avons pu trouver des résultats positifs concernant l’énumération de tous les impliquants
premiers de circuits en dec-DNNF, nous montrons qu’il est peu probable qu’énumérer les impliquants
particuliers précdémment cités soit dans OutputP même quand on restreint les circuits aux OBDD et
aux DT.

La compilation de connaissances au-delà du cas Booléen. La compilation de connaissances n’est pas
confinée aux fonctions Booléennes. Les langages étudiés dans cette thèse pour les fonctions Booléennes
sont élaborés en imposant certaines propriétés aux circuits Booléens (décomposabilité, déterminisme,
etc.). Ces propriétés ont des versions analogues pour des circuits représentant des fonctions non-Booléennes,
et donc on peut créer des classes de circuits représentant ces nouvelles fonctions sur le modèle de
DNNF et de ses sous-langages. Plusieurs travaux on déjà entrepris d’étudier ces propriétés pour des
circuits calculant des fonctions réelles. Notamment, la décomposabilité a été étudiée pour les cir-
cuits arithmétiques sous le nom de multilinéarité [NW97] et, plus généralement la décomposabilité,
le déterminisme, etc., ont été largement étudiés pour les circuits probabilistes, c’est-à-dire des circuits
calculant des distributions de probabilité [VCL+21]. Comme pour le cas Booléens, différentes combi-
naisons de propriétés sur les circuits probabilistes permettent de traiter différentes requêtes et transfor-
mations sur ces circuits en temps polynomial. De plus, on s’attend généralement à ce que la différence
d’efficacité spatiale entre deux classes de circuits probabilistes soit la même que celle entre les classes
de circuits Booléens correspondantes (quand elles sont définies). Dans le chapitre 6, nous présentons
les travaux réalisés avec Stefan Mengel sur la comparaison en termes d’efficacité spatiale de classes
de circuits représentant des fonctions pseudo-Booléennes, c’est-à-dire, des fonctions sur des variables
Booléennes qui calculent des valeurs réelles [dCM21b]. Les circuits en question sont des circuits arith-
metiques, ou AC (pour « arithmetic circuits » ), utilisant les opérations produits et sommes (là où les
circuits Booléens utilisent les opérations ∧ et ∨). L’appellation « arithmetic circuits » remonte aux
articles de Darwiche [Dar02b, Dar03] où ces circuits sont introduits comme représentations de distri-
butions marginales de réseaux Bayésiens. Mais les AC étant des modèles naturels pour représenter des
polynômes en général, la recherche sur ces objets précède en réalité les articles de Darwiche. En partic-
ulier, Valiant étudiait des objets similaires vingt ans avant sous le nom de programmes-(+,×) [Val80].
Nous adoptons la définition des AC donnée par Darwiche. Notamment, les entrées de nos AC sont des
variables Booléennes (vues comme des variables sur {0, 1}), leur négations, ou des constantes réelles.
Nous apportons une attention particulère aux AC représentant des fonctions non-negatives, auquel cas
ils sont appelés des AC positifs. L’intérêt pour ces AC positifs vient de leur utilisation comme cir-
cuits probabilistes. Nous avons étudié seize classes d’AC positifs construites en imposant différentes
combinaisons des cinq propriétés suivantes: le déterminisme, l’homogénéité ( « smoothness » ), la dé-
composabilité, une variante de la décomposabilité appelée décomposabilité faible, et la monotonicité.
La monotonicité, au contraire des quatres premières propriétés, n’a pas de formulation équivalente pour
les circuits Booléens. Un AC est dit monotone quand les constantes réelles sur ses feuilles sont non-
négatives. D’une certaine manière, un circuit utilisant à la fois des nœuds + et des constantes négatives
est capable de réaliser des soustractions, donc un AC monotone est essentiellement un AC positif où la
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soustraction n’est pas autorisée. Il est connu depuis les travaux de Valiant que les plus petits AC mono-
tones représentant une fonction peuvent être beaucoup plus grands que certains AC positifs représentant
la même fonction [Val80]. Dans le chapitre 6, nous donnons comparons les huit classes d’AC monotones
en termes d’efficacité spatiale : pour chacune des vingt-huit paires (C1, C2) de classes prises parmi les
huit classes en question, nous avons déterminé si tout circuit C1 ∈ C1 a un équivalent dans C2 dont la
taille varie est au plus polynomiale en |C1|, et inversement. Nos résultats s’appuient sur une réduction
nous permettant de travailler avec des circuits en NNF plutôt qu’avec des AC monotones. Nous avons
ensuite démarré une étude similaire pour les huit autres classes d’AC positifs, sans pouvoir l’achever.
Afin de motiver la rechercher sur les AC positifs, nous décrivons dans la dernière section des techniques
permettant de trouver des bornes inférieures sur la taille d’AC positifs, et nous mettons en application
ces techniques dans le cas d’AC respectant la décomposabilité structurée.
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Introduction

Circuits in computer science are a model of computation able to represent many kinds of functions, and
into which several other models of computation can be translated: binary decision diagrams (BDDs),
decision trees, formulas in conjunctive normal form (CNF), polynomials, to only quote a few. A circuit
breaks down the computation of a function into a sequence of simple steps that correspond to gates. Thus
circuits are essentially programs for computing various kinds functions and several types of circuits and
computation diagrams are even referred to as programs, like branching programs (another name for
BDDs) and (+,×)-programs (a name used by Valiant for arithmetic circuits [Val80]). Studying the size
of the smallest circuit from a given family representing a function amounts to studying the hardness of
computing this function with respect to a given model of computation. This is an important aspect of
circuit complexity, a domain of computer science that aims to establish unconditional lower bounds on the
computational complexity of selected functions, like the permanent or the function detecting k-cliques
in graphs.

In addition to computing the value of a function for any assignment to its variables, some cir-
cuits allow to easily determine useful information on functions, like the number of satisfying assign-
ments in the case of Boolean functions. Such circuits, sometime called tractable circuits (see for in-
stance [VCL+21, Dar22]), are at the core of knowledge compilation. Knowledge compilation is a domain
of computer science that deals with situations where a knowledge base known in advance is preprocessed,
or compiled, during a costly offline phase called compilation, before being queried and manipulated dur-
ing the online phase. Ideally, the cost of compilation is amortized by the time gained working on the
processed knowledge base during the online phase, in particular when many queries are answered. In this
context, classes of so-called tractable circuits are compilation languages, that is, when the knowledge
base is a function, compiling the knowledge base consists in finding a tractable circuit computing the
corresponding function.

Among the compilation languages that have been introduced during the last two decades for Boolean
functions, the class of circuits in decomposable negation normal form (DNNF) introduced in 2001 [Dar01a]
is central. Circuits in DNNF are among the most general kind of circuits for which answering the
clausal entailment query is tractable, a query historically important in knowledge compilation [SK96,
Sin02] to the point that its tractability has sometime be regarded as a requirement for compilation
languages [DM02]. Moreover circuits in DNNF encompass other classes of circuits useful in model
counting [Dar11, LM17], in Max-SAT solving [PD07], in model enumeration [ABJM17], in QBF solv-
ing [CM19], etc.

This thesis revolves around the DNNF language, i.e., the class of circuits in DNNF. The best way to
describe the thesis is as a “showcase” of the analysis of circuits in DNNF and of their applications (even
though most of our results are “negative”). After a preliminary section, the thesis splits into three parts.
In the first part we study the hardness of compilation in DNNF by proving new lower bounds on the
size of the smallest circuits in DNNF representing particular functions and sometimes approximations
of these functions. The lower bounds shown are negative results, but negative results are not always the
end of the story. This is the object of the second part of this thesis where we show several applications
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of results proved in the first part both inside and outside of the area of knowledge compilation. Finally,
the third part of the thesis deals with new queries and new fields for knowledge compilation. In this part,
we study new enumeration queries for the enumeration of specific implicants from particular circuits
in DNNF. We also go beyond knowledge compilation for Boolean functions and initiate a systematic
comparison of compilation languages for non-Boolean functions, more precisely for pseudo-boolean
functions. In what follows, we give a more detailed description of the DNNF language and of some of
its sublanguages. Then we give a more detailed overview of the subjects that we study in this thesis and
present our contributions.

DNNF and its sublanguages. To understand the rest of this introduction, a brief overview of the DNNF
language and of some of its sublanguage seems necessary. A circuit in negation normal form (NNF) is
a directed acyclic graph whose internal nodes are labelled with ∨- or ∧-operations and whose leaves are
labelled either by a Boolean constant 0 (false) or 1 (true), or by literals in Boolean variables. A circuit
is in decomposable NNF (DNNF) when it is in NNF and when its ∧-nodes respect a property called
decomposability which enforces that the sets of variables of the children (or inputs) of a ∧-node are pair-
wise disjoint [Dar01a]. The DNNF language is the class of all circuits in DNNF, it encompasses some
well-known kinds of circuits and formulas like DNF formulas, and is complete in the sense that every
Boolean function over finitely many variables has a representation as a circuit in DNNF. Decomposabil-
ity is a structural restriction on circuits in NNF thanks to which answering several queries on the circuit
becomes tractable. In particular deciding the satisfiability of a circuit in DNNF is feasible in linear time
in the size of the circuit (the number of edges of its graph), and so is clausal entailment, that is, given
a circuit D in DNNF and a clause γ, determining whether every satisfying assignment, or model, of D
satisfies γ is feasible in linear time in the size of D. In addition to decomposability, other structural
restrictions have been invented for circuits. For every combination of restrictions, the circuits respecting
these restrictions form a new language. In particular, structured decomposability and determinisim are
central restrictions that appear several times in this thesis. Structured decomposability is a refinement
of decomposability that puts a constraint on the way the sets of variables of the children of a ∧-node
partition the variables of that ∧-node [PD08]. We omit the formal definition for now and only mention
that circuits in NNF that respect structured decomposability are said to be in structured decomposable
negation normal form (str-DNNF), and that the way variables are arranged in such circuits is described
by some kind of combinatorial structure called a vtree (whose definition we also omit for now). The class
of circuits in str-DNNF is the str-DNNF language. Structured decomposability renders tractable some
operations that are intractable over general circuits in DNNF, in particular operations that require manip-
ulating two circuits respecting the same vtree. Another important restriction is determinism, which states
that the children of every ∨-node represent Boolean functions whose sets of satisfying assignments are
pairwise disjoint [Dar01a]. Circuits in DNNF respecting determinism are said to be in deterministic de-
composable negation normal form (d-DNNF) and the class of all these circuits is the d-DNNF language.
The combination of decomposability with determinism makes it possible to compute the number of sat-
isfying assignments, or model count, of the circuit, which is useful in many settings. One convenient
way to ensure that ∨-nodes respect determinism is to make them compute Shannon decompositions, that
is, every ∨-node is of the form (x∧ ·)∨ (x∧ ·) for some variable x. Circuits in d-DNNF whose ∨-nodes
are of this form are in decision DNNF (dec-DNNF) and the class of all these circuits is the dec-DNNF
language. To finish our small presentation of compilation languages, we mention that several classes of
decision diagrams, including ordered binary decision diagrams (OBDDs) [Bry86, Weg00], free binary
decision diagrams (FBDDs) [SW95] and sentential decision diagrams (SDDs) [Dar11] can be transfor-
mated in d-DNNF in polynomial time, so that theses classes (in particular OBDD, FBDD and SDD) are
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somtimes seen as sublanguages of d-DNNF.

The DNNF size of selected functions. For a compilation languageL, theL size of a function is the size
of the smallest representation of the function in L. Finding functions whose L size is small is essential
to champion L as a viable compilation language. For instance when Darwiche introduced the language
DNNF, he promoted the language showing that every CNF formula with bounded primal treewidth is
compilable to DNNF in polynomial time [Dar01a]. On the other hand, knowing that many functions
have a large L size supports the belief that no compilation language admits small representations for ev-
ery functions, and is useful to compare L to other languages in terms of space efficiency, or succinctness.
For instance in [Weg00, Chapters 4 and 6], Wegener give several examples of functions whose OBDD
size is exponentially larger than the FBDD size. More generally, comparing circuits in terms of succinct-
ness is one of three methods to compare compilation languages in the knowledge compilation map, in
framework introduced by Darwiche and Marquis where compilation languages are systematically com-
pared in terms of succinctness and in terms of queries and transformations that are tractable on their
circuits [DM02]. The first negative results for the compilation to DNNF predate, in a sense, the creation
of the language since Selman and Kautz have shown in the nineties that there is no compilation language
that renders clausal entailment tractable (as does DNNF) and in which all formulas have a representation
of polynomial size (in the number of variables), unless NP ⊆ P/poly [SK91, SK96]. Since DNNF has
been introduced, unconditional separations between the class of CNF formulas and DNNF have been
found [BCMS14], thus confirming the conditional negative results of Selman and Kautz in the case of
DNNF. To explain what makes a function hard to compile in DNNF, a line of research has developed
with the objective of determining parameters of general Boolean functions that, when too high, guarantee
that the DNNF size is exponential in the number of variables [JS12, RP13, STV14, BS17a]. In another
direction, the compilation of specific classes of functions in DNNF has been studied with both positive
results, for instance for variable-convex CNF formulas [BS17b], and negative results taking the form of
exponential lower bounds on the DNNF size, like for monotone CNF formulas [ACMS20] or systems of
linear equations [Men16]. The results that we present in Chapter 1 fall within the negative case. We show
exponential lower bounds on the DNNF size of particular pseudo-Boolean constraints [dC20] and expo-
nential lower bounds on the DNNF size of particular CNF formulas called Tseitin formulas [dCM21a].
After a section on the state of the art of compilation in DNNF, two sections are dedicated to the proof
of each lower bound respectively. The first bound shows that compiling in DNNF pseudo-Boolean con-
straints of the form w1x1 + · · · + wnxn ≥ θ, where w1, . . . , wn, θ are real numbers and x1, . . . , xn are
Boolean variables, may create circuits that are too large to work on. Yet compilation to DNNF of such
constraints is useful, for instance for generating CNF encoding of the constraint that have nice properties
desired in constraint programming [AGMS16, KS19]. The second lower bound has been shown with
Stefan Mengel. It deals with Tseitin formulas, that are CNF formulas representing systems of parity
constraints structured by a graph. We show that the DNNF size of these formulas, when the underlying
graph has maximum degree bounded by a constant, is exponential in the treewidth of the graph. Appli-
cations of this bound are given in Chapters 2, 3 and 4.

The d-DNNF size of approximations. If a function has a DNNF size too large to be practical, then
one may want to compile an approximation of that function in the hope that it is computed by a more
compact circuit in DNNF. With Stefan Mengel, we have studied approximate knowledge compilation in
the d-DNNF language [dCM20]. The major incentive for compiling in d-DNNF is that model counting
is tractable on circuits in d-DNNF [DM02]. Unfortunately, compiling to d-DNNF is generally much
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more expensive that compiling to DNNF since the d-DNNF size of a function is generally exponentially
larger than its DNNF size [BCMS16]. There exist several approaches for approximate knowledge com-
pilation in different languages [SK96, Dar01a, BSW02, PD07] that, with the exception of [BSW02], lack
a precise measure on the quality of the approximation. We have considered two notions of approximation
offering different guarantees on the approximation error. We call them weak approximations and strong
approximations. Weak approximations have already been studied by Bollig, Sauerhoff and Wegener for
the compilation in the language OBDD [BSW02], and it is known that there are functions whose weak
approximations all have exponential OBDD size. Chapter 2 of this thesis presents our contributions to
approximate knowledge compilation. After a first section on the state of the art of approximate knowl-
edge compilation, the second section shows how to extend the result of Bollig et al. from OBDD to
d-DNNF, which is not insignificant since circuits in d-DNNF are in general exponentially smaller than
the smallest equivalent OBDDs. Then we explain that weak approximation is not ideal for approximate
knowledge compilation to d-DNNF, in particular to perform approximate model counting, as it allows
the approximation by the function that is uniformly zero in many situations. In the third section we define
the notion of strong approximation to circumvent this problem. Strong approximation has been designed
with approximate model counting in mind. Indeed, a strong approximation of a function has a number
of models that is within a constant factor of the number of models of the initial function. We show that
there exist classes of functions that are weakly approximated by the function that is uniformly zero, but
whose strong approximations all have exponential d-DNNF size. We end Chapter 2 by using the lower
bounds obtained in Chapter 1 on the DNNF size of particular Tseitin formulas to prove that the latter
result holds even for some classes of CNF formulas.

Analyzing bottom-up compilation to str-DNNF. Even if a function can be computed by a small cir-
cuit in a compilation language, it might still take exponential space and time to compile in that language
depending on the compilation algorithm. In Chapter 3, we use the results of Chapter 1 on the DNNF
size of Tseitin formulas to construct examples of such functions for bottom-up compilation algorithms.
Bottom-up compilation is one of the two main paradigms along with top-down compilation. In top-down
compilation, a circuit computing the initial function is essentially constructed as the trace of an algorithm
exploring the space of assignments to the variables of the function [HD05]. In bottom-up compilation,
one often assumes that the initial function is a system of constraints (for instance a CNF formula, where
the constraints are clauses). The paradigm then consists of two steps: first, compiling every constraint
to the language, and second, combining the resulting circuits until obtaining a circuit that computes the
solutions of the initial system. The second step requires that the conjunction of two circuits from the
language is tractable, which is generally possible only if the two circuits are in str-DNNF and are sim-
ilarly structured (that is, respect the same vtree) [PD08]. Thus bottom-up compilation is a method for
compiling in the language str-DNNF, which includes OBDD and SDD [Dar11]. As described before,
bottom-up compilation creates intermediate circuits, and these can be much larger than both the input
system of contraints and the output circuit, as observed in practice [NW07] and proved for particular
functions [Kra08, Seg08, FX13, IKRS20] when compiling in OBDD. Chapter 3 describes the contribu-
tions made with Stefan Mengel to the analysis of bottom-up compilation to str-DNNF [dCM22b]. The
chapter starts with a section defining a formal model of bottom-up compilation, followed by a section on
the state of the art of bottom-up compilation, both in practice and in theory. In the remaining sections of
the chapter, it is shown how to use the lower bound obtained in Chapter 1 on the DNNF size of Tseitin
formulas to construct CNF formulas whose size is polynomial in the number of variables, whose str-
DNNF size is constant, but for which bottom-up compilation to str-DNNF creates intermediate circuits
whose size is exponential in the treewidth of the primal graphs of the initial formulas. The lower bounds
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that are obtained on intermediate circuits take into account arbitrary modifications of intermediate cir-
cuits during compilation as long as these modifications preserve the function computed by the circuit (for
instance circuit minimization). Thus the framework for our bounds captures the behaviour of practical
bottom-up compilers, see for instance [Rud93, CD13]. To the best of our knowledge, the bounds shown
by Itsykson, Knop, Romashchenko and Sokolov for OBDDs were the only ones proved in comparable
settings [IKRS20]. We start by proving our result for bottom-up compilation of unsatisfiable Tseitin
formulas and then lift it up to satisfiable CNF formulas built upon those. So we obtain as a first step an
exponential lower bound on the size of every refutation of unsatisfiable Tseitin formulas in str-DNNF-
based proof systems, including OBDD-based proof systems. Itsykson et al. also study Tseitin formulas
to prove bounds in [IKRS20]. Our bounds generalize theirs in two ways: on the one hand we study cir-
cuits in str-DNNF, which are generally exponentially smaller than OBDD, on the other hand their bounds
are restricted to Tseitin formulas over a particular class of graphs while ours are parameterized and, as
such, hold for Tseitin formulas for every graphs.

Using knowledge compilation in proof complexity. Chapter 4 gives a last application of the lower
bound on the DNNF size of Tseitin formulas proved in Chapter 1. This application makes the connection
with the historic purpose of Tseitin formulas. Unsatisfiable Tseitin formulas have been introduced by
Grigori S. Tseitin in the sixities as hard formulas to refute in the resolution proof system [Tse68, Tse83].
The resolution proof system is based on a single inference rule called the resolution rule, which states
that a formula that satisfies two clauses C ∨ x and C ′ ∨ x also satisfies C ∨C ′. Every unsatisfiable CNF
formula has a refutation in the resolution proof system, that is, a sequence of clauses either taken from
the formula or obtained by resolution rule over previous clauses, that ends with the empty clause. The
intuition of Tseitin was that exponentially many clauses would be required in resolution refutations of
Tseitin formulas. This intuition was proved to be correct since Urquhart later showed that for unsatisfi-
able Tseitin formulas whose underlying graphs are expander graphs, the shortest resolution refutations
have exponential length [Urq87]. Characterizing unsatisfiable Tseitin formulas whose resolution refu-
tation length is not polynomial in the number of variables remains an open problem, despite several
advances on the subject [AR11, IO13, GTT20]. In particular, for the more restrictive proof system of
regular resolution, the upper bounds shown in [AR11] and the lower bounds shown in [IRSS21] hint on
the fact that, when the graph of the Tseitin formula has maximum degree bounded by a constant, the
length of the shortest refutation is exponential in the treewidth tw(G) of the graph. The 2Ω(tw(G)/ log(n)))

lower bound in [IRSS21] almost matches the 2O(tw(G))poly(n) upper bound of [AR11], where n is the
number of variables of the formula. Our main contribution, shown with Stefan Mengel, is to use the
lower bounds proved in Chapter 1 on the DNNF size of Tseitin formulas to improve the lower bounds
and match the upper bound, thus showing that the length of regular resolution refutations of unsatisfi-
able Tseitin formulas whose graphs have bounded degree is polynomial in the number of variables n
if and only if the treewidth of the graph is in O(log(n)) [dCM21a]. This is the subject of Chapter 4.
The chapter starts with a section where a formal description of regular resolution is given, followed by
a section where we recall existing bounds on the length of refutations of unsatisfiable Tseitin formulas
in this proof system. The remaining sections develop a reduction that brings us from the state where we
study the length of regular resolution refutations of unsatisfiable Tseitin formulas, to the state where we
study the DNNF size of satisfiable Tseitin formulas over the same graphs, and can thus use the lower
bounds shown in Chapter 1.
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Enumeration queries on circuits in dec-DNNF. The compilation process is only one part of knowl-
edge compilation, the second one being online reasoning on the compiled circuit. While this thesis is
mostly centered around the compilation process, the author has also contributed with Pierre Marquis
to the research on enumeration queries over circuits in compilation languages [dCM22a]. Enumera-
tion queries differ from decision queries, like clausal entailment, and from function queries, like model
counting, in that the answer is not a single value but a list of many solutions. As an example, listing all
satisfying assignments of a circuit is an enumeration query that has been studied for circuits in compila-
tion languages [DM02, ABJM17, CS21]. Since the output of enumeration queries can be exponentially
larger than the input, they have to be studied under the special framework of enumeration complex-
ity [Str19]. This framework is presented in the first section of Chapter 5. For our contributions, we
limited ourselves to studying enumeration queries on circuits in dec-DNNF with respect to the complex-
ity classes OutputP and IncP. The former encompasses enumeration problems for which all solutions
can be obtained in time polynomial in the size of the input plus the size of the output (so all solutions).
The latter contains problems for which there exists an algorithm to list a given number k of solutions in
time polynomial in the size of the input and k. In the second and third section of Chapter 5, we study
enumeration queries that consists in enumerating prime implicants and prime implicates of circuits in
dec-DNNF. In particular, we show that enumerating all prime implicants (resp. implicates) of such cir-
cuits is in OutputP and even in IncP. In the fourth section, we turn to the enumeration of specific prime
implicants: sufficient reasons and subset-minimal abductive explanations, two notions used in AI, and
especially in explainable AI, in recent and in not so recent years [SL90, EG95, SCD18b, DH20, INM19].
While positive results can be obtained for enumerating prime implicants from circuits in dec-DNNF we
show that it is unlikely that enumerating these particular implicants from the same circuits is in OutputP.

Knowledge compilation beyond the Boolean case. Knowledge compilation is not confined to Boolean
functions. The languages studied in this thesis for Boolean functions are defined by the structural restric-
tions that are put on the circuits. But structural restrictions for Boolean circuits can be defined anal-
ogously for circuits representing other types of function, and thus classes of circuits for representing
these functions can be defined similarly to DNNF and its sublanguages. In particular, decomposability
has been studied for arithmetic circuits under the name multilinearity [NW97] and, decomposability,
determinism, etc. have been studied extensively for probabilistic circuits that, roughly put, are circuits
computing probability distributions [VCL+21]. Similarly to the Boolean case, different combinations
of structural properties on probabilistic circuits render different queries and transformations tractable.
Moreover the succinctness relationship between two classes of probabilistic circuits is generally ex-
pected to be the same as the one between the corresponding Boolean classes (when they are defined). In
Chapter 6, we present the study conducted with Stefan Mengel on the succinctness relationships between
classes of arithmetic circuits (ACs) using product and sum operations to compute pseudo-Boolean func-
tions, that is, functions over Boolean variables and whose outputs are real numbers [dCM21b]. Since
arithmetic circuits are natural model of computation for polynomials, research on these data structures
predates the articles of Darwiche where they are introduced as representations for marginal distributions
of Bayesian network [Dar02b, Dar03]. In particular we have to mention the work done by Valiant on
(+,×)-programs [Val80]. We adopt the definition of ACs given by Darwiche. The inputs of the ACs
in this chapter are Boolean variables (seen as variables over {0, 1}), negated Boolean variables, and
real constants. ACs can be used as particular probabilistic circuits when they compute non-negative
functions, in which case they are called positive ACs. We consider sixteen classes of positive ACs by
imposing combinations of five structural properties on the circuits: determinism, smoothness, decom-
posability, weak decomposability (a variant of decomposability), and monotonicity. Monotonicity has
no direct equivalence for Boolean circuits. It states that all constants labelling leaves of the circuit are
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non-negative. In a sense, a circuit that uses +-operation and negative constants can do subtractions, so a
monotone AC is essentially a positive AC where subtraction is forbidden. It is known that monotone ACs
can be much larger than equivalent positive ACs [Val80]. Several sections in Chapter 6 are dedicated to
finding unconditional succinctness relationships between eight classes of monotone ACs. We obtain all
relationships using a reduction from monotone ACs to circuits in negation normal form. Next we initi-
ate a similar study for positive ACs but can only show a couple of results, including that deterministic
positive ACs and deterministic monotone ACs are essentially the same objects. In an effort to boost the
research on positive ACs, in a last section we describe techniques to bound the size of positive ACs from
below and show their usage in the case of structured decomposable positive ACs.
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1. Notions on Graphs

1 Notions on Graphs

Unless stated otherwise, the graphs considered in this thesis are undirected, have no parallel edges (so
no multigraphs) and no self loops. For a graph G whose set of vertices and edges are not specified, we
denote by V (G) its set of vertices and by E(G) its set of edges. The edge between two vertices u and
v is denoted by uv or vu. For v ∈ V (G), EG(v) denotes the set of edges incident to v in G. The set of
vertices that are neighbors of v in G is denoted as NG(v), more formally NG(v) := {u | uv ∈ E(G)}.
Note that, since G has no self loop, v is not in NG(v). We drop the subscript from the notations EG(v)
and NG(v) when the graph is clear from the context. We write deg(v) = |N(v)| and we denote by
∆(G) = maxv∈V (G) deg(v). For a subset V ′ of V (G) we denote byG[V ′] the subgraph ofG induced by
V ′, that is, the graph whose set of vertices is V ′ and whose set of edges isE(G)∩{uv | u ∈ V ′, v ∈ V ′}.

A graph is connected if for every u, v ∈ V (G), there is a path from u to v in G, that is, there are
edges u1u2, u2u3, . . . , uk−1uk in E(G) with u1 = u and uk = v. A separator S in a connected graph
G is a vertex set such that S ⊆ V (G) and G[V (G) \ S] is and not connected. A graph G is called
k-connected if and only if it has at least k + 1 vertices and, for every S ⊆ V (G), |S| ≤ k − 1, the graph
G[V (G) \ S] is connected.

An edge separator of G is a set of edges whose removal strictly increases the number of connected
components of G. Given a partition (A,B) of V (G) (that is, A∪B = V (G) and A∩B = ∅), we denote
by E(A,B) the set of edges that have one endpoint in A and the other in B. Note that if G is connected
then E(A,B) is an edge separator of G.

Treewidth and Pathwidth. Treewidth is a well-known graph measure that has several equivalent def-
initions. We use the definition based on tree decomposition. A tree decomposition of G is a rooted tree
T such that every node t ∈ T is associated with a set Bt ⊆ V (G) called a bag and such that

• V (G) =
⋃

t∈T Bt

• for every uv ∈ E(G), there is t ∈ T such that {u, v} ⊆ Bt

• for every u ∈ V (G) the subgraph of T restricted the nodes whose bags contain u is connected (so
its a tree)

When T is a path (t1, . . . , tN ), it is called a path decomposition of G. For path decompositions, the third
rule may be rephrased as follow:

• for every 1 ≤ i ≤ j ≤ k ≤ N , Btj ⊆ Bti ∩Btk

Definition 1. Let T be a tree decomposition of G, the width of the decomposition is maxt∈T |Bt| − 1.
The treewidth ofG, denoted by tw(G), is the smallest width of a tree decomposition ofG. More formally,

tw(G) = min
T

max
t∈T
|Bt| − 1

where minT is over all tree decompositions of G.

Definition 2. The pathwidth of G, denoted by pw(G), is the smallest width of a path decomposition of
G. More formally,

pw(G) = min
P

max
t∈P
|Bt| − 1

where minP is over all path decompositions of G.
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Branchwidth. A binary tree whose leaves are in bijection with the edges of G is called a branch de-
composition of G. Branch decompositions are often defined using unrooted trees, however our definition
is equivalent and is more convenient in our setting. The removal of any edge e of a branch decomposition
T splits T into two connected components. The sets of edges of G that label the leaves of each compo-
nent form a bipartition of E(G). The number of vertices of G that are incident to edges in both parts of
this partition is called the order of e, denoted by order(e, T ). A branch decomposition is called linear
when every internal node of the tree has at least one child that is a leaf. Linear branch decompositions
represent orderings, or permutations, of E(G). Writing E(G) = {e1, . . . , em}, an ordering of E(G)
is a sequence (eπ(1), . . . , eπ(m)) with π a permutation of {1, . . . ,m}. A linear branch decomposition T
represents the permutation defined as π(i) < π(j) if and only if ei is closer to T ’s root than ej or, if ei
and ej are the children of the same node and ei is the right child.

Example 1. Consider the graph G and the branch decomposition T below: The branch decomposition

a

b

c

d

e1
e2

e3

e4
e1

e4
e2 e3

is linear and represents the ordering (e1, e4, e3, e2). Let e be the dashed edge of T . Removing e from T
yields one tree over {e1, e4} and another over {e2, e3}. Exactly two vertices of G are incident to edges
in both {e1, e4} and {e2, e3}, namely b and d, so order(e, T ) = 2. ◀

Definition 3. The branchwidth of graph G, denoted by bw(G), is defined as

bw(G) = min
T

max
e∈E(T )

order(e, T )

where minT is over all branch decompositions of G.

Definition 4. The linear branchwidth of graph G, denoted by bwℓ(G), is defined as

bwℓ(G) = min
Tℓ

max
e∈E(Tℓ)

order(e, Tℓ)

where minTℓ
is over all linear branch decompositions of G.

While it is sometimes convenient to work with branchwidth or linear branchwidth, we nearly always
give our results using the more well-known treewidth or pathwidth. This is justified by the two following
lemmas connecting the four measures, and whose proofs can be found in [HW17, Lemma 12], and in the
master thesis [Nor17, Theorem 6.1], respectively. For the convenience of the reader, we reproduce the
proof of the second lemma .

Lemma 1. If bw(G) ≥ 2, then bw(G)− 1 ≤ tw(G) ≤ 3
2bw(G)

Lemma 2. If bwℓ(G) ≥ 2, then bwℓ(G)− 1 ≤ pw(G) ≤ bwℓ(G) + 1.

Proof. Removing isolated vertices in the graph does not impact the pathwidth or the linear branchwidth,
so without loss of generality we assume that G has no such vertices.

First we prove that pw(G) − 1 ≤ bwℓ(G). Assume G has linear branchwidth k and let E(G) =
{e1, . . . , em}. Let π be a permutation of {1, . . . ,m}. For i ranging from 1 tom defineBi to be the vertex
set containing both vertices of eπ(i) plus all vertices that are incident to some edge in {eπ(1), . . . , eπ(i)}
and to some edge in {eπ(i+1), . . . , eπ(m)}. Observe that if there is i′ < i < i′′ such that u is incident to
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eπ(i′) and to eπ(i′′) then u is in Bi. From the definition of Bi we deduce that |Bi| ≤ order(i, π) + 2 (the
+2 comes from the vertices of eπ(i)) so if B1, . . . , Bm is a path decomposition then its width is at most
maxi order(i, π) + 1. We claim that B1, . . . , Bm is a path decomposition. From the first two conditions
and sinceG has no isolated vertices, we obtain that the union ofB1, . . . , Bm equals V (G) and that every
edge ej of G is at least contained in Bπ−1(j). Now for the third condition, take 1 ≤ i < j < k ≤ m and
consider u ∈ Bi ∩ Bk. By definition there are i′ ≤ i ≤ i′′ and k′ ≤ k ≤ k′′ such that u is a vertex of
eπ(i′), eπ(i′′), eπ(k′) and eπ(k′′). Since but then i′ < j < k′′ holds and therefore u is in Bj .

Now we prove the other direction, so bwℓ(G) ≤ pw(G) + 1. Consider a path decomposition P =
(B1, . . . , BN ). We construct π as follows. Let c = 1 and start with all edges of G unmarked. We visit
the bags in order. When the vertices of an unmarked edge ei are both in the current bag, then set π(c) to
i, mark ei and increment c. If there are several such edges, we apply an arbitrary tie-breaking and treat all
of them in any order. At the end of the procedure all the edges are marked (since each edge is contained in
some bag), so π is permutation of {1, . . . ,m}. Now for each 1 ≤ i ≤ m, let i∗ be the smallest index of a
bag containing ei. By construction if π−1(i) ≤ π−1(j) then i∗ ≤ j∗. Now take 1 ≤ k < m, and let u be
a vertex incident to an edge ei in {eπ(1), . . . , eπ(π−1(k))} and to an edge ej in {eπ(π−1(k)+1), . . . , eπ(m)}.
Since π−1(i) ≤ π−1(k) < π−1(j) we have i∗ ≤ k∗ ≤ j∗. Moreover, since ei ⊆ Bi∗ and ej ⊆ Bj∗ we
have u ∈ Bi∗ ∩Bj∗ ⊆ Bk∗ . This shows that order(π−1(k), π) ≤ |Bk∗ |. So if P is a path decomposition
of width pw(G) the corresponding ordering π verifies maxk order(k, π) ≤ pw(G) + 1.

2 Notions from Propositional Logic

A Boolean variable x is a variable that takes value 1 (true) or 0 (false). The negated variable x takes
value 1 (resp. 0) when x takes value 0 (resp. 1). A literal in the variable x is either x or x. We often use
the letter ℓ for literals and ℓx to denote any literal in the variable x. We use the usual symbols ∧, ∨ and
¬ representing, respectively, the conjunction, disjunction and negation operators. We sometimes use the
∗ notation to write negation, for instance we may write x ∨ y = x ∧ y or x = x.

Truth assignments. Given a set X of Boolean variable, a truth assignment, or just an assignment,
to X is a mapping a from X to {0, 1}. An assignment to a strict subset Y of X is called a partial
assignment to X . When X is not specified, we denote by var(a) the set of variables that are given
a value by a (so var(a) = a−1(0) ∪ a−1(1)). Equivalently, an assignment a to X is represented as
a set of literals {ℓx | x ∈ X} or as a term

∧
x∈X ℓx such that ℓx = x if a(x) = 0 and ℓx = 1 if

a(x) = 1. The set representation allows us to define the empty assignment a∅ as the unique assignment
to ∅ (whose set representation is thus {}). An assignment a is said to extend the assignment a′ if, using
the set representations of a and a′, we have a′ ⊆ a. Given two assignments a and a′ that do not contain
contradicting literals, that is, if ℓx ∈ a then ℓx ̸∈ a′ and vice versa, we denote by a ∪ a′ the assignment
to var(a) ∪ var(a′) whose set representation is the union of the set representations of a and a′. We
denote by {0, 1}X the set of all assignments to X . For two assignments a, a′ ∈ {0, 1}X , we say that a′

dominates a, written a ≤ a′, if a′(x) = 1 for every x ∈ X such that a(x) = 1. We write a < a′ when
a ≤ a′ and a ̸= a′.

Boolean functions. A Boolean function f over a set of Boolean variablesX is a mapping from {0, 1}X
to {0, 1}. Given χ a constraint over X (for instance x+ y + z ≥ 2 or x ∈ S for some set S), we denote
by 1χ : {0, 1}X → {0, 1} the indicator function of that constraint defined by 1χ(a) = 1 if and only if a
satisfies χ. When X is not specified we write var(f) to denote the set of variables of X . An assignment
a′ to Y ⊆ var(f) satisfies f , or is accepted by f , if f(a) = 1 for every assignment a to var(f) that
extends a′. The assignment a′ falsifies f if f(a) = 0 for every assignment a to var(f) that extends of
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a′. Note that a′ may neither satisfy nor falsify f , but note also that an assignment a to var(f) either
satisfies or falsifies f . An assignment to var(f) that satisfies f is called a model of f . We often write
sat(f) = f−1(1) for the set of models of f . For a partial assignment a, we denote by f |a the Boolean
function over var(f) \ var(a) whose models are exactly the models of f restricted to var(f) \ var(a).
Given a set X ⊆ var(f) we denote by ∃X.f the function

∨
a∈{0,1}X f |a. Going from f to ∃X.f is

called forgetting X from f . A function f is called satisfiable when sat(f) ̸= ∅, otherwise it is called
unsatisfiable. f is called valid when sat(f) = {0, 1}var(f), that is, when it accepts every assignment
to its variables. Given another function g, we write f |= g when every assignment that satisfies f also
satisfies g. When var(f) = var(g) we may sometimes write f ≤ g for f |= g. We write f < g when
f ≤ g and f ̸= g.

Boolean formulas. A Boolean formula over a set of Boolean variables X is any expression E gener-
ated by the grammar E ::= 0 | 1 | ℓ | ¬E1 | E1 ⊗ · · · ⊗ Ek where ℓ is any literal in a variable in X and
⊗ is any associative binary Boolean operator. Note that not every variable ofX must appear in a formula
over X . The set of literals appearing in ϕ is denoted by lit(ϕ). The value of a formula ϕ on an assign-
ment a is the Boolean value (0 or 1) obtained by replacing each occurrence of x (resp. x) in ϕ by a(x)
(resp. 1− a(x)) and by following the computations given by the expression. Thus each formula over X
is associated with (or computes) the unique Boolean function over X whose models are the assignments
that make the formula evaluate to 1. In this thesis, formulas are often directly seen as Boolean functions.
Given two Boolean formulas ϕ and ψ over X , we say that ϕ is equivalent to ψ, denoted by ϕ ≡ ψ, when
ϕ and ψ compute the same Boolean function, for instance x ∧ (y ∨ y) ≡ x. We try, as much as possible,
to write ϕ = ψ only when ϕ and ψ are the same expression. A term is a formula whose expression is a
conjunction of literals and a clause is a disjunction of literals. A CNF formula is a conjunction of clauses
and a DNF formula is a disjunction of terms. We denote by clause(ϕ) (resp. term(ϕ)) the set of clauses
(resp. of terms) of the CNF (resp. DNF) formula ϕ. Terms and clauses are equivalently represented by
their respective sets of literals. We define a term (resp. a clause) called the empty term t∅ (resp. the empty
clause c∅) whose set of literals is empty and that is equivalent to 1 (resp. to 0).

CNF and DNF formulas are associated with several kind of graphs (and hypergraphs). The primal
graph of a CNF (resp. DNF) formula ϕ is the graph G = (V,E) where V = {vx | x ∈ var(ϕ)} and
such that, for every x ̸= y, the edge vxvy is in E if and only if there is a clause C of ϕ containing literals
for both x and y. The incidence graph of ϕ is a bipartite graph such that the vertices are V = {vx | x ∈
var(ϕ)} on one side and U = {uc | c ∈ clause(ϕ)} on the other, and such that there is an edge between
vx and uc if and only if x ∈ var(c).

3 Notions on Circuits

3.1 Computational Circuits

Definition 5. A computational circuit, or just a circuit, over a set S is a directed acyclic graph (DAG) G
whose nodes are labelled as followed: for all nodes v of G

• if v has no children, then v is labelled by a constant in S or by a variable taking value in S,

• if v has m > 0 children, then v is labelled by an operation from Sm to S.

The nodes labelled by variables are the inputs of the circuit. The nodes with no parent are the outputs of
the circuit. A node labelled by an operation op is called an op-node.
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Figure 4: Computation circuits and underlying graphs.

When a circuit has a single output, the corresponding node is called the root of the circuit. Let C be
a circuit whose underlying graph is G. Each node v of C is the root of a circuit Cv whose underlying
DAG is the subgraph of G rooted at v. The set var(C) of variables of C is the set of variables labelling
nodes of C. We sometimes use the notation var(v) instead of var(Cv). The size of C, denoted by |C|
is the number of edges of the underlying graph.

Assume C as a single output and let a be an assignment to a superset of var(C). For every node v
in C we define Cv(a) as follows:

• if v is an input for the variable x then Cv(a) = a(x),

• if v is labelled by a constant c then Cv(a) = c,

• if v is an op-node with m children v1, . . . , vm, then Cv(a) = op(Cv1(a), . . . , Cvm(a)) which we
will often be able to write Cv(a) = Cv1(a)op . . .opCvm(a).

Let r be the root of C. Then we note C(a) = Cr(a). We say that C computes, or represents, the function
that maps every assignment a to var(C) to the value C(a).

Example 2. Figure 4 shows two circuits whose underlying graph is the DAG represented on the left. The
circuit in the middle computes the function x, y 7→ 4x2− y2 over Z and the circuit at the right computes
the Boolean function w, x, y, z 7→ w ∧ y ∧ (x ∨ ¬z). ◀

In this thesis we focus exclusively on circuits that have a single output and represent functions over a
finite number of variables.

A Boolean circuit is a circuit that computes a Boolean function. Any Boolean formula ϕ can be
represented as a Boolean circuit: if ϕ = ℓ or ϕ = 0 or ϕ = 1 then the circuit is a single node labelled by
ℓ, 0 or 1, and if ϕ = ϕ1 ⊗ · · · ⊗ ϕk then the root of the circuit is a k-ary ⊗-node whose children are the
root of the circuits for ϕ1, . . . , ϕk. The underlying graph of the resulting Boolean circuit is a tree.

Definition 6. A class C of Boolean circuits is called complete when, for every finite set X of variables
and every Boolean function f over X , there is a circuit C ∈ C computing f . Otherwise C is called
incomplete.

Examples of incomplete classes of circuits include the class of Horn CNF formulas and the class of
k-CNF formulas for any fixed k. In contrast the class of CNF formulas is complete. The following
two sections introduce the classes of circuits NNF, DNNF, d-DNNF, dec-DNNF, str-DNNF, FBDD,
OBDD, DT, nFBDD, nOBDD, SDD, etc. that are all complete.

Definition 7. Let f be a Boolean function and let C be a complete class of Boolean circuits. The C size
of f is the smallest size of a circuit in C computing f .
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In a Boolean circuit made of ∨-nodes, ∧-nodes and unary ¬-nodes, we say that we propagate (away)
the constants when we iteratively apply the following simplifications (in that order) while it is possible:

1) replace every ∨-node (resp. ∧-node) whose children are all labelled by 0 (resp. 1) by a node labelled
by 0 (resp. 1)

2) replace every ¬-node whose child is labelled by 0 (resp. 1) by a node labelled by 1 (resp. 0)

3) replace every ∨-node (resp. ∧-node) that has a child labelled by 1 (resp. 0) by a node labelled by 1
(resp. 0)

4) disconnect the remaining ∨-nodes (resp. ∧-nodes) from their children labelled by 0 (resp. 1)

5) for each ∨-node (resp. ∧-node) that has a single child, connect its parents to its child and remove the
node

Once constants have been propagated away, the Boolean circuit is either a single node labelled by 0 or 1,
or it has no node labelled by 0 or 1.

3.2 Classes of Circuits in Negation Normal Form

Definition 8 (Circuits in NNF). A circuit in Negation Normal Form (NNF), is a Boolean circuit whose
internal nodes are restricted to ∨-, ∧-nodes and to unary ¬-nodes and such that the child of every ¬-
node is a variable input. Equivalently, circuits in NNF can be seen as computational circuits whose
internal nodes are restricted to binary ∨-, ∧-nodes and whose inputs are labelled by literals rather than
variables.

By de Morgan’s laws, every Boolean circuit whose internal nodes are ∨-, ∧-, and ¬-nodes can be
transformed in an equivalent circuit in NNF in polynomial time. We denote by NNF the class of all
circuits in NNF. CNF formulas can be seen as specific circuits in NNF. We denote by CNF the class of
all CNF formulas, thus CNF ⊂ NNF.

Definition 9 (Circuits in DNNF [Dar01a]). A circuitD in Decomposable Negation Normal Form (DNNF),
is a circuit in NNF whose ∧-nodes are decomposable, that is, for every ∧-node with children u1, . . . , um,
it holds that var(Dui) ∩ var(Duj ) = ∅ for all i ̸= j.

Definition 10 (Circuits in d-DNNF [DM02]). A circuit D in Deterministic Decomposable Negation
Normal Form (d-DNNF), is a circuit in DNNF whose ∨-nodes are deterministic, that is, for every ∨-
node with children u1, . . . , um, it holds that Dui ∧Duj ≡ 0 for all i ̸= j.

We denote by DNNF the class of all circuits in DNNF and by d-DNNF the class of all circuits in d-
DNNF. DNF formulas can be seen as specific circuits in DNNF. We denote by DNF the class of all DNF
formulas, thus DNF ⊂ DNNF ⊂ NNF. In this thesis we often make the assumption that ∧-nodes and ∨-
nodes are binary, that is, that they each have exactly two children. This assumption is made without loss
of generality given the following transformation on circuits in NNF: first remove all unary ∧-nodes and
∨-nodes after connecting their respective parents to the unique child, then replace every ∨-node (resp.
∧-node) that has m > 2 children by a succession of binary ∨-nodes (resp. ∧-node). The transformation
preserves decomposability and determinism and linearly increases the size of the circuit. So the size of
such a circuit can be seen as its number of nodes up to a constant factor.

Definition 11 (Circuits in str-DNNF [PD08]). A circuitD in Structured-Decomposable Negation Normal
Form (str-DNNF), is a circuit in DNNF whose ∧-nodes have exactly two children and which is equipped
with a pair (T, λ) where T is a binary tree whose leaves are in bijection with a superset of var(D), and
where λ is mapping from the nodes of D to the nodes of T such that for all node u of D
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Figure 5: Circuits in DNNF and circuits in str-DNNF.

• var(Du) ⊆ var(λ(u)) holds and,

• if u is an ∨-node with children u1, . . . , um, then λ(u) = λ(u1) = · · · = λ(um)

• if u is an ∧-node with children v and w, let t = λ(u). Either t is a leaf of T labelled by a variable
x and x is the unique variable appearing under u, or t an internal node of T with children tr and
tl there is a node t′ under its first child and a node t′′ under its second child such that λ(v) = t′

and λ(w) = t′′.

T is called a vtree (variable tree) over X . D is said to respect T , or to be structured by T .

Example 3. Figure 5b shows a circuit in str-DNNF with its vtree. In the circuit shown in the figure, each
literal input is mapped to the leaf of the vtree for the corresponding variable. The mapping of internal
nodes of the circuit to nodes of the circuit is rendered visible by the different boxes.

Figure 5a, on the other hand, shows a circuit in DNNF which is not structured by any vtree. Indeed
assume, towards a contradiction, that the circuit represented is structured by a vtree T and let λ be the
mapping from the circuit’s nodes to T ’s nodes. Let t be the node of T corresponding to the root node of
the circuit. t can not be a leaf of T so let t0 and t1 be its children. The root of the circuit is a ∨-node so
its children are also mapped to t by λ. Both children of the root are ∧-nodes. Looking at the ∧-node at
the right we see that by definition there should be {z, w} ⊆ var(tj) and {s, x} ⊆ var(t1−j) for some
j ∈ {0, 1}. Looking at the ∧-node at the left we see that by definition there should be {x, y} ⊆ var(ti)
and {s, w, z} ⊆ var(t1−i) for some i ∈ {0, 1}. In the former case x and s are both under t0 or both
under t1, in the latter case x and s are not both under t0 or t1, this is as contradiction, thus the circuit is
not structured by any vtree. ◀

Given a vtree T over a finite set of variables X , we denote by str-DNNFT the class of circuits
in str-DNNF structured by T . Note that since X is finite, the circuits in this class can only compute
functions over X or subset of X . Consequently str-DNNFT contains a finite number of circuits. We
denote str-DNNF =

⋃
T str-DNNFT the class of circuits in DNNF structured by some vtree.

Definition 12 (Circuits in dec-DNNF [HD07]). A circuit C in Decision Decomposable Negation Normal
Form (dec-DNNF), is a circuit in DNNF such that every ∨-node has exactly two children that are both
∧-nodes, and such for every ∨-node u with children v and w, there is a variable x such that a child of v
is labelled by x and a child of w is labelled by x (or vice-versa).

We denote by dec-DNNF the class of all circuits in dec-DNNF. It is readily verified that the ∨-nodes
of a circuit in dec-DNNF are deterministic, thus dec-DNNF ⊂ d-DNNF. The ∨-nodes of a circuit in
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Figure 6: Circuits in DNNF with decision nodes.

dec-DNNF are always represented by decision nodes, as shown in Figure 6a. A decision node is labelled
by a variable and has two children called the 0-child and the 1-child. If u is a decision node labelled by
x, whose 0-child is u0 and whose 1-child is u1, then we have that Cu ≡ (x ∧ Cu0) ∨ (x ∧ Cu1). An
example of circuit in dec-DNNF is shown Figure 6b.

Definition 13 (Smooth NNF circuits). An circuit D in NNF is called smooth when, for every ∨-node v
of D, calling v1, . . . , vm its children, we have that var(Dv) = var(Dv1) = · · · = var(Dvm).

Smoothness is a property that can be enforced on any circuit in DNNF, d-DNNF, str-DNNF or dec-
DNNF in polynomial time, see for instance [DM02] for the case of circuits in DNNF or d-DNNF.

3.3 Classes of Binary Decision Diagrams

Let X be a set of Boolean variables and let S be any set (for instance Y = {0, 1}, or Y = N). A binary
decision diagram, or BDD, over X and with domain Y , is a directed acyclic graph with the following
properties:

• the circuit has a single node without parent called the root or the source,

• the nodes with no children, called the sinks, are labelled by elements of Y ,

• internal nodes are decision nodes labelled by variables in X (as defined above for circuits in dec-
DNNF).

A path from the source to a sink is called a computation path. Let B be a BDD over X and with domain
Y and let a be an assignment to X . We construct a computation path corresponding to a. Start from the
source of B and repeat the following until reaching a sink: if the current node is a decision node u for a
variable x then follow the 0-child of u if a(x) = 0 and follow the 1-child of u if a(x) = 1. We denote
by B(a) the element labelling the sink reached. Note that a computation path may correspond to several
assignments. We say that B computes the function from {0, 1}X to Y that maps a ∈ {0, 1}X to B(a).

Definition 14 (FBDD). Let X be a finite set of Boolean variables. A free binary decision diagram
(FBDD) over X , is a BDD over X with domain {0, 1} where each variable appears at most once on
every computation path.

An example of FBDD is shown Figure 7a. We denote by FBDD the class of all FBDDs. A notable
subclass of FBDD is the class DT of decision trees, that is, FBDDs whose underlying graphs are trees.
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Figure 7: Free BDD and ordered BDD

Definition 15 (OBDD). Let X be a finite set of Boolean variables and let π be a bijection from X to
{1, . . . , |X|}. An π-ordered binary decision diagram (π-OBDD) over X , is an FBDD over X such that
for each computation path P and for every two decision nodes u and v in P for the variables xu and xv,
it holds that π(xu) ≤ π(xv) if and only if u appears before v in P . We say that the computation path are
consistent with π. When π is not specified, we just called the circuit an OBDD. π is called the variable
ordering of the OBDD.

An example of OBDD is shown Figure 7b. We denote by OBDD the class of all OBDDs. For a given
variable-ordering π : X → {1, . . . , |X|}, we denote by π-OBDD the class of all π-OBDDs. Since X is
finite, the class π-OBDD is finite. Rewriting the decision nodes of an OBDD as shown Figure 6a yields
a circuit in dec-DNNF that is structured by a linear vtree, that is, a vtree where every internal node has at
least one child that is a leaf. So OBDD can be seen as a subclass of dec-DNNF ∩ str-DNNF. It is clear
that OBDD ⊂ FBDD. It is also easily verified that FBDD contains exactly the circuits of dec-DNNF
that have no ∧-nodes and whose leaves are labelled by 1 or 0. Thus OBDD ⊂ FBDD ⊂ dec-DNNF ⊂
d-DNNF ⊂ DNNF.

Non-deterministic BDDs (nBDDs for short) are BDDs that have unlabelled internal nodes called
“guess nodes” along with decision nodes. A computation path for an assignment a in an nBDD is
defined like a computation path for in a BDD, except that when a guess node is in the path, the following
node is any of its children. Thus there can be several computation path for a. For an nBDD B over X
with domain Y , B(a) denotes the set of elements in Y that can be reached by a computation path for a.
When Y = {0, 1}, B computes the Boolean function over X whose models are the assignments a such
that 1 ∈ B(a).

Definition 16 (nFBDD and nOBDD). An nFBDD is an nBDD with domain {0, 1}where no path contains
two decision nodes labelled by the same variable. An nOBDD is an nFBDD where the order of the
variables along any paths is consistent with a fixed variable ordering.

We call nFBDD the class of nFBDDs and nOBDD the class of nOBDDs. It is easy to see that
OBDD ⊂ nOBDD and FBDD ⊂ nFBDD. The transformation of FBDDs into circuits in DNNF can
be extended to nFBDDs by replacing simply replacing guess nodes by ∨-nodes (note that the resulting
circuit in DNNF may not be deterministic). It follows that nFBDD is a subclass of DNNF.

To finish this section on binary decision diagrams, we present a generalization of OBDDs called
sentential decision diagrams (SDDs for short) and introduced in [Dar11]. Since SDDs are not directly
studied in this thesis we omit their formal definition. SDDs can be interpreted as specific deterministic
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circuits in str-DNNF, so the class SDD of all SDDs can be seen as contained in str-DNNF ∩ d-DNNF.
Several compilers to SDD have been developed, see for instance [CD13, OD15]. It is known that some
functions can only be represented by large OBDDs (OBDDs whose size is exponential in the number
of variables) but have small representations as SDDs (SDDs whose size is polynomial in the number of
variables) [Bov16].

4 Knowledge Compilation

Knowledge compilation is a paradigm for reasoning on a knowledge base that is known in advance and
that may thus be preprocessed during a phase called compilation. In our case the knowledge base is
a function (often a Boolean function). Functions can be represented in different ways, for instance a
Boolean function on finitely many variables can be represented by a circuit in DNNF or by a BDD. We
call language a class of representations for a class of functions. So for each object C of a language C,
there is a unique interpretation of C as a function. Furthermore we assume that the size of C, denoted by
|C| is defined for every C ∈ C. A compilation from a language C0 to the language C1 is a procedure that,
given the representation of a function in C0, returns an equivalent representation in C1 (if it exists). Note
that the running time of a compilation from C0 to C1 is irrelevant. C0 is called the initial language and C1
is called the compilation language, or the target language. We will use the classes of circuits and BDDs
defined in the previous section as languages. For instance we will often write “the DNNF language” or
“the SDD language”.

Definition 17. Let C1 and C0 be two languages.C1 is called as expressive as C0 if, for every C0 ∈ C0,
there exists C1 ∈ C1 that represents the same function.

Definition 18. Let C1 and C0 be two languages such that C1 is as expressive as C0. C1 is more succinct
than C0, denoted by C1 ≤ C0, when there exists a polynomial p such that, for every C0 ∈ C0, there exists
C1 ∈ C1 such that |C1| ≤ p(|C0|). C1 is strictly more succinct than C0, denoted by C1 < C0, when
C1 ≤ C0 and C0 ̸≤ C1. C1 and C0 are equally succinct, denoted by C1 ≃ C0 when when C1 ≤ C0 and
C0 ≤ C1.

Definition 19. Let C1 and C0 be two languages such that C1 is as expressive as C0. A polynomial-size
compilation from C0 to C1 is a computable function c : C0 → C1 such that

• for every C ∈ C0, C and c(C) represent the same function and

• there exists a polynomial p such that for every C ∈ C0 we have |c(C)| ≤ p(|C|)

It is readily verified that a polynomial-size compilation from C0 to C1 exists only if C1 ≤ C0.
The knowledge compilation map is a framework introduced by Darwiche and Marquis in [DM02] to

compare compilation languages according to two standards. On the one hand, compilation languages are
pairwise compared in terms of succinctness so that we know which languages are more likely to yield
the smallest compiled forms. On the other hand the languages are compared in terms of their efficiency
for answering queries and performing transformations. Queries aim at extracting valuable information
from the circuit, while transformations aim at modifying the circuit while staying within the language.
Darwiche and Marquis’s map includes eight queries among which satisfiability testing (is the circuit
satisfiable?), model counting (how many models does the circuit have?) and clausal entailment (does
the circuit entails a given clause?). It also includes eight transformations including conditioning (given
a circuit C in L and an assignment a find a circuit in L computing C|a) or bounded conjunction (given
two circuits in the language L find another circuit in L that compute their conjunction). A language L is
said to support a query (or a transformation) if there is a polynomial-time algorithm answering that query
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(or performing the transformation) in L. Compilation from an initial language Li to a target language
Lt is useful only if certain queries and transformations are easier to perform in Lt than in Li. Ideally,
the most important queries and transformations for the user should be supported by the compilation
language, that is, they should be tractable in the language. Several queries and transformations have
studied for several sublanguages of NNF in [DM02]. One of the take-home message of [DM02] is
that the languages supporting the most queries and transformations are DNNF and its sublanguages
(although other languages distinct from DNNF have since been considered, see e.g. [KLMT13b]). As a
result, in practice, target languages for compiling Boolean functions are sublanguages of DNNF such as
that described in previous sections, see for instance the compilers described in [Dar02a, Dar04, OD15,
LM17].

5 Rectangle Covers for the Analysis of Circuits in DNNF

5.1 Rectangle Covers

Definition 20. Let X be a finite set of variables. A bipartition of X is a pair (X1, X2) such that X1 ∪
X2 = X and X1 ∩X2 = ∅. The partition is called balanced when |X|

3 ≤ |X1| ≤ 2|X|
3 .

We often talk of a balanced partition when it is clear from context that it is a balanced bipartition.

Definition 21. Let X be a finite set of Boolean variables and let Π = (X1, X2) be a partition of X . A
set of S assignments to X is called a (combinatorial) rectangle with respect to Π when there are a set A
of assignments to X1 and a set B of assignments to X2 such that S = {a∪ b | a ∈ A, b ∈ B} := A×B.

Every set of assignments S toX can be seen as a rectangle for the trivial partition (X, ∅) withA = S
and B = {a∅}. But we will not be interested in such rectangles.

Another way to look at rectangles is as Boolean functions. A rectangle r with respect to a partition
(X1, X2) of x is then a Boolean function r(X) = ρ1(X1) ∧ ρ2(X2) where ρ1 : {0, 1}X1 → {0, 1}
and ρ2 : {0, 1}X2 → {0, 1} two Boolean functions over X1 and X2 respectively. The link between this
definition and that in terms of sets of assignments is made setting A := ρ−1

1 (1) and B := ρ−1
2 (1). We

mostly see rectangles as functions in this thesis.
The name “rectangle” is better understood using a matrix representation. Let r(X) = ρ1(X1) ∧

ρ2(X20 and let Mr be the matrix whose columns are indexed by all assignments to X1 and whose rows
are indexed by all assignments to X2 and such that the entry of Mr at column a1 and row a2 is 1 if
ρ1(a1) = 1 and ρ2(a2) = 1, and 0 otherwise. Then there are ways to order the rows and columns of MR

such that the 1s of MR form a rectangle submatrix in MR.

Example 4. Let X = {x1, x2, x3, x4, x5} and consider the partition Π = ({x1, x2, x3}, {x4, x5}) =
(X1, X2) of X . Let A be the set that contains exactly the assignments to {x1, x2, x3} that map at least
two variables to 1 and let B be the set that contains exactly the assignments to {x4, x5} that map at least
one variable to 1. Then A×B is a rectangle with respect to π. The function representation of A×B is
r = 1[x1+x2+x3≥2] ∧ 1[x4+x5≥1].

0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1




x1
x2
x3

0
0
0

1
0
0

0
1
0

0
0
1

0
1
1

1
0
1

1
1
0

1
1
1

x4x5

0 0

1 0

0 1

1 1

29



Preliminaries

A possible matrix Mr is the one above, where the rectangle submatrix of 1s has been made visible. ◀

Definition 22. Let X be a finite set of Boolean variables and let f : {0, 1}X → {0, 1}. A rectangle
cover of f is a set of rectangles {r1, . . . , rN}, possibly with respect to different bipartitions of X , such
that f−1(1) = r1 ∪ · · · ∪ rN (or f = r1 ∨ · · · ∨ rN when the rectangles are seen as Boolean functions).

A rectangle cover of f is called balanced when all rectangles of the cover are with respect with,
possibly different, balanced partitions of X .

The size of a rectangle cover is the number of rectangles in the cover.

Example 5. Let maj5 be the Boolean function over {x1, x2, x3, x4, x5} that maps to 1 exactly the
assignments to {x1, x2, x3, x4, x5} that set at least three variables to 1. Consider the balanced partition
Π = ({x1, x2, x3}, {x4, x5}). For 1 ≤ i ≤ 3, let Ai be the set of assignments to {x1, x2, x3} such that
at least 4− i variables are set to 1, and let Bi be the set of assignments to {x4, x5} such that at least i− 1
variables are set to 1. Then A1 × B1, A2 × B2 and A3 × B3 are rectangles with respect to Π whose
equivalent representations as Boolean functions are, respectively:

r1 = 1[x1+x2+x3=3]

r2 = 1[x1+x2+x3≥2] ∧ 1[x4+x5≥1]

r3 = 1[x1+x2+x3≥1] ∧ 1[x4+x5≥2]

It is easy to see that maj5(x1, x2, x3, x4, x5) ≡ r1∨ r2∨ r3, so {r1, r2, r3} is a balanced rectangle cover
of maj5. The size of the cover is 3. In this example the rectangles in the cover respect the same variable
partition. ◀

Balanced rectangle covers exist for every Boolean function. To see this, let a be an assignment to
X , and 1a : {0, 1}X → {0, 1} be the Boolean function that maps a to 1 and every other assignment to
0. It is easy to represent 1a as a rectangle with respect to any partition (X1, X2) of X . Simply let a1
and a2 be the restriction of a to X1 and X2, respectively and there is 1a(X) = 1a1(X1) ∧ 1a2(X2),
so 1a is a rectangle with respect to (X1, X2). This holds regardless of a and of the partition (X1, X2).
Consequently for any function f : {0, 1}X → {0, 1}, {1a | a ∈ f−1(1)} is a balanced rectangle cover
of f . Thus the following definition is sound:

Definition 23. Let X be a finite set of Boolean variables and let f : {0, 1}X → {0, 1}. The minimum
number of rectangles in a balanced rectangle cover of f is denoted by R(f).

Since there is at least one balanced rectangle cover for every function,R(f) is well-defined for every
f . The restriction to balanced rectangle cover is important. Lifting this restriction would allow rectangle
with respect to trivial partitions, that are clearly not balanced, and therefore yields R(f) = 1 for every f .

Example 6. We show that R(maj5) = 3. For this example we denote by w(a) = |a−1(1)| the weight
of a. The minimal models of a monotone function are the satisfying assignments such that setting to 1
a variable previously set to 0 yields a falsifying assignment. In the case of maj5, the minimal models
are the assignments of weight 3. Let r be a rectangle with respect to a balanced partition (X1, X2)
such that r ≤ maj5. Without loss of generality, we may assume that |X1| = 3 and |X2| = 2. Let a
and b be minimal models of maj5 such that r(a) = r(b) = 1. Let a1, b1 be their restrictions to X1

and a2, b2 be their restrictions to X2. Note that w(a1), w(b1), w(a2), w(b2) ≤ 3. If w(a1) ̸= w(b1), say
w(a1) < w(b1), since r is a rectangle we have r(a1∪b2) = 1, butw(a1∪b2) = w(a1)+w(b2) = w(a1)+
3− w(b1) < 3 so r would accept an assignment falsifying maj5. Thus for r, there exists kr ∈ {1, 2, 3}
such that r accepts only the minimal models of maj5 such that w(a1) = kr and w(a2) = 3 − kr. If
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kr = 1 then r accepts at most three minimal models, if kr = 2 then r accepts at most six minimal models
and if kr = 3 then r accepts at most one minimal model.

Now assume maj5 = r ∨ r′ where r′ as another rectangle with respect to a balanced partition
(X ′

1, X
′
2). Without loss of generality we assume that |X ′

1| = 3 and that |X ′
2| = 2. The number of

minimal models of maj5 accepted by r ∨ r′ is at most that accepted by r plus that accepted by r′.
Since there are ten such models and since r and r′ can each accept more than 5 minimal models only if
kr = kr′ = 2, the only way for all ten minimal models ofmaj5 to be accepted by r∨r′ is if kr = kr′ = 2.
We consider three cases.

• If |X1 ∩ X ′
1| = 3 then X1 = X ′

1. Thus r and r′ can only accept all six same minimal models,
which is not enough.

• If |X1 ∩X ′
1| = 2 then let a be the assignment that sets the variables of X1 ∩X ′

1 to 0 and all other
variables to 1. Then a is a minimal model of maj5 but a is accepted by neither r nor r′ as its
weight restricted to X1 or X ′

1 is fewer than 2.

• If |X1∩X ′
1| = 1 then let a be the assignment that set all variables inX1 to 1 and all other variables

to 0. Then a is a minimal model of maj5 but a is not accepted by r since it has weight 3 on X1

instead of 2, and it is not accepted by r since it has weight 1 on X ′
1 instead of 2.

So in all three cases (|X1∩X ′
1| = 0 is not possible) we reach a contradiction. This shows thatR(maj5) >

2. Example 5 shows a balanced rectangle cover of maj5 of size 3, thus R(maj5) = 3. ◀

Two rectangles r and r′ over X , potentially with respect to different partitions, are called disjoint
when r ∧ r′ ≡ 0 (or, equivalently, when r ∩ r′ = ∅ when the rectangles are seen as sets of assignments).
Given two distinct assignments a and a′ to X , it is clear that the rectangle corresponding to 1a and
the rectangle corresponding to 1a′ are disjoint. The set {1a | a ∈ f−1(1)} can be seen as a balanced
rectangle cover of f whose rectangles are pairwise disjoint.

Definition 24. Let X be a finite set of Boolean variables and let f : {0, 1}X → {0, 1}.

• The minimum number of rectangles in a balanced rectangle cover of f whose rectangles are pair-
wise disjoint is denoted by Rd(f).

• The minimum number of rectangles in a balanced rectangle cover of f whose rectangles are all
with respect to the partition Π is denoted by RΠ(f).

• The minimum number of rectangles in a balanced rectangle cover of f whose rectangles are pair-
wise disjoint and all respect the partition Π is denoted by Rd,Π(f).

It is readily verified that R(f) ≤ Rd(f) ≤ Rd,Π(f) and that R(f) ≤ RΠ(f) ≤ Rd,Π(f) for every
balanced partition Π.

Example 7. The rectangles of the cover for maj5 shown in Example 5 are not pairwise disjoint. For
instance the assignment that set all variables to 1 is accepted by r1 = 1[x1+x2+x3=3], and by r2 =
1[x1+x2+x3≥2]∧1[x4+x5≥1], and by r3 = 1[x1+x2+x3≥1]∧1[x4+x5≥2]. However the rectangles can easily
be modified in a way that render them pairwise disjoint. Indeed consider the following three rectangles
with respect to the balanced partition Π = ({x1, x2, x3}, {x4, x5}):

r′1 = 1[x1+x2+x3=3]

r′2 = 1[x1+x2+x3=2] ∧ 1[x4+x5≥1]
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Figure 8: Proof trees of a circuit in DNNF.

r′3 = 1[x1+x2+x3=1] ∧ 1[x4+x5≥2]

It is easy to see thatmaj5 ≡ r′1∨r′2∨r′3 and that the three rectangles are pairwise disjoint. Since we have
shown in Example 6 that R(maj5) = 3, it follows that Rd(maj5) = 3. Since the three rectangles are
with respect to the same partition Π, we also have that R(maj5) = RΠ(maj5) = Rd,Π(maj5) = 3. ◀

5.2 Proof Trees

In the next section we will recap known relationships between the size of the smallest rectangle cover
of a function and the DNNF, d-DNNF and str-DNNF sizes of that function. We provide the necessary
background by introducing the concept of proof trees. This concept has been identified, indeed proof
trees correspond to certificates in [BCMS16] and to complete subcircuits in the context of arithmetic
circuits in [CD06].

Definition 25. Let D be a circuit in DNNF where constants have been propagated away. Let G be the
underlying DAG of D and assume G has a single node with no ancestor called the root of G (or the root
of D). A proof tree T of D is any subcircuit of D for a subgraph G′ of G constructed as follows. First
G′ contains only the root of G. Next, while there exists a node u ∈ V (G) ∩ V (G′) that has children in
G but no children in G′

• if u is a ∧-node, then for every child v of u in G, add v to V (G′) and uv to E(G′)

• if u is a ∨-node, then choose one child v of u in G, add v to V (G′) and uv to E(G′)

As the name indicates, the proof trees of a circuit in DNNF are Boolean circuits shaped like trees.

Lemma 3. Let D be a circuit in DNNF where constants have been propagated away and that has a
single root. Let T be a proof tree of D. Then the underlying graph of T is a tree whose edges are
directed from the root to the leafs.

Let T be a proof tree of D. Every node u of T is also a node of D, but not all parents and children
of u in D appear T . Since proof trees are circuits in NNF, the notations var(T ) and lit(T ) are well-
defined. Recall that Tu is the subcircuit of T rooted at u. It is readily verified that, if a node u of a circuit
D in DNNF is also a node of the proof tree T of D, then Tu is a proof tree of Du. It is also clear that
var(T ) ⊆ var(D), thus proof trees of a circuit in DNNF are also circuits in DNNF.

Lemma 4. Let D be a circuit in DNNF where constants have been propagated away and that has a
single root. Any proof tree of D computes a single term over var(D). Moreover if D is smooth, then
for every proof tree T of D we have var(T ) = var(D) so T computes a term that accepts a single
assignment to var(D).
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Figure 9: A proof tree and its underlying vtree.

Lemma 5. Let D be a circuit in DNNF where constants have been propagated away and that has a
single root. Let T1, . . . , Tk be all the proof trees of D then D ≡ T1 ∨ · · · ∨ Tk.

Example 8. The circuit in DNNF represented Figure 5a has three proof trees that are represented in
Figure 8. The proof tree on the left computes the term x∧y∧w∧s, the proof tree on the middle computes
the term x∧y∧z∧w, and the proof proof on the right computes the term z∧w∧s∧x. Thus the circuit in
DNNF represented Figure 5a computes the function (x∧y∧w∧s)∨(x∧y∧z∧w)∨(z∧w∧s∧x). ◀

The definition of proof trees clearly applies to circuits in DNNF respecting additional properties like
determinism for circuits in d-DNNF and structured decomposability for circuits in str-DNNF. The sets of
proof trees generated from circuits in d-DNNF or str-DNNF have additional properties that we describe
now.

Lemma 6. Let D be a circuit in d-DNNF where constants have been propagated away and that has a
single root. Let T and T ′ be distinct proof trees of D, then T ∧ T ′ ≡ 0.

Recall that proof trees of a circuit in DNNF are circuits in DNNF. Since it holds that var(Tu) ⊆
var(Du) for every node u appearing in a proof tree T of D, if D is structured by a vtree then T is
structured by the same vtree.

Lemma 7. Let D be a circuit in str-DNNF. Let T be proof tree of D, then T is structured by the same
vtree as D.

5.3 Lower Bounds on the DNNF Size from Rectangle Covers

Proof trees can be gathered into rectangles so as to establish a bound between R(f) and DNNF size of
f . The bound in question is proved in [BCMS16].

Lemma 8. [BCMS16] Let D be a circuit in DNNF. For v a ∧-node in D, let sat(D, v) be the set of
assignments to var(D) such that a ∈ sat(D, v) if and only if a satisfies some proof tree of D contain-
ing v. Then sat(D, v) is a rectangle with respect to the partition (var(Dv), var(D) \ var(Dv)) and
sat(D, v) ⊆ sat(D).

Theorem 1. [BCMS16] Let D be a smooth circuit in DNNF, then R(D) ≤ |D|.

The idea of the proof is essentially to find a node v in D such that (var(Dv), var(D) \ var(Dv)) is
a balanced partition of var(D), to add the rectangle sat(D, v) given by Lemma 8 to the cover, to delete
v from D, and to repeat the procedure until D is empty. Removing v from D only remove models of D
that have already been added to the cover via the rectangle sat(D, v), in addition, removing v prevents
from choosing a node twice in the procedure. If D is a smooth circuit in d-DNNF, then removing v also
ensures that the next rectangles in the cover will be disjoint from the ones already in it, thus:
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Theorem 2. [BCMS16] Let D be a smooth circuit in d-DNNF, then Rd(D) ≤ |D|.

Finally, if D is a smooth circuit in str-DNNF respecting some vtree, one can show that the node
chosen at every iteration of the procedure can be selected so that it always corresponds to the same node
in the vtree. This ensures that the partition (var(Dv), var(D) \ var(Dv)) is consistent throughout the
procedure. One can show the following in consequence:

Theorem 3. Let D be a smooth circuit in str-DNNF, then RΠ(D) ≤ |D| for Π some balanced partition.

6 Tseitin Formulas

Tseitin formulas are CNF formulas representing systems of parity constraints structured by a graph G =
(V,E). The graph is equipped with a function c : V → {0, 1} which assigns charges 0 or 1 to its
vertices. Each edge e of G is associated to a Boolean variable xe. Given a set E′ ⊆ E, we write
XE′ = {xe | e ∈ E′}. The Tseitin formula encodes the fact that, if we only keep in G the edges whose
variables are given value 1, then all vertices with charge 1 have an odd degree and all vertices with charge
0 have an even degree. More formally let χv(G, c) be the constraint

χv(G, c) :
∑

e∈EG(v)

xe = c(v) mod 2

Note that, if E(v) = ∅, that is, v is an isolated vertex in G, then χv(G, c) is simply the constraint
0 = c(v). The Tseitin formula T (G, c) is a CNF formula that computes

∧
v∈V χv(G, c). Each χv(G, c)

is turned into a CNF formula Fv(G, c) as follows. Assume E(v) is not empty, then Fv(G, c) is a CNF
formula on variables XE(v) composed of 2|E(v)|−1 = 2deg(v)−1 clauses of size deg(v). In the case when
E(v) = ∅, then either c(v) = 0 in which case Fv(G, c) is empty (thus valid), or c(v) = 1 in which
case Fv(G, c) contains only the empty clause (thus is unsatisfiable). The Tseitin formula over G for the
charge function c is the CNF formula

T (G, c) =
∧
v∈V

Fv(G, c)

For convenience we often write only T (G), χv, or Fv.
For v ∈ V let 1v : V → {0, 1} be the function mapping v to 1 and all other vertices to 0. The

complement parity constraint to χv(G, c) is χv(G, c+ 1v mod 2), which we write χv(G, c) for conve-
nience.

We use the notation clause(χv(G, c)) = clause(Fv(G, c). Thus clause(T (G, c)) =
⋃

v∈V (G) clause(χv(G, c)).

Example 9. Let G be the graph

u

v

w

x
z

y

where charges are indicated by the color code: gray vertices all have charge 0 and white vertices all have
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charge 1. We have:

χu : x+ y = 0 mod 2

χw : y + z = 1 mod 2

χv : x+ z = 1 mod 2

Fu = (x ∨ y) ∧ (x ∨ y)
Fw = (y ∨ z) ∧ (y ∨ z)
Fv = (x ∨ z) ∧ (x ∨ z)
T (G) = (x ∨ y) ∧ (x ∨ y) ∧ (y ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (x ∨ z)

◀

There is a simple criterion for the satisfiability of Tseitin formulas and a simple expression to compute
their number of models.

Lemma 9. [Urq87] T (G, c) is satisfiable if and only if
∑

v∈U c(v) = 0 mod 2 holds for all connected
components G′ = (U,E′) of G.

Lemma 10. [GI17] Let K be the number of connected components of G. If T (G, c) is satisfiable, then
it has 2|E(G)|−|V (G)|+K models.

Example 10. In Example 9, the graph G has three vertices u, v and w, three edges corresponding to the
variables x, y and z, and only one connected component. There is c(u) + c(v) + c(w) = 2 = 0 mod 2,
so T (G, c) has 23−3+1 = 2 satisfying assignments. One can verify that these assignments are {x, y, z}
and {x, y, z}. ◀

After conditioning a Tseitin formula T (G, c) on a partial assignment a to its variables, the resulting
CNF formula is also a Tseitin formula. LetEa ⊆ E(G) be the set of edges corresponding to the variables
assigned by a and define Ga = (V (G), E(G) \Ea). Let Ea(v) = Ea ∩E(v) and let ca : V (G) \ Va →
{0, 1} be the following charge function:

ca(v) = c(v) if the number of edges of Ea(v) whose variables are assigned value 1 by a is even,

ca(v) = c(v) + 1 mod 2 otherwise

Note that Ea ∩ E(v) may be empty (then ca(v) = c(v)). The assignments satisfying Fv(G, c) are
the solutions to χv(G, c) :

∑
e∈E(v) xe = c(v) mod 2, the assignments satisfying Fv(G, c)|a are the

solutions to
∑

e∈E(v)\Ea(v)
xe = c(v)−

∑
e∈Ea(v)

a(xe) = ca(v) mod 2, which is exactly the constraint
χv(Ga, ca). Thus we have that

T (G, c)|a = T (Ga, ca).

This is not just an logical equivalence but a syntactic equality: T (G, c)|a and T (Ga, ca) contains exactly
the same clauses (modulo the removal of duplicate clauses in each formula). Especially if there is a vertex
v such that E(v) ⊆ Ea, then either a falsifies χv(G, c), in which case the empty clause is in T (Ga, ca),
or a satisfies χv(G, c), in which case removing v from Ga has no impact on the above equality. A
particularly interesting case occurs when G is connected and Ea is an edge separator of G.

Lemma 11. Let G be a connected graph and let T (G, c) be a Tseitin formula. Let (A,B) be a partition
of V (G) such that both G[A] and G[B] are connected. Let a be an assignment to {xe | e ∈ E(A,B)}.
Then there are two charge functions cAa : A→ {0, 1} and cBa : B → {0, 1} such that

T (G, c)|a = T (G[A], cAa ) ∧ T (G[B], cBa )
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If T (G, c) is unsatisfiable, then either T (G[A], cAa ) or T (G[B], cBa ) is unsatisfiable, but not both. More-
over the parity of a characterizes which of the two subformulas is satisfiable, i.e., there is Γ ∈ {A,B}
such that T (G[Γ], cΓa ) is satisfiable if and only if a assigns an odd number of variables to 1.

Given a Tseitin formula T (G, c), the primal graph of the formula is easily obtained from G. One
just has to start from isolated vertices corresponding to var(T (G, c)), and for each vertex v ∈ V (G),
to connect the vertices corresponding to the variables var(χv) in a clique. Thus there is the following
relation between the primal treewidth of T (G, c) and tw(G).

Lemma 12. Let T (G, c) be a Tseitin formula whose underlying graph G has maximum degree bounded
by ∆, then the primal treewidth of T (G, c) is at most tw(G)×∆.

Proof. We use a tree decomposition of G to construct a tree decomposition of the primal graph Gp of
T (G, c).

Let T be a tree decomposition of G. For v ∈ V (G) recall that |var(χv)| = |E(v)| ≤ ∆ and that
the CNF encoding Fv of χv is made of 2|var(χv)|−1 clauses that contain each all variables of χv. We
define B′

t :=
⋃

v∈Bt
var(χv). We claim that the tree T ′ which is a clone of T except that every node t

associated with Bt in T is now associated with B′
t in T ′, is a tree decomposition of Gp.

First, we have that
⋃

t∈T B
′
t =

⋃
v∈V (G) var(χv) = var(T (G, c)) = V (Gp).

Second, let x and y be variables connected by an edge in Gp. Then there is a clause C such that
x, y ∈ var(C). C belongs to clause(Fv) for some vertex v ∈ V (G). But then var(C) = var(χv) and
x and y appear together in any B′

t such that v ∈ Bt.
Third, we show that for every x, the subgraph of T ′ restricted to nodes t such that x ∈ B′

t is con-
nected. Recall that x corresponds to an edge uv ∈ E(G) and that the constraints whose sets of variable
contain x are exactly χu and χv. So {t | x ∈ B′

t} = {t | u ∈ Bt} ∪ {t | v ∈ Bt}. Since T is
a tree decomposition of T , restricting T to nodes {t | u ∈ Bt} yields a connected subtree Tu. And
restricting T to nodes {t | v ∈ Bt} yields another connected subtree Tv. Moreover, since uv ∈ E(G),
the intersection {t | u ∈ Bt} ∩ {t | v ∈ Bt} is not empty. So Tu,v obtained T by restricting to nodes
{t | u ∈ Bt} ∪ {t | v ∈ Bt} is a connected subtree of T . Restricting T ′ to the nodes {t | x ∈ B′

t} yields
a connected subtree isomorphic to Tu,v.

So T ′ is a tree decomposition of Gp, and by construction its width is

max
t∈T
|B′

t| ≤ max
t∈T

∑
v∈Bt

|var(χv)| ≤ max
t∈T
|Bt| ×∆
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Chapter 1

Lower Bounds on the DNNF Size of
Specific Functions

A complete language L in which barely any function has a small representation is intuitively a poor
choice of compilation language, even if it supports many transformations and queries in polynomial-
time. Thus the existence of classes of “interesting” functions whose L size is polynomial in the number
of variables is an argument to champion L as a compilation language. Classes of functions whose L
size is not polynomial are equally important as they allow us to compare L to other languages in terms
of succinctness. In this chapter we present new lower bounds on the DNNF size of specific Boolean
functions. We will first show that the DNNF size of functions representing pseudo-Boolean inequalities
can be exponential in the number of variables, thus showing an exponential separation between the
language DNNF and the (incomplete) language of pseudo-Boolean inequalities. In a second contribution
we show that the DNNF size of satisfiable Tseitin formulas – CNF formulas representing systems of
parity constraints structured by a graph – is exponential in the treewidth of the underlying graph when
the maximum degree of the graph is bounded by a constant. This lower bound is the basis of other
contributions of this thesis shown in later chapters.

We begin this chapter by a section where we review what is known on compilation to DNNF and
also position our contributions vis-à-vis the state-of-the-art. In the second section we prove our first
contribution on the exponential separation between DNNF and the language of pseudo-Boolean inequal-
ities. In the third and last section, we prove our parameterized lower bound on the DNNF size of Tseitin
formulas.

1.1 The State of Compilation to DNNF and sublanguages

The oldest negative result regarding compilation to DNNF indirectly appears in the seminal work of
Selman and Kautz on knowledge compilation [SK91, SK96]. They show that there exist no languages
that both support polynomial-time clausal entailment and allow polynomial-size compilation of Boolean
formulas unless NP = P/poly (consequently, unless the polynomial hierarchy collapses at the second
level). This applies to DNNF as the language supports linear-time clausal entailment. Since then, uncon-
ditional separations have been shown for the compilation from several languages to DNNF, including
an exponential separation between monotone 2-CNF formulas and circuits in DNNF [BCMS14, Cap16].
Nevertheless, the many interesting properties of DNNF and of its sublanguages encourage the knowl-
edge compilation community to develop compilers to DNNF (and to its sublanguages), see for in-
stance [Dar02a, HD04, PD10, OD15, LM17]. The general idea is that the benefits of compiling are
such that, one may as well try to compile a given instance with the hope that a compiled form of reason-
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able size exists (and sometimes it does!). In parallel to the development of new compilers, another line
of research aims to characterize Boolean functions that have small DNNF size, or small L size, for L a
sublanguage of DNNF. A first objective of this research is to determine parameters of Boolean functions
that can be used in lower bounds and (or) upper bounds on the L size. In a slightly different direction, one
can focus on particular classes of Boolean functions and formulas and identify, first whether all functions
of the class have polynomial-size compiled form in L, and second what parameters characterize the L
size of these functions (so just like before, but restricted to particular classes of functions). We briefly
summarize the progress that has been made in these two directions. But first, we recall the upper bound
on the DNNF size of CNF formulas that has fuelled a lot of the research on the DNNF size of general
and selected Boolean functions.

DNNF size of CNF formulas and treewidth. The language DNNF has been introduced by Dar-
wiche [Dar01a, Dar01b] along with algorithms to compile CNF formulas to DNNF. One of the arguments
invoked by Darwiche to champion DNNF as a target language for knowledge compilation was that every
CNF formula whose primal treewidth is bounded can be compiled in polynomial time in DNNF. More
precisely, given a CNF formula ϕ and a dtree (decomposition tree) of ϕ of width w, there is an algorithm
that compiles ϕ in DNNF that takesO(|var(ϕ)|w2w) time and space. A dtree of ϕ is a rooted binary tree
whose leaves are in bijection with the clauses of ϕ and whose width, whose formal definition we omit,
essentially measures how well the bipartitions of the clauses of ϕ induced at the dtree nodes separate the
variables. Given a tree decomposition T of the primal graph of ϕ, one can construct in linear time a dtree
whose width is at most the width of T . Since finding a tree decomposition of a graph is fixed-parameter
tractable in the treewidth of the graph [Bod96], it follows that compiling a CNF formula to DNNF is
also fixed-parameter tractable in the primal treewidth of the formula. In [Dar01b], Darwiche introduced
the d-DNNF language and show that the compilation algorithms in [Dar01a] actually generate circuits
in d-DNNF, so the upper bound holds for the d-DNNF language as well. With the introduction of new
sublanguages of d-DNNF like SDD, it was shown that for every CNF formula ϕ there exists an SDD
of size O(|var(ϕ)|2twp(ϕ)) that computes ϕ, where twp(ϕ) is the primal treewidth of ϕ [Dar11]. As a
side note, if we restrict the target language to OBDD – which is a sublanguage of SDD – then there
exists an OBDD equivalent to ϕ of size O(|var(ϕ)|2pwp(ϕ)), where pwp(ϕ) is the primal pathwidth of
ϕ. Compared to the upper bound for SDDs, it is known that pw(G) = O(log(|V (G)|)tw(G)) for every
graph G [Bod98], so we have O(|var(ϕ)|2pwp(ϕ)) = O(|var(ϕ)|twp(ϕ)+1).

DNNF size of every Boolean functions. Since every Boolean function over a set of variables X can
be represented by a CNF formula over X , the SDD size of any function is at most exponential in the
smallest primal treewidth of a CNF formula representing the function. This upper bound is loose. For
instance ϕ = x1 ∨ · · · ∨ xn has primal treewidth n − 1 but is trivial to represent by small circuits in
DNNF or d-DNNF, and by small SDDs and OBDDs. To remedy this problem, one can modify the upper
bound so that it holds for incidence treewidth, but the resulting upper bound would still be too loose as
there are CNF formulas that have large incidence treewidth but small DNNF size (unsatisfiable formulas
for instance). In the same vein, other width measures for CNF formulas that generalizes treewidth, such
as subterm width [BS17b] or PS-width [STV14, Cap16] have been introduced to find upper bound on the
L size, for different sublanguages L of DNNF, where the dependence in the measure is again at most
single exponential (so in 2w where a is the measure). To avoid the requirement that the function is given
as a CNF formula, we turn to the notion of expression treewidth (resp. pathwidth) introduced by Jha and
Suciu [JS12], and later called circuit treewidth (resp. pathwidth) [RP13, BS17a]. The circuit treewidth
ctw(f) (resp. pathwidth cpw(f)) of a Boolean function f is the minimum treewidth (resp. pathwidth)
over all Boolean circuits that compute f using only binary nodes and unary ¬-nodes, and where each
variables labels at most one leaf. By treewidth (resp. pathwidth) of a Boolean circuit, we mean the
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treewidth (resp. pathwidth) of its underlying DAG. The circuit treewidth (resp. pathwidth) of a CNF
formula is upper-bounded by its incidence treewidth (resp. pathwidth), and thus by its primal treewidth
(resp. pathwidth). Moreover the circuit treewidth (resp. pathwidth) of an unsatisfiable formula is triv-
ially 1. Jha and Suciu showed that the OBDD size of a Boolean function f on n variables is bounded
by nO(g(ctw(f))) and by O(g(cpw(f))poly(n)) where g(k) is doubly exponential in k. The upper bound
for circuit treewidth is completed by an nΩ(ctw(f)) lower bound by Razgon [Raz14]. As for circuit path-
width, Jha and Suciu showed that OBDDs of width k compute functions of circuit pathwidth O(k), thus
proving that a function has OBDD size linear in its number of variables if and only if its circuit path-
width is bounded by a constant. Bova and Szeider have shown that a similar connection exists between
the SDD size and circuit treewidth: a function has SDD size linear in its number of variables if and only
if its circuit treewidth is bounded by a constant [BS17a]. More formally they show that the SDD size of
a Boolean function f on n variables is at most O(g(ctw(f))poly(n)) where g(k) is triple exponential in

k (so in 22
2k

), and that every Boolean function of SDD width k has circuit treewidth O(k). The triple
exponential dependence on circuit treewidth in the upper bound could be quite loose. Amarilli et al.
have shown that the d-str-DNNF size of f is O(g(ctw(f))poly(n)) where f is single exponential and
d-str-DNNF = str-DNNF ∩ d-DNNF is a language that contains SDD, so the upper bound for SDD
size can perhaps be improved [ACMS20].

DNNF size of selected Boolean functions. Research has also focused on particular classes of formulas,
not necessarily complete, to prove sharp lower bounds on their L size. This is the case for several classes
of “graph-based” CNF formulas. We can define such formulas as being (almost) completely determined
by one of their underlying graphs (primal graph, incidence graph, etc.) or hypergraphs. For instance,
Bova and Slivovsky [BS17b] and Razgon [Raz21] looked at the class of monotone 2-CNF formulas,
that are completely determined by their underlying hypergraphs (which are actually graphs). Bova and
Slivosky show that the OBDD size of such formulas is at least single exponential in their subterm width,
while Razgon shows that it is at least single exponential in another parameter that he called linear upper
maximum induced matching width. Instead of introducing new width parameters, Amarilli et al. proved
several lower bounds on the L size of general monotone CNF formulas, for different sublanguages L
of DNNF, using only the treewidth, the degree and the arity of their underlying hypergraph [ACMS20].
Their result matches the upper bound of [Dar11] when the arity and the degree are bounded by a con-
stant. For other classes of CNF formulas, positive compilability results could even be found. Of course
by [Dar11] we already have one such class with CNF formulas of bounded treewidth. But we can give
other examples! For instance the class of CNF formulas whose underlying hypergraph is β-acyclic has
polynomial size compilation to dec-DNNF [Cap16] – a language that was identified by Huang and Dar-
wiche in [HD07] – and the class of OCNF (ordered CNF) and the more general class of variable-convex
CNF formulas have polynomial-time compilations to OBDD [CBLM05, BS17b].

Contributions. We show new exponential lower bounds on the DNNF size of specific Boolean functions.
First we consider pseudo-Boolean constraints in the form w1x1 + · · · + wnxn ≥ θ where x1, . . . , xn
are 0/1 Boolean variables, w1, . . . , wn are real-valued weights and θ is a real-valued threshold. We find
a class of pseudo-Boolean constraints whose DNNF size is exponential in

√
n. This result generalizes

a result of Hosaka et al. [HTKY97] on the OBDD size of specific pseudo-Boolean constraints (since
circuits in DNNF can be exponentially smaller than equivalent OBDDs but not the converse), and a
result of Le Berre et al. [LMMW18] on sets of pseudo-Boolean constraints such that the whole set (so
a conjunction of constraints) has exponential DNNF size. We note that the pseudo-Boolean constraints
used in our results do not seem easy to represent as CNF formulas without additional encoding variables,
so our result is one of the few on the compilation to DNNF of functions not represented as CNF formulas.
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1.2. Pseudo-Boolean Constraints that have Exponential DNNF Size

This first contribution has been presented by the author in [dC20]. Our second contribution concerns
specific formulas called Tseitin formulas. These formulas have been introduced in the preliminaries,
we simply recall here that they represent systems of parity constraints structured by simple undirected
graphs (the edges are the variables and each vertex corresponds to a parity constraints). We show that
satisfiable Tseitin formulas whose graphs have bounded degree have DNNF size polynomial in n, the
number of variables, if and only if the treewidth of the graph is at most O(log(n)). Later in this thesis
we will show two applications of this result. For now we only mention that our result contrasts with the
state-of-the-art in that it is, to the best of our knowledge, the only characterization of the DNNF size
of non-monotone graph-based CNF formulas. This second contribution appears in the paper [dCM21a]
co-authored with Stefan Mengel.

1.2 Pseudo-Boolean Constraints that have Exponential DNNF Size

Many types of constraints are easily compilable to DNNF and to its sublanguages. For instance it is
easy to find an OBDD computing a clause, a term, a parity constraint (i.e., a constraint of the form
x1 + · · ·+ xn = 0 mod 2 or x1 + · · ·+ xn = 1 mod 2) or a cardinality constraint (i.e., a constraint of
the form x1+ · · ·+xn ≥ k). One is often interested in compiling Boolean functions given as systems of
constraints, like CNF formulas, that are systems of clauses. But in some situations, one needs to compile
constraints of the system individually. One setting where this happens is when one tries to compile
a system of constraint in a bottom-up manner, that is, one first compiles each constraint individually
in the target language – in practice the languages SDD or OBDD – and successively aggregates the
compiled form of the constraints by means of a procedure called the Apply procedure, until computing
a circuit in the target language that computes the whole system, see Example 22 in Chapter of a bottom-
up compilation of a CNF formula to OBDD. Another situation that involves compiling single constraints
arises when trying to solve a constraint satisfaction problem by translating the constraints into a CNF
formula and feeding it to a SAT solver. Two major considerations here are the size of the CNF encoding
and its propagation strength. One wants, on the one hand, to avoid the size of the encoding to explode, and
on the other hand, to guarantee a good behaviour of the SAT instance under unit propagation – a technique
at the very core of SAT solving. Desired propagation strength properties are, for instance, generalized
arc consistency (GAC) [Bac07] or propagation completeness (PC) [BM12]. Several encodings follow the
same two-step method: first, each constraint is compiled to BDD or DNNF. Second, the compiled forms
are turned into CNF formulas using different transformations depending on the propagation strength
wanted for the formula [AGMS16, KS19]. For both bottom-up compilation and for obtaining good
constraint encodings, it is key that the size of the circuit in DNNF representing the constraint be of
reasonable size. In this section we show that it is not the case for pseudo-Boolean constraints. It is worth
mentioning that there are GAC encodings of pseudo-Boolean constraints into polynomial size CNFs that
do not follow the two-step method [BBR09]. However no similar result is known for PC encodings.
PC encodings are more restrictive that GAC encodings and may be obtained via techniques requiring
compilation to DNNF [KS19].

Pseudo-Boolean (PB) constraints are inequalities the form
∑n

i=1wixi op θ where the xi are 0/1
Boolean variables, the wi and θ are integers, and op is one of the comparison operator <, ≤, > or ≥.
PB-constraints have been studied extensively under different names (e.g. threshold functions [HTKY97],
knapsack constraints [GKM+11]) and occur in many problems in AI [Ivă65, Pap77, BHMR99, BLS02,
ARMS02]. A PB-constraint is associated with a Boolean function whose satisfying assignments are
exactly the assignments to {x1, . . . , xn} that satisfy the inequality. For simplicity we directly consider
PB-constraints as Boolean functions – although the same function may be represented by different con-
straints, for instance x1+x2 ≥ 1 and 2x1+x2 ≥ 1 are equivalent – while keeping the term “constraints”
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when referring to them. We restrict our attention to PB-constraints where op is≥ and all weights are pos-
itive integers. Note that with this choice of operator and the restriction to positive integers, PB-constraints
are monotone Boolean functions. Given a sequence of positive integer weights W = (w1, . . . , wn) and
an integer threshold θ, we define the functionw : {0, 1}X → N that maps any assignment to its weight by
w(a) =

∑n
i=1wia(xi). With this notation, a PB-constraint over X for a given pair (W, θ) is a Boolean

function whose satisfying assignments are exactly the a such that w(a) ≥ θ.

Example 11. Let n = 5, W = (1, 2, 3, 4, 5) and θ = 9. The PB-constraint for (W, θ) is the Boolean
function whose models are the assignments such that x1 +2x2 +3x3 +4x4 +5x5 ≥ 9. The assignment
defined by {x1, x2, x3, x4, x5} (so the assignment a such that a(x1) = a(x4) = 0 and a(x2) = a(x3) =
a(x5) = 1), is a satisfying assignment of the constraint. Its weight is w(a) = 2 + 3 + 5 = 10. ◀

The main result of this section is the following theorem.

Theorem 4. There is a class of PB-constraints F such that for any constraint f ∈ F on n2 variables,
any circuit in DNNF computing f has size 2Ω(n).

Theorem 4 generalises a similar result written in [HTKY97, ANO+12] for OBDDs. Since there exist
infinitely many functions that have polynomial DNNF size but exponential OBDD size (in the number
of variables), our result is strictly stronger. The class F is similar to that used in [HTKY97, ANO+12],
actually the only difference is the choice of the threshold for the PB-constraints. Yet, adapting the proofs
given in [HTKY97, ANO+12] for OBDDs to circuits in DNNF is not straightforward, thus our proof of
Theorem 4 bears very little resemblance. Our result it also related to what has been done in [LMMW18]
where it is shown that there exist sets of PB-constraints such that the whole set (so a conjunction of
PB-constraints) is computed only by circuits in DNNF of exponential size. Our result is a generalisation
to single PB-constraints.

1.2.1 Restriction to Threshold Models of PB-Constraints

The strategy to prove Theorem 4 is to find a PB-constraint f over n variables such that R(f) is ex-
ponential in

√
n and then use Theorem 1. We first show that we can restrict our attention to covering

particular models of f with rectangles rather than the whole function. In this section X is a set of n
Boolean variables and f is a PB-constraint over X . Recall that we only consider constraints of the form∑n

i=1wixi ≥ θ where the wi and θ are positive integers.

Definition 26. Let f be a PB constraint
∑n

i=1wixi ≥ θ over X = {x1, . . . , xn}. The threshold models
of f are the assignments a to X such that w(a) = θ.

Threshold models should not be confused with minimal models.

Definition 27. A minimal model of f is a model a of f such that no assignment a′ to var(f) such that
a′ < a satisfies f .

For a monotone PB-constraint, minimal models are the assignments whose weights are above or equal
to the threshold but drop below the threshold when re-assigning any variable from 1 to 0. Any threshold
model is a minimal model, but not all minimal models are threshold models. There even exist constraints
with no threshold models (for instance when the weights are even integers but the threshold is an odd
integer) while there always are minimal models for satisfiable constraints.

Example 12. The minimal models of the PB-constraint from Example 11 are {x1, x2, x3, x4, x5}, {x1, x2,
x3, x4, x5}, {x1, x2, x3, x4, x5} and {x1, x2, x3, x4, x5). The first three are threshold models. ◀

42



1.2. Pseudo-Boolean Constraints that have Exponential DNNF Size

Lemma 13. Let f be a PB-constraint whose weights are positive and let f∗ be the Boolean function
whose models are exactly the threshold models of f . Then R(f) ≥ R(f∗).

Proof. Let X = var(f) and let r = ρ1 ∧ ρ2 with respect to a balanced partition Π = (X1, X2) of X
such that r ≤ f . Assume that r accepts some threshold models. For a an assignment to X , we denote
by a1 (resp. a2) its restriction to X1 (resp. X2). We claim that there exist two integers θ1 and θ2 such
that θ1 + θ2 = θ and, for any threshold model a in r, we have w(a1) = θ1 and w(a2) = θ2. To see this,
assume by contradiction that there exists (θ′1, θ

′
2) ̸= (θ1, θ2) such that θ = θ′1 + θ′2 such that some other

threshold model b with w(b1) = θ′1 and w(b2) = θ′2 is accepted by r. Then either w(a1) +w(b2) < θ or
w(b1) + w(a2) < θ, but since a1 ∪ b2 and b1 ∪ a2 are also accepted by r, the rectangle r would accept
assignments falsifying f , which is forbidden. Now let ρ∗1 (resp. ρ∗2) be the Boolean function over X1

(resp. X2) whose satisfying assignments are exactly the satisfying assignments of ρ1 (resp. ρ2) of weight
θ1 (resp. θ2). Then r∗ = ρ∗1∧ρ∗2 is a rectangle with respect to Π that accepts exactly the threshold models
in r.

Now consider a balanced rectangle cover of f of size R(f). For each rectangle r of the cover,
if r contains no threshold model then discard it, otherwise construct r∗. The disjunction of these new
rectangles is a balanced rectangle cover of f∗ of size at most R(f). Therefore R(f) ≥ R(f∗).

1.2.2 Reduction to Covering Maximal Matchings of Kn,n

We define the class of hard PB-constraints for Theorem 4 in this section. We will show, using Lemma 13,
that the problem can be reduced to that of covering all maximal matchings of the complete n × n bi-
partite graph Kn,n with rectangles. In this section, X is a set of n2 Boolean variables. To simplify
the presentation, assignments to X are written as n × n matrices. Each variable xi,j has the weight
wi,j = (2i + 2j+n)/2. Define the matrix of weights W = (wi,j : 1 ≤ i, j ≤ n) and the threshold
θ = 22n − 1. The PB-constraint f for the pair (W, θ) is such that f(a) = 1 if and only if a satisfies

∑
1≤i,j≤n

(
2i + 2j+n

2

)
xi,j ≥ 22n − 1 (PB1)

Constraints of this form constitute the class of hard constraints of Theorem 4. One may find it easier
to picture f writing the weights and threshold as binary numbers over 2n bits. Bits of indices 1 to n form
the lower part of the number and those of indices n + 1 to 2n form the upper part. The weight wi,j is
the binary number where the only bits set to 1 are the ith bit of the lower part and the jth bit of the upper
part. Thus when a variable xi,j is set to 1, exactly one bit of value 1 is added to each part of the binary
number of the sum.

Assignments to X uniquely encode subgraphs of Kn,n. We call U = {u1, . . . , un} the set of nodes
on the left side of Kn,n and V = {v1, . . . , vn} the set of nodes on the right side of Kn,n . The bipartite
graph encoded by a is such that there is an edge between the ui and vj if and only if a(xi,j) = 1.

Example 13. Take n = 4. The assignment a =

1 1 0 1
0 0 0 0
0 1 0 0
0 1 0 0

 encodes

u1
u2
u3
u4

v1
v2
v3
v4

◀

Definition 28. A maximal matching assignment is an assignment a to X = {xi,j | 1 ≤ i, j ≤ n} such
that

• for any i ∈ [n], there is exactly one k such that a(xi,k) = 1

• for any j ∈ [n], there is exactly one k such that a(xk,j) = 1
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As the name suggests, the maximal matching assignments are those encoding bipartite graphs whose
edges form a maximal matching of Kn,n (i.e., a maximum cardinality matching). One can also see them
as encodings for permutations of [n].

Example 14. a =

0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

 is a maximal matching assignment that encodes

u1
u2
u3
u4

v1
v2
v3
v4

◀

For an assignment a, let vark(a) be defined as

• vark(a) = {j | a(xk,j) = 1} when 1 ≤ k ≤ n

• vark(a) = {i | a(xi,k−n) = 1} when n+ 1 ≤ k ≤ 2n.

vark(a) stores the index of variables in a that directly add 1 to the kth bit of w(a). Note that a maximal
matching assignment is an assignment a such that |vark(a)| = 1 for all k. It is easy to see that maximal
matching assignments are threshold models of f : seeing weights as binary numbers of 2n bits, for every
bit of the resulting sum of weights, there is exactly one weight that has value 1 at that bit, so exactly the
first 2n bits of the sum are set to 1, which gives us that the decimal value of the sum is θ. We note that
not all threshold models of f are maximal matching assignments.

Example 15. Consider the assignment a represented in Example 13. a does not encode a maximal
matching and its weight for the PB-constraint (PB1) with n = 4 is: 2+2n+1

2 + 2+2n+2

2 + 2+2n+4

2 +
23+2n+2

2 + 24+2n+2

2 = 17 + 33 + 129 + 36 + 40 = 255. Since the threshold of (PB1) is 22n − 1 =
28 − 1 = 255, the assignment a is a threshold model. ◀

Lemma 14. Let Π = (X1, X2) be a partition of X . Let a and b be maximal matching assignments and,
for i ∈ {1, 2}, denote by ai (resp. bi) the restriction of a (resp. b) to Xi. If a1 ∪ b2 and b1 ∪ a2 both have
weight θ = 22n − 1 then both are maximal matching assignments.

Proof. It is sufficient to show that |vark(a1 ∪ b2)| = 1 and |vark(b1 ∪ a2)| = 1 for all 1 ≤ k ≤ 2n. We
prove it for a1 ∪ b2 by induction on k. First observe that since |vark(a)| = 1 and |vark(b)| = 1 for all
1 ≤ k ≤ 2n, the only possibilities for |vark(a1 ∪ b2)| = 1 are 0, 1 or 2.

• For the base case k = 1, if |vark(a1 ∪ b2)| is even then the first bit of w(a1) + w(b2) is 0 and the
weight of a1 ∪ b2 is not θ. So |var1(a1 ∪ b2)| = 1.

• For the general case 1 < k ≤ 2n, assume it holds that |var1(a1∪b2)| = · · · = |vark−1(a1∪b2)| =
1. So the kth bit of w(a1) + w(b2) depends only on the parity of |vark(a1 ∪ b2)|: the kth bit is 0
if |vark(a1 ∪ b2)| is even and it is 1 otherwise. a1 ∪ b2 has weight θ so |vark(a1 ∪ b2)| = 1.

The argument applies to b1 ∪ a2 analogously.

Lemma 15. Let f be the PB-constraint (PB1) and let f̂ be the function whose satisfying assignments
are exactly the maximal matching assignments. Then R(f) ≥ R(f̂).

Proof. Let f∗ be the function whose satisfying assignments are the threshold models of f . By Lemma 13,
it is sufficient to prove thatR(f∗) ≥ R(f̂). We already know that f̂ ≤ f∗. Let r = ρ1∧ρ2 be a rectangle
with respect to the balanced partition Π = (X1, X2) such that r ≤ f∗, and assume that r accepts
some maximal matching assignment. Let ρ̂1 (resp. ρ̂2) be the Boolean function over X1 (resp. X2)
whose satisfying assignments are the a1 (resp. a2) such that there is a maximal matching assignment
a1 ∪ a2 accepted by r. We claim that the rectangle r̂ = ρ̂1 ∧ ρ̂2 contains exactly the maximal matching
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(a) Balanced partition Π of K4,4
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U1
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(b) Partition of a maximal matching w.r.t. Π

Figure 1.1: Partition of maximal matching

assignments in r. On the one hand, it is clear that all maximal matching assignments accepted by r are
also accepted by r̂. On the other hand, r̂ contains only threshold models of f of the form a1 ∪ b2, where
a1 ∪ a2 and b1 ∪ b2 encode maximal matchings, so by Lemma 14, r̂ contains only maximal matching
assignments in r.

Now consider a balanced rectangle cover of f∗ of size R(f∗). For each rectangle r of the cover, if r
contains no maximal matching assignment then discard it, otherwise construct r̂. The disjunction of these
new rectangles is a balanced rectangle cover of f̂ of size at most R(f∗). Therefore R(f∗) ≥ R(f̂).

1.2.3 Proof of Theorem 4

We now prove Theorem 4

Theorem 4. There is a class of PB-constraints F such that for any constraint f ∈ F on n2 variables,
any circuit in DNNF computing f has size 2Ω(n).

F is the class of constraints of the form (PB1). Thanks to Theorem 1 and Lemma 15, the proof boils
down to finding exponential lower bounds on R(f̂), where f̂ is the Boolean function on n2 variables
whose models encode exactly the maximal matchings of Kn,n (or equivalently, the permutations of [n]).
f̂ has n! models. The idea is now to prove that rectangles covering f̂ must be relatively small, so that
covering the whole function takes many rectangles.

Lemma 16. Let Π = (X1, X2) be a balanced partition of X and let α =
√
2/3. Let r be a rectangle

with respect to Π with r ≤ f̂ . Then |r−1(1)| ≤ n!

( n
αn)

.

The function f̂ has already been studied extensively in the literature, often under the name PERMn (for
permutations on [n]), see for instance [Weg00, Chapter 4] or [MW19, Section 6.2] where a statement
similar to Lemma 16 is established. With Lemma 16 we can give the proof of Theorem 4.

Theorem 4. Let
∨R(f̂)

k=1 rk be a balanced rectangle cover of f̂ . We have
∑R(f̂)

k=1 |r
−1
k (1)| ≥ |sat(f̂)| = n!.

Lemma 16 gives us R(f̂) n!

( n
αn)
≥ n!, thus

R(f̂) ≥
(
n

αn

)
≥

( n

αn

)αn
=

(
3

2

)αn
2

≥ 2
αn
4 = 2Ω(n)

where we have used
(
a
b

)
≥ (a/b)b and 3/2 ≥

√
2. Using Lemma 15 we get that R(f) ≥ R(f̂) ≥ 2Ω(n).

Theorem 1 allows us to conclude.

It only remains to prove Lemma 16.
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Lemma 16. Let r = ρ1 ∧ ρ2 and Π = (X1, X2). Recall that U = {u1, . . . , un} and V = {v1, . . . , vn}
are the nodes on the left and right part of Kn,n respectively. Define

U1 = {ui | there exists xi,l ∈ X1 such that a(xi,l) = 1 for some a ∈ ρ−1
1 (1)}

V1 = {vj | there exists xl,j ∈ X1 such that a(xl,j) = 1 for some a ∈ ρ−1
1 (1)}

Define U2 and V2 analogously (this time usingX2 and ρ2). Figure 1.1 illustrates the construction of these
sets: Figure 1.1a shows a partition Π of the edges of K4,4 (full edges in X1, dotted edges in X2) and
Figure 1.1b shows the contribution of an assignment accepted by r to U1, V1, U2, and V2 after partition
according to Π.

Assignments in ρ−1
1 (1) encode matchings of Kn,n, more precisely each such assignment encodes a

matching between U1 and V1. We claim that such matchings between U1 and V1 are maximal. To verify
this, observe that U1 ∩ U2 = ∅ and V1 ∩ V2 = ∅ since otherwise r accepts an assignment that does not
correspond to a matching. Thus if ρ1 were satisfied by a non-maximal matching between U1 and V1 then
r would accept a non-maximal matching between U and V . So ρ1 is satisfied only by maximal matchings
between U1 and V1, consequently |U1| = |V1|. The argument applies symmetrically for V2 and U2. We
note k = |U1|. It stands that U1 ∪ U2 = U and V1 ∪ V2 = V as otherwise r accepts matchings that are
not maximal. So |U2| = |V2| = n− k. We now have |ρ−1

1 (1)| ≤ k! and |ρ−1
2 (1)| ≤ (n− k)!, leading to

|r−1(1)| ≤ k!(n− k)! = n!/
(
n
k

)
.

Up to k2 edges may be used to construct matchings between U1 and V1. Since R is balanced we
obtain k2 ≤ 2n2/3. Applying the same argument to U2 and V2 gives us (n − k)2 ≤ 2n2/3, so n(1 −√

2/3) ≤ k ≤ n
√
2/3. Finally, the function k 7→ n!/

(
n
k

)
, when restricted to some interval [[n(1 −

β), βn]], reaches its maximum at k = βn, hence the upper bound |r−1(1)| ≤ n!/
( n
n
√

2/3

)
.

1.3 Tseitin Formulas that have Exponential DNNF Size

Going back to formulas and systems of constraints, in this section we study a class of “graph-based”
CNF formulas and, contrary to PB-constraints, we give a characterization for when these formulas are
computed by small circuits in DNNF. Graph-based formulas are intuitively almost entirely determined
by their underlying graph (primal graph, hypergraph, or other). For example, monotone CNF formulas
are uniquely defined by their hypergraphs so they qualify as graph-based formulas. The L size of graph-
based CNF formulas, for a sublanguage L of DNNF, seems easier to analyse than general CNF formulas
in that lower bounds that almost match the known upper bounds on the L size can be proved for them
(see for instance [BCMS14, BS17b, ACMS20, Raz21]). In this section, we study a kind of graph-based
CNF formulas introduced in the preliminaries: Tseitin formulas. We show that, when a Tseitin formula
based on a graph G of bounded degree is satisfiable, its DNNF size is polynomial in its number n of
variables if and only if tw(G)/∆(G) = O(log(n)). Formally, our main result for this section is the
following:

Theorem 5. Let T (G, c) be a satisfiable Tseitin formula where G is a connected graph with maximum
degree at most ∆. Every smooth circuit in DNNF computing T (G, c) has size at least 2Ω(tw(G)/∆).

We compare Theorem 5 with existing work on the compilation of Tseitin formulas by Itsykson et
al. [IRSS21, IRS22]. Before Theorem 5 was proved, Itsykson et al. had studied the compilation of
Tseitin formulas to non-deterministic read-once branching programs (for short 1-NBP or nFBDD). They
have introduced a new width measure for graphs called the component width, denoted by compw(G),
and proved that the nFBDD size for any satisfiable Tseitin formula T (G, c) is between 2compw(G) and
|E(G)| × 2compw(G) + 2. They compared the component width of a graph to its treewidth and its
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pathwidth and were able to show that 1
2(tw(G) − 1) ≤ compw(G) ≤ pw(G) + 1 and that the two

bounds are tight. On the one hand, DNNF < nFBDD (see e.g. [ACMS20]) so our result is more general
when the maximum degree of the graph ∆(G) is bounded by a constant. On the other hand, building
upon the proof of Theorem 5, we can show the following variant:

Lemma 17. Let T (G, c) be a satisfiable Tseitin formula where G is a 3-connected graph with maximum
degree at most ∆. Then every nFBDD computing T (G, c) has size at least 2Ω(pw(G)/∆).

One year after Theorem 5 was presented in [dCM21a], Itsykson, Riazanov and Smirnov have generalized
it to the case of satisfiable Tseitin formulas for arbitrary graphs [IRS22], that is, they have successfully
removed the dependence in the maximum degree of the graph:

Theorem 6. [IRS22, Theorem 4.1] Let T (G, c) be a satisfiable Tseitin formula. Every smooth circuit
in DNNF computing T (G, c) has size at least 2Ω(tw(G)).

The result of Istykson et al. is a very nice improvement of our. Their proof uses several elements of the
proof of Theorem 5, including the adversarial multi-partition rectangle cover game that we introduce in
the next section.

1.3.1 An Adversarial Rectangle Cover Game for Lower Bounds on DNNF Size

When trying to show parameterized lower bounds with Theorem 1, one often runs into the problem
that it is somewhat inflexible: the partitions of the rectangles in covers have to be balanced, but in
parameterized applications this is often undesirable. Instead, to show good lower bounds, one wants to
be able to partition in places that allow to cut in complicated subparts of the problem. For instance this
is the underlying technique in [Raz16]. To make this part of the lower bound proofs more explicit and
the technique more reusable, we here introduce a refinement of Theorem 1.

We define the adversarial multi-partition rectangle cover game for a Boolean function f over vari-
ables X and a set S ⊆ sat(f) to be played as follows: two players, the cover player Charlotte and her
adversary Adam, construct in several rounds a setR of rectangles that cover the set S respecting f (that
is, rectangles in R contain only models of f ). The game starts with R as the empty set. Charlotte starts
a round by choosing an assignment in S and vtree T of X . Now Adam chooses a partition of X induced
by T , that is, a partition (X1, X2) such that X1 = var(Tv) for some node v in T . Charlotte ends the
round by adding toR a combinatorial rectangle r with respect to this partition and such that r ≤ f . The
game is over when S is covered byR.

Definition 29. The adversarial multi-partition rectangle complexity of f and S, denoted by aR(f, S) is
the minimum number of rounds in which Charlotte can finish the adversarial multi-partition rectangle
cover game, whatever the choices of Adam are. When S = sat(f), we write aR(f) = aR(f, sat(f)).

The linear adversarial multi-partition rectangle complexity aRℓ(f, S) of f and S is defined anal-
ogously with the difference that instead of a vtree Charlotte gives an order of X and Adam chooses
(X1, X2) such that X1 is a prefix of the order given by Charlotte. The following theorem gives the core
technique for showing lower bounds later on.

Theorem 7. LetD be a circuit in DNNF computing the function f and let S ⊆ sat(f). Then aR(f, S) ≤
|D|.

Proof. Let X = var(D) = var(f). We iteratively delete vertices from D and construct rectangles. The
approach is as follows: Charlotte chooses an assignment a ∈ S not yet in any rectangle she constructed
before and a proof tree T of D satisfied by a. Now Adam chooses a partition (not necessarily balanced)
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induced by T at a node v. Using Lemma 8, Charlotte chooses the rectangle sat(D, v), deletes it from S
and the game continues.

The vertex v in the above construction is different at every round of the game: by construction,
Charlotte never chooses an assignment a that is in any set sat(D, v) for a vertex v that has appeared
before. Thus, no such v can appear in the proof tree of the chosen a. Consequently, a new vertex v is
chosen for each assignment a that Charlotte chooses and thus the game will never last more than |D|
rounds.

If the input is an FBDD instead of a circuit in DNNF, the proof trees chosen by Charlotte are linear,
giving an order of X . Hence, we get the following corollary.

Corollary 1. Let B be an FBDD computing a function f and let S ⊆ sat(f). Then aRℓ(f, S) ≤ |B|.

The adversarial multi-partition rectangle cover game can be modified so that the rectangle chosen by
Charlotte at a given round is disjoint from the rectangles that she had already stored in R. This variant
of the game returns a setR containing pairwise disjoint rectangles.

Definition 30. The adversarial multi-partition disjoint rectangle complexity of f and S, denoted by
aRd(f, S) is the minimum number of rounds in which Charlotte can finish the adversarial multi-partition
rectangle cover game by choosing rectangles that are pairwise disjoint, whatever the choices of Adam
are. When S = sat(f), we write aRd(f) = aRd(f, sat(f)).

It is clear that aR(f) ≤ aRd(f). Just like aR(f) is a lower bound on the size of the smallest circuit
in DNNF computing f , aRd(f) is a lower bound on the size of the smallest circuit in d-DNNF computing
f . This latter bound is shown in the next theorem, using the techniques at work in [BCMS16] to prove
Theorems 1 and 2.

Theorem 8. Let D be a circuit in d-DNNF computing the function f and let S ⊆ sat(f). Then
aRd(f, S) ≤ |D|.

Proof. Let X = var(D) = var(f). Compared to the proof of Theorem 7, here we modify the circuit
between two rounds. We denote by Di the circuit in d-DNNF at round i for i ≥ 1 with D1 = D. Round
1 is played as before: Charlotte chooses an assignment a ∈ S not yet in any rectangle she constructed
before and a proof tree T 1 of D1 satisfied by a. Then Adam chooses a partition induced by T 1 at a
node v1. Then Charlotte chooses the rectangle satX(D1, v1) and deletes it from S. But now before the
game continues, Charlotte removes v1 from D1 by disconnecting v1 from its children, replacing v1 by a
constant 0, propagating that constant, and deleting all nodes that are not reachable from the root of D1.
The resulting circuit is called D2 and the game continue.

Claim 1. If Di is a circuit in d-DNNF, then so is Di+1.

Proof. It is readily verified that for every node u in Di+1, we have that var(Di+1
u ) ⊆ var(Di

u) so
decomposability is preserved in Di+1.

As for determinism, in a Boolean circuit C over X containing only literal inputs, constant inputs,
∨-nodes and ∧-nodes, replacing a node by a 0-input yields a circuit C ′ such that satX(C ′) ⊆ satX(C).
Especially for every node u that is in both Di and Di+1 we have satX(Di+1

u ) ⊆ satX(Di
u). If u

is a ∨-node in Di+1 with children u1, . . . , uk, then it is also a ∨-node in Di and u1, . . . , uk are also
children of u in Di. By determinism in Di we have satX(Di

uj
) ∩ satX(Di

ul
) = ∅ for every j ̸= l, so

satX(Di+1
uj

) ∩ satX(Di+1
ul

) ⊆ satX(Di
uj
) ∩ satX(Di

ul
) = ∅. So determinism is preserved.

Claim 2. satX(Di+1) = satX(Di) \ satX(Di, vi).
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Proof. Let Ci be the circuit obtained by disconnecting vi from its children, replacing vi by a fresh
variable y, and deleting that are not reachable from the root. It is clear that Ci is a circuit in DNNF (but
not in d-DNNF) and thatCi|y ≡ Di+1. Now we look at what becomes of the proof trees ofDi during the
transformation. Let T (Di) be the set of proof trees ofDi and let T (Ci) be the set of proof trees of Ci. If
T ∈ T (Di) does not contain vi, then T is in T (Ci). Otherwise if T ∈ T (Di) contains vi, then the proof
tree T ′ obtained by replacing Tvi by y is in T (Ci). It should be clear that they are not other proof trees
in T (Ci). By Lemma 5 we have Ci ≡

∨
T∈T (Ci) T and thus Di+1 ≡ Ci|y ≡

∨
T∈T (Ci)∩T (Di) T ≡∨

T∈T (Di),T ̸∋vi T . Hence satX(Di+1) = satX(Di) \ satX(Di, vi).

Claims 1 and 2 allow us to conclude that the game is sound and that Charlotte generates a set R of
pairwise disjoint rectangles that cover S and respect f .

Theorem 7 implies 1 and 8 implies 2.

1.3.2 Splitting Parity Constraints

In this section, we consider rectangles that respect a satisfiable Tseitin formula T (G, c), that is, rectan-
gles r over the same variables as T (G, c) such that r ≤ T (G, c), or equivalently, such that sat(r) ⊆
sat(T (G, c)). Recall that T (G, c) is a CNF formula that represents the conjunction of parity constraints∧

v∈V (G) χv, where χv :
∑

e∈EG(v) xe = c(v) mod 2. We will see that such rectangles split the parity
constraints of T (G, c) in a certain sense and show how this is reflected in G. This will be crucial in prov-
ing the lower bound on the DNNF size in the next section with the adversarial multi-partition rectangle
cover game.

Rectangles Induce Subconstraints for Tseitin formulas

Let r be a rectangle for the partition (E1, E2) of E(G) such that r ≤ T (G, c). Assume that there is a
vertex v of G incident to edges in E1 and to edges in E2, i.e., E(v) = E1(v) ∪ E2(v) where neither
E1(v) nor E2(v) is empty. We show that r does not only respect χv, but it also respects a subconstraint
of χv.

Definition 31. Let χ be a parity constraint. A subconstraint of χ is a parity constraint χ′ on a non-empty
proper subset of the variables of χ.

Example 16. Let χ : x+ y + z = 0 mod 2. Then χ′ : x+ y = 1 mod 2 and χ′′ : x = 0 mod 2 are
subconstraints of χ. ◀

Lemma 18. Let T (G, c) be a satisfiable Tseitin formula and let r be a rectangle for the partition (E1, E2)
of E(G) such that sat(r) ⊆ sat(T (G, c)). If v ∈ V (G) is incident to edges in E1 and to edges in E2,
then there exists a subconstraint χ′

v of χv such that sat(r) ⊆ sat(T (G, c) ∧ χ′
v).

Proof. Let a1 ∪ a2 ∈ sat(r) where a1 is an assignment to E1 and a2 an assignment to E2. Let a1(v)
and a2(v) denote the restriction of a1 and a2 to E1(v) and E2(v), respectively. We claim that for all
a′1 ∪ a′2 ∈ R, we have that a′1(v) and a1(v) have the same parity, that is, a1(v) assigns an odd number of
variables ofE1(v) to 1 if and only if it is also the case for a′1(v). Indeed if a1(v) and a′1(v) have different
parities, then so do a1(v) ∪ a2(v) and a′1(v) ∪ a2(v). So either a1 ∪ a2 or a′1 ∪ a2 falsifies χv, but
both assignments are accepted by r, so a1(v) and a′1(v) cannot have different parities as this contradicts
sat(r) ⊆ sat(T (G, c)). Let c1 be the parity of a1(v), then we have that assignments accepted by r must
satisfy χ′

v :
∑

e∈E1(v)
xe = c1 mod 2, so sat(r) ⊆ sat(T (G, c) ∧ χ′

v).
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Renaming χ′
v as χ1

v and adopting notations from the proof, one sees that χ1
v ∧ χv ≡ χ1

v ∧ χ2
v where

χ2
v :

∑
e∈E2(v)

xe = c(v) + c1 mod 2. So r respects the formula (T (G, c) − χv) ∧ χ1
v ∧ χ2

v where
(T (G, c) − χv) is the formula obtained by removing all clauses of χv from T (G, c). In this sense,
the rectangle is splitting the constraint χv into two subconstraints over disjoint variables. Since χv ≡
(χ1

v ∧χ2
v)∨ (χ1

v ∧χ2
v) it is plausible that potentially many models of χv are not accepted by r. We show

that this is true in the next section.

Vertex Splitting and Subconstraints for Tseitin Formulas

Let v ∈ V (G) and let (N1, N2) be a proper partition of N(v), that is, neither N1 nor N2 is empty. The
graph G′ we get by splitting v along (N1, N2) is defined as the graph we get by deleting v, adding two
vertices v1 and v2, and connecting v1 to all vertices in N1 and v2 to all vertices in N2. We now show
that splitting a vertex v in a graph G has the same effect as adding a subconstraint of χv.

Lemma 19. Let T (G, c) be a Tseitin formula. Let v ∈ V (G) and let (N1, N2) be a proper partition
of N(v). Let c1 and c2 be such that c1 + c2 = c(v) mod 2 and let χi

v :
∑

u∈Ni
xuv = ci mod 2 for

i ∈ {1, 2} be subconstraints of χv. Call G′ the result of splitting v along (N1, N2) and set

c′(u) =

{
c(u), if u ∈ V (G) \ {v}
ci, if u = vi, i ∈ {1, 2}

There is a bijection ρ : var(T (G, c))→ var(T (G′, c′)) acting as a renaming of the variables such that
T (G′, c′) ≡ (T (G, c) ∧ χ1

v) ◦ ρ.

Proof. Denote by T (G, c)− χv the formula equivalent to the conjunction of all χu for u ∈ V (G) \ {v}.
Then T (G, c)∧ χ1

v ≡ (T (G, c)− χv)∧ χ1
v ∧ χ2

v. The constraints χu for u ∈ V (G) \ {v} appear in both
T (G′, c′) and in T (G, c)− χv and the subconstraints χ1

v and χ2
v are exactly the constraints for v1 and v2

in T (G′, c′) modulo the variable renaming ρ defined by ρ(xuv) = xuv1 when u ∈ N1, ρ(xuv) = xuv2
when u ∈ N2, and ρ(xe) = xe when v is not incident to e.

Example 17. In Example 9, we introduced the Tseitin formula

T (G, c) = (x ∨ y) ∧ (x ∨ y) ∧ (y ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (x ∨ z)

where G is the graph represented is shown below on the left. The splitting of v creates two nodes v1 and
v2. The constraint corresponding to v in T (G, c) is χv : x + z = 1 mod 2. Now we let χ1

v : x = 1
mod 2 and χ2

v : z = 0 mod 2 be two subconstraints of χv. Then the formulas T (G, c) ∧ χ1
v and

T (G, c)∧χ2
v are both equivalent to the Tseitin formula T (G′, c′), where G′ results from splitting v. The

following figure shows one of the outcome of that splitting.

u

v

w

x
z

y

x
z

y

split v

u

v1 v2

w

x
z

y

Charges are indicated by a color code: gray vertices all have charge 0 and white vertices all have charge
1. Now we have:

T (G′, c′) = (x ∨ y) ∧ (x ∨ y) ∧ (y ∨ z) ∧ (y ∨ z) ∧ x ∧ z

Applying unit propagation on T (G′, c′) and on T (G, c) ∧ x = T (G, c) ∧ χ1
v shows that T (G′, c′) ≡

x ∧ y ∧ z ≡ T (G, c) ∧ χ1
v. One can also verify that T (G, c) ∧ z = T (G, c) ∧ χ2

v ≡ T (G′, c′). ◀
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Intuitively, Lemma 19 says that splitting a vertex in G and adding a subconstraint are essentially
the same operation. This allows us to compute the number of models of a Tseitin formula to which a
subconstraint was added.

Lemma 20. Let T (G, c) be a satisfiable Tseitin formula where G is connected. Define T (G′, c′) as in
Lemma 19. If G′ is connected then T (G′, c′) has 2|E(G)|−|V (G)| models.

Proof. Since T (G, c) is satisfiable and since
∑

u∈V (G′) c
′(u) =

∑
u∈V (G) c(u) = 0 mod 2, by Lemma 9

T (G′, c′) is satisfiable. Using Lemma 10 yields that T (G′, c′) has 2|E(G′)|−|V (G′)|+1 = 2|E(G)|−|V (G)|

models.

Lemma 21. Let T (G, c) be a satisfiable Tseitin formula where G is connected. Let {v1, . . . , vk} be
an independent set in G. For all i ∈ [k] let (N i

1, N
i
2) be a proper partition of N(vi) and let χ′

vi :∑
u∈N i

1
xuvi = ci mod 2. If the graph obtained by splitting all vi along (N i

1, N
i
2) is connected, then

the formula T (G, c) ∧ χ′
v1 ∧ · · · ∧ χ

′
vk

has 2|E(G)|−|V (G)|−k+1 models.

Proof. An easy induction based on Lemma 19 and Lemma 20. The induction works since, {v1, . . . , vk}
being an independent set, the edges to modify by splitting vi are still in the graph where v1, . . . , vi−1

have been split.

Vertex Splitting in 3-Connected Graphs

When we want to apply the results of the last sections to bound the size of rectangles, we require that the
graph G remains connected after splitting vertices. This is obviously not true for all choices of vertex
splits, but we will see that if G is sufficiently connected, then we can always chose a large subset of any
set of potential splits such that, after applying the split for this subset, G remains connected.

Lemma 22. Let G be a 3-connected graph and let I = {v1, . . . , vk} be an independent set in G. For
every i ∈ [k] let (N i

1, N
i
2) be a proper partition ofN(vi). Then there is a subset S ⊆ I of size at least k/3

such that the graph resulting from splitting all vi ∈ S along the corresponding (N i
1, N

i
2) is connected.

Proof. Let C1, . . . , Cr be the connected components of the graph G1 that we get by splitting all vi. If
G1 is connected, then we can set S = I and we are done. So assume that r > 1 in the following.
Now add for every i ∈ [k] the edge (v1i , v

2
i ). Call this edge set L (for links) and the resulting graph

G2. Note that G2 is connected and for every edge set E′ ⊆ L we have that G2 \ E′ is connected if
and only if G is connected after splitting the vertices corresponding to the edges in E′. Denote by Lin

the edges in L whose end points both lie in some component Cj and let Lout = L \ Lin. Note that
2k = 2|I| = |Lout|+ |Lin|.

Let Sj = {v ∈ I | |{v1, v2} ∩ V (Cj)| = 1} be the subset of I such that after splitting the vertices
in I , exactly one side of the vertex ends up in Cj . We show that |Sj | ≥ 3. Since G2 is connected but
the set Cj is a connected component of G2 \ L = G1, there must be at least one edge in L incident to a
vertex in Cj . By construction this vertex is in I , say it is vi. Since N i

1 ̸= ∅ and N i
2 ̸= ∅, we have that vi

has a neighbor w in Cj and w ̸∈ I (since I is an independent set). If we delete the vertices of Sj , then
a subset of Cj becomes disconnected from the rest of G2 (which is non-empty because there is at least
one component different from Cj in G2 which also contains a vertex not in I by the same reasoning as
before). But then, because G is 3-connected, there must be at least three vertices in Sj .

Now we have that 2|Lout| =
∑r

i=1 |Sj | ≥ 3r, so

r ≤ 2

3
|Lout|.
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Contract all components Cj in G2 and call the resulting multigraph G3. Note that G3 is connected,
that |V (G3)| = r, and that E(G3) = Lout. Let ET be the edges of a spanning tree of G3 and let E∗ be
the remaining edges. Then |Lout| = |ET |+ |E∗| = r − 1 + |E∗| < 2|Lout|/3 + |E∗| and thus

|E∗| > |Lout|
3

.

Recall that each edge in Lout = E(G3) corresponds to a vertex in I that was split when going from
G to G1. Since G3 remains connected when we delete the edge set E∗, splitting only the vertices
corresponding to E∗ in G yields a connected graph. Finally, the number of vertices of I that we can
split in G while preserving connectivity is the same as the number of links in G2 that can be deleted
while preserving connectivity. If we choose not to delete the edges that, after contradiction of G2 to G3

constitute ET , then the number of links of G2 that we can delete while preserving connectivity is,

|Lin ∪ E∗| = |Lin|+ |E∗| = |L| − |Lout|+ |E∗| > |L| − 2

3
|Lout| ≥

1

3
|L| = k

3
.

1.3.3 Lower Bounds on the DNNF Size of Tseitin formulas

In this section, we use the results of the previous sections to show our lower bounds for circuits in DNNF
computing Tseitin formulas. To this end, we will first show that we can restrict ourselves to the case of
3-connected graphs. But before that, we show that for any graph G, the size of the smallest circuit in
DNNF computing a satisfiable T (G, c) does not depends on c, especially we show that is is sufficient to
show lower bounds when c assigns 0 to every vertex. Note that, by Lemma 9, T (G, 0) is satisfiable for
every G.

Lemma 23. Let T (G, c) be a satisfiable Tseitin formula with G connected. Let D be a circuit in DNNF
computing T (G, c). Then there is a circuit D0 in DNNF computing T (G, 0) obtained by switching the
polarity of some literals in D, so |D0| = |D|.

Proof. Let v and w be two vertices of G sent to 1 by c. Denote v1 = v and vm = w and let P =
{v1v2, . . . , vm−1vm} be a path from v to w in G, which exists by connectivity. Set c′(v) = c′(w) = 0
and c′(u) = c(u) for u ̸∈ {v, w}. T (G, c′) is satisfiable. Let X = {xe | e ∈ E(G)} and consider the
bijection φ : lit(X) → lit(X) defined as φ(ℓxe) = ℓxe if e ∈ P and φ(ℓxe) = ℓxe otherwise. Seeing
truth assignments as mappings from X to lit(X), one can verify that, for all u ∈ V (G), an assignment
a satisfies

∑
e∈E(u) xe = c(u) mod 2 if and only if φ ◦ a satisfies

∑
e∈E(u) xe = c′(u) mod 2. Thus

sat(T (G, c′)) = {φ ◦ a | a ∈ sat(T (G, c))}. Switching the polarity of literal inputs in a circuit does not
impact decomposability, so the circuit D′ obtained by switching the polarity of literals input according
to φ in D is a circuit in DNNF computing T (G, c′). The number of vertices sent to 0 by c′ is that of c
minus 2. Repeating the procedure until reaching the 0-function yields D0 computing T (G, 0).

Reduction from Connected to 3-Connected Graphs

We here show why it is sufficient to prove our bound for Tseitin formulas whose graphs are 3-connected.
In [BK06], Bodlaender and Koster study how separators can be used in the context of treewidth. They
call a separator S safe for treewidth if there exists a connected component of G \ S whose vertex set V ′

is such that tw(G[S ∪ V ′] + clique(S)) = tw(G), where G[S ∪ V ′] + clique(S) is the graph induced
on S ∪ V ′ with additional edges that pairwise connect all vertices in S.
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Lemma 24. [BK06, Corollary 15] Every separator of size 1 is safe for treewidth. When G has no
separator of size 1, every separator of size 2 is safe for treewidth.

Remember that a topological minor H of aG is a graph that can be constructed fromG by iteratively
applying the following operations [Die12]:

− edge deletion,

− deletion of isolated vertices, or

− subdivision elimination: if deg(v) = 2 then delete v and, if its two neighbors are not already con-
nected, then connect them.

Note that for subdivision elimination, if the two neighbors of v are already connected, then the subdivi-
sion elimination boils down to two edge deletions followed by the deletion of the now isolated vertex v.

Lemma 25. Let H be a topological minor of G. If the satisfiable Tseitin formula T (G, 0) is computed
by a circuit in DNNF of size s, then so does T (H, 0).

Proof. Let D be a circuit in DNNF computing T (G, 0). We show how to obtain a circuit D′ in DNNF
representing T (H, 0) with |D′| = |D| whenH is obtained by applying a single operation (edge deletion,
isolated vertex deletion, subdivision elimination). The lemma will then follow by induction.

If H is obtained by deleting an isolated vertex v from G, then T (H, 0) = T (G, 0) since isolated
vertices give no constraints and thus no clauses in T (G, 0). So in this case D′ = D.

If H is obtained by deleting an edge e = uv from G, then T (H, 0) = T (G, 0)|xe. Conditioning
a circuit in DNNF on a variable assignment does not increase its size: one can just replace in D every
occurrence of xe by 0 and every occurrence xe by 1 to obtain D′. Clearly |D′| = |D|.

Finally assume that there is a vertex v of degree 2 inG incident to the edges e1 = uv and e2 = vw and
say that H is constructed from G by subdivision elimination of v. There are two cases. If uw ∈ E(G),
then H is obtained by removing v, e1 and e2 from G. In other words, H is derived from G by two
edge deletions (e1 and e2) followed by one isolated vertex deletion (v). We have already treated these
operations so we know how to obtain D′ from D in this case. If however uw ̸∈ E(G) then H is obtained
by deleting v, e1, e2 and by connecting u to w. Since c(v) = 0, the constraint χv : xe1 + xe2 = 0
mod 2 implies that, in every satisfying assignment, xe1 and xe2 take the same value. Thus, abusing
notation a little and calling e1 the edge between u and w in H (as in the following figure) we obtain that
T (H, 0) ≡ T (G, 0)|xe2 ∨ T (G, 0)|xe2

u
v

w

e1

e2

u

w

e1

We say that T (H, 0) is obtained by forgetting xe2 from T (G, 0), denoted T (H, 0) ≡ ∃xe2 .T (G, 0).
Forgetting is feasible on circuits in DNNF without size increase. Indeed forgetting xe2 from D boils
down to replacing both occurrences of xe2 and occurrences of xe2 by 1 [Dar01a]. Calling the resulting
circuit D′, we clearly have |D′| = |D|.

We remark in passing that a result analogous to Lemma 25 is also true for nFBDD and FBDD instead
of circuits in DNNF. For nFBDD this is directly clear since the forgetting operation that we use in the
proof is also possible on nFBDD without any size increase and so the same proof works. However, for
FBDD the proof is not immediate, since for them forgetting variables generally leads to an unavoidable
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blow-up in size [DM02]. The proof can still be made to work nevertheless because we are in a special
case in which the variable to forget is equivalent to a variable that remains and thus the operation is
possible without any size increase. Since we do not use Lemma 25 for nFBDD or FBDD, we leave out
the details.

Lemma 26. Let G be a graph with treewidth at least 3. Then G has a 3-connected topological minor H
with tw(H) = tw(G).

Proof. First we construct a topological minor of G with no separator of size 1 that preserves treewidth.
Let S = {v} be a separator of size 1 of G, then G \ S has a connected component V ′ such that G[S ∪
V ′] + clique(S) = G[S ∪ V ′] has treewidth tw(G). Let G′ = G[S ∪ V ′], then tw(G′) = tw(G).
Observe that G′ is a topological minor (remove all edges not in G[S ∪ V ′] thus isolating all vertices not
in S ∪ V ′, which are then deleted) where S is no longer a separator. Repeat the construction until G′ has
no separator of size 1.

Now assume S = {u, v} is a separator of G′. If V ′ are the vertices of a connected component of
G′ \ S, then there is a path from u to v in G[S ∪ V ′] since otherwise either {u} or {v} is a separator
of size 1 of G′. Lemma 24 ensures that there is a connected component H ′ in G′ \ S such that H =
(V (H ′) ∪ S,E(G[V (H ′) ∪ S]) ∪ {uv}) has treewidth tw(H) = tw(G′) = tw(G). Let us prove that H
is topological minor of G′. Consider a connected component of G′ \ S distinct from H ′ with vertices V ′

and let P be a path connecting u to v inG[S∪V ′]. Delete all edges ofG[S∪V ′] not in P , then delete all
isolated vertices in V ′ so that only P remains, finally use subdivision elimination to reduce P to a single
edge uv. Repeat the procedure for all connected components of G′ \ S distinct from H ′, the resulting
topological minor is G[V (H ′) ∪ S] with the (additional) edge uv, so it isH .

Repeat the construction until there are no separators of size 1 or size 2 left. Note that this process
eventually terminates since the number of vertices decreases after every separator elimination. The
resulting graph H is a topological minor of G of treewidth tw(G) without separators of size 1 or 2.
Since tw(H) = tw(G) ≥ 3, we have that H has at least 4 vertices, so H is 3-connected.

Lemma 26 does not hold when replacing treewidth by pathwidth. To see this, note that trees can have
arbitrarily high pathwidth, see [Sch89], and trees with more than 3 vertices are clearly not 3-connected.
Connected topological minors of trees are again trees, so a topological minor of a tree is 3-connected if
and only if it has at most three vertices and therefore its pathwidth is at most 2.

Proof of the Lower Bound on the DNNF Size for Tseitin Formulas

We are now ready to prove the main result of this section.

Theorem 5. Let T (G, c) be a satisfiable Tseitin formula where G is a connected graph with maximum
degree at most ∆. Every smooth circuit in DNNF computing T (G, c) has size at least 2Ω(tw(G)/∆).

Proof. By Lemma 23 we can set c = 0. By Lemmas 25 and 26 we can assume thatG is 3-connected. We
show that the adversarial multi-partition rectangle complexity is lower-bounded by 2k for k = 2tw(G)

9∆ . To
this end, we show that the rectangles that Charlotte can construct after Adam’s answer are never bigger
than 2|E(G)|−|V (G)|−k+1. Since T (G, c) has 2|E(G)|−|V (G)|+1 models, the claim then follows.

So let Charlotte choose an assignment a and a vtree T . Note that since the variables of T (G, 0) are the
edges ofG, the vtree T is also a branch decomposition ofG. Now by the definition of branchwidth, Adam
can choose a cut of T inducing a partition (E1, E2) of E(G) for which there exists a set V ′ ∈ V (G) of
at least bw(G) ≥ 2

3 tw(G) vertices incident to edges in E1 and to edges in E2.
G has maximum degree ∆ so there is an independent set V ′′ ⊂ V ′ of size at least |V ′|

∆ . Since G is
3-connected, by Lemma 22 there is a subset V ∗ ⊆ V ′′ of size at least |V ′′|

3 ≥ 2tw(G)
9∆ = k such that G
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remains connected after splitting of the nodes in V ∗ along the partition of their neighbors induced by
the edges partition (E1, E2). Using Lemma 18, we find that any rectangle r for the partition (E1, E2)
respects a subconstraint χ′

v for each v ∈ V ∗. So r respects T (G, 0) ∧
∧

v∈V ∗ χ′
v. Finally, Lemma 21

shows that |sat(r)| ≤ 2|E(G)|−|V (G)|−k+1, as required.

Then we have shown a bound on the size of the smallest circuit in DNNF representing a satisfiable Tseitin
formula, that can be summarized as follows. Let H be the 3-connected topological minor of G chosen
by Lemma 26.

DNNF size for T (G, c)
= DNNF size for T (H, 0)

≥ DNNF size for T (H, 0)

≥ aR(T (H, 0))

≥ 2k where k = 2 tw(H)/(9(∆(H) + 1))

= 2k where k = 2 tw(G)/(9(∆(H) + 1))

≥ 2k where k = 2 tw(G)/(9(∆(G) + 1))

(Lemma 23)

(Lemma 25)

(Theorem 7)

(proof of Theorem 5)

(Lemma 26)

(∆(G) ≥ ∆(H))

We note that a similar lower bound using pathwidth instead of treewidth holds on the size of the
smallest nFBDD computing a Tseitin formula. But then, as explained before, the reduction to Tseitin
formulas structured by 3-connected graphs does not preserve the pathwidth. So we can only phrase our
result with pathwidth for Tseitin formulas whose graphs are already 3-connected.

Lemma 17. Let T (G, c) be a satisfiable Tseitin formula where G is a 3-connected graph with maximum
degree at most ∆. Then every nFBDD computing T (G, c) has size at least 2Ω(pw(G)/∆).

Proof. The proof is the similar to that of Theorem 5. Again by Lemma 23 we can set c = 0 and this time
it is assumed in the lemma thatG is 3-connected. The proof then follows the proof of Theorem 5 to show
that the linear adversarial multi-partition rectangle complexity is lower-bounded by 2k for k = pw(G)

3∆ .
So we use Corollary 1 instead of Theorem 7. One just needs to follow the second and third paragraphs
of the proof of Theorem 5, replacing vtree by linear vtree, branch decomposition by linear branch
decomposition, branchwidth with linear branchwidth, and using the inequality bwℓ(G) ≥ pw(G) from
Lemma 1.

We recall that Lemma 17 can be compared with a result of Itsykson et al. who, as mentioned be-
fore, proved that the nFBDD size for any satisfiable Tseitin formula T (G, c) is between 2compw(G) and
|E(G)| × 2compw(G) + 2 where compw(G) is the component width of G, a width parameter whose def-
inition we omit. The component width is related to the treewidth and the pathwidth by the following
relation: 1

2(tw(G) − 1) ≤ compw(G) ≤ pw(G) + 1. Lemma 17 also shows that the component width
and the pathwidth are linearly related for 3-connected graphs whose maximum degree is bounded by a
constant. However, since the component width of trees is 0 while the pathwidth is unbounded, Lemma 17
does not extend to cases where G is not 3-connected.

1.4 Conclusion and Perspectives

The multi-partition rectangles cover technique, initially a tool from communication complexity, has
proved to be very practical for showing large lower bounds on the DNNF size of several functions
ever since it has been introduced for knowledge compilation [BCMS16]. We have used this technique to
prove exponential lower bounds on the DNNF size of two new classes of functions.
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First we have shown that pseudo-Boolean constraints may, for specific thresholds and specific weights
to the variables, have DNNF size exponential in the number of variables. Our result shows that methods
that involve compiling every constraint of a problem in DNNF are ill-suited depending on the types of
constraints (for instance techniques for finding propagation complete encodings of constraints [KS19]).
But we have only analyze a worst case scenario. We leave open the more difficult problem of character-
izing pseudo-Boolean constraints whose DNNF size is not polynomial in the number of variables.

We have also shown that the DNNF size of satisfiable Tseitin formulas, whose underlying graph has
maximum degree bounded by a constant, is characterized by the treewidth of the graph: such formulas
have DNNF size polynomial in the number of variables n if and only if the treewidth of the graph is at
most O(log(n)). To obtain this result, we have improved the multi-partition rectangles cover technique.
The inspiration for the improved technique, called the adversarial multi-partition rectangles cover game,
came from the work of Razgon in [Raz16]. It takes the form of a two-player game and its main advantage
is that it relaxes the requirement of working with rectangles over balanced partitions.

One year after our exponential lower bound for Tseitin formulas was presented in [dCM21a], it was
generalized by Itsykson, Riazanov and Smirnov in [IRS22] to the case of satisfiable Tseitin formulas over
any graph (and not only graphs of bounded degree). Notably, they still use the adversarial multi-partition
rectangles cover game to prove their result. There certainly are other functions that are hard to compile
to DNNF and for which the classical multi-partition rectangle cover technique fails to give good lower
bounds on the DNNF size. It would be interesting to see the extent to which our new technique is useful
for these functions. With the result of Itsykson et al., there may not be much left to prove on the DNNF
size of Tseitin formulas, but we are not done with Tseitin formulas in this thesis! Indeed the bound on
their DNNF size is instrumental for proving several other results, that are presented in other chapters.
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Chapter 2

Lower Bounds for Approximate
Knowledge Compilation

When the compiled form of a function in a language L is too large, and when the context allows it,
one can try to compile an approximation of the function with the hope that the its representation in L is
smaller. The approximation error intuitively depends on the nature of the queries to be answered on the
(approximate) function, but in any case this error must be controlled to avoid arguably useless approx-
imations like constant 0 functions. In this chapter we first study a notion of approximation introduced
for FBDDs and OBDDs that we call weak approximation, we show that there are functions whose weak
approximations all have d-DNNF size exponential in the number of variables. Then we give arguments
against weak approximation in the context of (approximate) model counting and introduce a second no-
tion that we call strong approximation that avoid some of the problems of weak approximation. We show
that there are functions that have arguably useless weak approximation that can be represented by small
circuits in d-DNNF while their strong approximations have d-DNNF size exponential in the number of
variables.

2.1 State of Approximate Knowledge Compilation

The viability of knowledge compilation for reasoning on a Boolean function depends on the size of the
compiled form of that function. A large compiled form requires a long compilation time and, more
importantly, often implies that answers to queries will take longer to get. As we have seen in the pre-
vious chapter, the compilation of Boolean functions into DNNF is often bound to generate very large
circuits. Actually there is no language that supports polynomial time clausal entailment (like DNNF)
where all Boolean functions have polynomial-size compiled form unless the polynomial hierarchy col-
lapses [SK91, SK96]. To overcome this difficulty one may resort to approximation during compilation.
Approximate knowledge compilation suggests compiling an approximation of the initial function when
the exact compiled form is too large. Before using approximation, one must ensure that introducing
errors is authorized by the context. Indeed, depending on the application of the function to be compiled,
approximation is not necessarily an option, for instance a function that decides whether to administer a
certain drug based on a patient symptoms should never generate erroneous results for obvious reasons.
Even when approximation is an option, the approximation error must be controlled to avoid, for instance,
that a function with hundreds of models out of thousands of truth assignments be approximated by the
constant 0 function.

One canonical area where approximate knowledge compilation makes sense is probabilistic reason-
ing. In this setting, one wants to compile classifiers based on graphical models, for instance Bayesian
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networks, to then reason about the classifiers by querying the compiled representation [CD03]. The most
important language in this setting is that of circuits in d-DNNF, which allow for efficient (weighted)
model counting and probability computation and are thus particularly well-suited for probabilistic rea-
soning [Dar01b]. Recall that circuits in d-DNNF are generalizations of other important models of com-
putation like OBDD [Bry86] and SDD [Dar11], which have also found applications in probabilistic rea-
soning [CD03, CKD13, SCD19b]. Since graphical models like Bayesian networks are almost exclusively
inferred by learning processes, they are inherently not exact representations of the world. In particular for
Bayesian networks, the structure of the network can capture the exact dependencies between variables,
but the conditional probability tables are approximate. Thus, when reasoning about graphical models, in
most cases the results do no have to be exact but approximate reasoning is sufficient, assuming that the
approximation error can be controlled and is small. It is thus natural in this context to consider approxi-
mate knowledge compilation. Recently, Chubarian and Turán [CT20] showed, building on [GKM+11],
that this approach is feasible in some settings: it is possible to compile efficiently approximations of
so-called Tree Augmented Naive Bayes classifiers (TAN) (or more generally bounded pathwidth Bayes
classifiers) into OBDD. Note that efficient exact compilation is ruled out in this setting due to strong
lower bounds for threshold pseudo-Boolean functions, as shown in Chapter 1 of this thesis, which imply
lower bounds for TAN.

Horn Approximations. Approximation was considered already in some of the earliest work on knowl-
edge compilation by Selman and Kautz [SK91, SK96]. Their approximate compilation scheme is to
construct Horn formulas Hl and Hu that approximate an input CNF formula ϕ by Hl |= ϕ |= Hu.
The purpose of this method is to perform approximate clausal entailment on ϕ (clausal entailment being
tractable on Horn formulas). However, the focus was different in this setting: Horn formulas are not fully
expressive so the question becomes that of understanding the formulas that are the best out of all Horn
formulas approximating a function, instead of requesting error guarantees for the approximation. More-
over the task of efficiently finding an optimal approximation in this scheme has some serious complexity
impediments as pointed out in [KPS93].

DNNF and BDD Approximations. Regarding compilation to the DNNF language, the very first ap-
proximate compilation schemes were given by Darwiche along with the first exact compilation algo-
rithms [Dar01a]. The exact algorithms for compiling CNF formulas proposed by Darwiche – and ac-
tually all subsequent top-down compilation algorithms – alternate between conditioning the formula on
partial assignments to its variables and looking for disjoint components of a graph of the conditioned
CNF (hypergraph, primal graph, dual graph, etc.) to create decomposable ∧-nodes. The proposed ap-
proximation consisted in either ignoring variables or ignoring assignments when conditioning. In another
direction, the approximation scheme introduced in [PD07] – initially as a first step for solving approxi-
mate MaxSAT – modifies the initial CNF formula by replacing some occurrences of variables by fresh
literals before compilation. This replacement can only decrease the primal treewidth of the formula,
a fortiori it decreases the value of known upper bounds on the smallest size of the compiled form in
DNNF, d-DNNF or SDD (which we recall are exponential in the primal treewidth of the formula). After
compiling the modified formula in DNNF, the additional variables can be forgotten to obtain a circuit
in DNNF that approximately computes the initial formula and is entailed by it. These approximation
schemes are mostly concerned with the size of the resulting circuit. No approximation error has been
defined for these schemes, and the only guarantee on the quality of the approximate circuit in DNNF is
that it either entails or is entailed by the initial formula. Since the sublanguages OBDD and FBDD of
DNNF were known and studied before DNNF was introduced, the research on approximate compilation
to these sublanguage has developed independently to that on compilation to DNNF and has been more
concerned with the approximation error. A measure of the quality of an approximate OBDD or FBDD
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has been defined in [BSW02] as the probability that this circuit disagrees with the initial function on a
random truth assignment. Bollig et al. show that compiling good approximations to OBDD with respect
to this measure is intractable for some classes of functions [BSW02].

Randomized BDDs. It is common that approximation methods rely on randomization. The randomized
algorithms called Monte Carlo algorithms often have a step where some elements are sampled according
to a probability distribution (often the uniform distribution) over a large set of objects. The algorithm
gains time as it avoids exploring large sets of objects, but in exchange it returns is an estimate of the
correct answer. A usual amplification technique to improve the confidence on the estimate is to perform
several independent runs of the algorithm and to generate a global estimate (like the mean or the median
of the results of every run). As an example, Karger algorithm is a randomized algorithm that generates
a cut of a graph that is close to minimum by randomly sampling edges of the graph to contract [KS96].
OBDDs and FBDDs are, in a sense, programs to search the set of solutions of a function (hence the alter-
nate name “branching programs”) and one can introduce randomization in these circuits by giving them
access to additional nodes called “guess nodes” and to an additional sink labelled by “?”. The circuits are
then called randomized OBDDs and randomized FBDDs. Guess nodes are unlabelled binary nodes, that
essentially introduce non-determinism to the circuit, as do ∨-nodes in nOBDDs and nFBDDs. Given a
truth assignment, a computation path is constructed in a randomized OBDD (resp. FBDD) circuit like
in a normal OBDD (resp. FBDD), except that when a guess node is met, the child to add to the path is
chosen with probability 1/2 (this is a sampling step). So for a given assignment a randomized OBDD or
FBDD has a certain probability to reach the sink 1. As such, these objects can be used to approximately
represent Boolean functions. The approximation error is the probability that on a random assignment, the
randomized OBDD (resp. FBDD) reaches the wrong sink (the sink 0 or “?” if the assignment is a model
of the function, and the sink 1 or “?” otherwise). In [Weg00, Chapter 11], Wegener gives a collection of
functions that are hard to exactly compile in OBDD and that have small approximations as randomized
OBDDs whose error can be controlled, and also examples of functions that are only computed by large
OBDDs and that cannot be approximated by small randomized OBDDs.

Contributions. Looking at what has been done for approximate compilation to DNNF or OBDD, one
sees that the definition of a “good” approximation (regardless of the size of its compiled form) should
intuitively depends on the reasoning performed on the compiled form. Typically, the expectations in
terms of guarantees for an approximate function seems different when it is queried for clausal entailment
than when it is used for counting. In the latter case, one may want the proportion of satisfying (resp.
falsifying) assignments of the approximation to be close to that of the initial function. While in the
former case one may focus on finding good upper and lower approximations with respect to entailment
as in [SK91, SK96, Dar01a]. Then the answer of a clausal entailment query on the initial function is
known when the upper approximation entails the given clause (then so does the initial function) or when
the lower approximation does not entail the given clause (then neither does the initial function). In this
chapter we study two notions of approximations. The first one, that we call weak approximation, is
the one previously used for representing approximations by OBDDs [KSW99, BSW02]. We adapt a
result of [BSW02] to find an infinite class of functions that are hard to compile in d-DNNF, due to their
large d-DNNF size, and show that the same holds for any of their weak approximations. Then we will
see that weak approximation has shortcomings that make it the wrong notion to use for approximate
model counting when the number of models of the function to approximate is not large enough. We then
remedy the situation by formalizing the new notion of strong approximation. While not formalized as
such, it can be verified that the OBDDs of [CT20, GKM+11] are in fact strong approximations in our
sense. We show the existence of an infinite class of functions for which the constant 0 function is a weak
approximation (though a fairly useless one) that is clearly easily represented as a circuit in d-DNNF, but
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such that the d-DNNF size of any strong approximation of the functions is exponential in the number of
variables. The results of this chapter have been published in the article [dCM20] co-authored with Stefan
Mengel.

2.2 Lower Bounds for Weak Approximation to d-DNNF

In this chapter, we measure the quality of an approximation by looking at how close its sets of models and
counter-models are to that of the initial function. We start by considering the notion of approximation
that has been studied for different forms of branching programs before, see e.g. [KSW99, BSW02]. To
differentiate it from other notions, we give it the name weak approximation.

Definition 32 (Weak approximation). Let D be a distribution on the truth assignments to X and ε > 0.
We say that f̃ is a weak ε-approximation of f (or weakly ε-approximates f ) with respect to D if

Pr
a∼D

[
f(a) ̸= f̃(a)

]
≤ ε.

When D is the uniform distribution U , the condition of weak ε-approximability is equivalent to |{a |
f(a) ̸= f̃(a)}| ≤ ε2n.

Note that weak ε-approximation is only useful when ε < 1/2. This is because every function has
a trivial (1/2)-approximation: if Pra∼D [f(a) = 1] > 1/2, then the constant 1-function is a (1/2)-
approximation, otherwise this is the case for the constant 0-function. Note that it might be hard to decide
which case is true – for instance if f is given as a formula then deciding whether Pra∼U [f(a) = 1] > 1/2
is the PP-complete problem MAJSAT – but in any case we know that the approximation ratio of one of
the constants is good.

When ε < 1/2, weak-approximation used in the context of approximate compilation suffers from
some impediments. Indeed, Bollig et al. [BSW02] show that there are classes of functions such that all
OBDDs computing any ε-approximation with respect to U have exponential size. We lift their techniques
to circuits in d-DNNF showing that the same functions are also hard for these circuits.

Theorem 9. For every 0 ≤ ε < 1/2, there is a class of Boolean functions C such that, for any f ∈ C on
n variables, f can be represented by a formula of size O(poly(n)) but any circuit in d-DNNF computing
a weak ε-approximation of f with respect to U has size 2Ω(n).

The Boolean functions in C are actually bilinear forms on the vector space Fn
2 , whose elements are

vectors of n elements in {0, 1}, whose product operator is the element-wise conjunction and whose sum
operator is the element-wise xor (exclusive disjunction). Bilinear forms on Fn

2 are function from Fn
2 ×F2

to Fn
2 of the form f(x, y) = x⊤Ay for x, y ∈ {0, 1}n and A an n × n matrix of 0s and 1s. These

functions are seen as Boolean functions from {0, 1}n × {0, 1}n to {0, 1} and can be written as Boolean
formulas over 2n variables using only the connectors ∧ and ⊕ (exclusive disjunction), see Example 18.

It should be clear from the theorem statement that any exact compilation of functions of the class C
to d-DNNF also results in circuits of size exponential in n (since f is a weak-approximation of f ). So
the theorem states that there are functions with polynomial-size representation as formulas (though not
CNF formulas) but such that all exact and weak approximate representations in d-DNNF are too large.
The proof of Theorem 9 follows exactly that of Bollig et al. for OBDDs, differing near the end only. A
central element of the proof is the notion of discrepancy.

The discrepancy method. We want to use Theorem 2 to bound the size of circuits in d-DNNF com-
puting a weak ε-approximation f̃ of f with respect to some distribution. To this end we study disjoint
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balanced rectangle covers of f̃ . Let r be a rectangle from such a cover. r can make false positives on f ,
i.e., have models that are not models of f . The set of false positives of r on f is r−1(1) ∩ f−1(0).
Similarly, true positives are models shared by r and f , i.e., assignments in r−1(1) ∩ f−1(1). The dis-
crepancy Disc (f, r) of f on r is the difference between the number of false positives and true positives,
normalized by the total number of assignments. Let n = |var(f)|, then

Disc (f, r) =
∣∣|r−1(1) ∩ f−1(1)| − |r−1(1) ∩ f−1(0)|

∣∣/2n.
A small discrepancy indicates that r has few models (i.e., both r−1(1)∩f−1(0) and r−1(1)∩f−1(1) are
small) or that it makes roughly as many false positives as true positives on f (i.e., |r−1(1) ∩ f−1(0)| ≈
|r−1(1) ∩ f−1(1)|). Proving large lower bounds by Theorem 2 is easier when the rectangles of the
balanced cover are small. Intuitively, if all rectangles in a cover of f̃ have a small discrepancy then
either they are small (as desired), or they make many false positives on f and therefore f̃ is not a good
approximation of f . Discrepancy bounds based on this idea have been used before to prove results in
distributional communication complexity [KN97, Chapter 3.5]. We show that when there is an upper
bound on Disc (f, r) for all rectangles r in every cover of f̃ , one can obtain a lower bound on the size of
the cover of f̃ .

Lemma 27. Let f be a Boolean function over n variables and let f̃ be a weak ε-approximation of f with
respect to U . Let f̃ =

∨K
k=1 rk be a disjoint (balanced) rectangle cover of f̃ and assume that there is an

integer ∆ > 0 such that Disc (f, rk) ≤ ∆/2n for for all rk. Then K ≥ (|f−1(1)| − ε2n)/∆.

Proof. We have |f ̸= f̃ | = |{a | f(a) ̸= f̃(a)}|

= |f−1(1) ∩ f̃−1(0)|+ |f−1(0) ∩ f̃−1(1)|

=
∣∣f−1(1) ∩

⋂K

k=1
r−1
k (0)

∣∣+ ∣∣f−1(0) ∩
⋃K

k=1
r−1
k (1)

∣∣
= |f−1(1)| −

K∑
k=1

(|r−1
k (1) ∩ f−1(1)| − |r−1

k (1) ∩ f−1(0)|)

≥ |f−1(1)| − 2n
∑K

k=1
Disc (f, rk)

≥ |f−1(1)| −K∆

where the last equality is due to the rectangles being disjoint. The weak ε-approximation with respect to
the uniform distribution U gives that |f̃ ̸= f | ≤ ε2n, which we use to conclude.

Combining Lemma 27 with Theorem 2, the proof of Theorem 9 boils down to showing that there are
functions such that for every balanced rectangle r, the discrepancy Disc (f, r) can be suitably bounded,
as shown in [BSW02].

Proof sketch of Theorem 9. The hard functions are particular bilinear forms. Recall that a function f :
{0, 1}n × {0, 1}n → {0, 1} is a bilinear form if it is linear in each of its two arguments. Every Boolean
bilinear form is characterized by an n× n matrix A over {0, 1} by the relation f(a, b) = a⊤Ab. Such a
function has 22n−1(1−2−rk(A)) models (there are 2n−2n−rk(A) vectors b such that Ab ̸= 0 and for each
such Ab there are 2n−1 vectors a such that a⊤Ab ̸= 0). Bilinear forms can be seen as Boolean functions
from {0, 1}2n to {0, 1}, yet we find convenient to keep the notation f(a, b) and refer to two sets of n
variables X and Y .

A result of particular interest is the following lemma due to Ajtai [Ajt05]. It states that for n large
enough, there exist matrices with a lower bound on the rank of any large enough submatrix.
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Claim 3 (Ajtai Lemma). [Ajt05] Take 0 < δ ≤ 1/2 such that δ log(1/δ)2 ≤ 2−16. There exist exponen-
tially many matrices of size n× n for which each square submatrix of size at least δn× δn has rank at
least δ′n, where δ′ = δ/(256 log(1/δ))2.

Let f be a bilinear form whose matrixH is that given by Ajtai Lemma and let f̃ be a weak ε-approximation
with respect to U , Bollig et al. use the discrepancy method to bound the discrepancy of f with respect to
any rectangle r from a disjoint balanced rectangle cover of f̃ . Their discrepancy bound comes from the
following result shown by Babai et al.

Claim 4. [BHK01] Let X and Y be sets of variables and |X| = |Y | = n. Let f ′ : {0, 1}X ×{0, 1}Y →
{0, 1} be a bilinear form characterised by the matrixA, and let r′ be a rectangle overX∪Y with respect
to the partition (X,Y ), then Disc (f ′, r′) ≤

√
Prb [Ab = 0] = 2−rk(A)/2.

Bollig et al. use several arguments to bound the discrepancy Disc (f, r) from above by a fraction of
Disc (f ′, r′) with f ′ a bilinear form characterised by some submatrix A of size δn× δn of the matrix H
of f . Then using the properties of that matrix H they obtained the following:

Claim 5. [BSW02, Proof of Theorem 21] Let f a bilinear form whose matrix is that given by Claim 3
and let f̃ a weak ε-approximation with respect to U . We have Disc (f, r) ≤ 2−δ′n/2−2 for every rectangle
from a cover of f̃ with respect to a balanced partition, where δ′ is defined as in Claim 3.

Now let
∧Rd(f̃)

k=1 rk be a disjoint balanced rectangle cover of f̃ . It follows from Lemma 27 and Claim 5
that

Rd(f̃) ≥
|f−1(1)|2−2n − ε

2−δ′n/2−2
≥ 2−1 − 2−δ′n−1 − ε

2−δ′n/2−2
≥ 2δ

′n/2+2

(
1

2
− ε

)
− 2−δ′n/2+2

δ′ is a constant defined independently of n (because δ′ depends solely on δ which is defined independently
of n) so this proves that the number of disjoint rectangles respecting balanced partition in the cover of f̃
is 2Ω(n). We use Theorem 2 to conclude.

Theorem 9 is a straightforward generalization of the result on OBDDs in [BSW02] since the d-DNNF
size of a Boolean function is never smaller than a constant factor time its OBDD size, and its actually
exponentially smaller in some cases [DM02].

2.3 Strong ε-Approximations

That some functions have only weak approximations that cannot be computed by small circuits in d-
DNNF is not the main argument against using weak approximation in approximate knowledge compila-
tion. We discuss another shortcoming of weak approximation and propose a stronger notion of approxi-
mation that avoids it.

Definition 33. Let f be a Boolean function. f is trivially weakly ε-approximable (with respect to some
distribution) if the constant 0 function is a weak ε-approximation of f .

Considering approximations with respect to the uniform distribution, it is easy to find classes of functions
that are trivially weakly approximable.

Lemma 28. Let ε > 0 and 0 ≤ α < 1. Let C be a class of functions such that every function in C over
n variables has at most 2αn models. Then there exists a constant n0, such that any function from C over
more than n0 variables is trivially weakly ε-approximable with respect to the uniform distribution.
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Proof. Let n0 = 1
1−α log(1ε ) and choose f any function from C over n > n0 variables. Then |{a |

f(a) ̸= f0(a)}| = |f−1(1)| ≤ 2αn < ε2n. Therefore f0 is a weak ε-approximation (with respect to the
uniform distribution) of any function of C over sufficiently many variables.

We remark that similar trivial approximation results can be shown for other distributions if the prob-
ability of a random assignment with respect to this distribution being a model is very small. As a con-
sequence, weak approximation makes no sense for functions with “few” (or “improbable”) models, es-
pecially in the context of model counting. However such functions are often encountered, for example,
random k-CNF with sufficiently many clauses are expected to have few models, see [ACH+21] for the
case k = 2. Furthermore, even for functions with “many” models, one often studies encodings over
larger sets of variables. For instance, when using Tseitin encoding to transform Boolean circuits into
CNF, one introduces auxiliary variables that compute the value of sub-circuits under a given assign-
ment. Generally, auxiliary variables are often used in practice since they reduce the representation size
of functions, see e.g. [Pre21]. The resulting encodings have more variables but most of the time the same
number of models as the initial function (this is for instance the case of Tseitin encoding). Consequently,
they are likely to be trivially weakly approximable from Lemma 28.

Example 18. The Tseitin encoding of a⊕ b is z ∧ (z ∨ a ∨ b) ∧ (z ∨ a ∨ b) ∧ (z ∨ a ∨ b) ∧ (z ∨ a ∨ b)
which we shorten as z∧Ts(z, a⊕b). For larger xor-sum we define the encoding inductively, for instance
a⊕ b⊕ c is encoded as z′ ∧Ts(z′, z⊕ c)∧Ts(z, a⊕ b). We also define the Tseitin encoding of a∧ b as
z ∧ Ts(z, a ∧ b) = z ∧ (z ∨ a) ∧ (z ∨ b) ∧ (z ∨ a ∨ b). To illustrate that encoding can render a formula
trivially weakly approximable, we give the Tseitin encoding of Boolean bilinear forms (which are the
hard functions of Theorem 9). Let us encode

f(X,Y ) =
(
x1 x2 x3

)1 1 0
0 1 1
1 1 1

y1y2
y3


as the CNF formula

ϕ(X,Y, Z) = Ts(z1, y1 ⊕ y2) ∧ Ts(z2, y2 ⊕ y3) ∧ Ts(z3, z1 ⊕ y3)∧
Ts(z5, x1 ∧ z1) ∧ Ts(z6, x2 ∧ z2) ∧ Ts(z7, x3 ∧ z3)∧
Ts(z8, z5 ⊕ z6) ∧ Ts(z9, z7 ⊕ z8) ∧ z9

where Z = {z1, . . . , z9}. We have that f(X,Y ) ≡ ∃Z.ϕ(X,Y, Z) and |sat(ϕ)| = |f−1(1)| = 28. So ϕ
is trivially ε-weakly approximated for any ε ≥ 28/215 ≈ 0, 00085. ◀

For these reasons we define a stronger notion of approximation.

Definition 34 (Strong approximation). Let D be a distribution of the truth assignments to X and ε >
0. Let f be a Boolean function over X . We say that the Boolean function f̃ over X is a strong ε-
approximation of f (or strongly ε-approximates f ) with respect to D if

Pr
a∼D

[
f(a) ̸= f̃(a)

]
≤ ε Pr

a∼D
[f(a) = 1] .

When D is the uniform distribution U , the condition of strong approximability is equivalent to |{a |
f(a) ̸= f̃(a)}| ≤ ε|f−1(1)|. It is easy to see that strong approximation does not have the problem
described in Lemma 28 for weak approximation. Strong approximation has been modelled to allow for
efficient counting. In fact, a circuit in d-DNNF computing a strong ε-approximation of a function f
allows approximate model counting for f with approximation factor ε.
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Chapter 2. Lower Bounds for Approximate Knowledge Compilation

Strong approximation has implicitly already been used in knowledge compilation. For instance it
has been shown in [GKM+11] – although the authors use a different terminology – that for ε > 0, any
knapsack function over n variables has a strong ε-approximation with respect to U that is computed by an
OBDD of size polynomial in n and 1/ε. The generalization of the result to Tree Augmented Naive Bayes
Classifiers (TAN) [CT20] also uses strong approximations. These results are all the more significant since
we know from [HTKY97, dC20] that there exist threshold functions that are only computed by OBDDs
of size exponential in n.

Obviously, a strong approximation of f with respect to some distribution is also a weak approxi-
mation. Thus the statement of Theorem 9 can trivially be lifted to strong approximation. However the
bilinear forms that serve as hard functions for Theorem 9 necessarily have sufficiently many models:
if we are to consider only functions with few models, then they all are trivially weakly approximable.
Yet we prove in the next section that there exist trivially weakly approximable functions such that the
d-DNNF size of any of its strong ε-approximation is exponential in n. Our proof follows the discrepancy
method but relies on the following variant of Lemma 27 for strong approximation.

Lemma 29. Let f be a Boolean function over n variables and let f̃ be a strong ε-approximation of f
with respect to U . Let f̃ =

∨K
k=1 rk be a disjoint (balanced) rectangle cover of f̃ and assume that there

is an integer ∆ > 0 such that Disc (f, rk) ≤ ∆/2n for for all rk. Then K ≥ (1− ε)|f−1(1)|/∆.

Proof. The proof is essentially the same as for Lemma 27, differing only in the last lines where we use
|f̃ ̸= f | ≤ ε|f−1(1)| rather than |f̃ ̸= f | ≤ ε2n.

2.4 Large d-DNNF Size for Strong Approximations

In this section, we show a lower bound on the size of circuits in d-DNNF computing strong approxima-
tions of some functions that have weak approximations by small circuits in d-DNNF.

2.4.1 Large d-DNNF Size for Strong Approximations of Linear Codes

The functions we consider are characteristic functions of linear codes which we introduce now: a linear
code of length n is a linear subspace of the vector space {0, 1}n. Vectors from this subspace are called
code words. A linear code is characterized by an m× n parity check matrix H over {0, 1} as follows: a
vector a ∈ {0, 1}n is a code word if and only if Ha = 0m. The characteristic function of a linear code
is a Boolean function satisfied by exactly the code words and that can thus be represented compactly as a
system of m parity constraints over n variables. Note that the characteristic function of a length n linear
code whose check matrix isH has 2n−rk(H) models, where rk(H) denotes the rank ofH . Following ideas
developed in [DHJ+04], we focus on linear codes whose check matrices H have the following property:
H is called s-good for some integer s if any sub-matrix obtained by taking at least n/3 columns1 fromH
has rank at least s. The existence of s-good matrices for s = m− 1 is guaranteed by the next lemma.

Lemma 30. [DHJ+04] Letm = n/100 and sample anm×n parity check matrixH uniformly at random
over {0, 1}. Then H is (m− 1)-good with probability 1− 2−Ω(n).

Our interest in linear codes characterized by s-good matrices is motivated by another result from
[DHJ+04] which states that the maximal size of any rectangle entailing the characteristic function of
such a code decreases as s increases.

1Duris et al. [DHJ+04] limit to sub-matrices constructed from at least n/2 columns rather than n/3; however their result
can easily be adapted.
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Lemma 31. [DHJ+04] Let f be the characteristic function of a linear code of length n characterized by
the s-good matrix H . Let r be a rectangle with respect to a balanced variable partition and such that
r ≤ f . Then |r−1(1)| ≤ 2n−2s.

Combining Lemmas 30 and 31 with Theorem 2, one gets the following result that was already ob-
served in [Men16]:

Theorem 10. There exists a class of linear codes C such that, for any code from C of length n, any circuit
in d-DNNF computing its characteristic function has size 2Ω(n).

In the following, we will show that not only are characteristic functions hard to represent exactly as
circuits in d-DNNF, they are even hard to strongly approximate.

Given the characteristic function f of a length n linear code of check matrix H , f has exactly
2n−rk(H) models. When rk(H) = Ω(n), f satisfies the condition of Lemma 28, so for every ε > 0
and n large enough, f is trivially weakly ε-approximable with respect to the uniform distribution. How-
ever we will show that any strong ε-approximation f̃ of f with respect to the uniform distribution is
computed only by circuits in d-DNNF of size exponential in n.

To show this result, we will use the discrepancy method: we are going to find a bound on the discrep-
ancy of f on any rectangle from a disjoint balanced rectangle cover of f̃ . Then we will use the bound in
Lemma 29 and combine the result with Theorem 2 to finish the proof.

Note that it is possible that a rectangle from a disjoint rectangle cover of f̃ makes no false positives
on f . In fact, if this is the case for all rectangles in the cover, then f̃ ≤ f and in this case, lower bounds
can be shown essentially as in the proof of Theorem 10. We assume that no rectangle makes more false
positives on f than it accepts models of f , because if such a rectangle r exists in a disjoint cover of f̃ , then
deleting r leads to a better approximation of f than f̃ . Thus it is sufficient to consider approximations
and rectangle covers in which all rectangles verify |r−1(1) ∩ f−1(1)| ≥ |r−1(1) ∩ f−1(0)|.

Definition 35. Let r be a rectangle. A core rectangle (more succinctly a core) of r with respect to f is a
rectangle rcore respecting the same partition as r and such that

1. rcore ≤ f and rcore ≤ r,

2. rcore is maximal in the sense that there is no r′ satisfying 1. such that |r′−1(1)| > |r−1
core(1)|.

Note that if r ≤ f , then the only core rectangle of r is r itself. Otherwise r may have several core
rectangles. We next state a crucial lemma on the relation of discrepancy and cores whose proof we defer
to later parts of this section.

Lemma 32. Let f be the characteristic function of some length n linear code, let r be a rectangle with
more true positives than false positives on f , and let rcore be a core rectangle of r with respect to f , then

Disc (f, r) ≤ 1

2n
|r−1

core(1)|.

Lemma 32 says the following: consider a rectangle rcore ≤ f which is a core of a rectangle r. If
r accepts more models of f than rcore, then for each additional such model, r accepts at least one false
positive. With Lemma 32, it is straightforward to show the main result of this section.

Theorem 11. Let 0 ≤ ε < 1. There is a class of Boolean functions C such that for any f ∈ C on n
variables

• f has a compact representation as a system of O(n) parity constraints over var(f),

65



Chapter 2. Lower Bounds for Approximate Knowledge Compilation

• f is trivially weakly ε-approximable with respect to U ,

• any circuit in d-DNNF computing a strong ε-approximation of f with respect to U has size 2Ω(n).

Proof. Choose C to be the class of characteristic functions for length n linear codes characterized by
(m−1)-good check matrices withm = n/100. Existence of these functions as n increases is guaranteed
by Lemma 30. Let f̃ be a strong ε-approximation of f ∈ C with respect to U and let

∨K
k=1 rk be a

rectangle cover of f̃ . Combining Lemma 32 with Lemma 31, we obtain Disc (f, rk) ≤ 2−n2n−2(m−1).
We then use Lemma 29 to get K ≥ (1 − ε)22m−n|f−1(1)|/4. The rank of the check matrix of f is at
mostm so |f−1(1)| ≥ 2n−m andK ≥ (1−ε)2m/4 = (1−ε)2Ω(n). We use Theorem 2 to conclude.

Note that Theorem 11 is optimal with respect to ε since for ε = 1 there is always the trivial approxi-
mation by the constant 0 function.

It remains to show Lemma 32 in the remainder of this section to complete the proof of Theorem 11.
To this end, we need another definition.

Definition 36. Let (X1, X2) be a partition of var(f). A core extraction operator with respect to f is a
mapping Cf that maps every pair (S1, S2) of sets of assignments to X1 and X2, respectively, to a pair
(S′

1, S
′
2) such that

a) S′
1 ⊆ S1 and S′

2 ⊆ S2,

b) assignments from S′
1 × S′

2 are models of f ,

c) if f has no model in S1 × S2, then S′
1 = S′

2 = ∅,

d) S′
1 and S′

2 are maximal in the sense that for every S′′
1 ⊆ S1 and every S′′

2 ⊆ S2 respecting the
properties a), b) and c), we have |S′

1||S′
2| ≥ |S′′

1 ||S′′
2 |.

Intuitively S′
1 and S′

2 are the largest subsets one can extract from S1 and S2 such that assignments
from S′

1 × S′
2 are models of f . Note that, similarly to rectangle cores, the sets S′

1 and S′
2 are not

necessarily uniquely defined. In this case, we assume that Cf returns an arbitrary pair with the required
properties. One can show that core extraction operators yield core rectangles, as their name suggests.

Claim 6. Let r = ρ1 ∧ ρ2 be a rectangle respecting the partition (X1, X2) and denote (A,B) =
Cf (ρ−1

1 (1), ρ−1
2 (1)). Then the rectangle 1A ∧ 1B is a core rectangle of r with respect to f .

Proof. The rectangle r0 = 1A ∧ 1B respects the same variable partition as r. We now justify that it is a
core rectangle for f , as defined in Definition 35:

1. A ⊆ ρ−1
1 (1) and B ⊆ ρ−1

2 (1) so r0 ≤ r and all assignments in A×B are models of f so r0 ≤ f .

2. Assume r0 is not maximal, that is, there exist A′ ⊆ ρ−1
1 (1) and B′ ⊆ ρ−1

2 (1) such that r′ =
1A′∧1B′ ≤ f and |r′−1(1)| > |r−1

0 (1)|. Then |A′||B′| > |A||B|, which contradicts the properties
of Cf .

At this point, recall that f is the characteristic function of a linear code for a m× n check matrix H .

Claim 7. Let r = ρ1∧ρ2 be a rectangle respecting the partition (X1, X2). Let (A,B) = Cf (ρ−1
1 (1), ρ−1

2 (1))
and consider the core rectangle rcore = 1A ∧ 1B . Let A = ρ−1

1 (1) \ A and B = ρ−1
2 (1) \ B. Then all

assignments in A×B and A×B are false positives of r on f .
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A0

A1A1

A2A2

A3∅

B0

B1 B1

B2 B2

B3 ∅

Figure 2.1: An iterative core extraction where l = 2.

Proof. Index the n columns of H with the variables in X (x1 for column 1, x2 for column 2, and so on).
Let H1 (resp. H2) be the matrix obtained taking only the columns of H whose indices are in X1 (resp.
X2). Clearly all assignments in A × B and A × B are models of r, but we will prove that they are not
models of f . For every a′ ∈ A there is b ∈ B such that H(a′, b) = H1a

′ + H2b ̸= 0m, otherwise the
core rectangle would not be maximal. By definition of A and B, given a ∈ A, for all b ∈ B we have
H(a, b) = H1a+H2b = 0m, so H2b is constant over B. Therefore if H1a

′ ̸= H2b for some b ∈ B then
H1a

′ ̸= H2b for all b ∈ B. But then no assignment in {a′} × B can be a model of f and since a′ has
been chosen arbitrarily in A, all assignments in A × B are false positives. The case for A × B follows
analogously.

For A and B defined as in Claim 7, we know that the assignments from A×B are models of f , and
that those from A× B and A× B are not, but we have yet to discuss the case of A× B. There may be
additional models in this last set. The key to proving Lemma 32 is to iteratively extract core rectangles
from 1A ∧ 1B and control how many false positives are generated at each step of the iteration. To this
end we define the collection ((Ai, Bi))

l+1
i=0 as follows:

• A0 = ρ−1
1 (1) and B0 = ρ−1

2 (1),

• for i ≥ 1, (Ai, Bi) = Cf (A0 \
⋃i−1

j=1Aj , B0 \
⋃i−1

j=1Bj),

• Al+1 and Bl+1 are empty, but for any i < l + 1, neither Ai nor Bi is empty.

Denoting Ai = A0 \
⋃i

j=1Aj and Bi = B0 \
⋃i

j=1Bj , we can write (Ai, Bi) = Cf (Ai−1, Bi−1) (note
that A0 = A0 and B0 = B0). Basically, we extract a core (1A1 ∧ 1B1) from r, then we extract a core
(1A2 ∧ 1B2) from (1A1

∧ 1B1
), and so on until there is no model of f left in Al ×Bl, in which case no

core can be extracted from (1Al
∧ 1Bl

) and Cf (Al, Bl) returns (∅, ∅). The construction is illustrated in
Figure 2.1.

Claim 8. For any i > 0, all assignments in Fi = (Ai × Bi) ∪ (Ai × Bi) are false positives of r on f .
Furthermore for every i ̸= j we have Fi ∩ Fj = ∅.

Proof. For the first part, it is clear from Claim 7 that assignments in Ai × Bi and Ai × Bi are false
positives of 1Ai−1

∧ 1Bi−1
on f , and since 1Ai−1

∧ 1Bi−1
≤ r, they are indeed false positives of r on f .

For the second part, let j > i > 0, Fi = (Ai × Bi) ∪ (Ai × Bi) and Fj = (Aj × Bj) ∪ (Aj × Bj) are
disjoint because both Aj and Aj are disjoint from Ai and both Bj and Bj are disjoint from Bi.

Claim 9. The function
∨l

i=1(1Ai ∧1Bi) is a disjoint rectangle cover of r∧f . Furthermore, if r respects
a balanced partition, so do all rectangles in

∨l
i=1(1Ai ∧ 1Bi).
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Proof. By construction, the functions (1Ai ∧ 1Bi) are rectangles with respect to the same partition as r.
So if r is with respect to balanced partition, so do these rectangles.

For all i there is (Ai×Bi) ⊆ r−1(1), so
∨l

i=1(1Ai ∧1Bi) ≤ r. And by definition of Cf , assignments
from Ai ×Bi are models of f , so

∨l
i=1(1Ai ∧ 1Bi) ≤ r ∧ f .

To prove equality, assume that there exists a a model of r and f that is not a model of
∨l

i=1(1Ai ∧
1Bi), that is, a does not belong to anyAi×Bi for i > 0. Then by Claim 3, amust be inAl×Bl (figure 2.1
may help seeing this), but since Al ×Bl contains no models of f , this contradicts our assumption.

This proves that
∨l

i=1(1Ai ∧ 1Bi) is a rectangle cover of r ∧ f . The only thing left to prove is that
the rectangles are disjoint. To see this, it is sufficient to observe that, for all i > 1, Ai ⊆ Ai−1 which is
disjoint from Ai−1 and Bi ⊆ Bi−1 which is disjoint from Bi−1.

With Claim 8 and Claim 9, we can now prove Lemma 32.

Proof of Lemma 32. Claims 8 and 9 show that
⋃l

i=1(Ai ×Bi) = r−1(1) ∩ f−1(1) and that⋃l
i=1

(
(Ai ×Bi) ∪ (Ai ×Bi)

)
⊆ r−1(1)∩ f−1(0), and that these unions are disjoint. First we focus on

the models of f covered by r.

|r−1(1) ∩ f−1(1)| =
l∑

i=1

|Ai||Bi| = |r−1
core(1)|+

l∑
i=2

|Ai||Bi| (∗)

where rcore = 1A1 ∧ 1B1 is the first (therefore the largest) core rectangle extracted from r with respect
to f . Now focus on the false positives of r on f

|r−1(1) ∩ f−1(0)| ≥
∑l

i=1

(
|Ai||Bi|+ |Ai||Bi|

)
≥

∑l

i=1
(|Ai||Bi+1|+ |Ai+1||Bi|)

The maximality property of Cf implies |Ai||Bi| ≥ |Ai+1||Bi+1|, but then

|Ai+1||Bi+1| ≤ max(|Ai||Bi+1|, |Ai+1||Bi|) ≤ |Ai||Bi+1|+ |Ai+1||Bi|

Thus using (∗) it follows that:

|r−1(1) ∩ f−1(0)| ≥ |r−1(1) ∩ f−1(1)| − |r−1
core(1)|.

By assumption, r accepts more models of f than false positives so Disc (f, r) = (|r−1(1) ∩ f−1(1)| −
|r−1(1) ∩ f−1(0)|)/2n and the lemma follows directly.

2.4.2 Large d-DNNF Size for Strong Approximations of Tseitin Formulas

The hard functions of Theorem 11 are of the form χ1 ∧ · · · ∧ χm where each χi is an even parity
constraint (so a constraint of the form

∑
x∈var(χi)

x = 0 mod 2). Such functions are easily represented
as Boolean formulas using⊕ (xor) and ∧ connectives. An interesting question is whether the result holds
for functions given to us in another format. In this section we show a particular case of Theorem 11 where
the hard functions are CNF formulas whose size are linear in the number of variables.

The idea is to use CNF formulas that represent systems of parity constraints that are more restricted
than the characteristic functions of linear codes used in Theorem 11, in particular we will use specific
satisfiable Tseitin formulas. Let us explain why we do not want to directly use CNF representations
or CNF encodings of the hard functions used in Theorem 11. Let us first recall that the distinction
between “CNF representations” and “CNF encodings” is that CNF encodings can use auxiliary variables
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while CNF representations cannot: a CNF encoding of f(X) is a CNF formula ϕ(X,Y ) such that
∃Y.ϕ(X,Y ) ≡ f(X), while a CNF representation of f(X) is a CNF formula φ(X) such that φ(X) ≡
f(X). Our only candidate for CNF representations of χ1 ∧ · · · ∧ χm requires representing each χi as a
CNF of 2var(χi)−1 distinct clauses where each clause contains all variables of χi and has an even number
of literals that are non-negated variables (so an even number of literals of the form ℓx = x). Let us call
this the canonical CNF representation.

Example 19. The canonical CNF representation of χ : x + y + z = 0 mod 2 – or equivalently χ :
x⊕ y ⊕ z = 0 – is the CNF formula (x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y ∨ z). It contains
2|var(χ)|−1 = 22 = 4 clauses, each containing an even number of literals among {x, y, z}. ◀

Let n be the number of variables in χ1 ∧ · · · ∧ χm. If a single constraint contains more than O(log(n))
variables, then the size of the canonical CNF representation is not polynomial in n. Proving large lower
bounds on the d-DNNF size of large CNF formulas is not significant enough. Unfortunately, almost all
systems of constraints used to prove Theorem 11 have only CNF representations whose size is exponen-
tial in the number of variables. Indeed these systems of constraints are characteristic functions of linear
codes whose parity check matrices are m × n matrices that are (m − 1)-good, where m = n/100. By
Lemma 30, sampling every entry of the m× n matrix independently and uniformly at random in {0, 1}
gives an (m − 1)-good matrix with high probability. But the expected number of 1s in any row of such
matrices is n/2 and by Chernoff bound, some row has Ω(n) 1s with high probability. In other words if
the system of constraints is constructed using Lemma 30, then with high probability it contains a parity
constraint over Ω(n) variables, thus the canonical representation of the system has size at least 2Ω(n).

Using CNF encodings instead, one can ensure that the size of the CNF remains polynomial in n, see
for instance the CNF encoding in Example 18 for bilinear forms (that can easily be adapted for systems
of parity constraints). But if strong approximations of f(X) are impossible to represent by small circuits
in d-DNNF, it is not obvious for us that the same applies to strong approximations of its CNF encodings.
It could be that a CNF encoding ϕ(X,Y ) has strong approximations ϕ̃(X,Y ) that have small circuits
in d-DNNF, because it is not clear how to obtain in polynomial time a strong approximation of f(X)
from a circuit in d-DNNF computing ϕ̃(X,Y ). In particular it not clear that ∃Y.ϕ̃(X,Y ) should be a
strong approximation of f(X) (even though ∃Y.ϕ(X,Y ) ≡ f(X)). Even if ∃Y.ϕ̃(X,Y ) was a strong
approximation f̃(X) of f(X), it is generally impossible to existentially forget variables from a circuit
in d-DNNF in polynomial time while preserving determinism [Dar02a], thus knowing that f̃(X) has
exponential d-DNNF size would not be sufficient to derive the same for ϕ̃(X,Y ).

So using CNF encodings of systems of parity constraints to extend Theorem 11 seem difficult, and
using their canonical CNF representations is inappropriate if these CNF representations get to large. In
this section we show that we can extend Theorem 11 for specific systems of parity constraints whose
canonical representations are provably small (that is, polynomial in the number of variables). In particu-
lar we use satisfiable Tseitin formulas.

Theorem 12. Let 0 ≤ ε < 1. There is a class of satisfiable Tseitin formulas T such that for any
T (G) ∈ T

• T (G) is CNF formula of size O(|E(G)|) = O(|var(T (G))|)

• for |var(T (G))| large enough, T (G) is trivially weakly ε-approximable with respect to U ,

• any circuit in d-DNNF computing a strong ε-approximation of T (G) with respect to U has size
2Ω(|var(T (G))|).

First, the Tseitin formulas studied in this section are all of the form T (G, 0), that is, the charge
function assigns every vertex to 0. It is not too difficult to see such formulas as characteristic functions
of linear codes.
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Example 20. The Tseitin formula for the following graph

x1
x2

x3

x4

x5

where all gray vertices all have charge 0, is

T (G, 0) =(x1 ∨ x3) ∧ (x1 ∨ x3) ∧ (x4 ∨ x5) ∧ (x4 ∨ x5)∧
(x1 ∨ x2 ∨ x5) ∧ (x1 ∨ x2 ∨ x5) ∧ (x1 ∨ x2 ∨ x5) ∧ (x1 ∨ x2 ∨ x5)∧
(x2 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)

It is the canonical CNF representation of the system of parity constraint (x1 + x3 = 0 mod 2) ∧ (x4 +
x5 = 0 mod 2)∧ (x1 + x2 + x5 = 0 mod 2)∧ (x2 + x3 + x4 = 0 mod 2), and thus of the equation


1 0 1 0 0
0 0 0 1 1
1 1 0 0 1
0 1 1 1 0



x1
x2
x3
x4
x5

 =


0
0
0
0
0


So this Tseitin formula represents the linear code whose parity check matrix is the 4×5 matrix above. ◀

Since the models of Tseitin formulas T (G, 0) are linear codes, Lemma 32 applies and, for a rect-
angle r with more true positives than false positives on T (G, 0), we have that Disc (T (G, 0), r) ≤

1
2|E(G)| |r−1

core(1)| where rcore is a core rectangle of r with respect to T (G, 0).
To prove Theorem 12, we are going to make Adam and Charlotte play the adversarial rectangle cover

game on a strong approximation f̃ of T (G, 0). The two players know that f̃ approximates T (G, 0) and
Adam will use this knowledge when choosing partitions for the rectangles. Before that we introduce the
class of graphs for the Tseitin formulas.

Lemma 33. There is an infinite class G of graphs such that, for every G ∈ G, all vertices of G have
degree 3, G has maximum degree 3, and tw(G) = Ω(|V (G)|).

Proof. It is known that there exists an infinite class G′ of graphs that are 3-regular (that is, all vertices
have degree 3) and whose treewidth is Ω(n), where n is the number of vertices, see for instance Theorem
5 and Proposition 1 in [GM09]. For each graph G ∈ G′ whose treewidth is at least 3, we use Lemma 26
to construct a topological minor H of G that is 3-connected and that has the same treewidth has G, then
we add it to G. Since the three operations to construct topological minors (isolated vertex deletion, edge
deletion and subdivision elimination) can only decrease the maximum degree of the graph, all vertices
of H have degree at most 3. Furthermore, since H is 3-connected, no vertex in H has degree 0, 1 or 2,
for the neighbours of such a vertex would be a separator of H of size at most 2. So G is indeed a class of
graphs that are 3-connected, whose vertices all have degree 3, and that have linear treewidth.

Finally, we show that G is infinite. Since G′ is infinite and since tw(G) = Ω(|V (G)|) for G ∈ G′, we
can choose an infinite sequence G1, G2, . . . of graphs in G′ such that the sequence tw(G1), tw(G2), . . .
is strictly increasing. Calling Hi the topological minor of Gi that is placed in G, we obtain a sequence
H1, H2, . . . of graphs in G such that tw(Hi) = tw(Gi). So the sequence tw(H1), tw(H2), . . . is strictly
increasing. Thus G′ is infinite.
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We are now ready to prove Theorem 12.

Proof of Theorem 12. We choose the class G of graphs of Lemma 33. For G ∈ G, the Tseitin formula
T (G, 0) contains O(|V (G)|) clauses of size at most 3 (because G has maximum degree 3). We have that
|E(G)| =

∑
v∈V (G) deg(v) =

3|V (G)|
2 . So |T (G, 0)| = O(|E(G)|) = O(|var(T (G, 0))|).

T (G, 0) is satisfiable and, by Lemma 10, since G is connected, T (G, 0) has 2|E(G)|−|V (G)|+1 =
2|E(G)|/3+1 = 2|var(T (G,0))|/3+1 models. By Lemma 28, for |E(G)| large enough, T (G, 0) is trivially
weakly ε-approximable (with respect to U).

Now we prove that the d-DNNF size of a strong ε-approximation f̃ of T (G, 0) (with respect to U)
is exponential in |var(T (G, 0))|. To this end we make Charlotte and Adam play the adversarial disjoint
rectangle cover game to cover f̃ . Let k = 2tw(G)/3.

First Charlotte chooses an assignment a ∈ f̃−1(1) and a vtree T over var(T (G, 0)). Then Adam
chooses a cut of T exactly as in the proof of Theorem 5, that is, a cut of T such that every rectangle of
T (G, 0) respecting the resulting partition Π of var(T (G, 0)) accepts at most 2|E(G)|−|V (G)|−k+1 models
of T (G, 0). Next, Charlotte chooses a rectangle r with respect to Π such that r ≤ f̃ . By Lemma 32,
we have that Disc (T (G, 0), r) ≤ 2−|E(G)||r−1

core(1)| where rcore is a core rectangle of r with respect to
T (G, 0). Since a core rectangle respects the same partition as the initial rectangle (even if this partition
is not balanced), we have that rcore is a rectangle with respect to Π such that rcore ≤ T (G, 0). It follows
that

Disc (T (G, 0), r) ≤ 2|E(G)|−|V (G)|−k+1/2|E(G)|.

At the end of the game, Charlotte and Adam have a set r1, . . . , rK of disjoint rectangles such that
ri ≤ f̃ , and ri verifies the above inequality, and f̃ ≡ r1 ∨ · · · ∨ rK . So using Lemma 29 with
∆ = 2|E(G)|−|V (G)|−k+1, then we obtain that

K ≥ (1− ε)|sat(T (G, 0))|/2|E(G)|−|V (G)|−k+1 = (1− ε)2k = 2Ω(tw(G)) = 2Ω(|var(T (G,0))|)

Finally, by Theorem 8, f̃ has d-DNNF size 2Ω(|var(T (G,0))|).

2.5 Conclusion and Perspectives

We have formalized and studied two notions of approximations in knowledge compilation. We have
called them weak and strong approximations and we have presented functions that are hard to approxi-
mate by circuits in d-DNNF with respect to these two notions. In particular, we have shown that strong
approximations by circuits in d-DNNF generally require exponentially larger circuits in d-DNNF than
weak approximations.

Let us sketch some directions for future research. One obvious question is to determine for which
classes of functions there are efficient algorithms computing approximations by circuits in d-DNNF.
In [CT20], it is shown that this is the case for certain Bayesian networks and for certain probability
distributions over the variable assignments. It would be interesting to extend this to other settings to
make approximation more applicable in knowledge compilation.

Another question is defining and analyzing more approximation notions beyond weak and strong
approximations. In fact, the latter was designed to allow approximate (weighted) counting as needed in
probabilistic reasoning. Are there ways of defining notions of approximation that are useful for other
problems, say optimization or entailment queries? For entailment queries, notions of approximation
measuring the probability that a clause (resp. a term) is entailed (resp. entails) by both the function and
its approximating circuit come to mind. But one can also envision defining good approximating circuits
as pairs of “sandwiching” estimators (one that entails the initial function, the other that is entailed by
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it), like the approximating Horn formulas of Selman and Kautz [SK96]. Then the guarantees of the
approximation could be the existence of a sequence of sandwiching estimators that converges towards the
initial function (which is generally not the case of the estimators of Selman and Kautz) with a controlled
growth in size between successive pairs of estimators.

A more technical question would be to determine lower bounds for circuits in DNNF, so non-
deterministic circuits. In that setting, different rectangles may share the same false positives in which
case our lower bound techniques based on discrepancy break down. Since we have a fairly good knowl-
edge of techniques to prove lower bounds on the DNNF size of Tseitin formulas – which we have used
to show Theorem 12 for circuits in d-DNNF – we leave the following open question as future work.

Open question 1. Is there a denumerable class of graphs G such that, for ε fixed, all strong ε-approximations
of T (G, 0) for G ∈ G have DNNF size 2Ω(|var(T (G,0))|)?
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Chapter 3

Lower Bounds on Intermediate Results in
Bottom-Up Compilation

In this chapter we give a first application of our lower bound on the DNNF size of satisfiable Tseitin
formulas proved in Chapter 1. We study a paradigm for compiling CNF formulas to structured languages
such as str-DNNF, SDD or OBDD called bottom-up compilation. This paradigm has for specificity that
it generates a sequence of intermediate circuits in the compilation language to construct the compiled
form of the input formula. We describe a framework for bottom-up compilation that generalizes the
behaviour of all practical bottom-up compilers that we are aware of. Then, relying on the lower bound of
Theorem 5, we construct classes of CNF formulas that are guaranteed to generate intermediate circuits
that are much larger than both the input CNF formula and the output circuit.

3.1 Bottom-Up Compilation

There are mainly two approaches for compiling a system of constraints into DNNF: top-down compila-
tion and bottom-up compilation. The former roughly consists of remembering the trace of an exhaustive
backtracking algorithm exploring the whole solution space [HD05], while the latter iteratively conjoins
circuits in DNNF computing constraints of the system. Thus a bottom-up compiler needs an efficient pro-
cedure to perform (binary) conjunctions of circuits in DNNF. In practice the procedure is encompassed in
the so-called apply function which, given two circuits in DNNF and a binary Boolean operation (from a
given list), computes a circuit in DNNF that represents the function resulting from applying the operation
on the two circuits. The most general fragment of DNNF known to have an efficient apply function for
conjunctions is the language str-DNNF of circuits in DNNF structured by a vtree [PD08]. As a conse-
quence, in practice, bottom-up compilers target sublanguage of str-DNNF such as SDD [Dar11, CD13]
or OBDD [Bry86, Som09].

Bottom-up compilation is appealing from a theoretical perspective as we can establish a framework
that describes the general behaviour of bottom-up compilers and abstract away implementation details.
This framework gives us a nice environment for rigorous theoretical analysis of the efficiency of bottom-
up compilers. We start by describing this framework. Let L be a language whose circuits are structured
by vtrees and let LT be the subclass of L where circuits are structured by a fixed vtree T . Let us make
two assumptions on L:

(H1) There is a polynomial-time procedure that compiles any clause C to LT for any fixed vtree T such
that var(C) ⊆ var(T ). We denote the circuit returned by the procedure by Compile(C, T ).

(H2) There is a polynomial-time procedure that, for any vtree T , given two circuitsD,D′ ∈ LT , returns
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another circuit in LT equivalent to D ∧D′. We denote by Apply(D,D′,∧) the circuit returned by
the procedure.

Fact 1. Hypotheses (H1) and (H2) are satisfied when L = SDD and when L = str-DNNF. They are
also satisfied when L = OBDD assuming T is a linear vtree.

Note that hypotheses (H1) and (H2) are not satisfied by each sublanguage of str-DNNF. For instance
for L = dec-DNNF∩str-DNNF, while it is known that L is complete, not every clause can be computed
by a circuit in LT when T is a non-linear vtree.

Example 21. Let L = dec-DNNF ∩ str-DNNF and consider the clause C = x ∨ y ∨ z ∨ w. Let T

be the vtree

x y z w

and suppose there exists a circuit D in L computing C. Let λ be the

mapping from the nodes of D to the nodes of T . Every variable of C is essential so var(C) = var(D).
Let v be D’s root node. It is already readily verified that v cannot be labelled by 0, by 1, or by a literal.
If v is a ∧-node, then λ(v) must be the root node of T , for otherwise var(Dv) = var(λ(v)) would not
be equal to var(C). So there exist two functions f : {0, 1}{x,y} → {0, 1} and g : {0, 1}{w,z} → {0, 1}
such that D(x, y, w, z) ≡ f(x, y) ∧ g(w, z) ≡ C. But then both f(1, 0) ∧ g(0, 0) and f(0, 0) ∧ g(1, 0)
evaluate to 1, so f(0, 0) ∧ g(0, 0) also evaluates to 1, which cannot be for otherwise we would have
C ∧ x ∧ y ∧ z ∧ w = 1. So v is not a ∧-node either. The only choice left is that v is a decision node.
Say (without loss of generality) that v is a decision node labelled by x and call v0 and v1 its 0- and
1-child, respectively. A decision node is a compact representation of a circuit made of one ∨-node and
two ∧-nodes as shown in Figure 6a. Let u0 and u1 be the hidden ∧-nodes with Du0 = x ∧ Dv0 and
Du1 = x ∧Dv1 . By structured decomposability, we have λ(u1) = λ(u0). So either λ(u0) is the root of
T , but then var(Dv1) ∪ var(Dv0) ⊆ {w, z} and y does not appear in D, or λ(u0) is the left child of the
root of T , but then var(Dv1)∪ var(Dv0) ⊆ {y} and w and z do not appear in D. In both cases we have
that var(D) ̸= var(C), a contradiction. So D does not exist. ◀

Practical bottom-up compilers may implement a procedure that can modify the vtree of a circuit while
preserving the function it computes, we call that procedure Restructure. Given D ∈ L (and possibly a
vtree T ) Restructure returns another circuitD′ ∈ L equivalent toD, with var(D′) = var(D), but whose
vtree may differ from that ofD (D′ ∈ LT if T is specified). We make no assumption on the running time
of Restructure. One can imagine that Restructure performs an intractable task, for instance minimizing
the input circuit in L (possibly in LT if a vtree T is specified). In other words, Restructure could be used
to minimize circuits, which is NP-hard even when L = OBDD [BW96, Sie02]. But one can also imagine
that Restructure tries to find a circuit D′ equivalent to D and smaller than D by performing several
transformations on D that modify slightly its vtree, see for instance the SDD minimization in [CD13].
While it is important to keep in mind that bottom-up compilers have access to that procedure Restructure,
the lack of running-time guarantees and the possible differences of implementation between compilers
incite us to abstract that procedure. So we assume that a bottom-up compiler can arbitrarily manipulate
any circuit in L in constant time as long as it returns another circuit in L that computes the same function.
More formally, given any circuit D ∈ L, the compiler can generate any circuit D′ ∈ L equivalent to D
in O(1) time.

Definition 37 (Bottom-up compilation). Let L be a class of circuits structured by vtrees and let LT ⊂ L
be the class of circuits of L structured by a fixed vtree T . Assume (H1) and (H2) hold for L. An L(∧, r)-
compilation of a CNF ϕ to L is a finite sequence of circuitsD1, D2, . . . , DN in L culminating inDN ≡ ϕ
and such that, for each i ∈ [N ],
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B1 = Compile(x1 ∨ x2, π)

B2 = Compile(x1 ∨ x2, π)

B3 = Apply(B1, B2,∧)

B4 = Compile(x1 ∨ x2 ∨ x3, π′)

B5 = Compile(x1 ∨ x2 ∨ x3, π′)

B6 = Apply(B4, B5,∧)

B7 = Restructure(B3, π
′)

B8 = Apply(B6, B7,∧)

with π(x1) < π(x2) < π(x3)

and π′(x2) < π′(x1) < π′(x3)

x1

x2

10

x1 ∨ x2

Compile

x1

x2

10

x1 ∨ x2

Compile

x1

x2 x2

10

Apply(B1, B2, ∧)

Restructure

x2

x1 x1

10

x2

x1

x3

10

x1 ∨ x2 ∨ x3

Compile

x2

x1

x3

10

x1 ∨ x2 ∨ x3

Compile

x2

x1 x1

x3 x3

0 1

Apply(B4, B5, ∧)

x2

x1 x1

x3 x3

0 1

Apply(B6, B7, ∧)

Figure 3.1: An OBDD(∧, r)-compilation.

• Di = Compile(C, T ) for some clause C of ϕ and some vtree T , or

• Di = Apply(Dj , Dk,∧) with j, k < i and Dj and Dk respect the same vtree, or

• Di ≡ Dj with j < i and the circuits may respect different vtrees.

An L(∧)-compilation is an L(∧, r)-compilation where only the first two rules are available. When ϕ is
unsatisfiable and when the satisfiability of a circuit in L can be tested in polynomial time, we assume
that DN is a single node labelled by 0. In this case we talk of L(∧, r)-refutations and L(∧)-refutations.

Example 22. Figure 3.1 shows an bottom-up compilation to OBDD of the CNF formula (x1∨x2)∧(x1∨
x2)∧ (x1 ∨x2 ∨x3)∧ (x1 ∨x2 ∨x3) where restructuring is allowed thanks to a Restructure procedure.
Vtrees are replaced by variable orderings in the example. This is done without loss of generality since the
vtrees respected by OBDDs are linear and correspond to orderings, or permutations, of X . A sequence
of instructions that leads to an OBDD representing the input CNF is written on the left. ◀

As discussed before, regarding the third rule of Definition 37, the time needed to obtainDi fromDj is
not taken into account since the lower bounds that we seek are on the size of intermediate circuits. We do
not even assume that Di ≡ Dj is easily verifiable in our framework. The “r” in “L(∧, r)-compilation”
indicates that this third rule (the restructuring rule) is allowed. In contrast, an L(∧)-compilation is
a bottom-up compilation where all intermediate circuits respect a common vtree. We will focus on
str-DNNF(∧, r) compilations and refutations.
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We are interested in the amount of memory used when compiling CNF formulas bottom-up. Re-
gardless of implementation details, a bottom-up compiler that fits our framework must keep every Di

in memory at some point. Note that the whole sequence D1, . . . , DN never has to be kept in memory
entirely since earlier Di can be deleted from memory when they are not needed any more. Thus, the size
of the largest intermediate result

max
1≤i≤N

|Di|

is a lower bound on the space needed, a fortiori on the time taken, by the compilation process. Our
framework is general enough to encapsulate practical bottom-up compilers to SDD [CD13] and to
OBDD [Som09] so all lower bounds that we can prove on the size of intermediate results apply to
these compilers.

One can envision a bottom-up compilation process whose input formula and whose final circuit are
much smaller than the biggest intermediate circuit, i.e., max(|F |, |DN |) ≪ max1≤i≤N |Di|. Then,
using a bottom-up compiler appears intuitively wasteful. This is most visible when compiling unsatisfi-
able CNF formulas as the smallest compiled form is a single node labelled by 0 and yet, its bottom-up
compilation may require a large memory space to store intermediate circuits.

The size of the Di can differ dramatically depending on the sequence of apply operations, i.e., the
order with which the clauses are conjoined. However, our main result for this chapter is to show that
there are formulas that have constant-size representations as circuits in str-DNNF but for which every
possible str-DNNF(∧, r)-compilation must produce big intermediate results.

3.2 State of Bottom-Up Compilation and Contribution

We review what is known on the bottom-up compilation paradigm.

Successive Clause Aggregation. In a compiler like the one included in the SDD package, the CNF
formula is compiled into the target language by aggregating the clauses one by one to a main circuit that
will be the compiled form in the end. This approach can be represented in our framework by assuming
that all Apply operations are of the form Apply(D,Compile(C),∧) for some clauseC of the formula. For
example the bottom-up compilation represented Figure 3.1 does not follow this approach since the last
Apply combines two OBDDs, none of which computes a clause. This approach raises the question of the
order with which the clauses are fed to the Apply. Indeed it has been noticed experimentally that choosing
a “bad” order to aggregate clauses can significantly increase the size of intermediate circuits [NW07,
HD04]. In particular, Narodytska and Walsh ([NW07]) introduce heuristics for choosing an order in
which to conjoin the clauses to try to decrease the size of intermediate OBDDs and show experimentally
that it works well when compiling certain configuration problems bottom-up.

Practical Bottom-Up Compilers. As mentioned earlier, there exist practical bottom-up compilers or
packages for manipulating circuits from which bottom-up compilers can be “easily” crafted, in partic-
ular the SDD package2 to compile into the language SDD and the CUDD package3 to compile into
the language OBDD [Som09]. Both packages provide an implementation of the Apply function for the
conjunction and for other operations (disjunction, exclusive OR, etc.), and even ready-to-use compilers
for the SDD package. They also enable restructuring the SDDs or OBDDs. For both packages, re-
structuring consists in navigating the space of possible structures to find one that decreases the size of

2http://reasoning.cs.ucla.edu/sdd/
3https://github.com/ivmai/cudd

77



Chapter 3. Lower Bounds on Intermediate Results in Bottom-Up Compilation

the circuit: the CUDD package, gives access to a wide range of algorithms that modify the variable-
ordering of an OBDD – for instance algorithms described in [Rud93, PSP94, PS95, BLW95] – and the
SDD package gives access to a set of functions that allow to navigate the space of all possible vtrees
over the variables of an SDD [CD13]. In both packages, restructuring is used for minimization purposes,
and can be triggered dynamically (usually when the size of the circuit exceeds a certain threshold). As
a side note, bottom-up compilers have also been developed for functions beyond Boolean functions that
are out of the scope of this thesis. For instance, real-valued functions whose variables take value in {0, 1}
can be compiled into arithmetic decision diagrams (ADDs) using compilers like SALADD4[Sch15] or
the CUDD package as it also allows to manipulate ADDs.

Existing Lower Bounds. Lower bounds on the size of intermediate results in bottom-up compilations
have been studied through OBDD-based refutation (or proof) systems, see for instance [Kra08, Seg08,
TSZ10, FX13], so in the case when the formula to be compiled is unsatisfiable. We are not aware of
refutation systems using circuits in str-DNNF that are not OBDD or branching programs. This is largely
explained by the fact that refutation systems have the requirement that every step of a refutation must
be verifiable in polynomial time. This is not the case of str-DNNF(∧, r)-refutations since testing the
equivalence of two circuits in str-DNNF is generally intractable. However, testing the equivalence of
two OBDDs is feasible in polynomial-time [GM94b], so OBDD(∧, r)-refutations are verifiable and fit
in the definition of a proof system. Since OBDDs are generally exponentially larger than circuits in str-
DNNF, lower bounds on str-DNNF(∧, r)-refutations are even more significant. Moreover, restructuring
is not always allowed in the OBDD-based refutation system while it is in our framework for compilation.
Indeed, the bounds in [Kra08, Seg08, TSZ10, FX13] are stated for OBDD-based refutations in which the
variable order can be arbitrarily chosen at the beginning of the refutation but cannot be changed on-the-
fly. Also we do not require any specific order in which the clauses are conjoined, which is a restriction
used for some bounds in, e.g., [FX13].

The research that is the closest to our work has been conducted by Itsykson, Knop, Romashchenko
and Sokolov in [IKRS20]. They show lower bounds for OBDD(∧, r)-refutations of specific unsatisfiable
CNFs that are exponential in the number of variables. They work on the class of unsatisfiable Tseitin
formulas whose underlying graphs are regular algebraic expanders, and on a class of formulas encoding
the pigeon hole principle (PHP). For the latter class, they show the following

Theorem 13. [IKRS20, Theorem 3.17] Let PHPm
n =

∧m
i=1(pi,1∨· · ·∨pi,n)∧

∧n
j=1

∧
i ̸=i′(pi,j∨pi′,j) be

an encoding of the pigeon hole principle for n holes and m pigeons, then every OBDD(∧, r) refutation
of PHPn+1

n produces an intermediate circuit of size at least 2Ω(n).

Their lower bounds for Tseitin formulas are very closely related to the results proved in this chapter
as they deal with unsatisfiable Tseitin formulas T (G, c) for particular graphs G. In [IKRS20], the graphs
are supposed to be (d, n, α)-expander graphs, that is, graphs on n vertices, whose vertices all have degree
d, and such that the absolute value of the second largest eigenvalue of the adjacency matrix, or spectral
expansion5, is not greater than αd. When the underlying graph of an unsatisfiable Tseitin formula is an
(d, n, α)-algebraic expander, they show the following:

Theorem 14. [IKRS20, Theorem 3.14] For d a constant large enough and α another constant small
enough, every OBDD(∧, r) refutation of an unsatisfiable Tseitin formula whose underlying graph is an
(d, n, α)-algebraic expander produces an intermediate circuit of size at least 2Ω(n).

4https://www.irit.fr/ Helene.Fargier/BR4CP/CompilateurSALADD.html
5Often the spectral expansion will be 1 minus the absolute value of the second largest eigenvalue of the adjacency matrix
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A close inspection at the proofs of the two theorems above reveals a common pattern that can roughly
be summed up as: look at the last Apply of the OBDD(∧, r)-refutation, let it be Apply(B,B′,∧),
then show that given B and B′ one can construct in polynomial time an OBDD computing a satisfiable
function whose smallest equivalent circuit in OBDD has exponential size. Then B or B′ must have ex-
ponential size. For Theorem 13, this function is PHP k

k , which encodes all k! ways to place k pigeons in
k holes, with k = Ω(n). For Theorem 14, it is a satisfiable Tseitin formula T (G′, c) with G′ an algebraic
expander graph that have Ω(n) vertices. Then the proof of both theorems requires an exponential lower
bound on the size of OBDDs computing PHP k

k or T (G′, c).

Contributions. Our contributions are the following results:

Theorem 15. LetG be a graph on n vertices whose maximum degree is at most ∆. Every str-DNNF(∧, r)
refutation of an unsatisfiable Tseitin formula T (G, c) produces an intermediate circuit of size at least
2Ω(tw(G)/∆)poly(n).

Theorem 16. There is a classF of satisfiable CNF formulas such that every ϕ ∈ F is computed by a cir-
cuit in str-DNNF of constant size, but every str-DNNF(∧, r) compilation of ϕ produces an intermediate
circuit of size at least 2Ω(tw(ϕ))poly(|var(ϕ)|), where tw(ϕ) is the primal treewidth of ϕ.

Theorem 15 improves over Theorem 14 in two directions. First, we look at str-DNNF(∧, r) refu-
tations, that encompass OBDD(∧, r) refutations and can be expected to be more space efficient since
the str-DNNF size of a function is fewer, and sometimes exponentially fewer, than its OBDD size (for
instance every DNF formula can be turned into a circuit in str-DNNF for any vtree in polynomial-time,
but some DNF formulas have exponential OBDD size). Second, our theorem reaches the same conclu-
sion as Theorem 14 when restricted to (d, n, α)-algebraic expander graphs, but encompass a larger class
of graphs and is parameterized on the treewidth of G, rather than on the spectral expansion of G. In
all fairness, given Theorem 5, the proof of Theorem 14 would also hold for str-DNNF(∧, r) refutations
with only a few modifications. So the main contribution from our side is to have shown the exponential
dependence on the treewidth. Spectral expansion and treewidth are more or less related. On the one hand,
the spectral expansion of a graph that has more than one connected component is 0 while the treewidth
of such a graph can be linear in the number of vertices. On the other hand, in the case of constant-degree
graphs the ratio tw(G)/n, where n is the number of vertices, is tightly linked to the spectral expansion
when this one is constant. Indeed it is known that a constant spectral expansion for a constant-degree
graph is equivalent to a constant vertex expansion (whose definition we omit) [HLW06], that a graph has
constant vertex expansion only if its treewidth is linear in the number n of vertices, and that a graph has
treewidth Ω(n) only if it has a subgraph whose vertex expansion is constant [GM09]. When restricted
to (d, n, α)-algebraic expander graphs, our theorem reaches the same conclusion as Theorem 14, but
our theorem generalizes Theorem 14 as it does not assume constant spectral expansion in the premises.
In addition we think that it is nice that our theorem shows a dependence on a monotone parameter like
treewidth, that is, if H is a subgraph of G then tw(H) ≤ tw(G) (spectral expansion is not a monotone
property of graphs, see for instance the case of disconnected graphs).

The proof of Theorem 15 follows the pattern behind Theorem 14: use the circuits from the last
Apply to construct in polynomial time a circuit in DNNF representing a satisfiable Tseitin formula, then
use Theorem 5 to conclude that one of the two input circuits must be large. Yet, our proof has differences
due to the dependence on the treewidth of the underlying graph rather than its spectral expansion. This
forces us to use heavy machinery from graph theory to show intermediate results on graph bipartitions
that maintain a large treewidth on both side of the partition.

The results of this section have been published in the article [dCM22b] co-authored with Stefan
Mengel.
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Succeeding Lower Bounds. A few months after the our contribution has been presented in [dCM22b],
Itsykson, Riazanov and Smirnov proved that the OBDD(∧, r)-refutations of unsatisfiable Tseitin formu-
las for every graph G (and not only graphs whose maximum degree is bounded) generate intermediate
circuits of size at least 2Ω(tw(G)) [IRS22, Theorem 3.1]. Itsykson et al. refer to our work in [dCM22b] and
remark that their result can be extended to str-DNNF(∧, r)-refutations [IRS22, Remark 3.7]. These are
very neat results that generalized ours. Moreover the proof avoid complicated (but in itself interesting)
machinery from graph theory that we use.

3.3 Refuting Tseitin Formulas in str-DNNF(∧, r)

In this section we show that there are classes of CNF formulas of size polynomial in the number
of variables and that have constant size representations in str-DNNF, but such that str-DNNF(∧, r)-
compilations of these formulas create intermediate circuits of exponential size (in the number of vari-
ables). To this end we study the space complexity of str-DNNF(∧, r)-compilations of unsatisfiable
Tseitin formulas whose underlying graph is connected. We parameterize our bounds by the treewidth
of the graph. Recall that for exponential lower bounds to be relevant, we need an input CNF formula
whose length is polynomial in the number of variables and that we achieve this by restricting our study
to graphs of maximum degree bounded by some constant ∆. This is a common restriction that leads to
an upper bound of |V | × 2∆−1 on the number of clauses in the Tseitin formulas.

Let us first recall two properties of circuits in str-DNNF that we will use several time.

Proposition 1. There is an algorithm that, given a circuit D in str-DNNF respecting the vtree T and
an assignment a to a set of variables, returns a circuit in str-DNNF respecting T and computing D|a in
time O(|D| × |var(a)|). We often denote this circuit directly by D|a.

Proposition 2. There is an algorithm that, given two circuitsD andD′ in str-DNNF respecting the same
vtree T , returns a circuit in str-DNNF respecting T and computing D ∧D′ in time O(|D| × |D′|).

We start with a simple observation that essentially says that, given a bottom-up compilation of a
function f , one can easily infer a bottom-up compilation of f |a, for any partial assignment a. This will
be useful in several upcoming proofs.

Lemma 34. Let ϕ be a CNF formula and D1, . . . , DN be a str-DNNF(∧, r)-compilation of ϕ. Let a be
a partial assignment to var(ϕ), then D1|a, . . . ,DN |a is a str-DNNF(∧, r) compilation of ϕ|a.

Proof. For every i between 1 andN letD′
i beDi|a. By Proposition 1, |D′

i| ≤ |Di| andD′
i andDi respect

a common vtree. We have DN ≡ ϕ, so D′
N ≡ ϕ|a follows. We will prove that, for every i, either D′

i is
a circuit in str-DNNF computing a clause of F |a, or there are j, k < i such that D′

i = Apply(D′
j , D

′
k,∧)

where all three circuits respect a common vtree, or there is j < i such that D′
i ≡ D′

j and the vtree of D′
i

and D′
j may differ.

Take an arbitrary i between 1 and N . If Di is a circuit in str-DNNF computing a clause C of ϕ,
that is, Di ≡ C, then D′

i = Di|a ≡ C|a and C|a is indeed a clause of ϕ|a. Otherwise if Di is the
circuit in str-DNNF returned by Apply(Dj , Dk,∧), then Di ≡ Dj ∧ Dk and all three circuits share a
common vtree. Then D′

i = Di|a ≡ (Dj ∧ Dk)|a ≡ Dj |a ∧ Dk|a = D′
j ∧ D′

k. Since the vtree is
not modified by conditioning we can feed D′

j and D′
k to an Apply to obtain D′

i = Apply(D′
j , D

′
k,∧).

Finally in the case when Di is equivalent to Dj with potentially a vtree modification, it is clear that
D′

i = Di|a ≡ Dj |a = D′
j .

We will prove our main result, Theorem 15, later in this section after some discussion and prepara-
tions. First, note that there are graphs of bounded degree with treewidth linear in the number of vertices,
see e.g. [GM09]. It follows that there are formulas where the intermediate results have exponential size.
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Corollary 2. There is a denumerable family of unsatisfiable CNF formulas such that every formula on
n variables has O(n) clauses and all its str-DNNF(∧, r)-refutations produce intermediate results of
size 2Ω(n).

This can also be inferred from the findings of Itsykson et al., summarized in Theorem 13 and Theo-
rem 14, modulo modifications of their proofs to make them work for str-DNNF(∧, r)-refutations instead
of OBDD(∧, r)-refutations.

Lower bounds on large intermediate results for str-DNNF(∧, r)-refutations might look somewhat
unconvincing since they only talk about the compilation of unsatisfiable formulas, a setting in which
costly compilation can be substituted by a usually much less expensive single call to a SAT solver.
In fact, some knowledge compilers, e.g. the top-down knowledge compiler D4 [LM17], make a call
to a SAT solver before trying to compile the input to avoid wasting time when compiling unsatisfiable
instances. However, equipped with Lemma 34, we can lift them to satisfiable formulas that are computed
by constant size circuits in str-DNNF with a simple trick.

Theorem 16. There is a classF of satisfiable CNF formulas such that every ϕ ∈ F is computed by a cir-
cuit in str-DNNF of constant size, but every str-DNNF(∧, r) compilation of ϕ produces an intermediate
circuit of size at least 2Ω(tw(ϕ))poly(|var(ϕ)|), where tw(ϕ) is the primal treewidth of ϕ.

Proof. Consider a class of unsatisfiable Tseitin formulas T = {T (G) | G ∈ G} for any denumer-
able class of graphs G whose degree is bounded by a constant, and let x be a fresh variable not used
in any of these formulas. For each T (G) let F (G) be the formula T (G) with the additional literal
x added to all clauses. Clearly, F (G) ≡ x ∨ T (G) ≡ x, so the smallest circuit in str-DNNF com-
puting F (G) consists of a single input node labelled by x. By Lemma 34, given a str-DNNF(∧, r)
compilation of F (G), we can condition all intermediate circuits in str-DNNF on x = 0 to obtain a str-
DNNF(∧,r) refutation of T (G). Since conditioning does not increase the size of circuits in str-DNNF,
it follows from Theorem 15 that str-DNNF(∧, r) compilations of F (G) produce intermediate circuits of
size 2Ω(tw(G))poly(|var(T (G))|) = 2Ω(tw(G))poly(|var(F (G))|).

Now the primal graph of F (G) is the same as the primal graph of T (G) with an additional vertex vx
for the variable x which is connected to all other vertices. Thus, for any tree decomposition of the primal
graph of T (G), one can add vx to every bag of that decomposition to obtain a tree decomposition of the
primal graph of F (G). It follows that the primal treewidth F (G) is at most the primal treewidth of T (G)
plus one. The result then follows from Lemma 12 which states that, since the degree of G is bounded by
a constant, the primal treewidth of T (G) is within a constant of tw(G).

As a first step towards Theorem 15, let T (G) be unsatisfiable where G = (V,E) is connected. We
look at the very last Apply in the str-DNNF(∧, r)-refutation of T (G):

DN = Apply(Dℓ, Dr,∧)

where DN ≡ 0 and Dℓ and Dr are two satisfiable circuits in str-DNNF structured by the same vtree.
Roughly put, we proceed as follows:

1. We prove that there is a partition (A,B) of V such that both G[A] and G[B] have treewidth
Ω(tw(G)).

2. For that partition we show how to construct from Dℓ and Dr in polynomial time a circuit D∗ in
str-DNNF computing a satisfiable Tseitin formula T (G[A]) or T (G[B]).

3. From Theorem 5 we derive that |D∗| = 2Ω(tw(G)) and use |D∗| = O(|Dℓ| × |Dr|) to conclude.
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For convenience we denote GA = G[A] and GB = G[B]. In the second step, we can not really control
which of T (GA) or T (GB) is satisfiable. But the first step frees us from worrying about this: since both
GA and GB have large treewidth, D∗ has size exponential in the treewidth of G regardless of whether it
represents T (GA) or T (GB).

We can already build toward the proof of Theorem 15 by assuming that the following two lemmas
hold.

Lemma 35. goodPartition Let G = (V,E) be a 2-connected graph with maximum degree ∆. There is a
partition (A,B) of V such thatG[A] is connected,G[B] is 2-connected, and min(tw(G[A])), tw(G[B])) ≥
⌊αtw(G)

∆2 ⌋ where α > 0 is a fixed universal constant.

Lemma 36. technicalLemma Let Apply(Dℓ, Dr, ∧) be the last step of a str-DNNF(∧, r) refutation
of T (G, c) where G is 2-connected. Assume that there is a partition (A,B) of V such that G[A] is
connected, G[B] is 2-connected, and both G[A] and G[B] have treewidth at least 2. Then there is a
circuit in str-DNNF of size O(|Dℓ| × |Dr|) computing a satisfiable Tseitin formula whose underlying
graph is G[A] or G[B] (potentially minus one vertex).

We will also use the following result from [BK06] which we reformulate to simplify notations.

Theorem 17. [BK06] Let G be a graph with a 1-separator u. Then G − u contains a connected
component G′ = (V ′, E′) such that tw(G) = tw(G[V ′ ∪ {u}]).
Proof of Theorem 15. First, using Lemmas 35 and 36 and Theorem 5, we prove the result when G is 2-
connected. Let ∆ be an upper bound on the maximum degree of all our graphs. Fix a graph G = (V,E)
and consider the partition (A,B) of V given by Lemma 35. Let k = tw(G) and n = |E(G)|. We
can choose the constant hidden in 2Ω(k) of the statement so that the theorem becomes trivial whenever
⌊αk/∆2⌋ < 2, hence we assume ⌊αk/∆2⌋ ≥ 2 in the remainder.

The conditions on (A,B) described in Lemma 36 are met so we obtain a circuit D∗ in str-DNNF
computing a satisfiable Tseitin formula T (G∗) where G∗ is GA, or GB , or GA minus one vertex, or GB

minus one vertex. In any case we have that tw(G∗) ≥ min(tw(GA), tw(GB))− 1. By Proposition 2 we
have |D∗| ≤ γ × |Dℓ| × |Dr| for some γ > 0. Now Theorem 5 says that there is a constant β > 0 such
that |D∗| ≥ 2βk/∆

3
/n. So we have min(|Dℓ|, |Dr|) ≥ 2βk/2∆

3
/(γn). This completes the proof in the

case when G is 2-connected.
Now we show how to go from the general case to the case when G is 2-connected. Assume G has

a 1-separator {u} and let U1, . . . , Us be the vertex sets of the connected components of G after removal
of u. We know from Theorem 17 that there is some i ∈ [s] such that tw(G[Ui ∪ {u}]) = tw(G), say
i = 1. Now there is a proper subset E′ ⊂ E(u) such that removing E′ from G yields two connected
components GA and GB , with Ui ∪ {u} ⊆ A. So E′ = E(A,B) and, by Lemma 11, we can choose
an assignment a to E′ such that T (G)|a = T (GA) ∧ T (GB) where T (GB) is satisfiable and T (GA) is
unsatisfiable.

Let aB be a satisfying assignment of T (GB). Using Lemma 34 we can condition any str-DNNF
(∧,r)-refutation of T (G) on the assignment a ∪ aB to obtain a str-DNNF (∧,r) refutation of T (GA)
without size increase. GA has fewer 1-separators thanG and tw(GA) = tw(G). We repeat the procedure
until obtaining a str-DNNF (∧,r) refutation of T (G′), where G′ is a subgraph of G that has the same
treewidth of G and has no 1-separator. So G′ is 2-connected, and the refutation of T (G′) obtained is at
most as large as that of T (G) we have started from.

3.4 From Unsatisfiable to Satisfiable Tseitin Formulas (Lemma 36)

Given a str-DNNF(∧, r) compilation of a CNF formula ϕ producing a sequence D1, . . . , DN of circuits
in str-DNNF, we call clause(Di) the set of clauses of ϕ that were used to construct Di.
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Example 23. In the OBDD(∧, r) compilation represented in Figure 3.1, the set of clauses for the OBDD
B3 is clause(B3) = {x1 ∨ x2, x1 ∨ x2}. ◀

Recall that for a parity constraint χ, clause(χ) is the set of clauses of its equivalent canonical CNF.
That is C ∈ clause(χ) if and only if var(C) = var(χ) and the number of non-negated literals of C
(literals of the form ℓx = x) is odd if χ is an odd parity constraint, and even otherwise. One can observe
that if an assignment a to var(χ) falsifies a clause C ∈ clause(χ), then it satisfies every clause in
clause(χ) \ {C}.

Example 24. Let χ : x + y + z = 1, this is an even parity constraint where var(χ) = {x, y, z} so
clause(χ) = {(x ∨ y ∨ z), (x ∨ y ∨ z), (x ∨ y ∨ z), (x ∨ y ∨ z)}. The assignment a to {x, y, z} defined
by a(x) = a(y) = 1 and a(z) = 0 falsifies the clause (x ∨ y ∨ z) but it satisfies the remaining clauses
(x ∨ y ∨ z), (x ∨ y ∨ z) and (x ∨ y ∨ z). ◀

Definition 38. A parity constraint χ is called incomplete in a CNF formula ϕ when clause(χ) ∩
clause(ϕ) ̸= clause(χ). Otherwise it is called complete in ϕ.

Given a circuit D in str-DNNF from a str-DNNF(∧, r) compilation of a CNF formula ϕ, χ is called
incomplete in D when clause(χ) ∩ clause(D) ̸= clause(χ). Otherwise it is called complete in D.

Incomplete constraints are defined in such a way that χ is called incomplete in ϕ even when all
clauses of clause(χ)\clause(ϕ) are entailed by ϕ. It is readily verified that there is a constraint χv(G, c)
that is incomplete in a subformula ϕ of T (G, c) if and only if ϕ is a proper subformula of T (G, c). It is
also clear that for every circuit D in str-DNNF form a str-DNNF(∧, r) compilation of T (G, c), except
the last one, there is a constraint χv(G, c) that is incomplete in D for some v ∈ V (G).

Lemma 37. Let T (G, c) be a satisfiable Tseitin formula where G is connected, let E′ ⊆ E(G) and let
G′ be the graph G where the edges E′ have been removed. If G′ is connected, then for every assignment
a to XE′ , T (G, c)|a is satisfiable.

Proof. For every v ∈ V (G), let E′(v) = E(v) ∩ E′. Let c′ : V (G′) → {0, 1} be such that c′(v) =
c(v) +

∑
u∈E′(v) a(xuv) mod 2. Then T (G, c)|a = T (G′, c′). Since G′ is connected, by Lemma 9 we

simply have to show that
∑

v∈V (G′) c
′(v) = 0 mod 2. Note that V (G′) = V (G).∑

v∈V (G)

c′(v) =
∑

v∈V (G)

(c(v) +
∑

u∈E′(v)

a(xuv)) mod 2

=
∑

v∈V (G)

c(v) + 2×
∑
e∈E′

a(xe) mod 2

=
∑

v∈V (G)

c(v) = 0 mod 2

Where the last equality comes from Lemma 9 applied to T (G, c).

Lemma 38. Let T (G, c) be an unsatisfiable Tseitin formula. If G is 2-connected, then every proper
subformula of T (G, c) is satisfiable.

Proof. Let F be a proper subformula of T (G, c) and let C ∈ clause(T (G, c)) \ clause(F ). Let a be the
unique assignment to var(C) that falsifiesC. To prove the lemma, we show that F |a is a subformula of a
satisfiable Tseitin formula. Let v ∈ V (G) be the unique vertex such that C ∈ clause(χv(G, c)). Recall
that the charge function c + 1v mod 2 is equal to c except on v. Since G is connected, by Lemma 9,
T (G, c+ 1v mod 2) is satisfiable.
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Now let F ′ be defined by clause(F ′) = clause(F ) \ clause(χv(G, c)). Since a satisfies all clauses
of χv(G, c) but C, we have that F |a = F ′|a. Observe that F ′ is a subformula of T (G, c + 1v mod 2)
so F ′|a is a subformula of T (G, c + 1v mod 2)|a. We know that T (G, c + 1v mod 2)|a is a Tseitin
formula, so it remains to justify that it is satisfiable.

Let G′ be the graph G where v has been removed and let c′ : V (G′)→ {0, 1} be the charge function
defined by c′(u) = c(u) + 1 mod 2 if u ∈ N(v) and a(xvu) = 1, and c′(u) = c(u) otherwise, then
T (G, c+1v mod 2)|a = T (G′, c′). SinceG is 2-connected, we have thatG′ is connected, so Lemma 37
gives us that T (G′, c′) is satisfiable.

Observe that for χv(G, c) a parity constraint of the Tseitin formula T (G, c) and a a partial variable
assignment, χv(G, c)|a is a parity constraint of the Tseitin formula T (G, c)|a.

Lemma 39. Let F be a subformula of T (G, c) and assume that there is a partition (A,B) of V such
that both GA and GB are connected and have treewidth at least 2. Suppose the constraint χv(G, c) is
incomplete in F . Let C ∈ clause(χv(G, c)) \ clause(F ) and write C = C ′ ∨ C ′′ where C ′′ is the
restriction of C to XE(A,B). Let a be an assignment to XE(A,B) that falsifies C ′′. Then χv(G, c)|a is
incomplete in F |a.

Proof. T (G, c)|a is a Tseitin formula T (G′, c′) where V (G′) = V (G) and e ∈ E(G′) if and only if
e ∈ E(G) and the corresponding variable is not in var(a). We prove that χv(G

′, c′) is incomplete in
F |a. In particular we show that C ′ is a clause of χv(G

′, c′) that is not in F |a.
First we explain why C ′ is in clause(χv(G

′, c′)). Since C ′ = C|a, and since C ∈ T (G, c), C ′ must
be a clause of T (G, c)|a = T (G′, c′). Moreover clause(T (G′, c′)) =

⋃
v∈V clause(χv(G

′, c′)) and the
clauses of χv(G

′, c′) are exactly the clauses of T (G′, c′) whose set of variables is var(χv(G
′, c′)). Since

var(C ′) = var(χv(G
′, c′)) it follows that C ′ ∈ clause(χv(G

′, c′)).
Now suppose that C ′ ∈ clause(F |a). So there is a clause Γ ∈ clause(F ) such that Γ|a = C ′. We

show that Γ is not a in clause(χv(G, c)). Suppose we have Γ ∈ clause(χv(G, c)). So var(Γ) = var(C)
and we write Γ = Γ′ ∨ Γ′′ where Γ′′ is the restriction of Γ to XE(A,B). Now XE(A,B) ∩ var(Γ) =
XE(A,B) ∩ var(C), so Γ|a = Γ′ ∨ (Γ′′|a). Note that a falsifies Γ′′ otherwise Γ|a would be 1, so
Γ|a = Γ′ = C ′. But since var(Γ′′) = var(C ′′) and since a falsifies both C ′′ and Γ′′, it follows that
C ′′ = Γ′′. Thus Γ = C, a contradiction.

Now that we know that Γ ̸∈ clause(χv(G, c)) we consider two cases. If |var(C ′)| > 1 then
let u,w ∈ V (G) be distinct vertices such that {xvu, xvw} ⊆ var(C ′). Then {xvu, xvw} ⊆ Γ and
since χv(G, c) is the only constraint of T (G, c) that contains both xvu and xvw, it follows that Γ ∈
clause(χv(G, c)), a contradiction.

Otherwise |var(C ′)| = 1, say var(C ′) = {xvu}. Then since in T (G, c) the variable xvu appears
only in the clauses of χu(G, c) and in the clauses of χv(G, c), it follows that Γ ∈ clause(χu(G, c)).
But then a assigns a value to all variables of XE(v) except xuv and to all variables of XE(u) except xuv.
Which means that uv is a connected component of G′, so uv is either G[A] or G[B], which contradicts
the fact that tw(G[A]) and tw(G[B]) are at least 2.

The proof of Lemma 36 intuitively works by considering the following two cases:

1. For some D ∈ {Dℓ, Dr}, at most two constraints for vertices in B are incomplete in D.

2. For every D ∈ {Dℓ, Dr}, at least three constraints for vertices in B are incomplete in D.

By Lemma 11 we have T (G, c)|a = T (GA, c
A
a )∧T (GB, c

B
a ) for every assignment a to XE(A,B), which

we recall is the set of variables corresponding to the edges that have one endpoint in A and the other in
B. In the first case, we assume that almost all constraints χv(G, c) for v ∈ B are complete in D. Then
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we choose an assignment a to XE(A,B) such that T (GB, c
a
B) is satisfiable. Each clause in clause(D)

either belongs to
⋃

v∈A clause(χv(G, c)) or belongs to
⋃

v∈B clause(χv(G, c)), the idea is then to “ex-
tract” in polynomial time from D a circuit in str-DNNF computing the CNF formula whose clauses are⋃

v∈B clause(χv(G, c)). This formula is almost T (GB, c
a
B), since there are only two constraints for ver-

tices in B that are incomplete in D. Then we conjoin to the extracted circuit the few missing constraints
without increasing its size too much, so that it computes T (GB, c

a
B). In the second case, many constraints

χv(G, c) for v ∈ B are incomplete in both Dℓ and Dr. In that case, we can choose an assignment a to
XE(A,B) such that T (GA, c

a
A) is satisfiable. Then we can work on Dr and Dℓ using transformations that

can only decrease the size of the circuits and finally we conjoin the resulting circuits in polynomial time
to get a circuit in str-DNNF computing T (GA, c

a
A).

We will illustrate each case using the following example.

Example 25. Consider the Tseitin formula for the following graph G. Let V = {1, 2, 3, 4, 5, 6, 7, 8} be
its set of vertices. For every two vertices i, j ∈ V connected by an edge in G, we will denote by xij (or
xji) the variable for the edge between i and j. The charge of each vertex is indicated by a color code:
gray vertices have charge 0 and white vertices have charge 1. Since the graph is connected and since
there is an odd number of white vertices, by Lemma 9 the corresponding Tseitin formula is unsatisfiable.
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4

5

6

7

8

A B

We will use A = {1, 2, 3, 4} and B = {5, 6, 7, 8}. So XE(A,B) = {x25, x36, x47}. The constraint for
i ∈ {1, 2, 3, 4, 5, 6, 7, 8} is denoted by χi. ◀

Lemma 40 (Lemma 36, case 1). Use the notation of Lemma 36. If for some D ∈ {Dℓ, Dr} at most two
constraints of T (G, c) for vertices of B are incomplete in D, then there is a circuit in str-DNNF of size
O(|D|) computing a satisfiable Tseitin formula whose underlying graph is GB or GB minus one vertex.

Proof. Let F be the CNF formula such that clause(F ) = clause(D). D is satisfiable, so there is an
assignment a to XE(A,B) such that F |a is satisfiable. Clearly F |a is a subformula of T (G, c)|a.

By Lemma 11, we have T (G, c)|a = T (GA, cA) ∧ T (GB, cB) for some charge functions cA and cB
over A and B, respectively. Thus we write F |a = FA ∧FB where FA is a subformula of T (GA, cA) and
FB is a subformula of T (GB, cB). Let aA be an assignment to var(FA) satisfying FA (aA must exist
otherwise F |a is unsatisfiable) and observe that, since var(FA) ∩ var(FB) = ∅, we have D|a ∪ aA ≡
(FA ∧ FB)|aA ≡ FA|aA ∧ FB = FB . Now we consider two cases:

• In the first case, T (GB, cB) is satisfiable. Since at most two constraints χv(G, c) for v ∈ B are in-
complete in F , we have that at most two constraints χv(GB, cB) for v ∈ B are incomplete in FB . If
no constraint of T (GB, cB) is incomplete in FB , then FB = T (GB, cB), thenD|a∪aA ≡ T (GB, cB)
and by Proposition 1 we have |D|a ∪ aA| = O(|D|). Now suppose there are two constraints
χu(GB, cB) and χv(GB, cB) incomplete in FB (choose u = v for the case of a single incomplete
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constraint). One can construct two circuits Du and Dv in str-DNNF that compute χu(GB, cB) and
χu(GB, cB), that both respect the same vtree as D, and whose size is O(∆) = O(1). Finally, using
Propositions 1 and 2 we obtain a circuit in str-DNNF computingD|(a∪aA)∧Du∧Dv ≡ T (GB, cB)
whose size is O(|D|).

• In the second case, T (GB, cB) is unsatisfiable. Let C ∈ clause(T (GB, cB)) \ clause(FB) (C
must exist, otherwise FB and F |a would be unsatisfiable), let v be the vertex of B such that C ∈
χv(GB, cB), and let av be the unique assignment to var(C) that falsifies C. Let F ′

B be the sub-
formula of FB whose clauses are clause(FB) \ clause(χv(GB, cB)). We have that av satisfies all
clauses of χv(GB, cB) except C, so FB|av = F ′

B|av. Now observe that F ′
B is a subformula of the

satisfiable Tseitin formula T (GB, cB + 1v mod 2). Thus F ′
B|av is a subformula of T (GB, cB + 1v

mod 2)|av = T (G′
B, c

′
B) where G′

B is GB without the vertex v, and c′B is defined by c′B(u) =
cB(u)+av(xvu) mod 2 if u ∈ NGB

(v) and by c′B(u) = cB(u) otherwise. SinceGB is 2-connected,
we have that G′

B is connected, so Lemma 37 gives us that T (G′
B, c

′
B) is satisfiable.

Finally,D|a∪aA∪av is equivalent to F ′
B|av and at most two constraints of T (G′

B, c
′
B) are incomplete

in F ′
B|av, so using the same argument as in the first case, we find a circuit in str-DNNF of sizeO(|D|)

that computes T (G′
B, c

′
B).

We illustrate the construction described in the above proof using the following example.

Example 26. For the Tseitin formula T (G, c) shown in Example 25, say that we have a circuit D in
str-DNNF where

clause(D) = {(x25 ∨ x56 ∨ x58), [clauses for χ5]

(x36 ∨ x56 ∨ x67), (x36 ∨ x56 ∨ x67), (x36 ∨ x56 ∨ x67), (x36 ∨ x56 ∨ x67), [clauses for χ6]

(x47 ∨ x67 ∨ x78), (x47 ∨ x67 ∨ x78), [clauses for χ7]

(x58 ∨ x78), (x58 ∨ x78), ...} [clauses for χ8]

and all clauses not shown are clauses of χ1, χ2, χ3 or χ4. For the vertices of B (that is vertices 5, 6, 7
and 8) we have that χ6 and χ8 are complete in D and that χ5 and χ7 are complete in D. We are in the
situation where at most two constraints for B are incomplete in D. Now consider the assignment a to
XE(A,B) defined by a(x25) = a(x36) = a(x47) = 0. Then T (G, c)|a is the Tseitin formula represented
by the following figure:
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T (GA) T (GB)
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3.4. From Unsatisfiable to Satisfiable Tseitin Formulas (Lemma 36)

We have T (G)|a = T (GA) ∧ T (GB) where T (GA) is satisfiable and T (GB) is unsatisfiable. Let
aA be any model of T (GA, cA) then we have

clause(D|a ∪ aA) = {(x56 ∨ x58), (x56 ∨ x67), (x56 ∨ x67), (x67 ∨ x78), (x58 ∨ x78), (x58 ∨ x78)}

Again we have that the constraints of T (GB) for 5 and 7 are incomplete in D|a∪ aA and the constraints
of T (GB) for 6 and 8 are complete in D|a∪ aA. The circuit D|a∪ aA is satisfiable but T (GB) is not, so
we are in the second subcase of Lemma 36, case 1. We consider the clause (x56 ∨ x58) of T (GB) that is
not in clause(D|a ∪ aA). We denote by a5 the unique assignment that falsifies a5, so a5(x56) = 0 and
a(x58) = 1. Then we have

clause(D|a ∪ aA ∪ a′) = {(x67), (x67 ∨ x78), (x78)}

Now (x67) ∧ (x67 ∨ x78) ∧ (x78) is a subformula of the following satisfiable Tseitin formula:

6

7

8

and we just have to conjoin D|a∪aA∪a′ with the circuit in str-DNNF that computes the few constraints
for this Tseitin formula that is incomplete in D|a∪ aA ∪ a′. Here we have to conjoin D|a∪ aA ∪ a′ with
a circuit in str-DNNF that computes x67 + x78 = 1 mod 2. ◀

Now we move on to the second case of Lemma 36.

Lemma 41 (Lemma 36, case 2). Use the notation of Lemma 36. If for every D ∈ {Dℓ, Dr} at least
three constraints of T (G) for vertices of B are incomplete in D, then there is a circuit in str-DNNF of
size O(|Dℓ| × |Dr|) computing a satisfiable Tseitin formula whose underlying graph is GA.

Proof. Let F ℓ and F r be the CNF formulas such that clause(F ℓ) = clause(Dℓ) and clause(F r) =
clause(Dr). Apply(Dℓ, Dr, ∧) is the last apply of the refutation so we must have F ℓ∧F r = T (G). Let
a be an assignment to XE(A,B). By Lemma 11, T (G, c)|a is of the form T (GA, c

a
A) ∧ T (GB, c

a
B). For

convenience we drop some superscripts a. Since F ℓ and F r are subformulas of T (G, c), it follows that

F ℓ|a = F ℓ
A ∧ F ℓ

B and F r|a = F r
A ∧ F r

B

where F ℓ
A and F r

A are subformulas of T (GA, cA) and F ℓ
B and F r

B are subformulas of T (GB, cB).

Claim 10. Assume there is an assignment a to XE(A,B) such that T (GA, cA) and F ℓ|a and F r|a are
satisfiable. Then there is a circuit in str-DNNF of size O(|Dr||Dℓ|) that computes T (GA, cA).

Proof. Using Proposition 1 we obtain a circuit Dℓ|a ≡ F ℓ|a in str-DNNF of size O(|D|ℓ) and another
circuit Dr|a ≡ F r|a in str-DNNF of size O(|D|r). Since Dℓ and Dr are structured by the same vtree, so
are Dℓ|a and Dr|a. By assumption F ℓ|a and F r|a are satisfiable so let aℓB be a model of F ℓ

B and let arB
be a model of F r

B . Using Proposition 1 and the fact that var(F ℓ
A)∩var(F ℓ

B) = var(F r
A)∩var(F r

B) = ∅,
we have that

Dℓ|(a ∪ aℓB) = F ℓ
A and Dr|(a ∪ arB) = F r

A
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are two circuits in str-DNNF structured by the same vtree and of respective size O(|Dℓ|) and O(|Dr|).
It then suffices to use Proposition 2 to obtain a circuit in str-DNNF computing

Dℓ|(a ∪ aℓB) ∧Dr|(a ∪ arB) ≡ F ℓ
A ∧ F r

A = T (GA, cA)

and whose size is O(|Dr||Dℓ|).

In the rest of the proof we explain how to construct the assignment a of Claim 10. By assumption
a constraint of T (G, c) for a vertex ur ∈ B is incomplete in Dr and three constraints of T (G, c) for
uℓ, vℓ, wℓ ∈ B are incomplete in Dℓ. The latter three vertices are distinct, so at least two of them are
different from ur. Suppose, without loss of generality, that ur ̸= vℓ and ur ̸= wℓ. For convenience,
rename u = ur, v = vℓ and w = wℓ. Let Cu be a clause of χu(G, c) that is not in clause(Dr) and let
Cv and Cw be clauses of χv(G, c) and χw(G, c) that are not in clause(Dℓ). We write Cu = C ′

u ∨ C ′′
u ,

Cv = C ′
v ∨ C ′′

v and Cw = C ′
w ∨ C ′′

w where C ′′
u , C ′′

v , C ′′
w are the restrictions of Cu, Cv, Cw to XE(A,B),

respectively. Note that C ′′
u or C ′′

v or C ′′
w may be empty. Let E′′(u), E′′(v) and E′′(w) be the set of edges

corresponding to var(C ′′
u), var(C

′′
v ) and var(C ′′

w), respectively. By definition, all three sets are subsets
of E(A,B).

Claim 11. We have E(A,B) ̸= E′′(u) ∪ E′′(v) or E(A,B) ̸= E′′(u) ∪ E′′(w).

Proof. If E′′(u) = ∅ or E′′(v) = ∅ or E′′(w) = ∅, then the claim holds because otherwise E(A,B)
would be a subset or E(u), or a subset of E(v), or a subset of E(w), which is not possible since G is
2-connected.

Otherwise, if neither E′′(u) nor E′′(v) nor E′′(w) is empty, then the three sets are pairwise disjoint
since u, v, w ∈ B. So if E(A,B) = E′′(u) ∪ E′′(v) were to hold, then we would have E(A,B) ̸=
E′′(u) ∪ E′′(w) because otherwise E′′(v) = E′′(w) ̸= ∅ would hold, which is impossible.

Suppose, without loss of generality, that E(A,B) ̸= E′′(u) ∪ E′′(v). Let a′′u and a′′v be the assign-
ments to var(C ′′

u) and var(C ′′
v ) that falsify C ′′

u and C ′′
v , respectively (if C ′′

u is empty then so is a′′u, and if
C ′′
v is empty then so is a′′v). Conditioning T (G, c) on a′′u ∪ a′′v gives an unsatisfiable Tseitin formula on

the graph G′ obtained by removing E′′(u) ∪ E′′(v) from G. Since G, GA, and GB are connected, and
since E′′(u) ∪ E′′(v) is a proper subset of E(A,B), we have that G′ is connected. Using Lemma 11,
again since E′′(u) ∪ E′′(v) is a proper subset of E(A,B), we have an assignment a to XE(A,B) that
extends a′′u ∪ a′′v and such that T (G, c)|a = T (GA, cA)∧ T (GB, cB) where T (GA, cA) is satisfiable and
T (GB, cB) is unsatisfiable.

Now we have F ℓ|a ≡ F ℓ
A ∧ F ℓ

B and F r|a ≡ F r
A ∧ F r

B where F ℓ
A and F r

A are satisfiable (because
T (GA, cA) is satisfiable). Recall that Cu ̸∈ clause(Dr) and Cv ̸∈ clause(Dℓ). By construction, a
falsifies C ′′

u and C ′′
v , moreover by assumption, both GA and GB are connected and have treewidth at

least 2, thus by Lemma 39 the constraints χu(G, c)|a and χv(G, c)|a are incomplete in Dr|a and Dℓ|a,
respectively. Since u and v belong toB, it follows that F ℓ

B and F r
B are proper subformulas of T (GB, cB).

Then since GB is 2-connected, by Lemma 38 we have that both F ℓ
B and F r

B are satisfiable. Finally since
var(F ℓ

A) ∩ var(F ℓ
B) = var(F r

A) ∩ var(F r
B) = ∅, we have that F ℓ|a and F r|a are satisfiable. At this

point we invoke Claim 10 to finish the proof.

Again we use running example to describe the construction of the circuit in str-DNNF in the second
case.
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Example 27. For the Tseitin formula T (G, c) shown in Example 25, suppose that Dℓ and Dr have the
following clauses

clause(Dℓ) = {(x25 ∨ x56 ∨ x58), (x25 ∨ x56 ∨ x58), [clauses for χ5]

(x36 ∨ x56 ∨ x67), (x36 ∨ x56 ∨ x67), [clauses for χ6]

(x47 ∨ x67 ∨ x78), (x47 ∨ x67 ∨ x78), [clauses for χ7]

(x58 ∨ x78), (x58 ∨ x78) [clauses for χ8]

...} [clauses for χ1, χ2, χ3, χ4]

clause(Dr) = {(x25 ∨ x56 ∨ x58), (x25 ∨ x56 ∨ x58), [clauses for χ5]

(x36 ∨ x56 ∨ x67), (x36 ∨ x56 ∨ x67), [clauses for χ6]

(x47 ∨ x67 ∨ x78), (x47 ∨ x67 ∨ x78), [clauses for χ7]

(x58 ∨ x78), (x58 ∨ x78), [clauses for χ8]

...} [clauses for χ1, χ2, χ3, χ4]

The constraint χ8 is complete in both Dℓ and Dr. The constraints χ5, χ6 and χ7 are incomplete in
both Dℓ and Dr. We are in the second case of Lemma 36. We take a clause missing from Dℓ and
a clause missing from Dr. We choose clauses for distinct parity constraints: (x25 ∨ x56 ∨ x58) ∈
clause(χ5) \ clause(Dℓ) and (x36 ∨ x56 ∨ x67) ∈ clause(χ6) \ clause(Dr). The restriction of the two
clauses to XE(A,B) is (x25) and (x36), respectively. We consider the assignment a′′ to {x25, x36} that
falsifies the two restricted clauses, so a′′(x25) = 0 and a′′(x36) = 1. Then T (G, c)|a′′ is the Tseitin
formula described by the following figure:
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We want to assign x47 a value so that the Tseitin formula over A is satisfiable. So we extend a′′ to the
assignment a defined by a(x25) = 0 and a(x36) = a(x47) = 1. Then we have T (G, c)|a corresponding
to the following figure:

T (GB) is unsatisfiable, but using a′ we have ensured that some clauses of T (GB) are not in Dℓ|a and
that some clauses of T (GB) are not in Dr|a:

clause(Dℓ|a) = {(x56 ∨ x58), (x56 ∨ x67), (x67 ∨ x78), (x58 ∨ x78), (x58 ∨ x78), [clauses for A]}

clause(Dr|a) = {(x56 ∨ x58), (x56 ∨ x67), (x67 ∨ x78), (x58 ∨ x78), (x58 ∨ x78), [clauses for A]}

It follows that both (x56 ∨ x58)∧ (x56 ∨ x67), (x67 ∨ x78)∧ (x58 ∨ x78)∧ (x58 ∨ x78) and (x56 ∨ x58)∧
(x56 ∨ x67) ∧ (x67 ∨ x78) ∧ (x58 ∨ x78) ∧ (x58 ∨ x78) are satisfiable. For instance the assignment aℓB
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defined by aℓB(x56) = aℓB(x67) = aℓB(x78) = 0 and arB(x58) = 1 satisfies the first CNF formula. And
the assignment arB defined by arB(x56) = arB(x67) = arB(x78) = arB(x58) = 1 satisfies the second CNF
formula. Then we have that

clause(Dℓ|a ∪ aℓB) ∪ clause(Dr|a ∪ arB) = clause(T (GA))

and it only remains to conjoin Dℓ|a ∪ aℓB and Dr|a ∪ arB to obtain a circuit in str-DNNF computing the
satisfiable Tseitin formula T (GA), which is feasible in polynomial time using Proposition 2 since Dℓ

and Dr (a fortiori Dℓ|a ∪ aℓB and Dr|a ∪ arB) have the same vtree. ◀

3.5 Graph Bi-Partition with Large Treewidth on Both Sides

Lemma 35 is shown with the help of Theorem 18 below combined with Theorem 17. Before diving
into the proof, which is quite intricate, we discuss some of the underlying graph theory, in particular the
following result.

Theorem 18. There exists a constant 0 < α ≤ 1 such that, for all graphs G = (V,E) with maximum
degree at most ∆, there is a partition (A,B) of V such that tw(G[A]) ≥ ⌊αtw(G)

∆2 ⌋ and tw(G[B]) ≥
⌊αtw(G)

∆2 ⌋.

To illustrate Theorem 18, we look at the particular case of grid graphs. The n × n grid has treewidth
n−1 and maximum degree 4. It is straightforward to partition its vertices to obtain an n×⌊n/2⌋ grid on
one side, and an n×⌈n/2⌉ on the other. Using this partition for (A,B) we see that G[A] and G[B] both
have an ⌊n/2⌋ × ⌊n/2⌋ induced grid and therefore both have treewidth at least ⌊n/2⌋ − 1 ≥ (n− 1)/4.
Of course, the constant α in the theorem is way smaller than 1/4.

We provide some arguments to justify the veracity of Theorem 18. This theorem is an adaptation of
the following result by Chekuri and Chuzhoy [CC13].

Theorem 19. Let h and r be integers and let G = (V,E). There are positive constants β and c such
that, if h3r ≤ β tw(G)

logc(tw(G)) , then there is an efficient algorithm to partition V into (V1, . . . , Vh), with
tw(G[Vi]) ≥ r true for all i ∈ [h].

Theorem 18 is almost a subcase of Theorem 19 with h = 2. The only problem is that in Theorem 18,
r would be roughly αtw(G)/∆2, and thus be too big for Theorem 18 where it must be fewer that
O(tw(G)/ logc(tw(G))). A careful examination of Chekuri and Chuzhoy’s proof shows that the log-
divisor has two reasons: (1) a preprocessing of G to decrease its degree and (2) the use of an approxi-
mation algorithm to make the partition efficiently computable. Since we work with graphs of bounded
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degree and only care about the existence of a partition and not its computation, we can adapt the proof
for h = 2 and make some other adjustments to get rid of the logc(tw(G)) to obtain Theorem 18.

The proof of Theorem 18 is split into several subsections. The first two subsections introduce pre-
liminary notions, then in the next subsection we give two lemmas that help proving Theorem 18, and the
remaining subsections contain the proofs of these two lemmas.

We define the following numerical constants: γ = 1/2000, β = 6/γ = 12000 and α = 1/(200β) =
1/2400000 the constant from Theorem 18. When the set of vertices, the set of edges, or the maximum
degree of a graph G is not specified, we denote it by V (G), E(G), and ∆(G), respectively. We assume
αtw(G)

∆2 ≥ 1, otherwise the theorem is trivial.

3.5.1 Well-linkedness

In a graph G, a set S ⊆ V (G) is called well-linked when, for every pair X,Y ⊆ S such that |X| = |Y |,
there exist |X| vertex-disjoint paths fromX to Y . Note thatX and Y are not necessarily distinct and that
paths of size zero are allowed. The well-linked number of G, denoted wl(G), is the size of the largest
well-linked set in G. It is known that tw(G) ≤ wl(G) + 1 ≤ 3× tw(G) [HW17].

Lemma 42. Let G be a simple graph. There is a set S∗ ⊆ V (G) of size tw(G) ≤ |S∗|+1 ≤ 3× tw(G)
such that, for every partition (A,B) of V (G), it holds that

|E(A,B)| ≥ min(|A ∩ S∗|, |B ∩ S∗|).

Proof. Let S∗ be the largest well-linked set in G and consider a partition (A,B) of V (G). The bounds
on |S∗| stem from the relation between wl(G) and tw(G). Let S∗

A = S∗∩A and S∗
B = S∗∩B. Assume,

without loss of generality, that |S∗
A| ≤ |S∗

B|. Take an arbitrary subset Z ⊆ S∗
B of size |S∗

B| − |S∗
A| and

let X = S∗
A ∪ Z and Y = S∗

B . Then we have X,Y ⊆ S∗ and |X| = |Y |.
By definition of S∗ there are at least |X| = |S∗

A|+|Z| vertex-disjoint paths fromX to Y , |S∗
A| among

them start from S∗ ∩A and end in S∗ ∩B. Since A∩B = ∅, each of these paths has size at least 1, and
since they are vertex-disjoint, there are at least |S∗

A| = |S∗ ∩A| = min(|S∗ ∩A|, |S∗ ∩B|) edges going
from A to B. Thus |E(A,B)| ≥ |S∗

A| = |S∗ ∩A| = min(|S∗ ∩A|, |S∗ ∩B|).

In the remainder of this section, S∗ is the subset of V described by Lemma 42, k = |S∗| and r = 2αk
∆2 .

Observe that r ≥ αtw(G)
∆2 ≥ 1.

Lemma 43. [CC13] Let G be a simple graph whose maximum degree is ∆, assume that there is S ⊆
V (G) and γ ∈ [0, 1] such that, for every partition (A,B) of V (G), it holds that |E(A,B)| ≥ γmin(|S∩
A|, |S ∩B|). Then tw(G) ≥ γ|S|

3∆ − 1.

3.5.2 Acceptable partitions

In a graph G, given a subset S ⊆ V (G), we denote by outG(S) the set of edges of G that have one
endpoint in S and the other in V (G) \ S. We drop the G subscript when it is clear from context which
graph we are working with. Let C = (V1, . . . , Vs) be a partition of V (G) (s is arbitrary). We denote
by GC the multigraph with s vertices {ν1, . . . , νs} such that for each i ̸= j (no self-loop) there are
|E(Vi, Vj)| edges between νi and νj . One can construct GC from G by contracting every subset of
vertices Vi into a single vertex, which is νi. We then call GC a contracted multigraph. We abuse the
notations and consider the vertices of GC to be V1, . . . , Vs (so C can be seen as V (GC)). It will be
important that all multigraphs GC considered for different partitions C have enough edges and have
maximum degree bounded by ∆′ = βr∆2 where β = 12000. We will show that these properties are
guaranteed when the partition C is acceptable.
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Definition 39. A partition C = (V1, . . . , Vs) of V (G) is called acceptable when |out(Vi)| ≤ ∆′ and
|Vi ∩ S∗| ≤ k

2 hold for all i ∈ [s].

Acceptable partitions of V (G) exist, the simplest one is C = {{v} | v ∈ V (G)}. Indeed we have
|{v} ∩ S∗| ≤ 1 ≤ k

2 since k ≥ 2 and |out({v})| = deg(v) ≤ ∆ ≤ βr∆2 = ∆′ since β, r ≥ 1.

Claim 12. Let C be an acceptable partition of V (G). Then ∆(GC) ≤ ∆′.

Proof. Let C = {V1, . . . , Vs} and let νi be the vertex of GC corresponding to Vi. Then deg(νi) =
|out(Vi)| ≤ ∆′.

Claim 13. Let C be an acceptable partition of V (G). Then |E(GC)| ≥ k
4 .

Proof. Let C = {V1, . . . , Vs}. Assume that |V1 ∩ S∗| ≥ |V2 ∩ S∗| ≥ · · · ≥ |Vs ∩ S∗| holds. We have∑s
i=1 |Vi ∩ S∗| = |S∗| = k. Since |V1 ∩ S∗| ≤ k

2 we can find l ∈ [s − 1] the largest integer such
that

∑l
i=1 |Vi ∩ S∗| ≤ 3k

4 . We clearly have
∑s

i=l+1 |Vi ∩ S∗| ≥ k
4 . We also have

∑l
i=1 |Vi ∩ S∗| ≥ k

4

for otherwise we would have |Vl+1 ∩ S∗| =
∑l+1

i=1 |Vi ∩ S∗| −
∑l

i=1 |Vi ∩ S∗| > 3k
4 −

k
4 = k

2 , which
contradicts the choice of l.

Let A = V1 ∪ · · · ∪ Vl and B = Vl+1 ∪ · · · ∪ Vs. By construction we have |A ∩ S∗| ≥ k
4 and

|B ∩ S∗| ≥ k
4 . And by definition of S∗ we have |E(A,B)| ≥ min(|A ∩ S∗|, |B ∩ S∗|) ≥ k

4 . When
contracting the Vi to obtain GC , the edges E(A,B) survive, so |E(GC)| ≥ |E(A,B)| ≥ k

4 .

3.5.3 Proof of Theorem 18

The proof of Theorem 18 boils down to the following two lemmas, which we will show in later sections.

Lemma 44. Let C be an acceptable partition of V (G). Then there is a partition (U1,U2,U3) of C such
that, for all i ∈ {1, 2, 3}

|E(GC [Ui])| ≥
|E(GC)|
180

.

Recall that C = (V1, . . . , Vs), where V1 ∪ · · · ∪ Vs = V (G). From a partition (U1,U2,U3) of C we
define a corresponding partition (U1, U2, U3) of V (G) where Uj is obtained by uncontracting all nodes
in Uj . More formally, Uj =

⋃
Vi∈Uj

Vi. Note that Uj is partition of Uj .

Lemma 45. Let C = (V1, . . . , Vs) be an acceptable partition of V (G). Let U ⊆ C such that |E(GC [U ])| ≥
|E(GC)|

180 and let U =
⋃

Vi∈U Vi. If tw(G[U ]) < ⌊αtw(G)
∆2 ⌋ and |U ∩ S∗| ≤ k

2 , then there is a partition U ′

of U such that C′ = (C \ U)∪U ′ is an acceptable partition of V (G) and such that |E(GC′)| < |E(GC)|.

With Lemmas 44 and 45, we can show Theorem 18 relatively easily.

Proof of Theorem 18. We know that acceptable partitions of V (G) exist. Let C be the acceptable par-
tition of V (G) such that |E(GC)| is minimal, that is, for all other acceptable partitions C′ we have
|E(GC′)| ≥ |E(GC)|. Let (U1,U2,U3) be the partition of C given by Lemma 44 and (U1, U2, U3) be the
corresponding partition of V (G).

Assume, without loss of generality, that tw(G[U1]) ≥ tw(G[U2]) ≥ tw(G[U3]). If tw(G[U2]) ≥
⌊αtw(G)

∆2 ⌋ then we takeA = U1 andB = U2∪U3 and we are done. Suppose otherwise that tw(G[U3]) ≤
tw(G[U2]) < ⌊αtw(G)

∆2 ⌋. There must be |Uj ∩ S∗| ≤ |S∗|
2 = k

2 for some j ∈ {2, 3}, say for j = 3. But
then Lemma 45 gives a partition U ′

3 of U3 such that C′ = U1∪U2∪U ′
3 is an acceptable partition of V (G)

such that |E(GC′)| < |E(GC)|, a contradiction.
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3.5.4 Proof of Lemma 44

Lemma 44 is a consequence of the more general Lemma 46 below. Lemma 46 essentially says that if
the number of edges of a multigraph is greater than a factor of its degree, then there is a partition of its
vertices into three parts such that many edges remain in every part.

Lemma 46. Let H be a multigraph with no self-loops and with |E(H)| ≥ 25∆(H). Then there is
a partition V (H) = (Vr, Vb, Vg) (red,blue,green) such that |E(H[Vc])| ≥ |E(H)|/180 holds for all
c ∈ {r, b, g}.

Proof of Lemma 44. C is an acceptable partition, so |E(GC)| ≥ k/4 and ∆(GC) ≤ ∆′ = βr∆2 =
2βαk ≤ k/100 ≤ |E(GC)|/25. Now Lemma 44 is a direct application of Lemma 46 with H = GC .

The proof of Lemma 46 is probabilistic. It uses the Paley-Zygmund inequality which, given a non-
negative random variable Z with finite variance and θ ∈ (0, 1], is

Pr [Z ≥ θE [Z]] ≥ (1− θ)2 E [Z]2

E [Z2]

Proof of Lemma 46. Let m = |E(H)|, D = ∆(H) and η = 1
25 . By assumption D ≤ ηm. The vertices

of H are assigned a color in {r(ed), b(lue), g(reen)} uniformly at random. An edge e = uv is red when
both its endpoints are red, it is blue when both its endpoints are blue, it is green when both its endpoints
are green, and otherwise it has no color. Let Xc

e be the event that the edge e has color c ∈ {r, b, g} and
let Ec =

∑
e∈E(H)X

c
e be the number of edges colored with c after random coloring of the vertices. It is

clear that Pr [Xc
e ] =

1
9 and that E [Ec] =

m
9 . The statement of the lemma follows from proving that

Pr
[
Er <

m

180
or Eb <

m

180
or Eg <

m

180

]
< 1.

By the union bound, it is sufficient to show that Pr
[
Ec <

m
180

]
< 1

3 holds, for c fixed in {r, b, g}. We
will use Paley-Zygmund inequality to prove Pr

[
Ec ≥ m

180

]
> 2

3 , so we need to compute E
[
E2

c

]
.

E
[
E2

c

]
= E

[(∑
e
Xc

e

)2
]
=

∑
e∈E(G)

∑
e′∈E(G)

E [Xc
eX

c
e′ ] =

∑
e∈E(G)

∑
e′∈E(G)

Pr [Xc
e and Xc

e′ ]

Let us look at Pr
[
Xc

e and Xc
e′
]
. Let ue and ve be the endpoints of e.

• If e′ has the same endpoints as e, and e′ ∈ E(ue)∩E(ve), then the probability is Pr
[
Xc

e and Xc
e′
]
=

Pr [Xc
e ] =

1
9 .

• If e′ shares exactly one endpoint with e, and e′ ∈ (E(ue) ∪ E(ve)) \ (E(ue) ∩ E(ve)), then the
probability is Pr

[
Xc

e and Xc
e′
]
= 1

27 .

• If e′ has no endpoint in common with e, and e′ ∈ E(H) \ (E(ue)∪E(ve)), then the probability is
Pr

[
Xc

e and Xc
e′
]
= 1

81 .

So we obtain

E
[
E2

c

]
=

∑
e∈E(G)

(
|E(ue) ∩ E(ve)|

9
+
|E(ue)|+ |E(ve)| − 2|E(ue) ∩ E(ve)|

27

+
m− (|E(ue)|+ |E(ve)| − |E(ue) ∩ E(ve)|)

81

)
=
m2

81
+

2

81

∑
e∈E(G)

|E(ue) ∩ E(ve)|+
2

81

∑
e∈E(G)

(|E(ue)|+ |E(ve)|)
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Recall that we are dealing with multigraphs, so
∑

e∈E(G) |E(ue) ∩ E(ve)| is not necessarily m. But we
do have that |E(ue) ∩ E(ve)|, |E(ue)| and |E(ve)| are all at most D ≤ ηm so

E
[
E2

c

]
≤ m2

81
+

6mD

81
≤ m2

81
+

6ηm2

81
.

Finally we apply Paley-Zygmund inequality:

Pr [Ec ≥ m/180] ≥
(
1− 1

20

)2 E [Ec]
2

E [E2
c ]
≥

(
1− 1

20

)2 1

1 + 6η
>

2

3

3.5.5 Proof of Lemma 45

Lemma 45. Let C = (V1, . . . , Vs) be an acceptable partition of V (G). Let U ⊆ C such that |E(GC [U ])| ≥
|E(GC)|

180 and let U =
⋃

Vi∈U Vi. If tw(G[U ]) < ⌊αtw(G)
∆2 ⌋ and |U ∩ S∗| ≤ k

2 , then there is a partition U ′

of U such that C′ = (C \ U)∪U ′ is an acceptable partition of V (G) and such that |E(GC′)| < |E(GC)|.

We are going to construct the new partition U ′ of U . Recall that ∆′ = βr∆2 is the maximum
degree of the contracted multigraph and that 6∆2r

∆′ = 6
β = γ < 1. From Lemma 43 we deduce that

for all S ⊆ U with |out(S)| ≥ ∆′, there is a partition (AU , BU ) of U , such that |E(AU , BU )| <
γmin(|AU ∩ S|, |BU ∩ S|), for otherwise we would get

tw(G[U ]) ≥ γ|S|
3∆
− 1 ≥ γ|out(S)|

3∆2
− 1 ≥ γ∆′

3∆2
− 1 = 2r − 1 ≥ r ≥ αtw(G)

∆2

where we have used that |S| ≥ |out(S)|/∆ and r = 2αk/∆2 ≥ αtw(G)/∆2 ≥ 1.

The Split Function. We define a routine Split(Y ) whose input is a subset Y ⊆ U with |out(Y )| ≥ ∆′.
Split(Y ) first chooses the smallest subset S ⊆ Y whose vertices are endpoints of edges in out(Y ), and
such that |out(S) ∩ out(Y )| ≥ ∆′. Since |S| ≥ |out(S)|/∆, it follows that |S| ≥ |out(S)|/∆ ≥
∆′/∆ > 1. Then Split(Y ) returns a partition (AY , BY ) of Y such that |E(AY , BY )| < γmin(|S ∩
AY |, |S ∩ BY |). We know such a partition exists because otherwise tw(G[U ]) ≥ tw(G[Y ]) ≥ r would
hold. We always assume that |out(AY )| ≤ |out(BY )|. Observe that neither S∩AY nor S∩BY is empty.

Lemma 47. Let (AY , BY ) = Split(Y ), then

|E(AY , BY )| < γ∆′ (3.1)

and
|E(AY , BY )| < γmin(|out(Y ) ∩ out(AY )|, |out(Y ) ∩ out(BY )|) (3.2)

Proof. Consider the subset S ⊆ Y chosen by Split(Y ). Every v ∈ S is the endpoint of an edge in
out(Y ) by definition, so |out(S ∩AY )∩ out(Y )| ≥ |S ∩AY | and |out(S ∩BY )∩ out(Y )| ≥ |S ∩BY |.
Thus |out(AY )∩ out(Y )| ≥ |S ∩AY | and |out(BY )∩ out(Y )| ≥ |S ∩BY | hold. Split(Y ) returns the
partition (AY , BY ) such that |E(AY , BY )| < γmin(|S ∩ AY |, |S ∩ BY |). Combining this inequality
with the ones we have just obtained gives (3.2).

We have |out(S ∩ AY ) ∩ out(Y )| < ∆′ and |out(S ∩ BY ) ∩ out(Y )| < ∆′, for otherwise |S|
would not be minimal. Thus |E(AY , BY )| < γmin(|S ∩ AY |, |S ∩ BY |) < γmin(|out(S ∩ AY ) ∩
out(Y )|, |out(S ∩BY ) ∩ out(Y )|) < γ∆′.
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Algorithm 1: BetterPartition(U )

1 Let P = (U)
2 while there exists Y ∈ P such that |out(Y )| ≥ ∆′ do
3 Let (AY , BY ) = Split(Y )
4 Remove Y from P and add AY and BY to P
5 end
6 U ′ = ∅
7 for Y ∈ P do
8 Add all connected components of G[Y ] to U ′

9 end
10 Return U ′

Lemma 48. Let (AY , BY ) = Split(Y ). Then |out(AY )| ≤ |out(Y )|
2(1−γ) and |out(BY )| ≤ |out(Y )|.

Proof. By definition of Split we have |out(AY )| ≤ |out(BY )| and |E(AY , BY )| < γ|out(AY ) ∩
out(Y )|. For the first part, observe that |out(AY )|+ |out(BY )| − 2|E(AY , BY )| = |out(Y )| so

|out(Y )| ≥ 2|out(AY )| − 2|E(AY , BY )|
≥ 2|out(AY )| − 2γ|out(AY ) ∩ out(Y )|
≥ 2(1− γ)|out(AY )|

For the second part, observe that |out(BY )| = |out(BY ) ∩ out(Y )|+ |E(AY , BY )| so

|out(BY )| ≤ |out(BY ) ∩ out(Y )|+ γ|out(AY ) ∩ out(Y )|
≤ γ|out(Y )|+ (1− γ)|out(BY ) ∩ out(Y )|
≤ γ|out(Y )|+ (1− γ)|out(BY )|

and therefore γ|out(BY )| ≤ γ|out(Y )| holds.

A Partition Algorithm. Recall that we have a partition U of U ⊆ V (G) and that we want to replace it
with an new partition U ′ such that C′ = (C \U)∪U ′ is an acceptable partition of V (G) with |E(GC′)| <
|E(GC)|. The new partition U ′ is given by the algorithm BetterPartition(U ). The algorithm starts from
the partition P = (U) of size 1. Then, as long as P has a component Y with a border too big (i.e.,
|out(Y )| ≥ ∆′), the algorithm calls Split to divide Y in two parts and replaces Y by the two parts. The
algorithm ends because Split(Y ) returns a partition (AY , BY ) where neither AY nor BY is empty, so Y
is replaced by two smaller sets. In the worst case we would reach the point where every set in P contains
a single vertex, i.e., is of the form {v}, and the while loop ends since |out({v})| = deg(v) ≤ ∆ < ∆′.
The trace of all splits occurring in BetterPartition(U ) forms a rooted binary tree T where each internal
t ∈ T corresponds to a subset of U . We encode this with a mapping λ from nodes of T to subset of
U : if λ(t) = Y and (AY , BY ) = Split(Y ), then λ(tl) = AY and λ(tr) = BY where tl and tr are the
children of t. See for instance Figure 3.2 (a), it represents a sequence of splits whose trace is the tree
shown Figure 3.2 (b).

Lemma 49. Let U ′ be the output of BetterPartition(U ). Then C′ = (C\U)∪U ′ is an acceptable partition.
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u
v

Y

u
v

A1

B1

u
v

B2 A2

u
v

A3 B3

(a) (A1, B1) = Split(Y ), (A2, B2) = Split(A1), (A3, B3) = Split(B2).

Y

A1 B1

A2 B2

A3 B3

(b) The trace of the
splits.

Figure 3.2: A sequence of splits and its trace.

Proof. Consider P at the end of the while loop in BetterPartition(U ). Let Y ∈ P and let Y ∗ ⊆ Y be such
that G[Y ∗] is a connected component of G[Y ]. It is readily verified that |out(Y ∗)| ≤ |out(Y )| < ∆′.
By assumption there is |U ∩ S∗| ≤ k

2 so |Y ∗ ∩ S∗| ≤ k
2 holds as well. Now U ′ is a partition of U

whose elements are sets like Y ∗. By what we have shown, since C is an acceptable partition, so is
C′ = (C \ U) ∪ U ′.

Lemma 49 is a first step towards proving Lemma 45. It remains to show that |E(GC′)| < |E(GC)|.
First observe that

|E(GC′)| = |E(GC)| − |E(GC [U ])| − |outGC(U)|+
∣∣ ⋃
Y ∈U ′

outG(Y )
∣∣

= |E(GC)| − |E(GC [U ])| − |outG(U)|+
∣∣ ⋃
Y ∈P

outG(Y )
∣∣

⋃
Y ∈P out(Y ) contains all the edges of out(U) plus the edgesE(AY , BY ) for every split (AY , BY ) =

Split(Y ) done by the algorithm. So |
⋃

Y ∈P out(Y )| equals |out(U)| plus some value M

|E(GC′)| = |E(GC)| − |E(GC [U ])|+M (3.3)

M is unknown yet, it will be bounded later.

Charging Scheme.

We bound M by replaying BetterPartition(U ) with a charging scheme that puts non-negative real num-
bers, called charges6, on the edges of E(G[U ]) ∪ out(U). Initially all charges are 0. When a split
(AY , BY ) = Split(Y ) occurs, each edge in |E(AY , BY )| adds a charge |out(AY )∩ out(Y )|−1 to every
edge in out(AY ) ∩ out(Y ) (which we recall is not empty). So for the split (AY , BY ) = Split(Y ), a
total charge of |E(AY , BY )| is created in the graph. This is the only way to add charges in the graph
therefore, when the algorithm ends, the total charge equals M .

Existing charges are also moved in the graph in such a way that when the algorithm ends, only edges
of out(U) have non-zero charges. This will allow us to bound M as a fraction of |out(U)|. Movements
of charges occur during splits along with charges creation. When the split (AY , BY ) = Split(Y ) occurs,
instead of having every edge in E(AY , BY ) give charges |out(AY ) ∩ out(Y )|−1, we decide that every
edge e′ ∈ E(AY , BY ) that already has a charge ce′ adds a charge (1 + ce′)/|out(AY ) ∩ out(Y )| to
every edge in out(AY ) ∩ out(Y ). So e′ contributes a total charge 1 + ce′ to out(AY ) ∩ out(Y ). The
charge of e′ is then reset to 0 since its old charge ce′ has been stored in out(AY ) ∩ out(Y ). Algorithm
Charging(T, λ) shows an implementation of the charging scheme. Its input (T, λ) encodes the splits done
during the course of BetterPartition(U ).

6These charges are not related to the charge functions of Tseitin formulas.
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Algorithm 2: Charging(T, λ)

1 All ce are set to 0
2 Mark all leaves of T as visited
3 while there is t ∈ T not marked such that tr and tl are marked do
4 Let Y = λ(t), AY = λ(tl) and BY = λ(tr)
5 for e ∈ out(AY ) ∩ out(Y ) do
6 Set ce = ce +

∑
e′∈E(AY ,BY )

1+ce′
|out(AY )∩out(Y )|

7 end
8 for e′ ∈ E(AY , BY ) do
9 Set ce′ = 0

10 end
11 Mark t as visited
12 end

Fix an edge e = uv. Suppose that some set Y is split into (AY , BY ) and that e is in out(Y ). Either
u ∈ Y and v ̸∈ Y in which case charges are added to e if and only if u ∈ AY , or v ∈ Y and u ̸∈ Y in
which case charges are added to e if and only if v ∈ AY . In the first case we say that e is charged via u, in
the other case e is charged via v. See for instance Figure 3.2 (a). In the leftmost figure, Y is represented
by a circle and we have an edge e = uv ∈ out(Y ) with u ∈ Y . Next Y is split into (A1, B1) = Split(Y ).
Since u ∈ A1, a charge is added to e via u. Next A1 is split into (A2, B2) = Split(A1), but no charge is
added to e because u is in B2, not in A2.

Lemma 50. Let U ′ be the output partition of BetterPartition(U ) and let (T, λ) be the trace of the splits
done by BetterPartition(U ). Let C′ = (C \ U) ∪ U ′. After running Charging(T, λ), the total charge in G
equals M = |E(GC′)| − |E(GC)|+ |E(GC [U ])|.

Proof. M equals the sum of |E(AY , BY )| over all splits (AY , BY ) = Split(Y ) done during the course
of BetterPartition(U ).

Fix an iteration of the while loop of Charging(T, λ). Let (AY , BY ) = Split(Y ) be the split for
that iteration. In the first for loop, a charge of |E(AY , BY )| +

∑
e′∈E(AY ,BY ) ce′ is created and added

to the graph. Then the second for loop sets the charges for all e′ ∈ E(AY , BY ) to 0, so a charge∑
e′∈E(AY ,BY ) ce′ is lost. Thus the total charge created during that iteration of the while loop is |E(AY , BY )|.

There is one iteration per split done by BetterPartition(U ) so when Charging(T, λ) finishes the total
charge in the graph equals M .

Lemma 51. Let (T, λ) be the trace of the splits done by BetterPartition(U ). Let e = uv be an edge with
at least one endpoint in U . After running Charging(T, λ) the total charge on e is ce ≤ 9γ. Moreover if
e ̸∈ out(U) then ce = 0.

Proof. If e ̸∈ out(U) and there is no Y in the trace of BetterPartition(U) such that e ∈ E(AY , BY ),
then ce never moves from its initial value, that is 0. If e ̸∈ out(U) and e ∈ E(AY , BY ) for some
(AY , BY ) = Split(Y ), then ce is set to 0 at line 9 of Charging(T ,λ). Now for all Y ′ that are processed
after Y (so they are closer to the root of the trace than Y ) either Y is disjoint from Y ′, or Y ⊆ AY ′ or
Y ⊆ BY ′ , and therefore e can never be in out(AY ′) ∩ out(Y ′). This leaves the case e ∈ out(U). We
show that ce ≤ 9γ by proving the following more general result.

Claim 14. At every moment during the course of Charging(T, λ), there exists an r ∈ N such that for
each e there is ce ≤

∑r
j=1(8γ)

j .
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Proof. The proof is by induction. The claim is clearly true at the beginning of the algorithm when all ce
are 0. For the general case let e = uv. We define ce(u) and ce(v) as the charges given to e via u and via
v. Clearly ce = ce(u) + ce(v). We focus on ce(u). Consider the sequence Yz+1 ⊂ Yz ⊂ · · · ⊂ Y1 where
|out(Yz+1)| < ∆′, u ∈ Yz+1, v ̸∈ Y1 (so e ∈ out(Yi) for all i) and such that, for all i, e is charged via
u when Yi is processed in the while loop. Note that Yi+1 may not be AYi , see for instance Figure 3.2,
it shows that u ∈ A3 ⊂ B2 ⊂ A1 so there is an i such that Yi = A1 and Yi+1 = A3 is different from
AYi = A2. Despite this observation, Lemma 48 still gives us that |out(Yi+1)| ≤ |out(Yi)|

2(1−γ) for all i ∈ [z].
Since we also have |out(Yi)| ≥ ∆′ for all i ∈ [z] (otherwise Yi would not be split) we obtain

|out(Yi)| ≥ (2(1− γ))z−i|out(Yz)| ≥ (2(1− γ))z−i∆′

We can Zi the set such that (Yi, Zi) = Split(Yi, Zi).

Claim 15. For all i ≤ z, it holds that

|E(Yi, Zi)|
|out(Yi) ∩ out(Yi ∪ Zi)|

≤ γ

1− γ

(
1

2(1− γ)

)z−i

Proof. |out(Yi) ∩ out(Yi ∪ Zi)| = |out(Yi)| − |E(Yi, Zi)| ≥ |out(Yi)| − γ|out(Yi) ∩ out(Yi ∪ Zi)| ≥
(1− γ)|out(Yi)| ≥ (1− γ)∆′(2(1− γ))z−i. We then use Lemma 47 (3.1) to conclude.

When processing the split of Yi the charge added to e via u is∑
e′∈E(Yi,Zi)

(1 + ce′)

|out(Yi) ∩ out(Yi ∪ Zi)|
≤ (1 + maxe′ ce′)|E(Yi, Zi)|
|out(Yi) ∩ out(Yi ∪ Zi)|

By induction hypothesis, 1+maxe′ ce′ ≤
∑r

j=0(8γ)
j and we know by Claim 15 that |E(Yi, Zi)|/|out(Yi)∩

out(Yi ∪ Zi)| ≤ γ
1−γ

(
1

2(1−γ)

)z−i
, so when creating Yi the charge added to e via u is at most

γ

1− γ

( r∑
j=0

(8γ)j
)(

1

2(1− γ)

)z−i

We miss a bound on the charge added to e when creating Yz+1. We just use that it is less than γ by
Lemma 48 (3.2). So we obtain that the charge added to e = uv via u when creating Y1, Y2, . . . Yz+1 is at
most

ce(u) ≤ γ +
γ

1− γ

( r∑
j=0

(8γ)j
) z∑

i=1

(
1

2(1− γ)

)z−i

≤ γ +
2γ

1− 2γ

r∑
j=0

(8γ)j ≤ γ + 3γ
r∑

j=0

(8γ)j

Where 2γ/(1 − 2γ) ≤ 3γ follows from γ = 1/2000. The bound holds for ce(v) as well so ce =
ce(u) + ce(v) is at most

2γ + 6γ

r∑
j=0

(8γ)j = 8γ + 6γ

r∑
j=1

(8γ)j

≤ 8γ + 8γ

r∑
j=1

(8γ)j =

r+1∑
j=1

(8γ)j

This finishes the proof of Claim 14.
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So for e ∈ out(U) we have that ce ≤
∑∞

j=1(8γ)
j = 1

1−8γ − 1, which is less than 9γ when γ =
1/2000.

Now we can finish the proof of Lemma 45.

Proof of Lemma 45. Run BetterPartition(U ) and let U ′ be the output partition of U . Let C′ = (C \ U) ∪
U ′. By Lemma 49, C′ is an acceptable partition. It remains to show |E(GC′)| < |E(GC)|. Recall
Equation (3.3):

|E(GC′)| = |E(GC)| − |E(GC [U ])|+M

Let (T, λ) be the trace of the splits done by BetterPartition(U ). By Lemma 50, the total charge in the
graph after running Charging(T, λ) is M which, by Lemma 51 is at most 9γ|out(U)|. Using this bound
in Equation (3.3) yields

|E(GC′)| ≤ |E(GC)| − |E(GC [U ])|+ 9γ|out(U)|
≤ |E(GC)| − |E(GC [U ])|+ 9γ|E(GC)|

≤ |E(GC)|+
(
9γ − 1

180

)
|E(GC)|

< |E(GC)|

3.6 Conclusion and Perspectives

The contributions of this chapter rely on two key results. The first one is the exponential lower bound on
the DNNF size of satisfiable Tseitin formulas whose underlying graph has maximum degree bounded by
a constant. The second is the existence of a constant α > 0 such that, for every graphGwhose maximum
degree is bounded by a constant, there is a bipartition of the vertices of G such that the induced graphs
on both sides of the partition have treewidth at least α × tw(G). The two results have the annoying
requirement that the graphs must have bounded maximum degree. Thanks to Itsykson, Riazanov and
Smirnov [IRS22], this requirement has been lifted for the DNNF size of satisfiable Tseitin formulas.
We wonder whether the requirement of the degree being bounded by a constant can also be lifted in the
second result.

Open question 2. Is there a constant α > 0 such that, for every graph G, there is a bipartition (A,B) of
V (G) such that both tw(G[A]) ≥ α× tw(G) and tw(G[B]) ≥ α× tw(G) hold?

The question is not concerned with efficient algorithms to find the aforementioned bipartitions but only
with the existence of these bipartitions for every graph. Answering the question positively is not neces-
sary to get rid of the maximum degree ∆(G) in our main results. Indeed Itsykson et al. have already
generalized our contributions to the case when the graph of the Tseitin formulas have unbounded maxi-
mum degree [IRS22, Theorem 3.1, Remark 3.7]. Yet we think that the graph property suggested by our
question is interesting in its own right and could be useful to prove lower bounds in other situations.

Going back to bottom-up compilation, the paradigm has this advantage over top-down compilation
in that we have a simple framework that describes the underlying behavior of most bottom-up compilers,
and that allows us to analyze the space efficiency of these compilers. Interestingly, our framework is
not restricted to the strategy where a single intermediate circuit is kept in memory by the compiler, and
where constraints (or clauses) are aggregated one by one to this circuit. Yet this technique, that we call of
successive constraint aggregation, is the only one that we aware of in practice. So we ask the following
question:
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Chapter 3. Lower Bounds on Intermediate Results in Bottom-Up Compilation

Open question 3. Is there a denumerable class of CNF formulas for which all str-DNNF(∧, r)-compilations
using successive clause aggregation generate intermediate circuits of exponential size, while there are
general str-DNNF(∧, r)-compilations that avoid these exponentially large intermediate circuits?
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Chapter 4

The Length of Regular Resolution
Refutations of Unsatisfiable Tseitin

Formulas

In this chapter we give a second application of our lower bound on the size of circuits in DNNF represent-
ing satisfiable Tseitin formulas from Chapter 1. Lower bounds are negative results and, unsurprisingly,
so are their applications. We show how Theorem 5 can be used to derive a lower bound on the length of
regular resolution refutations of unsatisfiable Tseitin formulas. This lower bound is characterized by a
single exponential dependence in the treewidth of the underlying graph of the formula (so a dependence
in 2Ω(tw(G))). The exponential dependence also appears in known upper bounds and can therefore not be
improved. We present (regular) resolution before giving the state of the art and our lower bound.

4.1 Regular Resolution Refutation

The resolution rule says that if a function entails the clauses C ∨ x and C ′ ∨ x for some variable x, then
it also entails the clause C ∨ C ′, formally:

C ∨ x C ′ ∨ x
C ∨ C ′

The variable x is called the resolved variable and the clause C ∨ C ′ is called the resolvent. We will use
the notation C ∨ C ′ = Resolution(C ∨ x,C ′ ∨ x, x).

Let ϕ be an unsatisfiable CNF formula. A resolution refutation of ϕ is a sequence of, not necessarily
pairwise distinct clauses, C1, . . . , CN , such that CN is the empty clause and such that for all 1 ≤ i ≤ N

• either Ci is a clause of ϕ,

• or Ci is the resolvent of the resolution rule applied on clauses Cj and Ck for some j, k < i.

The length of a resolution refutation C1, . . . , CN is the number of clauses in the sequence. We assume,
without loss of generality, that for every i < N , the clause Ci is used as a premise in a resolution rule to
derive Cj for some j > i, in other words, with the exception of the empty clause, a clause is contained
in the sequence only if it is used for inferring other clauses by resolution.

Under this assumption, the resolution refutation C1, . . . , CN of ϕ may be represented graphically as
a directed acyclic graph whose N vertices are the clauses Ci and such that, if Ci is the resolvent of the
resolution rule applied on Cj and Ck, then there is an edge directed from Cj to Ci and another directed
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C1 = x ∨ y
C2 = x ∨ z
C3 = y ∨ z
C4 = y ∨ z
C5 = x ∨ y
C6 = x ∨ z
C7 = Resolution(C1, C2, x) = y ∨ z
C8 = Resolution(C5, C6, x) = y ∨ z
C9 = Resolution(C3, C7, z) = y

C10 = Resolution(C4, C8, z) = y

C11 = Resolution(C9, C10, y) = ∅

x ∨ y x ∨ z y ∨ z y ∨ z x ∨ y x ∨ z

y ∨ z y ∨ z

y y

∅

x x x x

z

z

z

z

y y

Figure 4.1: A resolution refutation and its DAG representation.

from Ck to Cj . The edges are labelled by the resolved variables. The DAG as a single sink which is the
empty clause, and as several sources that are clauses from the CNF formulas. A resolution refutation is
called regular when no variable labels more than one edge on any path of the DAG.

Example 28. The CNF formula ϕ = (x ∨ y) ∧ (x ∨ y) ∧ (y ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (x ∨ z) is
unsatisfiable. A possible resolution refutation of ϕ is shown Figure 4.1. This refutation is regular since
no variable appears twice on any path of the DAG connecting a source to the sink. The refutation is of
length 11. ◀

It is known that the (regular) resolution refutation system is sound, meaning that all unsatisfiable
CNF have a (regular) resolution refutation [DP60]. So we denote by Res(ϕ) the length of the shortest
resolution refutation of an unsatisfiable CNF formula ϕ and we denote by RRes(ϕ) the length of the
shortest regular resolution refutation of an unsatisfiable CNF formula ϕ. It is also known that for certain
unsatisfiable CNF formulas, the shortest regular resolution refutation is unavoidably much longer than
the shortest non-regular resolution refutation. More formally, Alekhnovich et al. proved in [AJPU07]
that there exists an infinite class F of unsatisfiable CNF formulas, a constant δ > 0, and a polynomial
p such that for every ϕ ∈ F , Res(ϕ) ≤ p(|ϕ|) and RRes(ϕ) ≥ 2|ϕ|

δ
. Yet, regular resolution remains

interesting as the underlying procedure behind DPLL-style algorithms [DP60, DLL62]. Studying the
length of the shortest regular resolution refutation for some formulas is one way to assess the efficiency
of DPLL-style algorithms on unsatisfiable instances, hence the research conducted on this refutation
system (see [Urq87, BBI12, ABdR+18, BI13] for a small sample).

4.2 State of Resolution Refutation of Tseitin Formulas and Contribution

Tseitin formulas have been introduced by G. S. Tseitin in the sixties as examples of hard CNF formu-
las for the resolution proof (or refutation) system [Tse68] (see [Tse83] for an English version). We
have already introduced Tseitin formulas in the preliminaries. We just recall here that they are CNF
formulas that encode systems of parity constraints structured by a graph, that there is a simple criterion
for deciding whether a Tseitin formula is satisfiable given in Lemma 9, and that this criterion allows
us to construct unsatisfiable Tseitin formulas for any graph. The first exponential lower bounds on the
length of resolution refutation of Tseitin formulas have been established by Urquhart for the case when
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the underlying graphs of the formulas are expander graphs [Urq87], which are graphs with particular
connectivity properties. We refer the reader to [HLW06] for details on expander graphs. Similar lower
bounds on the length of the refutations of Tseitin formulas in other refutations systems have been proved
under similar assumptions on the underlying graphs [Ben02, IO13].

It is known that different properties of the underlying graph characterize different parameters of the
resolution refutations for Tseitin formulas [AR11, IO13, GTT20]. Extending this line of work, we show
that treewidth determines the length of regular resolution refutations for Tseitin formulas. An upper
bound was already proved by Alekhnovich and Razborov:

Theorem 20. [AR11] There is a constant c such that for every graph G and for every unsatisfiable
Tseitin formula T (G, c), the length of the shortest regular resolution refutation of T (G, c) is at most
2O(tw(G))|V (G)|c.

Our contribution in this chapter is to provide a matching lower bound:
Let G be a connected graph with maximum degree at most ∆ and let T (G, c) be an unsatisfi-

able Tseitin formula. The length of the shortest regular resolution refutation of T (G, c) is at least
2Ω(tw(G)/∆)|V (G)|−1.

The two theorems have the following corollary that gives a characterization of unsatisfiable Tseitin
formulas that have regular resolution refutations of length polynomial in the number of variables:

Corollary 3. Let ∆ ≥ 0 be any integer. Unsatisfiable Tseitin formulas for graphs whose maximum de-
gree is bounded by ∆ have regular resolution refutations of length polynomial in the number of variables
if and only if the treewidth of the graphs is bounded logarithmically in their size.

Theorem 4.5 is not the first lower bounds for the length of resolution refutations of Tseitin formulas
based on treewidth. For general resolution, a 2Ω(tw(G)2)/|V (G)| lower bound can be inferred combining
the width-length relation of [BW01] with lower bounds shown in [GTT20]. This gives a tight 2Ω(tw(G))

bound when the treewidth of G is linear in its number of vertices. For smaller treewidth, there are
also bounds from [GIRS19] for the stronger proof system of constant depth Frege proofs which, for
resolution, imply a 2Ω(tw(G)δ) lower bound. But since the top exponent δ is significantly smaller than
1, these results are incomparable to ours. For the length of regular resolution resolution, the best lower
bound in the general case was 2Ω(tw(G)/∆(G))/ log(|V (G)|) shown by Itsykson et al. in [IRSS21]. We build
on the work of Itsykson et al. and improve their bounds. To do so we use the lower bound on the DNNF
size of satisfiable Tseitin formulas – whereas Itsykson et al. use a looser bound on the nFBDD size of
Tseitin formulas – to eliminate the division by log(|V (G)|) in the exponent.

4.3 Branching Programs for Search Relations

We avoid dealing directly with regular resolution refutations thanks to a well-known connection between
these refutations and branching programs representations of the search relation. Let ϕ be an unsatisfiable
CNF formula. We define Search(ϕ) as the relation consisting of all pairs (a,C) where a is an assignment
to var(ϕ) and C is a clause of ϕ falsified by a. A read-once branching program, or FBDD, B over
variables var(ϕ) and with domain clauses(ϕ) computes Search(ϕ) if and only if for every assignment
a to var(ϕ) we have (a,B(a)) ∈ Search(ϕ), where B(a) is the clause of ϕ reached following the
computation path corresponding to a in B. Note that there may be pairs (a,C) ∈ Search(ϕ) such that
C ̸= B(a), this occurs when a falsifies more than one clause of ϕ. Now we present the connection
between FBDDs computing Search(ϕ) and regular resolution refutations of ϕ.

Theorem 21. [Kra95] For every unsatisfiable CNF formula ϕ, RRes(ϕ) equals the size of the smallest
FBDD over var(ϕ) and with domain clauses(ϕ) that computes Search(ϕ).
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y

z z

xy ∨ z

x ∨ z x ∨ z

y ∨ z

∅

y y

zy ∨ z

x ∨ z x ∨ z

y ∨ z

y y

z z z

x x

Figure 4.2: From regular resolution refutation to FBDD computing a search relation

The reader curious of the proof is referred to Theorem 4.2.3. in [Kra95]. Here we just give some
insight as to why the theorem holds by describing a transformation from regular resolution refutations of
ϕ to FBDD computing Search(ϕ). Let C1, . . . , CN be a regular resolution refutation of ϕ and let f be a
mapping from {C1, . . . , CN} to nodes of an FBDD defined as follows: if Ci is a clause of ϕ, then f(Ci)
is a sink labelled by Ci, but if Ci = Resolution(Cj , Ck, x) with Cj = C ′

j ∨ x and Ck = C ′
k ∨ x

then f(Ci) is a decision node labelled by x whose 1-child is f(Ck) and whose 0-child is f(Cj). One
can show that f(CN ) is the source (or the root) of an FBDD computing Search(ϕ) (see [Kra95] for
details). Moreover there is a reverse transformation to obtain a regular resolution refutation of ϕ from
an FBDD computing Search(ϕ). Let u1, . . . , uN be the nodes of such an FBDD B, given in depth-first
order (so u1 is the root of B). The function g maps the nodes of B to clauses as follows: if ui is a sink
labelled by C then g(ui) = C, and if ui is a decision node for x with 0-child uj and 1-child uk, then
g(u) = Resolution(g(uk), g(uj), x). One can show that g(uN ), . . . , g(u1) is a regular resolution
refutation of ϕ.

Example 29. Consider the following unsatisfiable CNF formula: ϕ = (x∨z)∧(x∨z)∧(y∨z)∧(y∨z).
Figure 4.2 shows an FBDD computing Search(ϕ) on the right and the corresponding regular resolution
refutation of ϕ on the left. The refutation is represented by a DAG whose sources are at the bottom and
whose sink is at the top. A single clause is created in the refutation for each decision node and for each
sink of the FBDD, so the FBDD and the refutation have the same size: the number of nodes of the FBDD
(including sinks) equals the number of clauses in the corresponding refutation. ◀

For a Tseitin formula, from an unsatisfied clause we can directly infer an unsatisfied parity constraint.
Recall that the parity constraints of T (G, c) are in bijection with |V (G)|. When T (G, c) is unsatisfiable,
Itsykson et al. [IRSS21] define the search relation SearchV ertex(G, c) to be the set of pairs (a, v)
with a an assignment to var(T (G, c)) and v a vertex of G such that χv(G, c) is falsified by a. We
say that an FBDD B over var(T (G, c)) and with domain V (G) computes SearchV ertex(G, c) if, for
every assignment a to var(T (G, c)) we have (a,B(a)) ∈ SearchV ertex(G, c). Note that if a falsifies
more than one parity constraint of T (G, c) then there are pairs (a, v) ∈ SearchV ertex(G, c) such that
v ̸= B(a).

Corollary 4. For every unsatisfiable Tseitin formula T (G, c), RRes(T (G, c)) is at least the size of the
smallest FBDD computing SearchV ertex(G, c).

Proof. Let B be an FBDD computing Search(T (G, c)). For each sink of B labelled by a clause C,
there is a vertex v ∈ V (G) such that C is a clause of the CNF representation of χv(G, c), then change
the label of the sink from C to v. The resulting FBDD computes SearchV ertex(G, c) and has the same
size as B. Using this transformation and Theorem 21, the result is immediate.

Example 30. The CNF formula (x ∨ y) ∧ (x ∨ y) ∧ (x ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (y ∨ z) for which a
regular resolution refutation is shown Figure 4.1 is a Tseitin formula for the following graph
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u

v

w

x
z

y

where charges are indicated by a color code: every gray node has charge 0 and every white node has
charge 1. Figure 4.3 shows the transformation of that refutation to an FBDD computing Search(T (G, c))
and the transformation of that FBDD to another FBDD computing SearchV ertex(G, c). ◀

4.4 Well-Structured Branching Programs Computing SearchVertex

The proof of Theorem 4.5 relies heavily on techniques developed in [IRSS21]. There it is shown how
to use an FBDD B computing SearchV ertex(G, c), where T (G, c) is an unsatisfiable Tseitin formula,
to construct an FBDD B∗ computing any satisfiable Tseitin formula T (G, c∗) with the same underlying
graph. Note that B is an FBDD over var(T (G, c)) with domain V (G) while B∗ is an FBDD over
var(T (G, c∗)) = var(T (G, c)) with domain {0, 1}. The construction of [IRSS21] results in |B∗| quasi-
polynomial in |B|. Thus good lower bounds on the size of B∗ yield lower bounds for regular refutation
by Corollary 4. To give tighter results, we give a version of the reduction from unsatisfiable to satisfiable
Tseitin formulas where the target representation for T (G, c′) is not the FBDD language but the more
succinct DNNF language. This lets us decrease the size of the representation from quasi-polynomial to
polynomial which, thanks to Theorem 5, will yield Theorem 4.5. So we are about to prove the following:

Theorem 22. Let T (G, c) be an unsatisfiable Tseitin formula where G is connected. There exists, for
every satisfiable Tseitin formula T (G, c∗), a circuit in DNNF of size O(RRes(T (G, c))× |V (G)|) com-
puting it.

To prove Theorem 22, we use the notion of well-structured FBDDs introduced in [IRSS21]. We
present that notion in this section, but before that, we recall how Tseitin formulas behave under condi-
tioning of variables whose corresponding edges are bridges of the underlying graph.

Lemma 52. Let G be a connected graph and let T (G, c) be an unsatisfiable Tseitin formula. Let e ∈
E(G) be a bridge of G, that is, calling a and b the vertices connected by e, the graph G′ obtained by
removing e has two connected components. Let Ga be the component containing a and let Gb be the

x ∨ y x ∨ z

y ∨ z y ∨ z

x ∨ y x ∨ z

y ∨ z y ∨ z

y y

∅

x x x x

zz zz

y y

x ∨ y x ∨ z

y ∨ z y ∨ z

x ∨ y x ∨ z

x x

z z

y

u v

w w

u v

x x

z z

y

Figure 4.3: From a regular resolution refutation of unsatisfiable Tseitin formulas to FBDD computing
SearchV ertex.
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component containing b. Define γ(xe) = c and γ(xe) = c+1a +1b mod 2. Finally for ℓe ∈ {xe, xe},
let γa(ℓe) be the restriction of γ(ℓe) to V (Ga), and γb(ℓe) be the restriction of γ(ℓe) to V (Gb). Then for
every ℓe,

T (G, c)|ℓe = T (Ga, γa(ℓe)) ∧ T (Gb, γb(ℓe))

and either T (Ga, γa(ℓe)) is unsatisfiable or T (Gb, γb(ℓe)) is unsatisfiable, but not both.

Example 31. Consider the graph G shown on the left in Figure 4.4. The vertices of G are charged
according to a function c. We have

T (G, c) = (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x3)
∧ (x2 ∨ x3 ∨ xe) ∧ (x2 ∨ x3 ∨ xe) ∧ (x2 ∨ x3 ∨ xe) ∧ (x2 ∨ x3 ∨ xe)
∧ (x4 ∨ x5) ∧ (x4 ∨ x5) ∧ (x5 ∨ x6) ∧ (x5 ∨ x6)
∧ (x4 ∨ x6 ∨ xe) ∧ (x4 ∨ x6 ∨ xe) ∧ (x4 ∨ x6 ∨ xe) ∧ (x4 ∨ x6 ∨ xe)

By Lemma 9, T (G, c) is unsatisfiable since G is connected and since the number of vertices that have
charge 1 is odd. Let e = ab. Removing e from G yields two connected components Ga and Gb. Assume
xe is set to 1, then T (G, c)|xe is the Tseitin formula for the graph and the charges represented on the
right of Figure 4.4. We have

T (Ga, γa(xe)) = (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x3)
∧ (x2 ∨ x3) ∧ (x2 ∨ x3)

T (Gb, γb(xe)) = (x4 ∨ x5) ∧ (x4 ∨ x5) ∧ (x5 ∨ x6) ∧ (x6 ∨ x6)
∧ (x4 ∨ x6) ∧ (x4 ∨ x6)

and one can verify that T (G, c)|xe = T (Ga, γa(xe)) ∧ T (Gb, γb(xe)). By Lemma 9, T (Ga, γa(xe)) is
unsatisfiable since Ga is connected and since it has three vertices with charge 1. However T (Gb, γb(xe))
is satisfiable since Gb is connected and since it has no vertex with charge 1. The case when xe is
assigned the value 0 corresponds to the graph shown in the middle of Figure 4.4. This time T (G, c)|xe =
T (Ga, γa(xe)) ∧ T (Gb, γb(xe)) and T (Gb, γb(xe)) is unsatisfiable while T (Ga, γa(xe)) is satisfiable.

◀

Definition 40. Let T (G, c) be an unsatisfiable Tseitin formula where G is a connected graph. A branch-
ing program B computing SearchV ertex(G, c) is well-structured when, for all nodes uk of B, there
exists a connected subgraph Gk of G and a charge function ck such that T (Gk, ck) is unsatisfiable, uk
computes SearchV ertex(Gk, ck), and

1. if uk is the source, then Gk = G and ck = c,

2. if uk is a sink corresponding to v ∈ V (G), then Gk = ({v}, ∅) and ck = 1v,

3. if uk is a decision node for xab with 0- and 1-child uk0 and uk1 , set ℓ0 = xab and ℓ1 = xab,
then for all i ∈ {0, 1}, (Gki , cki) = (Ga

k, γ
a
k(ℓi)) if T (Ga

k, γ
a
k(ℓi)) is unsatisfiable, otherwise

(Gki , cki) = (Gb
k, γ

b
k(ℓi)).

We remark that our definition is a slight simplification of that given by Itsykson et al. [IRSS21]. It
can easily be seen that ours is implied by theirs (see Definition 3.2 and Proposition 3.4 in [IRSS21]).

Essentially, in a well-structured FBDD computing SearchV ertex(G, c), each decision node uk
computes a SearchVertex relation for some unsatisfiable formula T (Gk, ck). And when moving to a
child of uk by assigning its variable xab the value 0 or 1, we look at the formula T (Gk, ck) conditioned
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Figure 4.4: Evolution of the charges of a graph after removal of a bridge.

on this variable assignment. This is again a Tseitin formula but on the graph G′
k = Gk − ab. The well-

structured property states that the children of uk represents the SearchV ertex relation for that formula
restricted to the connected component of G′

k where it is unsatisfiable.
Let us give more details on the third point of the definition. Let e = ab. If e is not a bridge in Gk,

then Ga
k = Gb

k = G′
k and γak = γbk = γk. Since T (Gk, ck) is unsatisfiable, so are T (G′

k, γk(xe)) =
T (Gk, ck)|xe and T (G′

k, γk(xe)) = T (Gk, ck)|xe. So both uk0 and uk1 computes SearchV ertex over
the graph G′

k. But if ab is a bridge in Gk, then Ga
k and Gb

k are two distinct component of G′
k. Then

uk0 computes SearchV ertex restricted to the component that is responsible for T (Gk, ck)|xe being
unsatisfiable. Similarly, uk1 computes SearchV ertex restricted to the component that is responsible
for T (Gk, ck)|xe being unsatisfiable. Note that, by Lemma 52, if the component for uk0 is Ga

k, then the
component for uk1 must be Gb

k, and vice versa.

Example 32. LetGk be the graph shown on the left in Figure 4.4 with the charges ck indicated by a color
code: all gray vertices have charge 0 and all with vertices have charge 1. The edge e = ab is a bridge
of Gk. Let Ga

k (resp. Gb
k) be the connected component of Gk − e containing a (resp. b). If a node uk

in a well-structured FBDD computes the relation SearchV ertex(Gk, ck), then its 0-child uk0 computes
the relation SearchV ertex for the graph Gb

k with the charge function restricted to V (Gb
k), because as

the middle picture shows, the charge distribution on component Gb
k is the reason for T (Gk, ck)|xe being

unsatisfiable. Analogously, the 1-child uk1 computes the relation SearchV ertex for the graph Ga
k with

the charge function restricted to V (Ga
k), because as the rightmost picture shows, the charge distribution

on component Ga
k is the reason for T (Gk, ck)|xe being unsatisfiable. ◀

We will use the following result from [IRSS21].

Lemma 53. [IRSS21, Lemma 1.4] Let T (G, c) be an unsatisfiable Tseitin formula whereG is connected
and let B be an FBDD of minimal size computing the relation SearchV ertex(G, c). Then B is well-
structured.

4.5 From Unsatisfiable to Satisfiable Tseitin Formulas

In this section we prove Theorem 22. Similarly to Theorem 14 in [IRSS21], the proof is based on a
reduction from a well-structured FBDD for SearchV ertex(G, c) to a circuit in DNNF computing the
satisfiable formula T (G, 0).

Lemma 54. Let G be a connected graph. Let T (G, 0) and T (G, c) be Tseitin formulas where T (G, c) is
unsatisfiable. For every well-structured FBDD B computing SearchV ertex(G, c) there exists a circuit
in DNNF of size O(|B| × |V (G)|) computing T (G, 0).

Proof. Let S = |B| and denote by u1, . . . , uS the nodes of B such that if uj is a successor of ui, then
j < i (thus uS is the source of B). For every 1 ≤ i ≤ S, the node ui computes SearchV ertex(Gi, ci).
We will show how to iteratively construct circuits D1, . . . , DS in DNNF such that for every i, Di is a
subcircuit of Di+1 and
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for all v ∈ V (Gi), there is a node s in Di such that Di
s computes T (Gi, ci + 1v mod 2). (∗)

For convenience, we remove the mod2 notation in this proof and assume that all arithmetic is over
F2. The graphs G1, · · · , GS are each connected so by Lemma 9, if T (Gi, ci) is unsatisfiable, then
T (Gi, ci + 1v) is satisfiable for every v ∈ V (Gi). We show by induction on i how to construct Di from
Di−1 while respecting (∗).

Base case. u1 is a sink of B, so it computes SearchV ertex(Gv,1v) where Gv = ({v}, ∅) for some
vertex v ∈ V (G). Thus we defineD1 as a single node labelled by the constant 1, which indeed computes
T (Gv,1v + 1v) = T (Gv, 0) ≡ 1. So D1 is a circuit in DNNF respecting (∗).

Now suppose that we have the circuit Dk−1 in DNNF satisfying (∗) and consider the node uk of B.
There are two cases:

Inductive case 1: uk is a sink of B. We argue as for D1, but since we already have a node labelled by
the constant 1 in Dk−1, we just define Dk = Dk−1 and we are done.

Inductive case 2: uk is a decision node for the variable xe with 0-child uk0 and 1-child uk1 . Recall that
Buk

computes SearchV ertex(Gk, ck) and let e = ab. There are two cases. If e is not a bridge inGk then
Ga

k = Gb
k = Gk − e and, by the well-structured property, Buk0

computes SearchV ertex(Gk − e, ck)
and Buk1

computes SearchV ertex(Gk − e, ck + 1a + 1b). For every v ∈ V (Gk), since k0, k1 < k, by
induction there is a node sv in Dk0 such that Dk0

sv computes T (Gk − e, ck + 1v) and a node σv in Dk1

such that Dk1
σv

computes T (Gk − e, ck + 1a + 1b + 1v). So for every v ∈ V (Gk) we add to Dk−1 an
∨-node gv whose left input is xe ∧ sv and whose right input is xe ∧ σv. By construction, gv computes
T (Gk, ck + 1v) and the new ∧-nodes are decomposable since e is not an edge of Gk − e and therefore
xe and xe do not appear in Dk0 or Dk1 .

If otherwise e = ab is a bridge in Gk, then by the well-structured property, there exist i ∈ {0, 1}
and a literal ℓe ∈ {xe, xe} such that Buki

computes SearchV ertex(Ga
k, γ

a
k(ℓe)) and Buk1−i

computes

SearchV ertex(Gb
k, γ

b
k(ℓe)). We construct a gate gv computing T (Gk, ck + 1v) for each v ∈ V (Gk).

Assume, without loss of generality, that v ∈ V (Ga
k), then

• T (Gk, ck +1v)|ℓe ≡ T (Ga
k, γ

a
k(ℓe)+1v)∧T (Gb

k, γ
b
k(ℓe)) ≡ 0 (because T (Gb

k, γ
b
k(ℓe)) ≡ 0), and

• T (Gk, ck + 1v)|ℓe ≡ T (Ga
k, γ

a
k(ℓe) + 1v) ∧ T (Gb

k, γ
b
k(ℓe))

For the second item, since k0, k1 < k, by induction there is a gate sv in Dki such that Dki
sv computes

T (Ga
k, γ

a
k(ℓe) + 1v) and there is a gate sb in Dk1−i such that Dk1−i

sb computes T (Gb
k, γ

b
k(ℓe) + 1b).

But γk(ℓe) = γk(ℓe) + 1a + 1b, so γbk(ℓe) = γbk(ℓe) + 1b, therefore Dk1−i
sb computes the formula

T (Gb
k, γ

b
k(ℓe)). So we add an ∧-node gv whose left input is ℓe and whose right input is sv ∧ sb and add

it to Dk−1. Note that ∧-gates are decomposable since Ga
k and Gb

k share no edge and therefore Dk0 and
Dk1 are on disjoint sets of variables.

Let Dk be the circuit after all gv have been added to Dk−1. Then Dk is a circuit in DNNF that
contains Dk−1 as a subcircuit and that satisfies (∗).

It only remains to bound |DS |. To this end, observe that when constructing Dk from Dk−1 we add
at most 3× |Vk| gates, so |DS | is at most 3(|V1|+ · · ·+ |VS |) = O(S × |V (G)|). Finally, take any root
of DS and delete all gates not reached from it, the resulting circuit is a circuit D in DNNF computing a
satisfiable Tseitin formula T (G, c′). We get a circuit in DNNF computing T (G, 0) using Lemma 23.
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Combining Theorem 21, Corollary 4, Lemma 53 and Lemma 54 as follows yields Theorem 22:

Regular Refutation Length for an unsatisfiable T (G, c)
≥ FBDD size for SearchClause(T (G, c))

≥ FBDD size for SearchV ertex(T (G, c))

= well-structured FBDD size for SearchV ertex(T (G, c))

≥ DNNF size for T (G, 0)/O(|V (G)|)

(Theorem 21)

(Corollary 4)

(Lemma 53)

(Lemma 54, Lemma 23)

It suffices to combine Theorem 22 with our lower bound on the DNNF size of satisfiable Tseitin formula
proven in Chapter 1 to obtain the main result of this chapter, which is that the length of any regular reso-
lution refutation of any unsatisfiable Tseitin formula over a graphG is exponential in tw(G)/∆(G): Let
G be a connected graph with maximum degree at most ∆ and let T (G, c) be an unsatisfiable Tseitin for-
mula. The length of the shortest regular resolution refutation of T (G, c) is at least 2Ω(tw(G)/∆)|V (G)|−1.

4.6 Conclusion and Perspectives

The main result of this chapter is a characterization result: we have fully characterized unsatisfiable
Tseitin formulas over graphs, whose maximum degree is bounded by a constant, that have regular reso-
lution refutations of polynomial size. The two downsides of this characterization are, first the restriction
to graphs of bounded degree, and, second, the restriction to regular resolution refutations. The first
restriction can actually be avoided thanks to the recent result of Itsykson, Riazanov and Smirnov who
proved that the DNNF size of satisfiable Tseitin formulas over any graph (and not only those of bounded
degree) is exponential in the treewidth of the graph [IRS22]. Concerning the assumption of regularity,
one could perhaps lift it by proving that the shortest general resolution refutation of every unsatisfiable
Tseitin formula is essentially regular. We ask whether this conjecture is true.

Open question 4. For unsatisfiable Tseitin formulas, are the length of the shortest regular resolution
refutation and the length of the shortest resolution refutation polynomially related?

One could give a positive answer to the question by proving that the smallest branching programs for
the SearchClause predicate for unsatisfiable Tseitin formulas are read-once branching programs. It
can be shown that this result would not extend to the SearchV ertex predicate: the smallest branching
programs for this predicate are generally not read-once. But there is hope that the result holds for the
SearchClause predicate. We leave this open for future work.
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Part III

Extending the Knowledge Compilation
Map to New Fields
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Chapter 5

Enumeration Queries on Compilation
Languages

The compilation of knowledge into a language is only half of knowledge compilation. The second part,
the online part, is reasoning on the circuit resulting from the compilation process. One of the goals
of a knowledge compilation map is to help a user choosing a compilation language for its problem by
linking each language to queries and transformations that are tractable for the language. It is then up
to the user to decide which queries and transformations are useful to solve the problem at hand, and
to choose the compilation language accordingly. In Darwiche and Marquis’ compilation map [DM02],
eight queries that occur naturally in logical reasoning (satisfiability, model counting, clausal entailment,
etc.) and eight transformations corresponding to basic logical operations (conjunction, disjunction, nega-
tion, etc.) are studied. However each new application of knowledge compilation brings its bucket of
new queries to be analyzed for each compilation language. Examples of new queries include forgetting
queries in QBF solving [CBLM05, FM06], minimization queries with respect to a cost function in op-
timization problems [KBLM16], and verification and explanation queries in the context of eXplainable
AI (XAI) [AKM20]. In this chapter, we focus on the hardness of particular queries that are enumeration
queries.

Enumeration problems consist in listing the elements of a set. This type of problems has appeared
more than 50 years ago in graph theory with the enumeration of cycles [Tie70] and have since found
applications in many other domains of computer science including logic, database theory, data mining,
etc. (see [Was16] for an ongoing compendium of enumeration algorithms). Enumeration queries differ
from decision and function queries in that the expected answer is not a single element but potentially a
large sequence of solutions. Thus one has to worry about how the solutions are listed: are they given
together in one big set or are they listed incrementally and, in the latter case, what about guarantees
on their incremental generation? As an example, one of the eight queries of Darwiche and Marquis’
map is model enumeration that asks to generate the set of all satisfying assignments of a circuit in
output-polynomial-time. The existence of such output-polynomial time algorithm is a desirable but
one is often more interested in more efficient enumeration algorithms, see e.g. [Str19] for a survey on
the different enumeration complexity classes. Given the reasoning power of the different compilation
languages, one can expect efficient enumeration algorithms in these languages. This is certainly true
for model enumeration [DM02, CS21, ABJM17] but in this chapter we show more mitigated results for
the enumeration of specific implicants, namely prime implicants, sufficient reasons and subset-minimal
abductive explanations.

After a preliminary section where we introduce the specific implicants to be considered and some
enumeration complexity classes, we study the enumeration of prime implicants from circuits in dec-
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DNNF and prove that it is in IncP, the class of polynomial incremental time enumeration problems. We
then focus on two closely related, but seemingly harder, enumeration problems where further restrictions
are put on the implicants to be generated. In the first problem, one is only interested in prime impli-
cants representing subset-minimal abductive explanations, a notion much investigated in AI for more
than three decades. In the second problem, the target are prime implicants representing sufficient rea-
sons, a recent yet important notion in the emerging field of eXplainable AI, since they aim to explain
predictions achieved by Machine Learning classifiers. We provide evidence showing that enumerating
prime implicants corresponding to subset-minimal explanations or to sufficient reasons is not even fea-
sible in output-polynomial time. The results of this chapter have been presented in the article [dCM22a]
co-authored with Pierre Marquis.

For the sake of readability, in this chapter, several proofs are deferred to Section 5.5..

5.1 Enumeration Queries and Enumeration Complexity

5.1.1 Enumeration Complexity

We introduce some enumeration complexity classes as described in [Str19]. Let Σ be an alphabet and let
A be a binary predicate in Σ∗ × Σ∗. Given an instance x ∈ Σ∗ (the input), A(x) (the set of solutions)
denotes the set of all y ∈ Σ∗ such that A(x, y). The enumeration problem Enum·A is the function
mapping x to A(x). We say that Enum·A is in the class EnumP if for every y ∈ A(x), |y| is polynomial
in |x|, and if deciding whether y is in A(x) is in P. Contrary to other enumeration complexity classes,
EnumP does not capture the complexity of computing the set of solutions A(x), it serves more as a
counterpart of NP for enumeration problems.

The computation model used for the enumeration of solutions is the random access machine (RAM)
model, see e.g. [AHU74] for a description of this model and [Str19] for details on why RAM have been
chosen rather than Turing machines. We do not feel compelled to give details on the RAM model as
we do not deal with fine-grained complexity results in this chapter (we are satisfied by just proving
that such or such algorithm runs or does not run in time polynomial in the size of its input). A RAM
solves Enum·A if, for all x, it returns a sequence y1, . . . , ym of pairwise distinct elements such that
{y1, . . . , ym} = A(x). We say that Enum·A is in OutputP if there is a RAM solving Enum·A in time
O(poly(|x|+ |A(x)|)) on every input x. OutputP is a relevant enumeration class when the whole set of
solutions is explicitly asked for. For instance, the dualization of a monotone CNF formula ϕ is the task
of generating a DNF formula equivalent to ϕ. Because of the monotony condition on ϕ, the terms used
in any smallest DNF formula equivalent to ϕ are precisely its prime implicants. Thus, the dualization
problem boils down to enumerating all the prime implicants of ϕ. In this context an output-polynomial
time algorithm is relevant.

For other applications, computing only a fixed number of solutions may be enough. A RAM solves
Enum·A in incremental time f(t)g(n) if on every x, it runs in timeO(f(t)g(|x|)) and returns a sequence
y1, . . . , yt of t pairwise distinct elements of A(x) when t ≤ |A(x)|, and the whole set A(x) when
t > |A(x)|. We say that Enum·A is in IncPa if there is a RAM that solves A in incremental time
O(tanb) for some constant b. We write IncP =

⋃
a≥0 IncPa. IncP has a simple characterization that

uses the function problem AnotherSol·A which, given x and S ⊆ A(x), returns some y ∈ A(x) \ S
when S ̸= A(x), and false otherwise. Recall that FP is the functional version of P, that is, FP is the
class of function problems (and not only decision problems) that can be solved by a deterministic Turing
machine in polynomial time. It is known that:

Proposition 3 ([Str19]). A problem Enum·A in EnumP is in IncP if and only if AnotherSol·A is in FP.
Moreover, if there is a algorithm answering AnotherSol·A(x, S) inO(|S|a|x|b) for some constants a and
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b, then Enum·A is in IncPa+1.

It is readily verified that IncPa ⊆ OutputP for every a ≥ 0, thus IncP ⊆ OutputP. Moreover the
inclusion is believed to be strict [Str19].

Our investigation of the tractability of enumeration problems in compilation remains mostly theo-
retical. When practical applications are envisioned, enumeration algorithms are usually split into two
phases: a preprocessing phase at the end of which the input (x in our case) is enriched with indexes, and
the enumeration phase itself. Efficient enumeration algorithms are then subject to strict requirements
which are that the preprocessing phase must be feasible in linear time, and that the delay between suc-
cessive solutions in the enumeration phase be constant or at worst linear in the size of the solution. In
particular, the delay between successive solution must be independent of the size of the indexed input
(see [Seg14] for a survey on constant-delay enumeration). Thus both constant-delay enumeration and
linear-delay enumeration are more restrictive than incremental polynomial-time enumeration and the
interest of the class IncP is more theoretical than practical.

5.1.2 Enumeration Queries in the Compilation Map

In the settings that interest us, the instance previously denoted by x is restricted to circuits in a given
compilation languageL. We use the term “Enum·A fromL” to refer to the enumeration problem Enum·A
whose input is taken in L. Let us clearly set the boundaries of our investigation on enumeration queries
in compilation languages: for a given enumeration problem Enum·A over a compilation language L,
our goal is first to determine whether Enum·A from L is in OutputP, and if the answer is positive, then
we want to determine whether Enum·A from L is in IncP. In particular, when Enum·A from L is not
(or thought not to be) in OutputP, we provide evidence supporting this claim but we do not further
investigate the complexity of Enum·A from L.

We illustrate the enumeration classes defined in the previous section using enumeration queries that
are already (more or less directly) studied in the compilation map. In the following definitions, D is a
circuit in L. The predicates MOD and CMOD describe the models and the counter-models of a circuit
D.

MOD(D, a)⇔ a is an assignment to var(D) that satisfies D

CMOD(D, a)⇔ a is an assignment to var(D) that falsifies D

Thus we have MOD(D) = sat(D) and CMOD(D) = {0, 1}var(D) \ sat(D). Enum·MOD from DNNF,
d-DNNF, etc. is one of the eight initial query from the knowledge compilation map of Darwiche and
Marquis [DM02]. Indeed “Enum·MOD from L” corresponds to the query ME (Model Enumeration). A
language L is said to support ME if and only if Enum·MOD from L is in OutputP. Since it is shown
in [DM02] that all sublanguages of DNNF, and more generally all languages where conditioning and
satisfiability check are tractable, supports ME we already have the following:

Lemma 55. [DM02, Lemma A.3] Let L be a language supporting polynomial-time conditioning and
polynomial-time satisfiability check, then Enum·MOD from L is in OutputP.

It is straightforward to adapt the algorithm given in [DM02, Lemma A.3] so that it incrementally
generates of models of a circuit in DNNF. The algorithm is for instance details in the proof of [FM14,
Proposition 3].

Lemma 56. [FM14, Proposition 3] Let L be a language supporting polynomial-time conditioning and
polynomial-time satisfiability check, then Enum·MOD from L is in IncP1.

The dual problem of enumerating counter-models can be studied analogously. The idea is simply to
replace satisfiability queries by validity queries, i.e., to ask whether a circuit computes a function that has
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no counter-models. So for the problem “Enum·CMOD from L” one just has to know whether validity
testing – a query known as VA in [DM02] – (and conditioning) is feasible in polynomial-time in L.

Lemma 57. LetL be a compilation language that does not support polynomial-time validity check unless
a hypothesisH from complexity theory fails, then Enum·CMOD from L is not in OutputP unlessH fails.

Proof. Assume there exists an algorithm that returns the set M of counter-models of a circuit D ∈ L in
less than p(|D|)q(|M |) elementary steps (so in O(p(|D|)q(|M |)) time) with p and q two polynomials.
Then one can decide the validity of D by running that algorithm for at most p(|D|)q(1) steps. If the
algorithm has not stopped by then, then D has at least one counter-model and thus is not valid.

Replacing satisfiability queries by validity queries in the algorithm for Enum·MOD described in [FM14,
Proposition 3], it follows that:

Lemma 58. Let L be a compilation language that supports polynomial-time validity check and condi-
tioning then Enum·CMOD from L is in IncP1.

Consequences of these lemmas are that Enum·CMOD from DNNF is not in OutputP unless P = NP
while Enum·CMOD from d-DNNF is in IncP1. We should note that by this latter result, enumerating the
models of the negation of a circuit D in d-DNNF is easy, while no definitive answer (or even conditional
answer) to the question “does there exist a polynomial-time algorithm to generate a circuit in d-DNNF
computing ¬D” is known.

5.1.3 New Enumeration Queries

We now turn to the enumeration of objects more complexe than models and counter-models. The objects
that we focus on are derivatives of the dual concepts of prime implicants and prime implicates. Recall
that an implicant t of a function f , thus a term t such that t |= f , is a prime implicant of f if and only if
no implicant t′ of f distinct from t is such that t |= t′. Similarly a prime implicate of f is a clause c such
that f |= c and no implicate c′ of f distinct from c is such that c′ |= c. We define the predicates

IP(f, t)⇔ t is a prime implicant of f

PI(f, c)⇔ c is a prime implicate of f

So IP(f) and PI(f) are the set of prime implicants of f and the set of prime implicates of f , respectively.
Within AI, prime implicants and prime implicates have been considered for modelling and solving a
number of problems, including compiling knowledge [RdK87] and generating explanations of various
kinds. This is the case in logic-based abductive reasoning (see e.g., [SL90, EG95]), a form of inference
required in many applications when the available knowledge base is incomplete (e.g., in medicine) and
because of such an incompleteness, it cannot alone explain the observations that are made about the
state of the world. Formally, the explanations one looks for are terms over a preset alphabet (composed
of the so-called abducible variables, e.g., representing diseases) such that the manifestations that are
reported (e.g., some symptoms) are logical consequences of the background knowledge when completed
by such a term. In order to avoid trivial explanations, one also asks those terms to be consistent with the
knowledge base. Explanations that are the less demanding ones from a logical standpoint (i.e., subset-
minimal ones) can be characterized as specific prime implicants. Thus we introduce the predicate SE,
for subset minimal explanations, that capture implicants of a function over a variable set X given as part
of the input:

SE((f,X), t)⇔ t is a prime implicant of f such that var(t) ⊆ X
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In model-based diagnosis, one is interested in computing kernel diagnoses [dKMR92], which are
also specific prime implicants of the Boolean function representing the available knowledge about the
system to be diagnosed (i.e., the description of the system, together with the observations made, e.g., the
inputs and outputs of the system). Only those prime implicants built up from variables used to represent
the states of the components of the system (normal or not) are considered. More recently, deriving
explanations justifying why certain predictions have been made has appeared as essential for ensuring
trustworthy Machine Learning (ML) technologies [Mil19, Mol19]. In the research area of eXplainable
AI (XAI), recent work has shown how ML classifiers of various types (including black boxes) can be
associated with Boolean circuits (alias transparent or “white” boxes), exhibiting the same input-output
behaviours [NKR+18, SCD18a, SCD19a]. Thanks to such mappings, XAI queries about classifiers can
be delegated to the corresponding circuits. The notion of sufficient reasons of an instance given a Boolean
function f modelling a binary classifier has been introduced in [DH20]. Given an assignment a to the
problem variables such that f(a) = 1 (resp. f(a) = 0), a sufficient reason for a is a subset-minimal
partial assignment a′ which is compatible with a (i.e., a and a′ give the same values to the variables that
are assigned in a′) and which satisfies the property that for every extension a′′ of a′ we have f(a′′) = 1
(resp. f(a′′) = 0). The features assigned in a′ (and the way they are assigned) can be viewed as
explaining why a has been classified by f as a positive (or as a negative) instance. Thus we introduce
another predicate for sufficient reasons:

SR((f, a), t)⇔ t is a prime implicant of f satisfied by the assignment a

For simplicity we use the ternary notations SR(f, a, t) and SE(f, a, t) and we let SR(f, a) denote the set
of sufficient reason for a given f and SE(f,X) denote the set of subset-minimal abductive explanations
over X given f .

Whatever the way prime implicants are used, generating them is in general a computationally de-
manding task, for at least two reasons. On the one hand, deriving a single prime implicant of a Boolean
function represented by a propositional formula (or circuit) is NP-hard since such a formula is satisfiable
when it has a prime implicant, and it is valid precisely when this prime implicant is the empty term. On
the other hand, a source of complexity is the number of prime implicants that may prevent from comput-
ing them all. Indeed, it is well-known that the number of prime implicants of a Boolean function can be
exponential in the number of variables of the function, and, for many representations of the function, also
exponential in the size of the representation (just consider the parity function as an example). In more
detail, the number of prime implicants of a Boolean function can be larger than the number of models of
the function [DF59]; there also exist families of Boolean functions over n variables having Ω(3

n

n ) prime
implicants [CM78].

In the next sections we study Enum·IP, Enum·PI, Enum·SE and Enum·SR from sublanguages of
DNNF, in particular from dec-DNNF. We start with the general problems of enumerating prime im-
plicants and prime implicates before addressing the cases of specific implicants (sufficient reasons and
subset minimal explanations).

5.2 Enum·IP and Enum·PI from dec-DNNF are in OutputP

We start with a couple of easy results. First of all, since there is a linear-time procedure to verify that
a term is an implicant of a circuit in d-DNNF, there is a polynomial-time algorithm to decide whether
a given term is a prime implicant of a circuit in d-DNNF. Similarly, there is a linear-time algorithm for
checking whether a given clause is an implicate of a circuit in DNNF, so there also is a polynomial-
time algorithm to decide whether it is a prime implicate of the circuit. On the other hand, there is no
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polynomial-time algorithm answering validity queries on arbitrary circuits in DNNF unless P = NP.
Since deciding the validity of a function f boils down to deciding whether IP(f) = {t∅} we get:

Lemma 59.

• Enum·IP from d-DNNF is in EnumP.

• Enum·IP from DNNF is not in EnumP unless P = NP.

• Enum·PI from DNNF is in EnumP.

Deciding the validity of a function f is also equivalent to deciding whether PI(f) = ∅ thus

Lemma 60. Enum·PI from DNNF is not in OutputP unless P = NP.

The question of the membership of Enum·IP from d-DNNF and of Enum·PI from d-DNNF in Out-
putP eludes us, but we are able to give an answer for the sublanguage dec-DNNF. Before that we impose
a restriction on the circuits in dec-DNNF studied in this chapter. We say that a a circuit D in dec-DNNF
is reduced when, for every node v of D, we have Dv ≡ 0 if and only if v is a leaf labelled by 0, and
Dv ≡ 1 if and only if v is a leaf labelled by 1. Since satisfiability queries and validity queries are feasible
in linear time in dec-DNNF, reducing a circuit in dec-DNNF is a linear-time preprocessing.

It is known that Enum·IP from OBDDs is in OutputP [MC91], and it is not hard to extend this result
to circuits in dec-DNNF. We briefly describe the output-polynomial-time construction of IP(D) for a
circuit D in dec-DNNF as it is important for subsequent results. The construction is based on the two
following folklore propositions. Given a set of Boolean functions F , we denote by max(F , |=) (resp.
min(F , |=)) the subset of functions f ∈ F such that no f ′ ∈ F \ {f} verifies f |= f ′ (resp. f ′ |= f ).

Proposition 4. [Mar93] Let f and g be Boolean functions. Then IP(f ∧ g) = max({t ∧ t′ | t ∈
IP(f), t′ ∈ IP(g)}, |=). Furthermore, if var(f)∩ var(g) = ∅, then IP(f ∧ g) = {t∧ t′ | t ∈ IP(f), t′ ∈
IP(g)}.

Proposition 5. Let f be a Boolean function and let x be a variable. Then

IP(f) = {t ∧ x | t ∈ IP(f |x), t ̸|= f |x} ∪ {t ∧ x | t ∈ IP(f |x), t ̸|= f |x} ∪ IP(f |x ∧ f |x)

Note that t ∈ IP(f |x) (resp. IP(f |x)) entails f |x (resp. f |x) if and only if t is subsumed by some term in
IP(f |x∧ f |x). As a consequence, from IP(f |x) and IP(f |x), one construct IP(f |x∧ f |x) in polynomial
time thanks to Proposition 4 and we use it to derive IP(f) thanks to Proposition 5.

We also have that:

Proposition 6. Let f be a Boolean function and let x be a variable. Then

|IP(f)| ≥ max(|IP(f |x)|, |IP(f |x)|).

For the proof of Proposition 6, we point to the algorithm for conditioning a prime implicant represen-
tation provided in [DM02]. The algorithm constructs the prime implicants of f |ℓ as the logically weakest
terms of the DNF formula

∨
t∈IP(f) t|ℓ, or more formally IP(f |ℓ) = max({(t|ℓ) | t ∈ IP(f)}, |=). This

is enough to derive |IP(f |ℓ)| ≤ |IP(f)|.
Consider now a circuit D in dec-DNNF and an internal node v with two children u and w. If the

sets IP(Du) and IP(Dw) are provided, then IP(Dv) is obtained in polynomial-time using Proposition 4
if v is a decomposable ∧-gate, and using Proposition 5 if v is a decision node. Furthermore, in both
cases, we have |IP(Dv)| ≥ max(|IP(Du)|, |IP(Dw)|). These observations lead to a simple algorithm
that generates IP(D) by computing the sets IP(Dv) for every node v of D considered in a depth-first
traversal. Since constructing the set of prime implicants for any node given that of its children is tractable,
since this set is smaller than |IP(D)|, and since it is computed only once, the algorithm runs in time
O(poly(|D|+ |IP(D)|)). Thus, we get:
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Figure 5.1: An output-polynomial time construction of the set of prime implicants of a dec-DNNF.

Lemma 61. Enum·IP from dec-DNNF is in OutputP.

Example 33. Figure 5.1 shows a circuit in dec-DNNF and the construction of the sets of prime implicants
of each of its sub circuit. Following Proposition 5, we detail the construction of the set {z w, z s, z w,w s}
of prime implicants of the circuit rooted under the right-most decision node labelled by y. Call that cir-
cuit D. For the construction we assume that we have already computed the set of prime implicants of the
children of the root of D, in that case {w s} and {z w, z s, z w,w s}. To construct IP(D) from Proposi-
tion 5 we first look at the terms obtained conjoining y to prime implicants of D|y, we obtain y z w, y z s,
y z w and y w s. Since only the fourth term is an implicant ofD|y we have {y z w, y z s, y z w} ⊆ IP(D).
Then we look at the terms obtained conjoining y to prime implicants of D|y, we have only one: y w s.
Since that term is an implicant of D|y, it is not in IP(D). Finally the remaining implicants of D are
exactly the terms in IP(D|y ∧D|y) = max({z w s, z w s, z ww s,w s}, |=) = {w s}. ◀

Recall that circuits in dec-DNNF are not structured (by a vtree) generally. In particular, for the
sublanguage of read-once binary decision diagrams, it is not required that all computation paths respect
the same variable ordering for the result of Lemma 61 to hold (the result applies to FBDDs as much as
to OBDDs).

It is worth explaining in a few lines why the output-polynomial-time construction of IP(D) for D a
circuit in dec-DNNF is not easily extended to circuits in d-DNNF. A key component of the construction
is the fact that for a node v of the circuit D in dec-DNNF that has two children u and w, it holds that
|IP(Dv)| ≥ max(|IP(Du)|, |IP(Dw)|). This property can be interpreted by saying that it is not a waste
of time or resource to compute IP(Du) and IP(Dw): we might as well compute IP(Du) and IP(Dw) to
construct IP(Dv) since the latter set is necessarily larger and can be computed easily from the former
two. In a circuit in d-DNNF, this property can be lost at deterministic ∨-nodes. Indeed, consider the
simple case of a deterministic circuit D′ over X ∪ {y} whose root v is a ∨-node that has two children u
andw. D′

u computes the function y∧even(X) where even(X) accepts exactly the assignments toX that
set an even number of variables to 1, and D′

w computes the function y ∧ odd(X) where odd(X) accepts
exactly the assignments toX that set an odd number of variables to 1. SoD′ = D′

v ≡ D′
u∨D′

w ≡ y. We
have that D′ is reduced and that IP(D′) = {y}. However the prime implicants of even(X) and odd(X)

118



5.3. Enum·IP and Enum·PI from dec-DNNF are in IncP

are exactly their respective models so both IP(y∧ even(X)) and IP(y∧ odd(X)) have size 2|X|−1. This
simple example shows that we can have |IP(Dv)| ≪ min(|IP(Du)|, |IP(Dw)|) in a reduced circuit in
d-DNNF. This discourages us from applying a procedure to compute the prime implicants of a circuit
in d-DNNF similar to that used for circuits in dec-DNNF. However this does not mean that there is no
output-polynomial-time algorithm for Enum·IP from d-DNNF. The existence of such an algorithm still
eludes us.

We rapidly discuss the case of Enum·PI from dec-DNNF. The concept of prime implicates is dual
to that of prime implicants and the above propositions for prime implicants have a dual version from
prime implicates.

Proposition 7. Let f and g be Boolean functions. Then PI(f ∨ g) = min({c ∨ c′ | c ∈ PI(f), c′ ∈
PI(g)}, |=).

Proposition 8. Let f and g be Boolean functions. If var(f) ∩ var(g) = ∅ and if f and g are satisfiable
then PI(f ∧ g) = PI(f) ∪ PI(g) and PI(f) ∩ PI(g) = ∅.

Proposition 9. Let f be a Boolean function and let x be a variable.

PI(f) = {c ∨ x | c ∈ PI(f |x), f |x ̸|= c}
∪ {c ∨ x | c ∈ PI(f |x), f |x ̸|= c}
∪ IP(f |x ∨ f |x)

Proposition 10. Let f be a Boolean function and let x be a variable. Then

|PI(f)| ≥ max(|PI(f |x)|, |PI(f |x)|).

Propositions 8 and 9 ensure that for u a node in a circuit D in dec-DNNF that has two children v and
w, PI(Du) can be computed from PI(Dv) and PI(Dw) in polynomial-time. And Propositions 8 and 10
ensure that |PI(Du)| ≥ max(|PI(Dv)|, |PI(Dw)|). Thus the procedure that we use to prove that Enum·IP
from dec-DNNF is in OutputP can be modified to compute prime implicates and therefore

Lemma 62. Enum·PI from dec-DNNF is in OutputP.

Note that extending the procedure to circuits in d-DNNF is again not an option, even if Proposi-
tion 7 gives a polynomial time construction of PI(Dv) from PI(Du) and PI(Dw) when v is an ∨-node.
Indeed we have the problem that |PI(Dv)| may be much smaller than min(|PI(Du)|, |PI(Dw)|). For
instance when Du computes even(X) and Dw computes odd(X) we have that |PI(Dv)| = 0 while
|PI(Du)| = |PI(Dw)| = 2|X|−1. Again, the impossibility to extend our output-polynomial-time con-
struction from circuits in dec-DNNF to circuits in d-DNNF does not mean that Enum·PI from d-DNNF
is in not OutputP. This is still an open question.

5.3 Enum·IP and Enum·PI from dec-DNNF are in IncP

We investigate Enum·IP and Enum·PI from dec-DNNF from the incremental enumeration perspec-
tive. Based on Proposition 3, we design a tractable algorithm AnotherIP for solving the problem
AnotherSol·IP, thus showing that Enum·IP from dec-DNNF is in IncP. The case of Enum·PI is again
dual to that of Enum·IP.
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5.3.1 Solving the decision variant of AnotherSol·IP

We first consider the decision variant of AnotherSol·IP from dec-DNNF: given a circuitD in dec-DNNF
and a set S ⊆ IP(D), return false if and only if S ̸= IP(D). The problem is easily answered by a simple
hack of the output-polynomial-time algorithm described in the previous section. The idea is simply to
run the output-polynomial-time algorithm but every time a set IP(Dv) has been constructed for some
node v in D, we compare |IP(Dv)| to |S|. If |IP(Dv)| > |S| then since |IP(D)| ≥ |IP(Dv)| we have
that S ̸= IP(D).

Lemma 63. There is an algorithm which, given a circuit D in dec-DNNF and a set S ⊆ IP(D), returns
false if S ̸= IP(D) and true otherwise, and runs in time O(|S|2poly(|D|)).

Proof. The output-polynomial-time algorithm to generate IP(D) described in the previous section works
by constructing the sets IP(Dv) for every node v of D taken in depth-first order. As explained before, to
decide whether S = IP(D), we can modify the algorithm so that it stops as soon as it has constructed a
set IP(Dv) for some node v such that |IP(Dv)| > |S|. If no such node is found then IP(D) = S and the
algorithm has taken O(|IP(D)|poly(|D|)) = O(|S|poly(|D|)) time to terminate. Otherwise assume the
algorithm ends after visiting k nodes v1, . . . , vk = v (in that order) and finding that |IP(Dv)| > |S|. Then
we have that |IP(Dvi)| ≤ S for all i < k (otherwise the algorithm would have terminated before). The
running time of the algorithm in this case is O(

∑k
i=1 |IP(Dvi)|poly(|D|)) = O((|IP(Dv)| + |S|(k −

1))poly(|D|)) = O((|IP(Dv)| + |S||D|)poly(|D|)). We just have to show that |IP(Dv)| = O(|S|2)
to conclude. IP(Dv) is constructed from two sets IP(Dvi) and IP(Dvj ) with i, j < k. Either v is a
decomposable ∧-node and by Proposition 4 we have |IP(Dv)| = |IP(Dvi)||IP(Dvj )| ≤ |S|2, or v is a
decision node for a variable x and by Proposition 5 we have |IP(Dv)| ≤ |IP(Dvi)|+|IP(Dvj )|+|IP(Dvi∧
Dvj )| ≤ 2|S|+ |IP(Dvi ∧Dvj )|. Since by Proposition 4 we have |IP(Dvi ∧Dvj )| ≤ |IP(Dvi)||IP(Dvj )|,
we have |IP(Dv)| ≤ 2|S|+ |S2| = O(|S2|).

5.3.2 Propagating a prime implicant in D

Consider the algorithm of the previous subsection that decides whether S = IP(D) and assume it has
returned false because it has constructed a set IP(Dv) for some node v inD such that |IP(Dv)| > |S|. We
do not know how to modify the algorithm so that, instead of returning false, it returns a prime implicant
of D that is not in S. More precisely, there is only one “good” situation where we know how to adapt
the algorithm. In this section, we describe this “good” situation as it allows us to introduce the notion of
propagation of a prime implicant that will be useful later.

The “good” situation is when there is a term t ∈ IP(Dv) such that t is not entailed by any t′ ∈ S.
Then we can construct a prime implicant of D that entails t, and therefore is not in S. To do so, we
choose a path from the root ofD to v and we propagate t along that path using the following proposition
and Proposition 4.

Proposition 11. Let f be a Boolean function, let x be a variable, and let ℓ ∈ {x, x}. Consider t ∈
IP(f |ℓ). If t |= f |ℓ, then t ∈ IP(f), otherwise t ∧ ℓ ∈ IP(f).

Proof. Suppose t |= f |ℓ. Then t is an implicant of f since t |= (f |x∧f |x) |= ((x∧f |x)∨(x∧f |x)) ≡ f .
To prove that it is prime let t′ be a strict subterm of t and assume t′ |= f . We have x ̸∈ var(t) since
x ̸∈ var(f |ℓ), so t′|ℓ = t′. If t′ |= f then t′ = t′|ℓ |= f |ℓ and t is not a prime implicant of f |ℓ, a
contradiction.

Suppose t ̸|= f |ℓ. Then t∧ℓ is an implicant of f since t∧ℓ |= (ℓ∧f |ℓ) |= ((x∧f |x)∨(x∧f |x)) ≡ f .
To prove that it is prime, let t′ be a strict subterm of t∧ℓ and assume t′ |= f . If ℓ ̸∈ t′ then t′ = t′|ℓ |= f |ℓ
and t is not a prime implicant of f |ℓ, a contradiction. If however ℓ ∈ t′, then write t′ = t′′∧ℓ and observe
that t′′ = t′|ℓ |= f |ℓ, so t is not a prime implicant of f |ℓ, another contradiction.
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The idea behind the propagation of t is simple. Consider the parent node p of v. If p is a decom-
posable ∧-node whose children are v and v′, then by Proposition 4 we find a prime implicant IP(Dp)
by conjoining any prime implicant of Dv′ to t. One can find a prime implicant of Dv′ in O(poly(|D|))
time using a procedure called GenerateIP (that will be given later). Otherwise, if p is a decision node
for a variable x, then by Proposition 11 either t or t ∨ ℓx is a prime implicant of Dp, where ℓx is some
literal in x, and deciding which of the two is a prime implicant of Dp only requires deciding whether
t |= Dp|ℓx = Dv′ , which takes O(|D|) time. So in both cases we can construct a prime implicant of Dp

that entails t in O(poly(|D|)) time. We repeat the construction along the path until reaching the root of
D, and end up with a prime implicant of D that entails t and thus is not in S.

Example 34. Figure 5.2b shows the propagation of the implicant s ∈ IP(Dv3) along the path (v0, v1, v2,
v3). We construct a prime implicant of Dv2 from s, here since v3 is the 0-child of v2 and since s does not
entail the 1-child of v2 we obtain z s ∈ IP(Dv2). Then we construct a prime implicant of Dv1 from z s,
here since v2 is the 0-child of v1 and since z s does not entail the 1-child of v1 we obtain y b s ∈ IP(Dv1).
Repeating the step one more time leads to x y z w ∈ IP(Dv0) = IP(D). ◀

Now the problem is that it is not clear that the “good” situation always occurs when |IP(Dv)| > |S|.
In the next subsection we follow another direction and present another algorithm to solve Another·IP.
The purpose of the current subsection was mainly to introduce the prime implicant propagation, which
is useful in the next subsection.

5.3.3 Augmenting an incomplete subset of IP(D)

Recall the construction of IP(D) discussed before Lemma 61. To address AnotherSol·IP on inputs D
and S, a reverse procedure is performed under the assumption that S = IP(D). Thus the idea is to
traverse the circuit top-down while updating S, until we find some kind of “contradiction” – which we
will describe later – at a node of D. Then we will create a particular prime implicant of the circuit rooted
at that node, and we will propagate it along the path that has been followed to find the contradiction.
Figures 5.2a and 5.2b – that will be explained later – give an idea of the two-step procedure: “parse the
circuit top-down until finding contradiction” into “propagation of a new prime implicant”.

Before defining what a contradiction means in this setting, recalling some notations and propositions
is useful. For t a term and X a set of variables, tX denotes the restriction of t to variables in X . If X and
var(t) are disjoint, then tX is the empty term. Note that the notation t∅ is consistent with the notation
tX .

It is convenient to introduce propositions that “reverse” Proposition 4 and 5. The proofs are written
in Section 5.5.

Proposition 12. Let D be a circuit in dec-DNNF and let S ⊆ IP(D). If the root of D is an ∧-node, let u
and w be its children and let Su = {tvar(Du) | t ∈ S} and Sw = {tvar(Dw) | t ∈ S}. Then Su ⊆ IP(Du)
and Sw ⊆ IP(Dw) hold, and

S = IP(D) iff Su = IP(Du) and Sw = IP(Dw) and S = {tu ∧ tw | tu ∈ Su, tw ∈ Sw}.

Proposition 13. Let D be a circuit in dec-DNNF whose root is a decision node labelled by x. Let u
be its 0-child and w be its 1-child. Given S ⊆ IP(D), let Su = {t | t ∧ x ∈ S} ∪ (S ∩ IP(Du)),
Sw = {t | t ∧ x ∈ S} ∪ (S ∩ IP(Dw)) and S′ = {t | t ∈ S, x ̸∈ var(t)}. Then Su ⊆ IP(Du) and
Sw ⊆ IP(Dw) hold, and

S = IP(D) iff Su = IP(Du) and Sw = IP(Dw)

and S′ = max({tu ∧ tw | tu ∈ Su, tw ∈ Sw}, |=).
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We point out that, since verifying that a term is a prime implicant of a circuit in dec-DNNF is
tractable, the sets Su and Sw in Proposition 13 can be determined in polynomial time given S and D.
Let v be a node in D and let Sv ⊆ IP(Dv). When asked to determine whether Sv = IP(Dv), we say that
we have a contradiction at node v when

(c1) Sv = ∅ while Dv is satisfiable, or

(c2) v is a decision node with children u and w, and we have Su = IP(Du) and Sw = IP(Dw)
but S′ ̸= max({tu ∧ tw | tu ∈ Su, tw ∈ Sw}, |=), where Su, Sw and S′ are defined as in
Proposition 13, or

(c3) v is a decomposable ∧-node and Su = IP(Du) and Sw = IP(Dw) but S ̸= {tu ∧ tw | tu ∈
Su, tw ∈ Sw}.

A contradiction at node v guarantees that Sv ̸= IP(Dv). We will construct the set Sv from S such
that, if Sv ̸= IP(Dv) then S ̸= IP(D). Checking that a contradiction (c1) occurs at node v is easy.
Contradictions (c2) and (c3) on the other hand require checking that Su = IP(Du) and Sw = IP(Dw).
While this can be done using Lemma 63, we choose to do it in another way that ensures that if

Su ̸= IP(Du)

(resp. Sw ̸= IP(Dw)), then a contradiction is found at a node below u (resp. w).
Now let us describe in more details how we determine whether S = IP(D) (without using Lemma 63).

Let r be the root of D. We assume that r is an internal node (a decision node or a decomposable ∧-node)
whose children are u and w. If there is no contradiction (c1) at r then we use Propositions 12 or 13 to
construct the sets Su and Sw, and we recursively ask whether Su = IP(Du) and Sw = IP(Dw). Either
the recursion ends because a contradiction has been found at a node under u or w, in which case we
have that S ̸= IP(D), or it stops by itself (i.e., when reaching the leaves of the circuit without ever
finding a contradiction), which shows that Su = IP(Du) and Sw = IP(Dw). In the latter case, if r is a
decomposable ∧-node then we have to construct {tu ∧ tw | tu ∈ Su, tw ∈ Sw} to see whether it equals
S. If it does then by Proposition 12 we have S = IP(D), otherwise we have a contradiction (c3) at node
r. If r is a decision node then we have to construct S′ as in Propositions 12 and check whether S′ equals
max({tu ∧ tw | tu ∈ Su, tw ∈ Sw}, |=). If the two sets differ then we have a contradiction (c2) at node
r and by Proposition 13 we derive that S ̸= IP(D), otherwise S = IP(D).

If we find a contradiction at a node v in D when asked whether IP(Dv) = Sv, then we construct a
prime implicant in IP(D) \ S by first generating a prime implicant in IP(Dv) \ Sv and by propagating it
in D along the path that lead to v.

The procedure is given by Algorithm MissingIP. The inputs are a circuit D in dec-DNNF, a set
S ⊆ IP(D) and a path P inD. A function λmapping the nodes ofD to integers is used for memoization
purposes. Initially λ(v) = −1 for every node v, but λ(v) may be assigned a non-negative value at
some point. More precisely, the first time a call MissingIP(Dv, S, P ) returns false, we learn that
S = IP(Dv) and set λ(v) to |S|. Then for each later call MissingIP(Dv, S

′, P ′) with S′ ⊆ IP(Dv),
we check whether S′ = IP(Dv) by verifying that λ(v) = |S′|. P is used to remember the ancestor nodes
that were visited before reaching a contradiction and, once a contradiction has been found, P helps us
finding a prime implicant of IP(D) \ S.

Example 35. Consider calling MissingIP(D,S0, ∅) with D the circuit of Figure 5.1 and S0 =
{x y z w, xw s, y w s} a set of prime implicants of D. Figure 5.2a shows a scenario when MissingIP
(D,S0, ∅) calls MissingIP(Dv1 , S1, (v0)), which in turn calls MissingIP(Dv2 , S2, (v0, v1)), which
finally calls MissingIP(Dv3 , S3, (v0, v1, v2)). Since S3 = ∅ and Dv3 is reduced and different from 0,
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xv0 :

y yv1 :
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S3 = ∅

S0 = {x y z w , xw s , y w s}

S2 = {z w , w s}

S1 = {y z w , w s}

(a) A path followed in MissingIP.
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(b) Propagation of an implicant.

Figure 5.2: Generation of a new prime implicant from a circuit in dec-DNNF.

the algorithm has reached a contradiction (c1) at node v3 and has not returned false, thus indicating that
S0 ̸= IP(D). The path followed to reach the contradiction is P = (v0, v1, v2, v3). A prime implicant in
IP(D) \ S0 is generated by first finding a prime implicant in of Dv3 , say it is s, and then by propagating
it along P as described in Example 34. ◀

The proof of the next propositions on the soundess and running time of algorithm are deferred to
Section 5.5.

Proposition 14. Given a reduced circuit D in dec-DNNF and S ⊆ IP(D), MissingIP(D,S, ∅) runs
in time O(poly(|S|+ |D|)), and it returns false if and only if S = IP(D).

The algorithm AnotherIP that generates a new prime implicant breaks into two steps. First
MissingIP(D,S, ∅) searches for a contradiction. It returns false if none is found, otherwise it re-
turns a pair (t, P ) with P the path followed to reach a node v where the first contradiction has been
found, and t a prime implicant of Dv that could not be derived from S. The procedure GenerateIP
is used to generate t. GenerateIP runs in polynomial time thanks to tractable model enumeration and
linear-time implicant check on circuits in dec-DNNF. Finally PropagateIP is called to propagate t
along the path P . The next proposition shows the correctness of AnotherIP:

Proposition 15. Let D be a reduced circuit in dec-DNNF and let S ⊆ IP(D). AnotherIP(D,S) runs
in time O(poly(|S| + |D|)). It returns false if S = IP(D), otherwise it returns a prime implicant of D
that does not belong to S.

On this basis, the existence of a polynomial incremental time enumeration of prime implicants for
circuits in dec-DNNF can be easily established:

Lemma 64. Enum·IP from dec-DNNF is in IncP.

Proof. Using Proposition 15, k prime implicants of D can be generated in time O(poly(k + |D|)) by
simply calling AnotherIP(D,S) k times, each time adding to S the new prime implicant that has been
computed. This shows that Enum·IP from dec-DNNF is in IncP.

5.3.4 The Dual Case of Prime Implicates

We briefly justify that the previous algorithm can be adapted for enumerating prime implicates. First
let us consider the simple subcase where D is an FBDD instead of a circuit in dec-DNNF. It is easy to
see that Enum·PI from FBDD is in IncP. Indeed, it is well-known that PI(f) = {¬t | t ∈ IP(¬f)}
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Algorithm 3: MissingIP(D,S, P )
Promises: D is reduced, S ⊆ IP(D)

1 Let v be the root of D and let P ′ ← P ∪ (v)
2 if λ(v) = |S| then return false
3 if S = ∅ then
4 if v is labelled by 0 then set λ(v) to 0, return false
5 else return (GenerateIP(D), P ′)
6 end
7 if v is a ∧-node with children u and w then
8 Construct Su and Sw as in Proposition 12
9 r ← MissingIP(Du, Su, P

′)
10 if r ̸= false then return r
11 r ← MissingIP(Dw, Sw, P

′)
12 if r ̸= false then return r
13 S∗ ← {tu ∧ tw | tu ∈ Su, tw ∈ Sw}
14 if S ̸= S∗ then return (t, P ′) for any t ∈ S∗ \ S
15 else if v is a decision node with children u and w then
16 Construct Su, Sw, S′ as in Proposition 13
17 r ← MissingIP(Du, Su, P

′)
18 if r ̸= false then return r
19 r ← MissingIP(Dw, Sw, P

′)
20 if r ̸= false then return r
21 S∗ ← max({tu ∧ tw | tu ∈ Su, tw ∈ Sw}, |=)
22 if S∗ ̸= S′ then for any t ∈ S∗ \ S′ return (t, P ′)

23 end
24 Set λ(v) to |S| and return false

for every Boolean function, where ¬t here denotes a clause. So given an FBDD B, one can negate B
in constant time by switching the 0-sink with the 1-sink, and then enumerate the prime implicants of
¬B. Each prime implicant generated is then negated using De Morgan law to obtain a prime implicate
of B. Unfortunately it is still unknown whether negation of a circuit in dec-DNNF (into another circuit
in dec-DNNF) is feasible in polynomial-time. But we remark that the propositions used to design and
analyse MissingIP have the following dual versions:

Proposition 16. Let D be a satisfiable circuit in dec-DNNF and let S ⊆ PI(D). If the root of D
is an ∧-node, let u and w be its children and let Su = {c | c ∈ S, var(c) ∩ var(Du) ̸= ∅} and
Sw = {c | c ∈ S, var(c)∩ var(Dw) ̸= ∅} (note that in this situation, var(c)∩ var(Du) ̸= ∅ if and only
if var(c) ⊆ var(Du), and similarly for Dw). Then Su ⊆ PI(Du) and Sw ⊆ PI(Dw) hold, and

S = PI(D) iff Su = PI(Du) and Sw = PI(Dw)

Proposition 17. Let D be a circuit in dec-DNNF whose root is a decision node labelled by x. Let u
be its 0-child and w be its 1-child. Given S ⊆ PI(D), let Su = {c | c ∨ x ∈ S} ∪ (S ∩ PI(Du)),
Sw = {c | c ∨ x ∈ S} ∪ (S ∩ PI(Dw)) and S′ = {c | c ∈ S, x ̸∈ var(c)}. Then Su ⊆ PI(Du) and
Sw ⊆ PI(Dw) hold, and

S = PI(D) iff Su = PI(Du) and Sw = PI(Dw)

and S′ = min({cu ∨ cw | cu ∈ Su, cw ∈ Sw}, |=).
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Algorithm 4: GenerateIP(D)

Promise: D is satisfiable
1 Find a satisfying assignment a of D
2 Let t be the corresponding term: t =

∧
a(x)=1 x ∧

∧
a(x)=0 x

3 while there is ℓ ∈ t such that t− ℓ |= D do
4 Remove ℓ from t
5 end
6 return t

Algorithm 5: PropagateIP(D, t, P = (v0, . . . , vi))

Promise: D is reduced, its root is v0, P is a path in D
1 if |P | = 1 then return t
2 if vi−1 is a ∧-node with children u and w then
3 if vi = u then t′ ← GenerateIP(Dw)
4 if vi = w then t′ ← GenerateIP(Du)

5 else if vi−1 is a decision node for variable x with 0-child u and 1-child w then
6 if vi = u then
7 if t |= Dw then t′ ← t∅ else t′ ← x
8 else
9 if t |= Du then t′ ← t∅ else t′ ← x

10 end
11 PropagateIP(D, t ∧ t′, (v0, . . . , vi−1))

So one can design a polynomial-time algorithm MissingPI which, given a circuit D in dec-DNNF
and a set S ⊆ PI(D), returns false if and only if S ̸= PI(D). One just has to replace Propositions 12 and
13 by Propositions 16 and 17 and to replace the contradictions (c1), (c2) and (c3) by “dual versions”:

(c4) Sv = ∅ while Dv is unsatisfiable, or

(c5) v is a decision node, Su = PI(Du) and Sw = PI(Dw), but S′ ̸= min({cu ∨ cw | cu ∈ Su, cw ∈
Sw}, |=).

We remark that there are two kinds of contradictions and not three (like for MissingIP). The reason
is that when v is a decomposable node, we have that Sv = PI(Dv) = PI(Du) ∪ PI(Dw) if and only if
Su = PI(Du) and Sw = PI(Dw), and if one the two equality fails then there is a contradiction (c4) of
(c5) at a node before u or w. Note that the set S∗ computed line 21 is now min({cu∨cw | cu ∈ Su, cw ∈
Sw}, |=), which is computable in time O(|Su| × |Sw|) given Su and Sw.

GenerateIP is easily modified into an algorithm GeneratePI using that circuits in dec-DNNF
support linear-time clausal entailment, and PropagateIP is turned into the algorithm PropagatePI
to propagate a prime implicate along a path of the circuit using Propositions 16 and the following, dual
proposition to Proposition 11:

Proposition 18. Let f be a Boolean function, let x be a variable, and let ℓ ∈ {x, x}. Consider c ∈
PI(f |ℓ). If f |ℓ |= c, then c ∈ PI(f), otherwise c ∨ ℓ ∈ PI(f).

Notice that there is a difference between PropagatePI and PropagateIP in the way they handle
decomposable ∧-node.
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Algorithm 6: AnotherIP(D,S)
Promise: D is reduced, S ⊆ IP(D)

1 r ← MissingIP(D,S, ∅)
2 if r = false then return false
3 else if r = (t, P ) then return PropagateIP(D, t, P )

Algorithm 7: PropagatePI(D, c, P = (v0, . . . , vi))

Promise: D is reduced, its root is v0, P is a path in D
1 if |P | = 1 then return c
2 if vi−1 is a ∧-node thenPropagateIP(D, c, (v0, . . . , vi−1))
3 else if vi−1 is a decision node for variable x with 0-child u and 1-child w then
4 if vi = u then
5 if Dw |= c then c′ ← c∅ else c′ ← x
6 else
7 if Du |= c then c′ ← t∅ else c′ ← x

8 end
9 PropagatePI(D, c ∧ c′, (v0, . . . , vi−1))

So we have a polynomial-time algorithm AnotherPI which, given a circuit D in dec-DNNF and a
set S ⊆ PI(D), returns false if S = PI(D) and a clause in PI(D) \ S otherwise. Thus:

Lemma 65. Enum·PI from dec-DNNF is in IncP.

5.4 Enumerating Specific Prime Implicants

For some applications, enumerating all prime implicants of f makes sense, even though there can be
exponentially many. We have already mentioned the dualization of monotone CNF formulas as an ex-
ample. In this section, we turn our attention to the problems Enum·SR and Enum·SE from dec-DNNF
and its sublanguages. Recall that sufficient reasons for an assignment a and subset-minimal explanations
are specific prime implicants.

To illustrate the two notions, we use the function f computed by the circuit of Figure 5.1 as a
toy example. We introduce some context to make the example more accessible. f encodes a very
incomplete characterization of human-like creatures in Tolkien’s Middle Earth based on four physical
attributes: presence of beard and facial hair (z), small size (s), human-like skin (x), pointy ears (w),
plus the indication of whether the creature is enrolled in the armies of evil (y). We imagine that there
are only seven possible creatures: hobbits (x y z w s), elves (x y z w s), dwarfs (x y z w s), men and
women (x ∗ ∗w s),7 ents (x y ∗ w s), orcs (x y z w∗) and trolls (x y z w s). The satisfying assignments
of f describe these creatures. Its prime implicants are the smallest combinations of attributes which
guarantee the existence of a creature in our Middle Earth.

5.4.1 Subset-Minimal Explanations and Abductive Explanations

Subset-minimal explanations are linked to abductive explanations, see e.g. [SL90, EG95]), that can be
defined as follows:

7∗ denotes that both choices are possible for the variable, for example here humans may fight for evil, humans and ents may
or may not have beards, and orcs have a wide range of size.
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Definition 41 (Abductive explanation). Given a Boolean function f over variablesX , a subsetH ⊆ X ,
and a term m on X \ H , an abductive explanation is a term t on H such that f ∧ t is satisfiable and
f ∧ t |= m.

The abduction problem asks whether an abductive explanation t exists for the input (f,H,m).

Example 36. Consider our toy example. We look for combinations of physical attributes that guarantee
that the creature is evil. This is an abduction problem with H = {x, z, w, s} and m = y. For instance
the term x ∧ w is an abductive explanation because there exist creatures with pointy ears and a skin that
is not human-like, and all of them are evil (in this case only the orcs fit this description). ◀

An abductive explanation t is in fact an implicant of ¬f∨mwith the conditions that f∧t is satisfiable
and that t is restricted to variables in H (the abducibles). In other words, the abductive explanation t is
an implicant of ¬f ∨m whose variables are restricted H and such that t ̸ ¬f . Since abduction is not a
truth-preserving form of inference, one is often interested in generating abductive explanations that are
also subset-minimal explanations over H . In other words, one wants prime implicants of ¬f ∨m such
that f∧t is satisfiable and t is restricted to variables inH . We call subset-minimal abductive explanations
these prime implicants.

Obviously enough, the abduction problem we focus on (the existence of an abductive explanation) is
the same, would we consider subset-minimal abductive explanations or not. Indeed, deciding whether an
abductive explanation exists is equivalent to deciding whether a subset-minimal abductive explanation
exists. Unfortunately, the condition that only variables in H are allowed in abductive explanations is
already too demanding from an enumeration perspective. Indeed, even in the case when an OBDD or a
decision tree (DT) (recall that OBDD and DT are subsets of dec-DNNF) computing ¬f ∨m is given,
there is no much hope for a polynomial-time procedure to extract from it a single implicant of this circuit,
that is built over H .

Proposition 19. Unless P = NP, there is no polynomial-time algorithm which, given an OBDD or a
decision tree computing a function f over X and a set Y ⊆ X , decides whether f has an implicant t
with var(t) ⊆ Y .

Proof. Let ϕ be a CNF formula with m clauses c1, . . . , cm. Create m fresh variables z1, . . . , zm. Let
B1, . . . , Bm be OBDDs respecting the same variable ordering and computing c1, . . . , cm, respectively.
These OBDDs can be computed in polynomial time (and can even be chosen in DT). Define now the
OBDDs B(i) = (zi ∧ Bi) ∨ (zi ∧ B(i+1)) for 1 ≤ i ≤ m, with B(m+1) = 1. B(1) is an OBDD on
{z1, . . . , zm} ∪ var(ϕ) built in polynomial time from ϕ and whose size is in O(|ϕ|).

Claim 16. An implicant t of B(1) such that var(t) ⊆ var(ϕ) exists if and only if ϕ is satisfiable.

Proof. For the “only if” direction, assume the implicant exists. t is an implicant of B(1) = (z1 ∧ B1) ∨
(z1 ∧ B(2)). Since z1 ̸∈ var(t), we have t |= B1 ≡ c1 and t |= B(2). Following the same line of
reasoning with B(2) instead of B(1) we also have that t |= B2 ≡ c2 and t |= B(3). And we repeat the
argument until reaching, t |= c1, t |= c2, . . . , t |= cm, t |= B(m+1) = 1. So indeed t |= ϕ and thus ϕ is
satisfiable.

For the “if” direction, assume that ϕ is satisfiable. Then there exists an implicant t of ϕwith var(t) ⊆
var(ϕ). Let a be a truth assignment to var(ϕ) ∪ {z1, . . . , zm} that satisfies t. If a(zi) = 1 for all
i ∈ {1, . . . ,m}, then B(1)|a ≡ B(2)|a ≡ · · · ≡ B(m+1)|a ≡ 1. Otherwise let j be the least integer such
that a(zj) = 0. Then B(1)|a ≡ B(2)|a ≡ · · · ≡ B(j)|a ≡ Bj |a ≡ cj |a. Since t is an implicant of ϕ, we
have that t |= cj , so cj |a ≡ 1. Thus every assignment a that satisfies t also satisfies B(1), in other words
t is an implicant of B(1).
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So if the algorithm from the proposition statement exists, we can run it on inputs B(1) and Y =
var(ϕ) to decide in polynomial time whether ϕ is satisfiable.

Finally note that if one had chosen to represent B1, . . . , Bm as decision trees from DT (which is also
feasible in polynomial time), then B(1) would have been a decision tree. So the statement also holds for
DT.

5.4.2 Sufficient Reasons

The notion of sufficient reason [DH20] is sometimes also referred to as “prime implicant explana-
tion” [SCD18b] or as “abductive explanations” [INM19, INAM20]. We stick to “sufficient reason”
to avoid any confusion with the distinct concept of abductive explanations as discussed in the previous
section.

Example 37. Consider again our toy example. There is no creature which is small, has human-like
skin, pointy ears, no facial hair, and is evil. Finding the reasons of why such a creature cannot exist
means finding sufficient reasons for the assignment a defined by a(x) = a(y) = a(w) = a(s) = 1 and
a(z) = 0 given ¬f . In this case x y w ∈ SR(¬f, a) explains why such a creature cannot exist: there
are no creatures that are evil and have both human-like skin and pointy ears. It is a minimal explanation
in that there are such creatures that are non-evil (hobbits and elves), and there are evil creatures that
have pointy ears (orcs) or human-like skin (men). There are other sufficient reasons for a given ¬f , for
instance x y s ∈ SR(¬f, a). ◀

Some results about the complexity of computing sufficient reasons have been pointed out for the
past few years. Obviously enough, when no assumption is made on the representation of f , computing
a single sufficient reason for an assignment a is already NP-hard (for pretty much the same reasons as
for the prime implicant case, i.e., f is valid if and only if for any a, the unique sufficient reason for a
given f is the empty term). Furthermore, the number of sufficient reasons for an assignment a given f
can be exponential in the number of variables even when f is represented in DT [ABB+21a]. Contrary
to subset-explanations, it is computationally easy to generate a single sufficient reason from SR(D, a)
when D is an OBDD or a decision tree representing f . A greedy algorithm can be used to this end: if a
satisfiesD (resp. ¬D), then start with the canonical term having a as its unique satisfying assignment and
remove literals from this term while ensuring that it still is an implicant of D (resp. ¬D), until no more
literal can be removed. In addition, when D is in DT, we can generate in polynomial time a monotone
CNF formula Ψ such that IP(Ψ) = SR(D, a) (see [DM21] for details), and then take advantage of a
quasi-polynomial time algorithm for enumerating the elements of IP(Ψ) [GK99]. In contrast, deciding
whether a preset number of sufficient reasons for a given a exists is intractable (NP-hard), even when the
Boolean function f is monotone (see Theorem 3 in [MGC+21]). We complete those results by providing
evidence that Enum·SR from any language among dec-DNNF, OBDD, or DT is a difficult problem,
despite the fact that those languages are quite convenient for many reasoning tasks [DM02, KLMT13a].

Let us first give an inductive computation of SR(D, a) similar to that of IP(D).

Proposition 20. Let f and g be Boolean functions with var(f) ∩ var(g) = ∅ and let a be a truth
assignment to a superset of var(f)∪var(g). Then SR(f ∧ g, a) = {t∧ t′ | t ∈ SR(f, a), t′ ∈ SR(g, a)}.

Proposition 21. Let f be a Boolean function, let a be a truth assignment to a superset of var(f) and let
x ∈ var(f). If a satisfies the literal ℓ on variable x then

SR(f, a) = {t ∧ ℓ | t ∈ SR(f |ℓ, a), t ̸|= f |ℓ}
∪ SR(f |x ∧ f |x, a).
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Recall that a key property used by the procedure of Lemma 61 is that |IP(f)| ≥ max(|IP(f |x)|,
|IP(f |x)|). Beyond this size relation between IP(f) and IP(f |ℓx), every implicant of IP(f |ℓx) is kept
in some form through IP(f), thus computing IP(f |x) and IP(f |x) is not wasteful in the computation of
IP(f). This led to the output-polynomial procedure to generate IP(f) for OBDDs and more generally
for circuits in dec-DNNF. On the other hand, it is not guaranteed that SR(f, a) is larger than SR(f |x, a)
and SR(f |x, a) so there is no straightforward adaptation of this procedure from Enum·IP to Enum·SR,
as shown by the following example.

Example 38. Let D be the circuit of Figure 5.1 and consider the subcircuit Dv1 of D rooted at node
v1 indicated in Figure 5.2a. The assignment a to {y, z, w, s} defined by a(y) = a(z) = 1 and a(w) =
a(s) = 0 satisfies Dv1 . Recall that the set IP(Dv1) has been constructed in Example 33 and observe
that SR(Dv1 , a) = {ws}. Now the 0-child of v1 is v2 and looking at the set IP(Dv2) constructed in
Example 33, we see that SR(Dv2 , a) = {w s, z w}. Since Dv2 = Dv1 |y, we have that |SR(Dv1 , a)| <
max(|SR(Dv1 |y, a)|, |SR(Dv1 |y, a)|). ◀

We give evidence that enumerating sufficient reasons from dec-DNNF, or even OBDD or DT, is
not in OutputP by reducing to it the problem of enumerating the minimal transversals of a hypergraph,
a well-known problem whose membership to OutputP is a long-standing question. As a reminder, a
hypergraph is composed of a set of vertices and of a set of subsets of vertices called hyperedges. A
transversal of a hypergraph is a subset S of its vertices such that every hyperedge contains at least one
vertex in S. A minimal transversal is a transversal that ceases to be a transversal when deprived from
any of its vertices [Bre13].

Proposition 22. If Enum·SR from OBDD is in OutputP or Enum·SR from DT is in OutputP, then
enumerating the minimal transversals of a hypergraph is in OutputP.

Proof. The proof adapts on the proof of Theorem 2 in [KPS93]. Let H be a hypergraph. Vertices are
integers 1, . . . , n and associated to variables x1, . . . , xn, thus the hyperedges H ∈ H are sets of integers.
Let tr(H) be the set of transversals of H and let trmin(H) be the set of minimal transversals of H. For
each S ⊆ {1, . . . , n} of vertices let aS be the assignment such that aS(xi) = 0 if and only if i ∈ S,
and let γS =

∨
i∈S xi. Observe that aS satisfies γS′ if and only if S ∩ S′ ̸= ∅. Let f be the function

whose satisfying assignments are exactly the aH for H ∈ H. Denote by sat(f) the set of satisfying
assignments of f .

Now we look at prime implicates of f which are, by de Morgan laws, the negation of the prime
implicants of ¬f . We have the following:

f |= γS ⇔ ∀H ∈ H, aH satisfies γS
⇔ ∀H ∈ H, H ∩ S ̸= ∅
⇔ S is a transversal ofH

It follows that the set of implicates of f containing only negative literals is {γT | T ∈ tr(H)}, and
that the set of prime implicates of f containing only negative literals is {γT | T ∈ trmin(H)}. Since
the prime implicants of ¬f are exactly the negations of the prime implicates of f , we get that the set of
prime implicants of ¬f containing only positive literals is {

∧
i∈T xi | T ∈ trmin(H)}. Observe that a∅

is the assignment that sets all xi to 1 and that

SR(¬f, a∅) =
{∧

i∈T
xi | T ∈ trmin(H)

}
.

FromH we construct sat(f) as a list of assignments in polynomial time. Then from sat(f) we construct
in polynomial time an OBDD B equivalent to f . Then we obtain an OBDD B′ equivalent to ¬f by
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switching the 0-sink and the 1-sink of B. Given the bijection between SR(B′, a∅) and trmin(H), any
algorithm for enumerating sufficient reasons from OBDD can be run with inputs B′ and a∅ to enumerate
the minimal transversals ofH. So if Enum·SR from OBDD is in OutputP then enumerating the minimal
transversals of a hypergraph is in OutputP.

Finally, note that from sat(f) one can construct a decision tree representing f in polynomial time
(instead of an OBDD), and that negating such a decision tree boils down to turning 0-leaves into 1-leaves
and vice-versa. So the statement also holds for Enum·SR from DT.

5.5 Missing Proofs

In this section we present the proofs of the lemmas and propositions that we have omitted to avoid
breaking the flow of the chapter.

Proposition 8. Let f and g be Boolean functions. If var(f) ∩ var(g) = ∅ and if f and g are satisfiable
then PI(f ∧ g) = PI(f) ∪ PI(g) and PI(f) ∩ PI(g) = ∅.

Proof. Since prime implicates of a function are defined on the variable of that function, it is readily
verified that PI(f) ∩ PI(g) = ∅. We now prove that PI(f ∧ g) = PI(f) ∪ PI(g).

For the ⊆ direction, let c ∈ PI(f ∧ g) and assume neither cvar(f) nor cvar(g) is the empty clause.
If f |= cvar(f) then since f ∧ g |= f , c would not be a prime implicant of f ∧ g. So f ̸|= cvar(f) and
similarly g ̸|= cvar(g). Then let af ∈ sat(f) be a model of f not accepted by cvar(f), and let ag ∈ sat(g)
be a model of g not accepted by cvar(g). By decomposability, af ∪ ag is a model of f ∧ g, yet it is not
a model of cvar(f) ∨ cvar(g) = c, a contradiction. This proves that c contains only variables in var(f)
or only variables in var(g). Assume, without loss of generality, that it is the first case. Then we have
that f ∧ g |= cvar(f) and after conditioning both sides on any model of g, by decomposability we obtain
that f |= cvar(f). Moreover cvar(f) must be a prime implicate of f for f |= c′ |= cvar(f) yields that
f ∧ g |= c′ (because f ∧ g |= f ).

For the ⊇ direction, let cf ∈ PI(f). Since f ∧ g |= f , cf is an implicate of f ∧ g. To prove that
cf is a prime implicate assume f ∧ g |= c′ |= cf for some clause c′. Then var(c′) ⊆ var(cf ), but then
after conditioning both side on any model of g by decomposability we obtain that f |= c′ thus cf = c′

for otherwise cf would not be a prime implicate of f . The case for cg ∈ PI(f) is analogous.

Proposition 12. Let D be a circuit in dec-DNNF and let S ⊆ IP(D). If the root of D is an ∧-node, let u
and w be its children and let Su = {tvar(Du) | t ∈ S} and Sw = {tvar(Dw) | t ∈ S}. Then Su ⊆ IP(Du)
and Sw ⊆ IP(Dw) hold, and

S = IP(D) iff Su = IP(Du) and Sw = IP(Dw) and S = {tu ∧ tw | tu ∈ Su, tw ∈ Sw}.

Proof. If S = IP(D) then by Proposition 4 S = {tu ∧ tv | tu ∈ IP(Du), tv ∈ IP(Dv)} so IP(Du) =
{tvar(Du) | t ∈ S} = Su and IP(Du) = {tvar(Dv) | t ∈ S} = Sv and thus S = {tu ∧ tv | tu ∈ Su, tv ∈
Sv}.

If S ̸= IP(D), let t∗ ∈ IP(D) \ S and let t∗u = t∗var(Du)
and t∗v = t∗var(Dv)

. By Proposition 4, t∗u
(resp. t∗v) is in IP(Du) (resp. IP(Dv)), so either t∗u ̸∈ Su or t∗v ̸∈ Svand we are done, or t∗u ∈ Su and
t∗v ∈ Sv in which case {tu ∧ tv | tu ∈ Su, tv ∈ Sv} ≠ S since t∗u ∧ t∗v is in {tu ∧ tv | tu ∈ Su, tv ∈ Sv}
but not in S.

Proposition 13. Let D be a circuit in dec-DNNF whose root is a decision node labelled by x. Let u
be its 0-child and w be its 1-child. Given S ⊆ IP(D), let Su = {t | t ∧ x ∈ S} ∪ (S ∩ IP(Du)),
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Sw = {t | t ∧ x ∈ S} ∪ (S ∩ IP(Dw)) and S′ = {t | t ∈ S, x ̸∈ var(t)}. Then Su ⊆ IP(Du) and
Sw ⊆ IP(Dw) hold, and

S = IP(D) iff Su = IP(Du) and Sw = IP(Dw)

and S′ = max({tu ∧ tw | tu ∈ Su, tw ∈ Sw}, |=).

Proof. For convenience we denote S∗ = max({tu ∧ tw | tu ∈ Su, tw ∈ Sw}, |=). First we prove that
Sw ⊆ IP(Dw) (the proof that Su ⊆ IP(Du) is analogous). Clearly S ∩ IP(Dw) ⊆ IP(Dw) so we just
need to show that {t | t ∧ x ∈ S} ⊆ IP(Dw). Let t ∧ x be in S, then t ∧ x |= D. t is an implicant
of Dw since t ≡ (t ∧ x)|x |= D|x ≡ Dw. Now if there exists t′ ̸= t such that t |= t′ |= Dw then
t ∧ x |= t′ ∧ x |= D holds, and therefore t ∧ x is not a prime implicant of D, a contradiction. So
{t | t ∧ x ∈ S} ⊆ IP(Dw).

Second we prove that Sw ̸= IP(Dw) implies S ̸= IP(D) (the proof is similar for Su ̸= IP(Du)).
Assume there exists t ∈ IP(Dw) \ Sw. If t |= Du then t is in IP(D) by Proposition 11. But t cannot be
in S for otherwise it would be in S ∩ IP(Dw) ⊆ Sw. This shows that S ̸= IP(D) in this case. If however
t ̸|= Du then t ∧ x is in IP(D) by Proposition 11. But t ∧ x cannot be in S for otherwise t would be in
{τ | τ ∧ x ∈ S} ⊆ Sw. So again S ̸= IP(D).

Now we prove that (S′ ̸= S∗) ⇒ (S ̸= IP(D)). We may assume that Su = IP(Du) and Sw =
IP(Dw), otherwise S ̸= IP(D) holds regardless of S′ = S∗. Since Du ≡ D|x and Dw = D|x we have
that S∗ = max({tu ∧ tw | tu ∈ IP(D|x), tw ∈ IP(D|x)}, |=) = IP(D|x ∧D|x) by Proposition 4. Now
S = S′ ∪ {t | t ∈ S, x ∈ t} ∪ {t | t ∈ S, x ∈ t} so, by Proposition 5, if S = IP(D) then S′ corresponds
to the set IP(D|x ∧D|x). So

(S′ ̸= S∗)⇒ (S′ ̸= IP(D|x ∧D|x))⇒ (S ̸= IP(D))

Now for the other direction, assume there exists t ∈ IP(D) \ S. First suppose that t = t′ ∧ x. On
the one hand, t′ is in IP(D|x) = IP(Dw). On the other hand t′ is clearly not in {τ | τ ∧ x ∈ S}, and
since it is not an implicant of D, it is not in S ∩ IP(Dw) either. This means that t′ ∈ IP(Dw) \ Sw and
therefore Sw ̸= IP(Dw). In the case when t = t′ ∧x, a similar proof gives that Su ̸= IP(Du). It remains
to consider the situation where neither x nor x is in t. By Proposition 5, t is contained in IP(D|x∧D|x).
As before, we can assume that Su = IP(Du) and Sw = IP(Dw). We have already explained that this
assumption yields S∗ = IP(D|x ∧D|x). Since t is not in S and x ̸∈ t and x ̸∈ t, we have that t ̸∈ S′.
So t ∈ S∗ \ S′, and therefore S ̸= S∗.

Proposition 14. Given a reduced circuit D in dec-DNNF and S ⊆ IP(D), MissingIP(D,S, ∅) runs
in time O(poly(|S|+ |D|)), and it returns false if and only if S = IP(D).

Proof. For the proof we can ignore the value of the input P since MissingIP(D,S, P ) returns false if
an only if MissingIP(D,S, P ′) returns false for every P ̸= P ′. So we write a ∗ for the third argument
of MissingIP.

Soundness: We prove soundness by induction on the depth of D. If D has depth 1 then it is a single
node v labelled by 0, 1 or a literal ℓ. The promise states that S ⊆ IP(D). If v is labelled by 0, then S
must be ∅ and the algorithm returns false at line 2. If v is is labelled by 1 then either S = {t∅} = IP(1)
and the algorithm returns false at line 24, or S = ∅ and the algorithm returns (t∅, P ′) at line 5. Finally
if v is labelled by ℓ, either S = {ℓ} = IP(ℓ) and the algorithm returns false at line 24, or S = ∅ and the
algorithm returns (ℓ, P ′) at line 5. In all cases the algorithm returns false if and only if S = IP(D), and
it sets λ(v) to |IP(Dv)| before returning false.

Now if D has depth more than 1, its root node v is either a decomposable ∧-node or a decision node.
Since D is reduced, it cannot be unsatisfiable, so if S = ∅ the algorithm returns something different
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from false at line 5. From now on, we suppose that S ̸= ∅. If v is a decomposable ∧-node with children
u and w. By Proposition 12, since we are promised that S ⊆ IP(D), we have that IP(D) = S if and
only if IP(Du) = Su and IP(Dw) = Sw and S = S∗, with Su and Sw defined as in Proposition 12
and S∗ defined line 13. By induction, IP(Du) ̸= Su or IP(Dw) ̸= Sw if and only if the output of
MissingIP(Du, Su, ∗) or MissingIP(Dw, Sw, ∗) is distinct from false. So if S ̸= IP(D), then
line 10, 12 or 14 returns something different from false. And if S = IP(D), then no return call is
triggered lines 10, 12 or 14 and the algorithm returns false at line 24 after setting λ(v) to |S| = |IP(D)| =
|IP(Dv)|.

If v is a decision node for variable x with 0-child u and 1-child w. By Proposition 13, since we are
promised that S ⊆ IP(D), we have that IP(D) = S if and only if IP(Du) = Su and IP(Dw) = Sw and
S′ = S∗ with Su, Sw and S′ defined as in Proposition 13 and S∗ defined line 21. By induction IP(Du) =
Su and IP(Dw) = Sw if and only if the output of MissingIP(Du, Su, ∗) or MissingIP(Dw, Sw, ∗)
is not false. So if S ̸= IP(D), then lines 18, 20 or 22 returns something different from false. And if
S = IP(D), then no return call is triggered lines 18, 20 or 22 the algorithm returns false at line 24 after
setting λ(v) to |S| = |IP(D)| = |IP(Dv)|.

Running time: Consider the time spent in MissingIP(D,S, ∗) before a return statement or a recursive
call is triggered. The procedure may end at line 2, 4 or 5 in O(1) time. Now if the algorithm does not
end at the first lines, most of the running time is spent building sets of terms from S lines 8, 13, 16, 21.
Constructing Su and Sw line 8 only requires projecting the terms in S onto var(Du) and var(Dw),
which takes time O(|S|). Constructing S∗ line 13 takes O(|Su| × |Sv|) = O(|S|2). At line 8, S′ is
obtained in time O(|S|) and Su and Sw are obtained in time O(poly(|S| + |D|)) thanks to polynomial-
time prime implicant check on circuits in dec-DNNF. Finally building S∗ at line 21 and comparing it
to S′ can be done in time O(poly(|S|u| + |Sw|)) = O(poly(|S|). So before a return statement or a
recursive call is triggered, the algorithm spends O(poly(|S|+ |D|) time. One can observe that |Su|, |Sw|
are fewer than |S|, so for every node v in D, a call MissingIP(Dv, S

′, ∗) takes O(poly(|S| + |D|))
time before triggering a return or a recursive call. Thanks to memoization – implemented via λ – the
O(poly(|S|+|D|)) time procedure is done only once per node. So the total running time of the algorithm
is also in O(poly(|S|+ |D|)).

Proposition 15. Let D be a reduced circuit in dec-DNNF and let S ⊆ IP(D). AnotherIP(D,S) runs
in time O(poly(|S| + |D|)). It returns false if S = IP(D), otherwise it returns a prime implicant of D
that does not belong to S.

Proof. Soundness. First AnotherIP(D,S) calls MissingIP(D,S, ∅). The soundness of algorithm
MissingIP has been established in Proposition 14 so if S = IP(D) then MissingIP(D,S, ∅) returns
false and so does AnotherIP(D,S).

Now let us assume that MissingIP(D,S, ∅) has not returned false but the pair (t, P ) with P =
(v0, . . . , vm) a path from v0 (the root of D) to vm and t a term. Use the notation Pi = (v0, . . . , vi−1)
for all 1 ≤ i ≤ m. Then calling MissingIP(D,S, ∅) has triggered a sequence of recursive calls
MissingIP(Dv1 , S1, P1), MissingIP(Dv2 , S2, P2),. . . ,MissingIP(Dvm , Sm, Pm) and a contra-
diction has been found at the last step. Thus MissingIP(Dvm , Sm, Pm) ends line 5 for a contradiction
of type (c1), or line 14for a contradiction of type (c3), or line 22 and returns (t, P ) with t some term that
we claim is in IP(Dvm) \ Sm.

Claim 17. t ∈ IP(Dvm) \ Sm.

Proof. This is clear if MissingIP(Dvm , Sm, Pm) ends line 5.
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If MissingIP(Dvm , Sm, Pm) ends line 14, then vm is a decomposable ∧-node whose children are
u andw. The sets Su and Sw have been generated and that it has been shown that Su = IP(Du) and Sw =
IP(Dw) (otherwise a return statement line 10 or 12 would have been triggered). So S∗ = {tu ∧ tw | tu ∈
IP(Du), tw ∈ IP(Dw)} = IP(Dvm) by Proposition 4 and we have indeed t ∈ S∗ \Sm = IP(Dvm)\Sm.

If MissingIP(Dvm , Sm, Pm) ends line 22, then vm is a decision node for x with 0-child u and
1-child w. The sets Su, Sw, S′ and S∗ have been generated and that it has been shown that Su =
IP(Du) and Sw = IP(Dw) (otherwise a return statement line 18 or 20 would have been triggered). So
S∗ = IP(Du ∧ Dw) = IP(Dvm |x ∧ Dvm |x) by Proposition 4. We have t ∈ S∗ \ S′ so it is clear that
x ̸∈ var(t). Furthermore S′ contains all terms from Sm in which neither x nor x appears, so t ∈ S∗ \ S′

translates into t ∈ S∗ \ Sm = IP(Dvm |x ∧Dvm |x) \ Sm ⊆ IP(Dvm) \ Sm.

Now AnotherIP(D,S) returns the output of PropagateIP(D, t, P ). To prove that the output
is a term in IP(D) \ S, it is sufficient to show that, for every 1 ≤ i ≤ m, if ti ∈ IP(Dvi) \ Si then
PropagateIP(D, ti, Pi) calls PropagateIP(D, ti−1, Pi−1) with ti−1 ∈ IP(Dvi−1) \Si−1. The rest
is an easy induction (where S0 = S and Dv0 = D).

Claim 18. Let ti ∈ IP(Dvi) \ Si with i ≥ 1 then PropagateIP(D, ti, Pi) calls PropagateIP(D,
ti−1, Pi−1) where ti−1 ∈ IP(Dvi−1) \ Si−1.

Proof. PropagateIP(D, ti, Pi) calls PropagateIP(D, ti ∧ t′, Pi−1). Let ti−1 = ti ∧ t′. We need
to show that it is in IP(Dvi−1) \ Si−1. First assume that vi−1 is a decomposable ∧-node with children vi
and w, then t′ is obtained line 4 and clearly t′ ∈ IP(Dw). By Proposition 4, ti ∧ t′ ∈ IP(Dvi ∧Dw) =
IP(Dvi−1). By construction Si = {tvar(Dvi )

| t ∈ Si−1}. If ti ∧ t′ was in Si−1 then its restriction ti to
var(Dvi) would be Si, a contradiction. So ti ∧ t′ ̸∈ Si−1.

Now suppose vi−1 is a decision node for x with 0-child u and 1-child w. Let vi be u (the case vi = w
is analogous). By construction Si = Su. t′ is obtained line 7 and, by Proposition 11, ti ∧ t′ ∈ IP(Dvi−1).
To prove that ti ∧ t′ ̸∈ Si−1, first assume that ti |= Dw. Then t′ is the empty term t∅. So ti ∧ t′ = ti
and ti ∈ IP(Dvi−1). If ti was in Si−1 then we would have ti ∈ Si−1 ∩ IP(Dvi) ⊆ Si, a contradiction.
So when ti |= Dw, we have ti ∧ t′ ∈ IP(Dvi−1) \ Si−1. Now if ti ̸|= Dw, then ti ∧ t′ = ti ∧ x and
ti ∧ x is not in Si−1 for otherwise we would have ti ∈ {τ | τ ∧ x ∈ Si−1} ⊆ Si. So again we have
ti ∧ t′ ∈ IP(Dvi−1) \ Si−1.

Running time. The running time of MissingIP(D, S, P ) isO(poly(|S|+|D|). As for PropagateIP
(D, t, P ), |P | recursive calls are made and the cost between two consecutive recursive calls is either one
call to GenerateIP line 3 or 4, or one implicant check line 7 or 9. An implicant test on a circuit in
dec-DNNF takes linear-time and GenerateIP makes at most |var(D)| such tests, so it runs in time
O(poly(|D|)). Thus PropagateIP(D, t, P ) runs in time O(|P | × poly(|D|)) = O(poly(|D|)).

Proposition 16. Let D be a satisfiable circuit in dec-DNNF and let S ⊆ PI(D). If the root of D
is an ∧-node, let u and w be its children and let Su = {c | c ∈ S, var(c) ∩ var(Du) ̸= ∅} and
Sw = {c | c ∈ S, var(c)∩ var(Dw) ̸= ∅} (note that in this situation, var(c)∩ var(Du) ̸= ∅ if and only
if var(c) ⊆ var(Du), and similarly for Dw). Then Su ⊆ PI(Du) and Sw ⊆ PI(Dw) hold, and

S = PI(D) iff Su = PI(Du) and Sw = PI(Dw)

Proof. Immediate from Proposition 8.

Proposition 17. Let D be a circuit in dec-DNNF whose root is a decision node labelled by x. Let u
be its 0-child and w be its 1-child. Given S ⊆ PI(D), let Su = {c | c ∨ x ∈ S} ∪ (S ∩ PI(Du)),
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Sw = {c | c ∨ x ∈ S} ∪ (S ∩ PI(Dw)) and S′ = {c | c ∈ S, x ̸∈ var(c)}. Then Su ⊆ PI(Du) and
Sw ⊆ PI(Dw) hold, and

S = PI(D) iff Su = PI(Du) and Sw = PI(Dw)

and S′ = min({cu ∨ cw | cu ∈ Su, cw ∈ Sw}, |=).

Proof. This is the dual of Proposition 13 using that c ∈ PI(f) if and only if ¬c ∈ IP(¬f).

Proposition 18. Let f be a Boolean function, let x be a variable, and let ℓ ∈ {x, x}. Consider c ∈
PI(f |ℓ). If f |ℓ |= c, then c ∈ PI(f), otherwise c ∨ ℓ ∈ PI(f).

Proof. This is the dual of Proposition 11 using that c ∈ PI(f) if and only if ¬c ∈ IP(¬f).

Proposition 20. Let f and g be Boolean functions with var(f) ∩ var(g) = ∅ and let a be a truth
assignment to a superset of var(f)∪var(g). Then SR(f ∧ g, a) = {t∧ t′ | t ∈ SR(f, a), t′ ∈ SR(g, a)}.

Proof. Comes from Proposition 4:

SR(f ∧ g, a) = {τ ∈ IP(f ∧ g) | a satisfies τ}
= {t ∧ t′ | t ∈ IP(f), t′ ∈ IP(g), a satisfies t ∧ t′}
= {t ∧ t′ | t ∈ IP(f), t′ ∈ IP(g), a satisfies both t and t′}
= {t ∧ t′ | t ∈ SR(f, a), t′ ∈ SR(g, a)}

Proposition 21. Let f be a Boolean function, let a be a truth assignment to a superset of var(f) and let
x ∈ var(f). If a satisfies the literal ℓ on variable x then

SR(f, a) = {t ∧ ℓ | t ∈ SR(f |ℓ, a), t ̸|= f |ℓ}
∪ SR(f |x ∧ f |x, a).

Proof. Comes from Proposition 5:

SR(f, a) ={t ∈ IP(f) | a satisfies t}
={t ∧ ℓ | t ∈ IP(f |ℓ), t ̸|= f |ℓ, a satisfies t}
∪ {t ∧ ℓ | t ∈ IP(f |ℓ), t ̸|= f |ℓ, a satisfies t}
∪ {t ∈ IP(f |x ∧ f |x) |, a satisfies t}

={t ∧ ℓ | t ∈ SR(f |ℓ, a), t ̸|= f |ℓ}
∪ SR(f |x ∧ f |x, a).

5.6 Conclusion and Perspectives

We have introduced new enumeration queries for compilation languages. Enumeration queries cannot
be analyzed like decision or function queries due to the format and the size of the output. We have con-
sidered them through the lens of enumeration complexity, in other words, for us enumeration queries for
compilation languages are enumeration problems where the input is a circuit in a compilation language.
We have considered the enumeration of prime implicants (and prime implicates) of circuits in dec-DNNF.
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On the positive side, we have described an incremental polynomial-time algorithm for enumerating all
prime implicants of a given circuit in dec-DNNF. On the negative side, we have shown that, when re-
stricting the output to implicants over a given subset of the circuit variables, or to sufficient reasons for
a given solution of the circuit, it is unlikely that there exists an output-polynomial time algorithm for
generating these implicants from OBDDs or DTs. In particular for the problem of enumerating sufficient
reasons of OBDDs or DTs, finding one sufficient reason for a given variable assignment is easy, but
we have shown a reduction from this problem to the problem of enumerating minimal transversals of a
hypergraph. For this latter problem the best known algorithm is output-pseudo-polynomial, that is, the
set of solutions is returned in O((n +m)log(n+m)) where n is the size of the input and m is the size of
the output [FK96]. We wonder if a similar algorithm exists for enumerating sufficient reasons of OBDDs
and DTs.

Open question 5. Is there an algorithm that, given an OBDD (resp. a DT) B, a model a of B, and an
integer k, returns k distinct sufficient reasons for a with respect to B in time O((|B|+ k)log(|B|+k))) (or
returns SR(B, a) if k > |SR(B, a)|)?

We think that the answer is positive for DTs, but we have yet to write the details of the proof. The idea is
to encode the DT into a CNF formula in polynomial time and then universally forget the literals that are
not in a from that formula (in polynomial time as well). The resulting CNF formula is then monotone
and its prime implicants are exactly the sufficient reasons for a with respect to the initial DT. Thus one
can use the algorithm of Fredman and Kachiyan for the dualization of monotone formulas to enumerate
the prime implicants of the monotone CNF formula [FK96].

The enumeration complexity classes that we have studied in this chapter, that is, OutputP and IncP
are major classes in enumeration complexity, but are not necessarily relevant for practical applications.
It seems that the “really tractable problems” are in IncP1, that is, that there exists an incremental linear
time algorithm for the problem. We have shown that enumerating prime implicants from circuits in dec-
DNNF is in IncP but we have not given its membership to a class IncPi for a specific i. We think it is
unlikely that our algorithm works in better than increment quadractic time.

Open question 6. Find a small i such that Enum·IP from dec-DNNF is in IncPi.

Note that finding the least i such that Enum·IP from dec-DNNF is in IncPi would be much more
complicated. In particular i could be a non-integer number but must be greater than 1 (the classes IncPi

for i < 1 are empty). We are not aware of any problem that are not in IncP1 and for which the least i
such that it belongs to IncPi is known.
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Chapter 6

Unconditional Succinctness Maps for
Arithmetic Circuits

In this chapter we make an opening to the compilation of non-Boolean functions. We consider classes of
arithmetic circuits (AC) that compute pseudo-Boolean functions, that is, functions over a set of Boolean
variables and whose output are real numbers (not to confuse with PB-constraints from Chapter 1). Today
ACs play an important role in artificial intelligence because they encompass several classes of circuits
with practical applications in probabilistic reasoning. Every property defined for circuits in NNF in the
preliminaries (decomposability, determinism, etc.) has an equivalent formulation on ACs. Much like
circuits in NNF, it has been noticed that several operations intractable on general ACs become tractable
for ACs that respect the right combination of properties. This explains the recent surge of interest for AC
implementing specific properties. In the next sections, we recall or define several classes of AC and study
the succinctness relations between these classes. We first show that there is a tight connection between
subclasses NNF and classes of particular AC computing non-negative pseudo-Boolean functions called
monotone AC. We use this connection to extend the succinctness map for circuits in NNF to monotone
ACs. Then we show how techniques for finding lower bounds on the size of specific circuits in NNF (in
particular circuits in str-DNNF) can be adapted to some classes of ACs that are non-monotone but still
computes non-negative functions. We stress that all separations between classes and all lower bounds that
we prove in this chapter are unconditional (so no “unless P = NP” or similar assumptions are needed).

6.1 Arithmetic Circuits for Pseudo-Boolean Functions

An arithmetic circuit (short AC) is a computational circuit over R whose nodes are labelled by sum
operators (+-nodes) and by product operators (×-nodes). ACs are not only very natural representations
for real-valued polynomials, but also give programs for computing them; this can e.g. be traced back
to [Val80] who called them (+,×)-programs. We consider ACs that compute pseudo-Boolean functions,
that is, functions from {0, 1}X to R where X is a set of Boolean variables. So the leaves of our ACs are
labelled either by a Boolean literal or by a constant in R. We assume that every constant labelling a leaf
is stored in memory using a fixed number of bits. Thus we assume that the size of an AC C, denoted by
|C|, is only the number of nodes in C.

Several classes of circuits with practical applications in probabilistic reasoning can be seen as spe-
cific ACs, for instance probabilistic sentential decision diagrams (PSDD) [KdBCD14] or sum prod-
uct networks (SPN) with indicator variable [PD11]. ACs are also strongly related to concepts such as
AND/OR-circuits [DM07] and Cutset Networks [RKG14]. When used in probabilistic reasoning, ACs
always represent non-negative functions and are therefore called (somewhat misleadingly perhaps) pos-
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itive ACs. Formally, for all assignments a to its variables, a positive AC must return a value greater
or equal to 0. We denote the class of all positive ACs by ACp. Positive ACs constitute a subclass of
what in the probabilistic graphical models community is called probabilistic circuits [VCL+21]. In the
literature, positivity is is often syntactically enforced by assuming that all constants in the computation
are non-negative, see e.g. [Dar03, PD11], in which case the ACs are called monotone. Formally, the
class of monotone ACs, denoted ACm, is the class of ACs whose leaves are labelled by variables or by
non-negative constants. Essentially, compared to their monotone counterparts, positive ACs encode pro-
grams which allow subtraction as an additional operation. This has no impact on the tractability of most
operations performed on the ACs [Den16] and it is known already since [Val80] that it can decrease the
size of ACs exponentially.

While research on arithmetic circuits in complexity theory focuses almost exclusively on trying to
show lower bounds on the size of ACs representing notoriously challenging polynomials, see e.g. [JS82,
Raz09, SY10], the goals pursued in artificial intelligence are often different: on the one hand, algorithms
for generating ACs from other models like Bayesian networks [CD08, CKD13, KdBCD14], or by learn-
ing from data [LD08, RL16], are a major focus. On the other hand, it is studied how imposing properties
on the structure of ACs can render tractable operations like computation of marginals or of maximum
a posteriori hypotheses (MAP) or more complex queries [HCD06, VCL+21, KCL+19]. The classes of
ACs considered in this chapter correspond to circuits whose nodes enforce one or more of the properties
defined in the preliminaries: smoothness, determinism, decomposability, and the less well-known no-
tion of weak decomposability. For C an AC, the set of assignments to var(C) for which C computes a
non-zero value is called the support of C denoted by supp(C).

Example 39. For the arithmetic circuit represented Figure 6.1, the only assignment a to {x, y, z} over
which the circuit evaluates to 0 is the assignment a(x) = 0, a(y) = 1 and a(z) = 1. So the support of
this circuit is every assignment to {x, y, z} but a. ◀

Note that when a node v of C is labelled with a literal ℓx, then supp(Cv) = {ℓx} and that when v is
labelled by a constant α in R there is supp(Cv) = ∅ when α = 0 and supp(α) = {a∅} when α ̸= 0,
where a∅ is the empty assignment whose representation as a set of literals is the empty set. Smoothness
is defined for ACs in the same way as for circuits in NNF but applies to +-nodes instead of ∨-nodes.
Similarly, decomposable ×-nodes for ACs are defined like decomposable ∧-nodes for circuits in NNF.
As for determinism, an +-node v of an ACC is called deterministic when, calling its children v1, . . . , vm,
for every assignment a to var(v1) ∪ · · · ∪ var(vm) we have Cvi(a)× Cvj (a) = 0 for every i ̸= j.

Definition 42 (Weak Decomposability). An internal node v of a circuit C over Boolean variables is
called weakly decomposable when, denoting the children of v by v1, . . . , vm, for every i ̸= j and for
every x ∈ var(Cvi) ∩ var(Cvj), there is a literal ℓx in x such that no leaves under Cvi or Cvj are
labelled by ℓx (so x appears in Cvi and Cvj , or x appears in Cvi and Cvj , but not both).

An AC (resp. a circuit in NNF) is weakly decomposable when all its ×-nodes (resp. ∧-nodes) are
weakly decomposable.

Weak decomposability is sometimes referred to as consistency, but we avoid using this term here since
for Boolean circuits it is often used to mean satisfiability. Note that a decomposable AC or circuit in
NNF is by definition weakly decomposable.

Example 40. The circuits represented in Figure 6.1 are weakly decomposable but not decomposable.
Indeed the ∧-node (resp. ×-nodes) that is not circled is decomposable but the ∧-node (resp. ×-nodes)
that is circled is not decomposable but is weakly-decomposable. Indeed, the two subcircuits of this
circled ∧-node (resp. ×-node) share one variable – the variable x – so the node is not decomposable, but
x does not label any leaf under that node, so it is weakly-decomposable. ◀
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Figure 6.1: A weak decomposable circuit in NNF and a weak decomposable AC.

Generally, more restrictive properties render new operations tractable. For instance structured de-
composability is a restricted version of decomposability that makes computing the product of two ACs
with the same structure feasible in polynomial time [KdBCD14, VCL+21]. But one may also seeks
less restrictive properties that are sufficient to ensure tractability of important operations. For instance
weak decomposability relaxes decomposability but, combined with determinism, it is sufficient to ensure
tractable MAP. It turns out that, for all problems studied so far, interesting combinations all include either
decomposability or weak decomposability. So the classes studied in this chapter are those whose name
is given by the following grammar L:

L := L′ | sL′

L′ := L′′ | dL′′

L′′ := DL′′′ | wDL′′′

L′′′ := NNF | -ACm | -ACp

The grammar L accept the names of all subclasses of positive ACs, monotone ACs and circuits in NNF
(L′′′) that implement decomposability or weak decomposability (L′′), and possibly determinism (L′),
and possibly smoothness (L). So eight subclasses of NNF and sixteen classes of ACs.

Among subclasses of NNF described by L, the subclasses of DNNF have already been described in
the preliminaries but some superclasses based on wDNNF, the class of weakly decomposable circuits in
NNF, are new. Since DNNF⊂wDNNF and since DNNF is complete, the eight subclasses of NNF whose
name is accepted by L are complete. Similarly, the sixteen classes of ACs whose names are accepted by
L are complete for pseudo-Boolean functions. Indeed let X be a finite set of Boolean variables, every
function f : {0, 1}X → R+ has a representation in all these classes of ACm and ACp. To see this,
one can just write f as f(X) =

∑
a∈supp(f) f(a)1a(X), where 1a : {0, 1}X → {0, 1} is the function

that maps a to 1 and every other assignments to 0. The terms f(a)1a(X) are easily encoded as positive
ACs with only decomposable ×-nodes, then constructing a positive AC computing f and implementing
smoothness, determinism and decomposability from those “term” AC is straightforward. We make the
assumption that the ACs in the rest of this chapter are such that every +-node and every ×-node has
exactly two children. Any AC can be transformed in linear time into an equivalent AC respecting this
property by a similar transformation as that described for circuits in NNF in the preliminaries.

The trade-off between usefulness and succinctness has been observed for Boolean circuits in NNF
and attracted a lot of attention there [DM02, PD08, BCMS16, ACMS20]. Indeed, all classes of circuits in
NNF respecting some combination of properties mentioned above (decomposability, determinism, etc.)
have been studied almost exhaustively. In particular, for circuits in NNF, succinctness maps have been
drawn that intuitively describe the relative succinctness for the classes of circuits one gets by applying
different combinations of properties. When it comes to ACs, research on lower bounds in complexity
theory focused on classes with properties such as bounded-depth, tree-like structure, or multilinear-
ity [GK98, Raz09, Raz10, SY10] that have deep implications in theory but are not particularly desirable
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in practice – with the exception of syntactic multilinearity which is in fact decomposability. In compari-
son to Boolean circuits, the succinctness analysis for classes of arithmetic circuits of practical interest is
fairly young and far from complete.

In this chapter, we initiate a systematic succinctness map for ACs modeled after that proposed
in [DM02] for circuits in NNF. Most of our results deal with classes of monotone ACs and are ob-
tained by lifting results from the existing succinctness map for circuits in NNF. Indeed we will observe
that understanding the succinctness relationships between different classes of monotone ACs reduces to
understanding that between classes of circuits in NNF with analogous properties. However, several sub-
classes of NNF obtained with the reduction, namely those respecting weak decomposability, have only
recently been introduced [AAC+19] and thus their position in the maps has not been studied. To analyze
monotone ACs, we thus prove the missing succinctness relations for these classes. From the map for
circuits in NNF and the lifting technique, we obtain the complete map linking the eight classes of mono-
tone ACs one gets combining the different properties. In a modest contribution to the understanding of
positive ACs, we show that under particular properties, all including determinism, the expressive power
of classes of positive ACs coincide with that of their monotone counterparts. Thus some succinctness
relations in the monotone map easily extend to the positive map. However, for positive ACs, several
relations between classes remain open. Finally, in an effort to motivate further research on the succinct-
ness relations left to prove, we describe a technique to show lower bounds on the size of positive ACs.
We apply it to prove lower bounds for positive ACs with structured decomposability, which is the case
for e.g. PSDD [KdBCD14]. The results of this chapter have been published in the article [dCM21b]
co-authored with Stefan Mengel.

6.2 Preliminaries: Smoothing circuits in wDNNF

For a wD-AC (resp. circuit in wDNNF)C on variablesX , we introduce term subcircuits ofC as general-
izations of proof trees for circuits in DNNF. A term subcircuit is constructed very much like a proof tree:
starting from the source, whenever a ×-node (resp. ∧-node) is encountered, its two successors are added
to the subcircuit, and whenever a +-node (resp. ∨-node) is encountered, exactly one arbitrary successor
is added to the subcircuit. These objects have already been studied under the name complete subcircuits
in [CD06]. Each term subcircuit of a wD-AC (resp. a circuit in wDNNF) computes a weighted product
of literals (resp. a term).

Lemma 66. Let C be a wD-AC (resp. a circuit in wDNNF) and let T be term subcircuit of C. Call
lit(T ) the set of literals labelling leaves of T . Then T ≡ α

∏
ℓ∈lit(T ) ℓ (resp. T ≡ α ∧

∧
ℓ∈lit(T ) ℓ) for

some constant α ∈ R (resp. α ∈ {0, 1}). Furthermore, if C is smooth then var(T ) = var(C).

By distributivity, the sum (resp. the disjunction) of all term subcircuits of C is equivalent to C.

Lemma 67. Let C be a wD-AC (resp. a circuit in wDNNF) and let T be the set of all term subcircuits
of C. Then C =

∑
T∈T T (resp. C ≡

∨
T∈T T ).

For circuit in DNNF, term subcircuits correspond exactly to the proof trees, but term subcircuits of
circuits in wDNNF and of wD-ACs are generally not shaped like trees.

It was shown by Peharz et al. [PTPD15] that transforming general wD-ACm into swD-ACm leads to
an unavoidable exponential blow-up. By Proposition 24, the same is true for wDNNF and s-wDNNF.
Here we show that this is not the case when all term subcircuits have the same variables.

Lemma 68. Let D be a circuit in wDNNF over n variables such that for any two term subcircuits T
and T ′, var(T ) = var(T ′) holds. Then there is a smooth circuit D∗ in wDNNF equivalent to D of size
|D∗| = O(n|D|). Furthermore, if D is deterministic, then so is D∗.
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Lemma 68 will be used in the next section to prove the succinctness map for NNF. Before we prove
it, we give some more definitions.

Definition 43. Let ℓx ∈ {x, x}. An (∧ℓx)-link is a ∧-node whose successors include a leaf labelled by
ℓx. Let g be a node and let p be a predecessor of g, then inserting an (∧ℓx)-link between g and p means

replacing the connection
g

p
by

g
∧

p

ℓx

.

We call the intermediate ∧-node in the construction above the link node. A succession of link nodes
is a chain of links. We remark that links have already been used by Peharz et al. [PTPD15] to analyse the
impact of smoothness on weakly decomposable monotone AC, but we use them here in a different way.

For a term subcircuit T containing a node v, recall that Tv denotes the sub-circuit of T under v,
and let Tv be the sub-circuit of T corresponding to all nodes accessible from the source without passing
through v. Observe that because of weak decomposability, some nodes that are descendants of v may be
reached by paths in T not passing through v, so Tv and Tv are not necessarily disjoint.

Proof (of Lemma 68). Let v be an ∨-node whose two children vl and vr are such that var(Dvl) ̸=
var(Dvr). Say, without loss of generality, that there is x ∈ var(Dvl) such that x ̸∈ var(Dvr). There
exists an ∧-node that is an ancestor of v in D, otherwise not all term subcircuits of D would have the
same variables. So, for all term subcircuits T of D containing v, Tv is not empty. Moreover x must
be contained in var(Tv) for otherwise we can construct a term subcircuit that does not contain x by
extending Tv to a term subcircuit choosing vr as the child of v.

We claim that x appears as a unique literal under vl. To see this, assume first that x appears positively
in Tv. Now if x labels a node v∗ below vl, then we could extend Tv to a term subcircuit T ∗ containing
v∗ and thus the variable x. But then T ∗ would contain both x and x which is impossible because C
is weakly decomposable. If x appears negatively in Tv, we reason analogously, so that in any case, x
appears as a unique literal under vl. We assume in the remainder that it appears positively, the other case
is similar.

Analogously to above, one sees that for all term subcircuits T ′ containing v, we have that T ′
v contains

x. So, for all T ′ passing through v, we have T ≡ T ∧ x. Now insert an (∧x)-link between v and vr and
let D′ be the resulting circuit in wDNNF. We write vvr ∈ T when the wire from v to vr is in the term
subcircuit T of D. There is a bijection λ between the term subcircuits of D and those of D′: for a term
subcircuit T of D, set λ(T ) = T if vvr ̸∈ T , and let λ(T ) be the term subcircuit of D′ we get from T
by inserting the (∧x)-link between v and vr otherwise. Clearly, when vvr ∈ T , then λ(T ) ≡ T ∧ x, and
we have already seen that T ∧ x ≡ T in that case. So

D′ ≡
∨

T : vvr∈T
λ(T ) ∨

∨
T : vvr ̸∈T

λ(T ) ≡
∨

T : vvr∈T
T ∨

∨
T : vvr ̸∈T

T ≡ D

Observe that var(Dv) = var(D′
v) since x was already in var(Dvl) ⊆ var(Dv). Observe also that the

∧-link node is decomposable. So D′ is a circuit in wDNNF and, in D′, the variable x appears under
both children of v. We repeat that process until the children of v have the same set of variables, so until
v is smooth. Doing this for all non-smooth ∨-nodes yields a circuit D∗ in wDNNF that is smooth. The
construction only adds chains of links between nodes that were originally in D, and since there are n
variables, at most n links are inserted between any two connected nodes of D, hence |D∗| = O(n|D|).

Finally we argue that if D is deterministic, then so is D∗. We just need to prove this for D′, i.e., for
a single addition of an (∧x)-link. Assume that v is deterministic in D. Let v′r be the ∧-node inserted
between v and vr in D′. The children of v′r are x and vr. Assume there is an assignment a′ to var(D′

v)
whose restrictions a′l and a′r to var(D′

vl
) and var(D′

v′r
) are in sat(D′

vl
) and sat(D′

v′r
) respectively. Then

a′r satisfies Dvr and v is not deterministic in D. This is a contradiction, so v remains deterministic
in D′.
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6.3 From Monotone ACs to circuits in NNF

One attractive approach towards understanding the succinctness relations between classes of AC is lifting
the corresponding map for classes of circuits in NNF to classes of AC. This is because the map for
circuits in NNF is quite substantial and well understood by now, so building the map for ACs upon it
would save us the trouble of many proofs. Here we show that we can apply this approach for classes of
monotone ACs. The idea is that separating the classes of Boolean functions corresponding to the support
of monotone ACs is enough to separate these classes of ACs.

Given a monotone AC C, we define a Boolean circuit φ(C) that has the same underlying graph as
C and is obtained by just modifying the labels on the nodes of C. Nodes labelled by x or x or the
constant 0 are unchanged, but nodes labelled by constants different from zero are now labelled by the
constant 1. For internal nodes, all ×-nodes become ∧-nodes and all +-nodes become ∨-nodes. Clearly
var(C) = var(φ(C)) and, since C and φ(C) have the same graph, we have |C| = |φ(C)|.

We also define the reverse transformation: given a circuit D in NNF we denote by ψ(D) the mono-
tone AC that has the same underlying graph D and is obtained by turning all ∧-nodes into ×-nodes and
all ∨-nodes into +-nodes. Note that we have that φ(ψ(D)) = D but that, given a monotone AC C we
generally have ψ(φ(C)) ̸= C because φ modifies the labels of the leaves while ψ does not.

Lemma 69. When C is a monotone AC, φ(C) is a circuit in NNF whose models are supp(C). Moreover
if C is (weakly) decomposable, deterministic, or smooth, then φ(C) is as well.

Proof. The graph of φ(C) is that of C and φ contains only ∧- and ∨-nodes, thus φ(C) is in NNF. It
is easy to see that for each node v in C we have var(Cv) = var(φ(C)v), so smoothness and (weak)
decomposability are preserved.

We prove that by induction on the depth ofC that (1) sat(φ(C)) = supp(C) and (2) ifC is determin-
istic, then so is φ(C). If C has depth 1, then it is a single node labelled either by a constant or by a literal.
In case the node is labelled by a constant α, if α > 0 then supp(C) = {a∅} = sat(1) = sat(φ(C)).
If α = 0 then supp(C) = ∅ = sat(0) = sat(φ(C)). In case the node is labelled by a literal ℓx, then
φ(C) = C so we are done. Now assume (1) and (2) hold for all ACs of depth at most k and suppose C
has depth k + 1. Let v be its source node and let vl and vr be its children.

If v is a ×-node, then C(a) = 0 if and only if Cvl(al) = 0 or Cvr(ar) = 0, where al and ar
denote the restrictions of a to var(Cvl) and var(Cvr) respectively. So a ̸∈ supp(C) if and only if al ̸∈
supp(Cvl) or ar ̸∈ supp(Cvr). By induction supp(Cvl) = sat(φ(C)vl) and supp(Cvr) = sat(φ(C)vr),
so a ̸∈ supp(C) if and only if a ̸∈ sat(φ(C)vl ∧ φ(C)vr) = sat(φ(C)). So (1) holds.

If v is a +-node, then C(a) = 0 if and only if Cvl(al) = 0 and Cvr(ar) = 0. So a ̸∈ supp(C) if
and only if al ̸∈ supp(Cvl) and ar ̸∈ supp(Cvr). Again by induction it follows that a ̸∈ supp(C) if
and only if a ̸∈ sat(φ(C)vl ∨ φ(C)vr) = sat(φ(C)). So (1) holds. For (2), if ar ∈ supp(Cvr) implies
al ̸∈ supp(Cvl) and vice-versa, then supp(Cvl) = sat(φ(C)vl) and supp(Cvr) = sat(φ(C)vr) yield
that the root ∨-node of φ(C) is deterministic.

Lemma 70. For every circuit D in NNF, ψ(D) is an AC of size |D| whose support is the set of models
of D. Moreover if D is (weakly) decomposable, deterministic, or smooth, then so is ψ(D).

Proof. It is readily verified that |D| = |ψ(D)| and that, for each node v in D, var(Dv) = var(ψ(D)v),
so smoothness and (weak) decomposability are preserved in ψ(D). Moreover φ(ψ(D)) = D, so
sat(D) = supp(ψ(D)). Determinism is preserved since sat(Dv) = supp(ψ(D)v) holds for every
node v.

For a class C of AC, we define the class of circuits in NNF φ(C) = {φ(C) | C ∈ C}. Lemma 69 and
Lemma 70 directly yield the following:
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wD-ACm D-ACm

dwD-ACm dD-ACm

swD-ACm

sdwD-ACm sdD-ACm

sD-ACm

Figure 6.2: Succinctness map for monotone ACs.

Proposition 23. Let γ be any combination of properties from {s,d,D,wD}, then φ(γ-ACm) = γ-NNF.

For instance φ(ACm) = NNF, φ(D-ACm) = DNNF, φ(dD-ACm) = d-DNNF, etc. Moreover, since
the circuit size is preserved by φ, the following holds:

Proposition 24. Let C1 and C2 be classes of monotone AC. Then C1 ≤ C2 only if φ(C1) ≤ φ(C2).

Proof. Assume φ(C1) ≰ φ(C2). There is a denumerable family F of Boolean functions for which there
is no polynomial p such that (φ(C1)-size of f) ≤ p(φ(C2)-size of f).

Let D2,f be the smallest circuit in φ(C2) that computes f ∈ F and consider ψ(D2,f ) ∈ C2 for every
f ∈ F . No C2 ∈ C2 computes the same function as ψ(D2,f ) and is smaller than ψ(D2,f ), for otherwise
we would have that φ(C2) is a circuit in φ(C2) that computes f and is smaller than D2,f .

Now if C1 ≤ C2 then there exists a polynomial p such that (C1-size of f) ≤ p(C2-size of f) for every
f ∈ F . So we have, for every f ∈ F , a circuit C1,f in C1 that computes f and such that |C1,f | ≤
p(|ψ(D2,f )|) = p(φ(C2)-size of f). But then, since |C1,f | = |φ(C1,f )|, and since φ(C1,f ) is a circuit in
φ(C1) computing f , we would have that (φ(C1)-size of f) ≤ p(φ(C2)-size of f), a contradiction.

We can then lift several succinctness results for circuits in NNF to monotone ACs. For instance we have
that d-DNNF ≰ DNNF [BCMS16] so by Proposition 24 we have dD-ACm ≰ D-ACm. Moreover since
dD-ACm ⊆ D-ACm, it follows that D-ACm < dD-ACm. Weak decomposability has not been studied
as widely as decomposability for NNF, so we here draw the map with the additional classes wDNNF,
s-wDNNF, d-wDNNF and sd-wDNNF. Then, using Proposition 24, we will obtain the succinctness
map for monotone AC shown in Figure 6.2. On that figure, an arrow C1 → C2 means that C1 < C2,
a double line C1 ∥ C2 means that C1 ≃ C2, and the absence of connector between two classes C1
and C2 means either that the succinctness relation is derived from transitivity or that the two classes are
incomparable, i.e., C1 ≰ C2 and C2 ≰ C1.

Theorem 23. The results of Figure 6.2 hold.

Section 3.3 is dedicated to the proof of Theorem 23.

6.4 Succinctness Maps

6.4.1 Succinctness Map for Circuits in NNF

Using Proposition 24, many succinctness relations between classes of monotone ACs can be inferred
from the relations between the corresponding classes of circuits in NNF. So, as a first step towards
Theorem 23, we show the correctness of the map for subclasses of NNF showed in Figure 6.3.

Theorem 24. The results of Figure 6.3 hold.
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wDNNF DNNF

d-wDNNF d-DNNF

s-wDNNF

sd-wDNNF sd-DNNF

s-DNNF

Figure 6.3: Succinctness map for different subclasses of NNF.

It was shown by Darwiche and Marquis [DM02] that s-DNNF and DNNF are equally succinct,
and that sd-DNNF and d-DNNF are equally succinct, the paper also contains the statement DNNF <
d-DNNF conditioned on standard complexity theoretic assumptions. The result was made unconditional
in [BCMS16]. So we already have the right face of the cube-like succinctness map of Figure 6.3.

Lemma 71. wDNNF < DNNF.

Proof. Since DNNF ⊆ wDNNF there only is DNNF ≰ wDNNF to prove. It is readily verified that
monotone circuit in NNF, that is, circuit in NNF with only non-negative literal inputs, are in wDNNF.
In [BCMS14] and [Cap16], the separation DNNF ≰ CNF is shown finding a denumerable class of
monotone 2-CNF formulas that have polynomial size but whose equivalent circuits in DNNF all have
exponential size. Monotone CNF formulas can be seen as circuits in wDNNF so this proves DNNF ≰
wDNNF.

Peharz et al. [PTPD15] give a polynomial-time algorithm to transform any smooth weakly decom-
posable monotone AC into an equivalent smooth decomposable monotone AC8. A careful examination
of the algorithm of Peharz et al. shows that it can be adapted to turn any s-wDNNF into an equiva-
lent s-DNNF in polynomial time (the existence of the transformation actually derives from Lemmas 69
and 70). Examining the algorithm even further, one sees that it preserves determinism, so the adapted
variant for circuits in NNF also gives a polynomial time transformation from sd-wDNNF to sd-DNNF.
Thus we have:

Lemma 72. s-wDNNF ≃ s-DNNF and sd-wDNNF ≃ sd-DNNF. But wDNNF < s-wDNNF.

Proof. As explained above, s-DNNF ≤ s-wDNNF and sd-DNNF ≤ sd-wDNNF comes from the
algorithm in [PTPD15]. Since s-DNNF ⊂ s-wDNNF and sd-DNNF ⊂ sd-wDNNF, the first two
relations follow. As for the third one, it holds for otherwise wDNNF < DNNF would be violated by
transitivity.

Lemma 73. d-wDNNF ≰ DNNF.

Proof. In [Sau03], Sauerhoff consider a class F of functions whose DNNF size is polynomial in the
number of variables but whose d-DNNF size is exponential on the number of variables, as shown by Bova
et al. in [BCMS16]. More precisely, all f ∈ F on n variables have d-DNNF size at least 2Ω(

√
n). For an

assignment a, letw(a) (the weight of a) be the number of variables set to 1 by a, that is,w(a) = |a−1(1)|.
For an integer k, let Dk(f) be the smallest circuit in d-DNNF computing the function fk whose models
are exactly the models f of weight k. Since the circuit

∨n
k=0Dk(f) is in d-DNNF and represents f ,

8Peharz et al. work on sum product networks (SPNs) with indicator variables inputs. Their SPNs differ from our monotone
AC in that the non-negative constants are not inputs of the circuit but weights associated with edges. Such SPNs are converted
into our monotone AC in polynomial time by replacing each weighted edge by a ×-node whose children include the weight.
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there must be a function κ : F → N such that |Dκ(f)(f)| = 2Ω(
√

|var(f)|) holds for all f . Define the
class F∗ = {fκ(f) | f ∈ F}.

We claim that in any circuit in wDNNF representing a satisfiable function in F∗, all term subcircuits
have the same variables. Consider a circuit in wDNNF representing fk. Let T be one of its term subcircuit
and assume var(f) \ var(T ) ̸= ∅. Let x ∈ var(f) \ var(T ), T has a model a that maps x to 0 and
another model a′ identical to a except that it maps x to 1. But w(a) ̸= w(a′) so a and a′ cannot both
satisfy fk, a contradiction. So all term subcircuits contain all variables.

So by Lemma 68, there exists a polynomial p such that (sd-wDNNF size of f) ≤ p(d-wDNNF size
of f) for every f ∈ F∗. By Lemma 72, the sd-wDNNF size and the sd-DNNF size of f are poly-
nomially related, and we know that the sd-DNNF size and the d-DNNF size of f are also polynomi-
ally related. So all functions of F∗ have exponential d-wDNNF size. Since circuits in DNNF support
polynomial-time restriction to models of fixed-weight – see for instance the proof of [ABJM17, Propo-
sition 4.1] which can easily be adapted to circuits in DNNF – the functions in F∗ also have polynomial
DNNF size. So the class F∗ gives us d-wDNNF ≰ DNNF.

Lemma 74. DNNF ≰ d-wDNNF.

Proof. We consider the class F of monotone 2-CNF formulas used in [BCMS14] to prove that DNNF ≰
CNF. Let F be a monotone 2-CNF from F on n variables x1, . . . , xn, F =

∧m
k=1(xk0 ∨ xk1). The size

of F is polynomial in n but Bova et al. proved that its DNNF size is exponential in n. Now consider m
fresh variables Z = {z1, . . . , zm} and define F ′ =

∧m
k=1((¬zk ∧ xk0) ∨ (zk ∧ xk1)). F ′ is a circuit in

d-wDNNF, and ∃Z.F ′ ≡ F . Since DNNF circuits support polynomial-time variables forgetting [DM02],
the circuits in DNNF computing F ′ have exponential size. Thus the class of the circuits {F ′ | F ∈ F}
proves the separation DNNF ≰ d-wDNNF.

Lemma 75. wDNNF < d-wDNNF and d-wDNNF < d-DNNF and d-wDNNF < sd-wDNNF.

Proof. For the first relation, d-wDNNF ⊂ wDNNF implies wDNNF ≤ d-wDNNF. We have d-wDNNF ≰
wDNNF for otherwise we would have d-wDNNF ≃ wDNNF, which would imply d-wDNNF ≤ DNNF
and thus would contradict Lemma 73.

For the second relation, d-DNNF is a subclass of d-wDNNF so d-wDNNF ≤ d-DNNF. And
d-DNNF ≰ d-wDNNF holds for otherwise DNNF ≰ d-wDNNF would be violated by transitivity
(because DNNF ≤ d-DNNF).

For the third relation, sd-wDNNF is a subclass of d-wDNNF so d-wDNNF ≤ sd-wDNNF. Since
sd-wDNNF, sd-DNNF and d-DNNF are equally succinct, there must be sd-wDNNF ≰ d-wDNNF
otherwise d-DNNF ≰ d-wDNNF would be violated by transitivity (because sd-wDNNF ≃ d-DNNF).

This last lemma finishes the proof of Theorem 24.

6.4.2 Succinctness Map for Monotone ACs

Now to prove Theorem 23 it suffices to show the variant for monotone AC of all lemmas used to prove
the correctness of Theorem 24. First it is folklore that the transformation to smooth a circuit DNNF is
easily adapted for monotone decomposable ACs:

Lemma 76. sD-ACm ≃ D-ACm and sdD-ACm ≃ dD-ACm.

Proof. Let C be a monotone AC. For every +-node v of C that is not smooth, denote by vl and vr its
children, for every x ∈ var(vl) \ var(vr), insert a ×-node between v and vr and whose second child is
x+ x as shown in the following figure:
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+

vl vr

+

vl ×

+

x x

vr

This transformation does not modify the function computed by the circuit since the new ×-node is
a multiplication by 1. The new ×-node is decomposable since x ̸∈ var(vr) and the new +-node is
smooth and deterministic. For every other node of the circuit, the transformation modifies neither the
number of variables under the node nor the function computed by the circuit at that node. Thus the
transformation preserves decomposability and determinism. The transformation is repeated until the
circuit is smooth. At most |var(C)| transformations are required for every +-node of C so the final
circuit has size O(|var(C)||C|).

Then using Proposition 24 and the fact that dD-ACm ⊂ D-ACm and D-ACm ⊂ wD-ACm, we derive the
following from DNNF < d-DNNF and wDNNF < DNNF.

Corollary 5. D-ACm < dD-ACm.

Corollary 6. wD-ACm < D-ACm.

To compare smooth weak decomposable classes of monotone AC to their smooth decomposable coun-
terparts, we are again helped by the results of Peharz et al. [PTPD15].

Lemma 77. swD-ACm ≃ sD-ACm and sdwD-ACm ≃ sdD-ACm. But wD-ACm < swD-ACm.

Proof. Peharz et al. show that sD-ACm ≤ swD-ACm in [PTPD15]. Since sD-ACm ⊂ swD-ACm, we
also have swD-ACm ≤ sD-ACm and thus swD-ACm ≃ sD-ACm. Moreover the algorithm in [PTPD15]
to go from smooth weakly decomposable AC to smooth decomposable AC preserve determinism so
sdD-ACm ≤ sdwD-ACm. Again we have that sdD-ACm ⊂ sdwD-ACm so sdwD-ACm ≤ sdD-ACm.

As for wD-ACm < swD-ACm. wD-ACm ≤ swD-ACm comes from swD-ACm ⊂ wD-ACm,
and swD-ACm ≰ wD-ACm holds for otherwise D-ACm ≰ wD-ACm would be violated by transitivity
(because swD-ACm ≃ sD-ACm ≃ D-ACm).

Finally, using Proposition 24 and the inclusion relation between classes, the remaining results are easy
corollaries of Lemmas 73, 74 and 75

Corollary 7. dwD-ACm ≰ D-ACm and D-ACm ≰ dwD-ACm.

Corollary 8. wD-ACm < dwD-ACm and dwD-ACm < dD-ACm and dwD-ACm < sdwD-ACm.

All other relations follow by transitivity, so Theorem 23 is proved.

6.4.3 Starting a Map for Positive ACs

In this section, we will start drawing a succinctness map for positive ACs. Recall that positive ACs
compute non-negative functions but allow for negative constants. In a sense, positive ACs have access to
a third operation, namely subtraction. It is known that adding subtraction to ACs can decrease their size
exponentially [Val80], so ACp < ACm.
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wD-ACp D-ACp

dwD-ACp dD-ACp

swD-ACp

sdwD-ACp sdD-ACp

sD-ACp

?

?

?

Figure 6.4: Partial succinctness map for classes of positive ACs.

Since there is no apparent mapping between positive ACs and a class of Boolean circuits similar to
the mapping ϕ introduced in Section 6.3, we do not obtain a succinctness map for positive ACs in the
same way we did for monotone ACs. We here solve some of the relations on the corresponding map,
leaving its completion for future work.

Lemma 78. Let C be a (smooth) (weakly) decomposable deterministic positive AC. Switching the signs
of all negative constants in C yields an equivalent (smooth) (weakly) decomposable deterministic mono-
tone AC. Therefore the relation d-γ-ACp ≃ d-γ-ACm holds for any γ ∈ {D,wD, sD, swD}.

Proof. The transformation does not modify the variables below any node of the AC, so smoothness and
(weak) decomposability are preserved by the transformation. By determinism, no two term subcircuits
of C can compute a non-zero value on the same assignment, and the sum of the functions computed by
term subcircuits is that computed by C. So each term subcircuit T computes a positive function. Since
that function can be written α

∏
ℓ∈lit(T ) ℓ where α is the product of all constants labelling inputs of T ,

the negative constants in T must be in even number. But then switching the signs of negative constants
in C does not change the function computed by any term subcircuit. Thus the monotone AC we get is
equivalent to C and, since its term subcircuits still have pairwise disjoint support, it is deterministic.

Lemma 79. γ-ACp < d-γ-ACp for any γ ∈ {D,w, sD, swD}.

Proof. Monotone ACs are positive ACs so d-γ-ACp ≤ d-γ-ACm. Using Lemma 78 and Theorem 23,
we get γ-ACp ≤ γ-ACm < d-γ-ACm ≃ d-γ-ACp, hence the result.

Lemma 80. D-ACp ≃ sD-ACp ≃ swD-ACp.

Proof. The polynomial-time algorithm of [PTPD15] to transform smooth weakly decomposable ACs
into equivalent smooth decomposable ACs remains sound when negative constants are allowed in the
circuits. So smooth weakly decomposable positive ACs can be turned into equivalent smooth decompos-
able positive ACs in polynomial time, hence sD-ACp ≤ swD-ACp. Since sD-ACp is also a subclass of
swD-ACp, it follows that sD-ACp ≃ swD-ACp.

For D-ACp ≃ sD-ACp, one just has to observe that the transformation to make smooth a decompos-
able monotone AC also works for positive AC.

The above lemmas are summarized in Figure 6.4. Three relations, indicated by question marks in the
figure are open.

6.5 Lower Bounds for Positive AC

In this section we adapt the lower bounds techniques of Bova et al. from circuits in NNF to positive ACs.
We then show lower bounds on the size of structured-decomposable positive ACs.
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6.5.1 Sum of Decomposable Products

For circuits in NNF, structured decomposability is defined with help of a v-tree (variable tree) [PD08] but
the definition usually assumes that constant inputs have been propagated away in the circuit. Recall that
we can propagate (away) the constants in circuits in NNF without modifying the functions they compute.
We do not have an equivalent notion of constant propagation for ACs, so we use the vtree-free definition
from [VCL+21]. The definition assumes smoothness for simplicity.

Definition 44. An AC C is called smooth structured-decomposable when it is smooth and decomposable
and, for all Y ⊆ var(C) there is a partition Y = Y0 ∪ Y1 such that, for every ×-nodes v in C with
var(Cv) = Y , calling vl and vr the children of v, we have var(Cvl) = Yi and var(Cvr) = Y1−i for
some i ∈ {0, 1}.

Structured-decomposability is a useful property that renders tractable several operations that are
generally intractable, for instance taking the product of two ACs with the same vtree. In particular,
PSDD circuits, for probabilistic sentential decision diagrams, form a class of circuit that uses structured-
decomposability and that has applications in practice.

Definition 45. Let Z be a set of variables. A decomposable product over Z is a function from Z to R
that can be written as a product f(X)×h(Y ) where (X,Y ) is a partition of Z and f and h are functions
to R.

A common approach to proving lower bounds for decomposable AC analyses representations of the
function it computes in terms of sums of balanced decomposable products. Roughly put, the idea is
that the more summands are needed in such a representation, the larger the ACs that compute it. This
technique has been used in recent and not so recent articles, see e.g. [Val80, RY11, MM14]. Translated
to Boolean circuits, decomposable products correspond to combinatorial rectangles, a tool that we have
already used several times in previous chapters.

Variations of the next theorem have been shown several times independently in the literature, see for
instance [MM14, Theorem 38]. The structured case follows from a small refinement of the proof, the
rough idea is that each decomposable product is built from a different node of the circuit and, thanks to
structured decomposability, all these nodes have the same set of variables, which eventually yields the
same partition for the decomposable products.

Theorem 25. Let F be a non-negative Pseudo-Boolean function over at least three variables computed
by a structured decomposable smooth AC C. Then F can be written as a sum of N decomposable
products over var(F ) with respect to the same balanced partition (X,Y ), with N ≤ |C|.

Proof. We construct the sum of decomposable products from C such that each fi × hi corresponds to a
different node of C. Let T be the set of all term subcircuits of C. First we need the following claim:

Claim 19. There is a set S of ×-nodes in C such that all var(Cv) for v ∈ S are identical and such that
every term subcircuit of C contains at least one node in S.

Proof. Consider the set T = {T1, . . . , TK} of term subcircuits of C. Let vi be the root of the term
subcircuit Ti. Let S be the sequence (v1, . . . , vK). Initially all the elements of the sequence are identical
so we call X = var(v1) = · · · = var(vK). Clearly at this stage |X| ≥ |var(C)|/3. Using the definition
of smooth structured decomposable ACs, for every Y ⊆ var(C) with (Y0, Y1) the unique partition
respected by all ×-nodes of C whose set of variables is Y , we define λ(Y ) = Y0 if |Y0| ≥ |Y1| and
λ(Y ) = Y1 otherwise. Thus λ(Y ) ≥ ⌈|Y |/2⌉. Now do the following steps in order:

147



Chapter 6. Unconditional Succinctness Maps for Arithmetic Circuits

1. for every i, while vi is a +-node, replace vi by its unique child in Ti – observe that by smoothness
we still have X = var(Cvi) and |X| ≥ |var(C)|/3.

2. for every i, if vi is a ×-node then, if |X| ≤ 2|var(C)|/3 then return S after removing identical
elements and stop there. If however |X| > 2|var(C)|/3 then replace every vi in S by its child
whose set of variables is λ(X). At the end of this step, if we have not returned S then we have
var(v1) = · · · = var(vK) = λ(X) and |λ(X)| ≥ |var(C)|/3. Replace X by λ(X) and repeat
steps 1. and 2.

At the end of both 1. and 2., all nodes in S have the same set of variables X . The procedure can never
skip 2. Indeed |X| is always greater than 2, so at the end of 1. all nodes in S are ×-nodes (none of them
are +-nodes by definition of 1., and none of them is labelled by a literal because their set of variables is
X). Since the procedure never skips 2. and since the size of X decreases strictly at the end of 2., at some
point |X| ≤ 2|var(C)|/3 occurs and the procedure ends. By construction the set S returned contains a
node of each term subcircuits and all nodes in S have the same set of variables.

Let S be the set obtained by the claim above. Let X be such that var(Cv) = X for every v ∈ S.
Note that each term subcircuit T of C contains a single node in S. Indeed if v, v′ ∈ S were both
in T then the highest common ancestor of v and v′ in T would be a non-decomposable ×-node since
var(v) ̸= var(v′).

Let v ∈ S and let T be a subcircuit of C containing v. Recall that T is shaped like a tree since Ci is
decomposable and that Tv denotes the subcircuit of T under v. Let Tv be the circuit obtained replacing
Tv by a node labelled by 1 in T . Replacing that fresh node in Tv by Tv gives T back, hence the notation
T = (Tv, Tv). Both Tv and Tv compute functions whose support is a single assignment on X and Y ,
respectively (due to C being smooth) and T computes Tv × Tv. If T and T ′ are two term subcircuits
of C containing v, then so are (Tv, T

′
v) and (T ′

v, Tv), thus the disjunction of all term subcircuits of C
containing v may be written ∑

T : v∈T
T =

( ∑
T : v∈T

Tv

)
×
( ∑

T : v∈T
Tv

)
.

On the right-hand side, in the first sum, every summand is a function over X while in the second one,
every summand is a function over Y , thus the product can be written fv(X)× hv(Y ). Since every term
subcircuit of C contains exactly one node in S, it follows that∑

T∈T
T =

∑
v∈S

∑
T : v∈T

T =
∑
v∈S

fv(X)× hv(Y )

And the result follows from F =
∑

T∈T T and |S| ≤ |C|.

6.5.2 Lower Bounds for Structured Decomposable Positive AC

In this section we prove the following lower bound.

Theorem 26. There is a class of positive Pseudo-Boolean functions F such that, for all F ∈ F , the
smallest AC computing F has size polynomial in |var(F )| but the smallest smooth structured decompos-
able AC computing F has size 2Ω(|var(F )|).

By Theorem 25, the smallest N for which one can write F as F =
∑N

i=1 fi(X) × hi(Y ) where
fi(X)× hi(Y ) are decomposable products with respect to the balanced partition (X,Y ) of var(F ), is a
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lower bound on the size of all smooth structured decomposable ACs computing F . Thus, proving Theo-
rem 26 boils down to finding non-negative functions where the smallest such N depends exponentially
on the number of variables.

Let us fix a function F and a partition (X,Y ). The value matrix of F with respect to (X,Y ) is a
2|X| × 2|Y | matrix MF whose rows (resp. columns) are uniquely indexed by assignments to X (resp.
Y ) and such that, for each pair of indices (aX , aY ), the entry of MF at the aX row and aY column is
F (aX ∪ aY ).

Lemma 81. Let F =
∑N

k=1 fk(X)× hk(Y ) where for all k we have fk × hk ̸= 0. Let MF be the value
matrix for F and let Mi denote the the value matrix for fi × hi with respect to partition (X,Y ). Then

rk(MF ) ≤
N∑
k=1

rk(Mk) = N.

Proof. By construction, MF =
∑N

k=1Mk, so rk(MF ) ≤
∑N

k=1 rk(Mk) holds by sub-additivity of the
rank. We now show that rk(Mk) = 1 holds for each k. Since fk × hk ̸= 0, there is a row in Mk which
is not a 0-row. Say it is the row indexed by aX . Then the entries in that row are fk(aX) × hk(aY ) for
varying aY . In any other row indexed by a′X , the entries are fk(a′X) × hk(aY ) = (fk(a

′
X)/fk(aX)) ×

fk(aX) × hk(aY ) for varying aY . Consequently, all rows are multiples of the aX -row, in other words,
all rows of Mk are linearly dependent, hence rk(Mk) = 1.

Using Lemma 81, one sees that proving Theorem 26 boils down to finding functions whose value
matrices with respect to any balanced partition (X,Y ) have rank exponential in the number of variables.

The functions we construct are based on graphs. Let G = (V,E) be a graph, let n = |V | and, for
each vertex vi in V , create a Boolean variable xi. We consider the function:

FG(x1, . . . , xn) =
∏

(vi,vj)∈E

(1 + max(xi, xj)). (6.1)

Essentially, for each edge of G, if at least one of its endpoints is mapped to 1 via an assignment, then the
edge contributes a factor 2 to the product, otherwise it contributes a factor 1. Regardless of the choice of
G, the function FG has a small positive AC: one just has to write max(xi, xj) = xi + xj − xixj and see
that the number of × and + operations needed to compute FG is polynomial in n.

An induced matching of G is a set E′ ⊆ E of edges with pairwise disjoint endpoints, whose set we
denote V ′, such that all edges of G connecting vertices in V ′ are in E′.

Lemma 82. Let FG be as described by (6.1), let (X,Y ) be a partition of var(FG) and (VX , VY ) be the
corresponding partition of V . If there is an induced matching m in G between vertices Vl and Vr such
that Vl ⊆ VX and Vr ⊆ VY , then

rk(MFG
) ≥ 2|m|

where MFG
is the value matrix of FG for the partition (X,Y ) and |m| is the number of edges in m.

Proof. Rename M = MFG
. Identify each vertex with its variable in var(FG) and let (xi, yi)i∈[|m|] be

the edges of m, with xi ∈ X and yi ∈ Y . Order the variables in X as X = (x1, . . . , x|X|) and the
variables in Y as Y = (y1, . . . , y|Y |), so that the |m| first variables in each set correspond to the nodes
in the matching. Permutations of rows or columns do not change the rank of a matrix so we assume that
the assignments indexing the rows and the columns are ordered so that, when seeing the assignments
as tuples of 0 and 1, the integers encoded in binary by the tuples are ordered. More formally aX is
before a′X if and only if

∑
k a(xk)2

k−1 <
∑

k a
′(xk)2

k−1. Now consider all 22|m| truth assignments to
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var(FG) where variables corresponding to vertices not in Vl ∪Vr are set to 0. Let M∗ be the 2|m|× 2|m|

sub-matrix of M obtained by keeping only rows and columns indexed by these assignments. The rank of
a sub-matrix is always at most that of the matrix, so rk(M∗) ≤ rk(M). To prove the lemma, it is enough
to show that rk(M∗) = 2|m|, which holds if and only if det(M∗) ̸= 0. For 0 ≤ i ≤ |m|, let M∗

i be the
matrix containing the first 2i rows and first 2i columns of M∗. We prove by induction on i that all M∗

i

have non-zero determinant, which will prove that M∗ (which is M∗
|m|) has non-zero determinant, and

therefore full rank. For the base case, M∗
0 = (1) has determinant 1. For the general case, assume that

det(M∗
i ) ̸= 0 and observe that M∗

i+1 =

(
M∗

i 2M∗
i

2M∗
i 2M∗

i

)
. The determinant of M∗

i+1 is

det

(
M∗

i 2M∗
i

2M∗
i 2M∗

i

)
= det

(
−M∗

i 2M∗
i

0 2M∗
i

)
= det(−M∗

i ) det(2M
∗
i ) = (−2)2i det(M∗

i )
2 ̸= 0.

So if, for every balanced partition of V , we have a large enough induced matching M between the
two sides, then the rank of the value matrix for FG for any balanced partition is large, thus many balanced
decomposable products are needed in a sum representing FG. The only thing left is to find graphsG with
this “large enough matching” property, which turn out to be expander graphs, which we have already
met in previous chapters. Recall that a d-regular graph is a graph whose vertices all have degree d. A
(c, d)-expander graph on vertices V is a d-regular graph such that for any S ⊆ V of size |S| ≤ |V |/2, it
holds that |N(S)| ≥ c|S|, where N(S) = {v ∈ V \ S | (u, v) ∈ E, u ∈ S}.

Theorem 27. [AS00, Section 9.2] There is, for some c > 0, an denumerable sequence of (c, 3)-expander
graphs (Gi)i∈N.

We use these expander graphs for our lower bound.

Lemma 83. Let G = (V,E) be a (c, 3)-expander graph with n = |V |, and let V = V1 ⊎ V2 be a
balanced partition of V . Then there exists an induced matching m of size Ω(n) between V1 and V2.

Proof. V1 or V2 has size at most n/2, say |V1| ≤ n/2. Then N(V1) ⊆ V2 and |N(V1)| ≥ c|V1| ≥ cn/3
where the last inequality comes from the partition being balanced. So at least cn/3 edges connect V1
to V2. Since G is 3-regular, at least a third of these edges form an matching in G, and a third of these
matching edge share no endpoint in V1, and finally a third of these edges share no endpoint in V2 either.
So we obtain a induced matching between V1 and V2 of size at least cn/81.

Combining Theorems 25 and 27 with Lemmas 81, 82 and 83 yields Theorem 26.

6.6 Conclusion and Perspectives

We have started drawing succinctness maps for arithmetic circuits modeled after proposed for circuits in
NNF in [DM02]. Due to the great amount of recent work on practical applications of ACs with specific
structural restrictions, we have studied classes of ACs for combinations of four key restrictions: decom-
posability, weak decomposability, determinism and smoothness. Using a mapping between monotone
ACs and circuits in NNF, we have drawn the full succinctness map for monotone ACs by lifting the
existing map for circuits in NNF and extending it to incorporate new classes defined with weak decom-
posability. In certain cases we could show that positive and monotone ACs have the same expressive
power, which gave us some succinctness results between classes of positive ACs for free. We leave the
challenging task of determining the remaining relationships between classes of positive AC as an open
question.
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Open question 7. Determine the succinctness relationships labelled by a question mark in Figure 6.4.

Several succinctness relationships between classes of positive ACs and their monotone counterparts
are also missing. In particular it is a long standing open question whether D-ACp < D-ACm holds.
Perhaps a separation can be found in the case when the circuits are structured-decomposable. In the
last section of this chapter, we have introduced techniques to prove lower bounds on positive ACs and
applied them to the case of smooth structured-decomposable ACs. This could be the first step towards
answering the following:

Open question 8. Prove an exponential separation between structured-decomposable positive ACs and
structured-decomposable monotone ACs or, alternatively, prove that the two classes of circuits are
equally succinct.
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Conclusion

To conclude this thesis, let us give a final overview of our contributions. Our first contributions belong to
the long tradition of studying the L size of selected functions for L a class of representations, here a com-
pilation language. We have shown new lower bounds on the DNNF size of particular pseudo-Boolean
constraints and on the DNNF size of satisfiable Tseitin formulas. To obtain these new lower bounds, we
have used the well-established methods of cover by balanced rectangles and we have improved upon it
to create a refined method that takes the form of a two-player adversarial game. In a less standard di-
rection, we have also taken into account the compilation of approximations when the DNNF size of the
function to be represented is too important. We have started from an existing notion of approximation
that comes with guarantees on the approximation error, that we have called weak approximation. We
have generalized existing results on functions whose weak approximations all have exponential OBDD
sizes to show that they also have exponential d-DNNF sizes. Then, we have shown limitations of weak
approximation that disqualify it as a good approximation notion in many settings, in particular if it is to
be used with approximate model counting in mind. To circumvent these limitations, we have introduced
the new notion of strong approximation and we have shown that, for some functions for which weak
approximations can be of poor quality (typically approximations by the function that is uniformly 0),
compiling strong approximations is not an option as their d-DNNF sizes are exponential in the number
of variables. Notably, using our improved method for finding lower bounds on the DNNF size, we have
shown that particular satisfiable Tseitin formulas are examples of such functions.

In the second part of the thesis, we have exploited further the lower bounds on the DNNF size of
satisfiable Tseitin formulas in two applications. The first application deals with the space efficiency
of bottom-up knowledge compilation. Indeed, we can use our lower bound to show that str-DNNF
(∧,r)-compilations of unsatisfiable Tseitin formulas whose graphs have bounded degree all generate in-
termediate circuits of size exponential in the treewidths of the graphs. A simple trick allows us to prove
that there exists a class of satisfiable CNF formulas that have constant str-DNNF sizes but whose str-
DNNF (∧,r)-compilations all generate intermediate circuits of size exponential in the primal treewidth.
The second application of our lower bound makes a connection to the origin of Tseitin formulas. Grigori
Tseitin introduced unsatisfiable Tseitin formulas with the idea that they would be hard formulas to refute
in the resolution proof system. This was later confirm by subsequent research not only for the resolution
proof system but for other proof systems as well. We have contributed to this research strand by showing
that the number of clauses in every regular resolution refutation of unsatisfiable Tseitin formulas whose
graphs have bounded degrees is at least exponential in the treewidths of the graphs. The exponential
dependence in the treewidth of this lower bound matches that of known upper bounds, so the unsatisfi-
able Tseitin formulas whose graphs have bounded degree have regular resolution refutations of length
polynomial in the number of variables n if and only if the treewidth of the graph is at most logarithmic
in n.

After this small detour in proof complexity, we went back to knowledge compilation in the last part
of the thesis. There we have explored new horizons for knowledge compilation. The first direction
has been to study new enumeration queries for existing compilation languages. On the one hand, we
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have shown that enumerating the prime implicants and the prime implicates of circuits in dec-DNNF
is feasible in incremental polynomial-time. On the other hand, we have also shown that enumerating
specific prime implicants, namely sufficient reasons for a given variable assignment and subset-minimal
abductive explanations, is unlikely to be feasible in output-polynomial time even for DTs and OBDDs,
which are among the most constrained function representations studied in knowledge compilation. In a
second direction, we have explored knowledge compilation for pseudo-Boolean functions. In the spirit of
the knowledge compilation map, we have defined several classes of arithmetic circuits by forcing on them
combinations of properties (decomposability, monotonicity, etc.), and we have studied the succinctness
relationships between these classes. Using a tight connection between classes of monotone ACs and the
corresponding classes of circuits in NNF, we have drawn the complete succinctness map for the eight
classes of monotone ACs considered. We have started extending the map to non-monotone positive ACs,
but we could not fully complete it.

Finally, on the one hand, this thesis pursues the study of knowledge compilation in the traditional way
by studying the hardness of representing selected functions in several existing compilation languages
or by looking at new queries for these languages. On the other hand, it also explores some areas of
the domain that are not as well studied, like approximate knowledge compilation, and even shows that
knowledge compilation can be connected in surprising way to other areas of computer science, especially
proof complexity theory.
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Résumé

Le thème de la thèse est la compilation de connaissances, une approche pour la résolution de problèmes
difficiles à résoudre du point de vue du calcul et qui vise à réduire cette complexité en pré-traitant (en
compilant) une partie du problème connue à l’avance et modélisée par une fonction. Il s’agit de trouver
une représentation de la fonction dans une classe de représentations appelée langage de compilation.
Pour un langage L donné, la taille d’une fonction dans L désigne la taille de sa plus petite représentation
dans L. Dans cette thèse, nous étudions différents aspects de la compilation dans le langage DNNF,
le langage où les fonctions Booléennes sont représentées par des circuits sous forme normale négative
décomposable (DNNF).

Dans la première partie de la thèse, nous montrons des bornes inférieures sur la taille de fonc-
tions particulières dans le langage DNNF. Pour certaines fonctions, notamment des contraintes pseudo-
Booléennes, nous obtenons des bornes inférieures par l’application de techniques usuelles pour l’analyse
de circuits en DNNF. Pour d’autres fonctions, ces mêmes techniques s’avèrent insuffisantes. En parti-
culier, pour les formules de Tseitin, qui sont des formules CNF représentant des systèmes d’équations
linéaires structurés par des graphes, nous avons amélioré les techniques existantes pour montrer une
borne exponentielle sur leur taille dans le langage DNNF. Quand la taille d’une fonction dans un lan-
gage est trop grande pour envisager sa compilation, on peut tenter de compiler une approximation de
la fonction, on parle alors de compilation de connaissances approchée. Nous avons étudié deux notions
d’approximation qui offrent des garanties sur l’erreur d’approximation. Pour chacune de ces notions,
nous avons trouvé des exemples de fonctions dont toutes les approximations ont une taille trop grande
dans de nombreux langages de compilation.

Dans la seconde partie de la thèse, nous donnons des applications des nos bornes inférieures. Ces ap-
plications font le lien entre la compilation de connaissances et le domaine de la complexité des preuves.
Notamment, nous utilisons notre borne inférieure sur la taille des formules de Tseitin dans le langage
DNNF pour obtenir une caractérisation des formules de Tseitin non-satisfiables (dont les graphes sont
de degré borné par une constante) pour lesquelles il existe des réfutations par résolution dites régulières
de taille polynomiale en le nombre de variables. Une seconde application concerne à la fois certains sys-
tèmes de preuve et les compilateurs utilisant la compilation dite ascendante. La compilation ascendante
a pour particularité qu’elle construit le circuit représentant la fonction initiale en combinant des circuits
intermédiaires. Dans le cas de formules non-satisfiables, la séquence de circuits intermédiaires générés
lors d’une compilation ascendante peut être vue comme une réfutation de la formule. Nous analysons des
cas de compilations ascendantes de formules (pour certaines non-satisfiables) ayant de petites représen-
tations dans le langage cible, mais pour lesquelles des circuits intermédiaires de taille exponentielle sont
inévitables.

Dans les derniers chapitres de la thèse, nous tentons d’élargir le champ de recherche en compilation
de connaissances tout en restant dans l’esprit de la « carte de compilation de connaissances », un modèle
proposé par Darwiche et Marquis pour comparer les langages de compilation en termes de compacité
(quels sont les langages permettant d’obtenir les plus petites représentations ?) et en termes d’efficacité
calculatoire (pour quels langages existe-t-il des algorithmes en temps polynomial pour répondre aux
requêtes ?). Nous introduisons de nouvelles requêtes pour les langages Booléens, plus précisément des
requêtes d’énumération, et nous initions des « cartes de compacité » pour des langages pour des fonctions
non-Booléennes.
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Abstract

The subject of the thesis is knowledge compilation, an approach for computationally hard problems
that aims to work around general lower bounds results by preprocessing (or compiling) an input function.
The aim is to generate an equivalent representation of the function in a class of representations called
the compilation language. Given a compilation language L, we call “L size of a function” the size of the
smallest representation in L for that function. In this thesis, we study different aspects of the compilation
language DNNF of Boolean circuits in decomposable negation normal form (DNNF).

In the first part of the thesis, we prove exponential lower bounds on the DNNF size of particular
functions and even on the DNNF size of their approximations. For some functions, especially some
pseudo-Boolean constraints, we prove lower bounds using classical techniques to analyse circuits in
DNNF using tools from communication complexity. But for other functions, the same techniques do
not yield good lower bounds. In particular for Tseitin formulas, which are CNF formulas representing
systems of parity constraints structured by graphs, we had to improve existing techniques to prove a lower
bound on their DNNF sizes that is exponential in the treewidth of the underlying graphs. Since the DNNF
size of functions is sometimes an impediment for compilation in practice, we study the complexity of
representing approximations of functions in DNNF. We use and compare two notions of approximations
that guarantee a bounded error of approximation. For both notions, we give examples of functions that
are not only hard to represent exactly in many compilation languages, but whose approximations are also
all hard to represent in the same languages.

In the second part of the thesis, we give applications of our lower bounds that establish connections
between knowledge compilation and proof complexity theory. First, using our lower bound on the DNNF
size of Tseitin formulas, we give a characterization of unsatisfiable Tseitin formulas whose underlying
graphs have maximal degree bounded by a constant that have small refutations in the regular resolution
proof system. A second application deals with the analysis of compilers that respect the “bottom-up”
paradigm. A particularity of bottom-up compilers is to generate intermediate representations or circuits
and, for some compilation languages, the sequence of intermediate circuits generated in a bottom-up
compilation of an unsatisfiable formula can be seen as a refutation of the formula. We show that bottom-
up compilers in a language L can be very inefficient even when the functions to compile have a small
representation in L since large intermediate circuits are sometimes unavoidable.

In the last part of the thesis, we explore new horizons for knowledge compilation. We follow the
spirit of the “knowledge compilation map”, a framework created by Darwiche and Marquis to compare
compilation languages in term of succinctness (which languages yields the smaller representations?) and
in terms of efficiency for reasoning on function (for which languages are there polynomial-time algo-
rithms for given queries?). We introduce new queries for Boolean languages, more precisely enumeration
queries, and we initiate a “succinctness map” for languages for non-Boolean functions.
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