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pré paré e à É cole des Hautes Etudes Commerciales de Paris 
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1
G E N E R A L I N T R O D U C T I O N

1.1 S C O P E O F T H E T H E S I S

1.1.1 introduction to game theory

Game theory emerged as an independent field in the early 1940s,
with the publication of Von Neumann and Morgenstern [152], as
a meeting point between mathematics and social sciences. Since
then, it has expanded its scope to a variety of other fields, from
political to computer science and biology. Nearly 80 years after
the publication of the first milestone in game theoretic history,
new problems have become central in expanding game theory
as a field per se and the range of situations it can handle. Such a
successful spread is the consequence of a simple, transposable
approach to things: any situation where some entities interact
while pursuing their individual interests can be abstracted as a
game on which theorists can apply a panel of methods and re-
sults to derive predictive statements. Such predictions are based
on the concept of equilibrium, a state of balance between indi-
viduals optimizing their outcomes where no agent can improve
her situation by changing her decision. Equilibria are proved
to exist under standard conditions and, when they do, they
offer a reference point to policy makers as to what are the most
likely outcomes to expect from rational and strategic agents.
This dual nature of being both a field of study on its own and
a methodological suite with interdisciplinary views is essential
in understanding how game theory evolved and incorporated
problems and methods from neighboring disciplines.

This thesis subsumes the work done during my PhD studies
on three different topics that caught my interest as being of
instantaneous relevance to explore current problems we observe
as well as having some methodological appeal. The three re-
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4 general introduction

sulting studies are mostly independent, be it in the nature of
their questions or in the methods deployed to address them.
They feature as three independent parts that are presented in
the chronological order in which they were developed.

1.1.2 misinformation and learning in games

The first part of this thesis originated from the large-scale disin-
formation phenomena that came to light in the early 2010s. The
recurring call to fake information created a breach in the trust
that the general public was putting in news agencies, public
institutions or even academia which generated a general state
of doubt and mistrust with harsh economic and institutional
consequences. This naturally raised the question of how does
one proceed in setting up a disinformation strategy and, further,
how is it possible to prevent such phenomenon to occur.

There exists a vast literature on information in games. Infor-
mational asymmetries and externalities occupy a central place
in economic reasoning and game theory have provided insights
on the topic since the pioneering papers by R. Aumann and M.
Maschler on games with incomplete information, reedited in
Aumann, Maschler, and Stearns [13]. Information acquisition
and exploitation in games is generally well understood within
the boundaries of the Bayesian framework. Such models analyze
interactions between agents that rationally process information
in the sense that they hold probabilistic beliefs on the uncertain
elements at play and update them using Bayes rule. This strand
of literature has proved that informational refinements – e.g.
allowing one agent to be informed and not the other – strongly
change the set of equilibria in games. Yet, Bayesian modeling
offers limited insights when it comes to analyzing large popula-
tions: it assumes strong computational requirements on agents
and offers solutions whose complexity explodes when the num-
ber of agents grows, unless some specific game structure is
assumed as in Smith and Sørensen [144]. For these reasons,
Bayesian models are fit to explain how a limited number of
agents behave when it comes to forming beliefs and exploiting
some informational advantage, but offer a limited insight to
mass phenomena like disinformation and the spread of fake
news.



1.1 scope of the thesis 5

An alternative approach, referred to as bounded rationality or
non-Bayesian, refers to the nebula of models which rejected –
partly or entirely – the Bayesian approach. This line of work
stands on the idea that agents have bounded computational
capacities that limit their treatment of information. This general
statement entails a whole diversity of approaches but, when
it comes to modeling large-scale opinion formation and belief
exchange, one of them stands as the canonical option: the De-
Groot model. This model considers a network of agent that
iteratively average their beliefs with those of their neighbors.
This process is shown to converge under mild conditions to a
stable consensus that is easily tractable from the structure of
the communication network and the initial beliefs. Many varia-
tions of the model have been considered but most of them rely
on this simple local averaging dynamics. While its tractability
plays as a comparative advantage with respect to Bayesian mod-
els, the DeGroot model is not entirely satisfactory either as it
does not leave room to situations where some marginal opinion
spreads to an important share of a population. To our view, this
is mostly due to the belief averaging process, for reasons we
detail in Chapter 3.

What we propose in Part i is an alternative approach to DeG-
root, where agents communicate states drawn according to their
beliefs instead of directly exchanging their beliefs. This model
extends DeGroot and, at the same time, questions the nature of
its predictions. As such, it contributes to the literature on the
emergence and characterization of consensus.

1.1.3 routing networks and congestion externali-
ties

The second part of this thesis is also connected to the literature
on learning in games but considers the other side of the coin:
while Part i focuses on the exchange of exogenous opinions,
Part ii considers a model where information is endogenously
obtained as the outcome of equilibria in a dynamic game. This
work originated from a study of the literature at the interface
between game theory and computer science. Both fields have
displayed a growing interest for learning-related problems while
their approaches are radically different. Computer science is a
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natural home for the study of algorithmic learning procedures
like Multiplicative Weights or the replicator dynamics. This non-
behavioral approach to learning has been proved to operate
efficiently in several classes of games, among which congestion
games stand as one of the most studied. These games model
situations where congestion externalities arise, that is, resource
allocation problems where the more agents use one resource,
the higher its cost. Several properties explain the particular
interest for this class of games: equilibria in pure strategies
exist under almost no condition, unicity is ensured if costs
are strictly monotonic, and a strong connection exists between
these games and convex optimization. Yet, despite these helpful
properties and although learning algorithms perform generally
well in expectation, they may be subject to chaotic behavior. This
phenomenon was showed to appear in simple, non-degenerate
instances of routing games in Chotibut et al. [41].

Routing games are a subclass of congestion games that model
flows of selfish agents that move on a routing network and
minimize their total travel time from an origin to a destination.
What Chotibut et al. [41] show is that in a network with only two
paths connecting an origin point to a destination, if travel times
of each path are linear functions of the share of agents using
those paths, then there exist a range of parameters for which
the Multiplicative Weights algorithm displays chaotic behavior
in the sense of Li and Yorke [108]. While this behavior may
occur in the algorithmic realm, this is not the case for Bayesian
beliefs that converge almost-surely as they are martingales. In
Part i we proposed a non-Bayesian approach to a problem where
standard Bayesian models failed to provide efficient answers.
Symmetrically, in Part ii, we propose a Bayesian approach to a
problem where standard algorithmic methods show concerning
limits. We study a dynamic routing game model with incomplete
information and explore the conditions under which a public
Bayesian belief converges to the truth.

Our main question may be formulated as follows: consider a
non-strategic navigation system that aggregates and broadcasts
the routing choices and subsequent travel times of a new popu-
lation each day. If the actual functions that map shares of users
to travel times are unknown, will they be efficiently learned
by the navigation system? Is a finite number of observations
enough to accurately determine these functions? And how does
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learning connect to the structure of the routing network? We
offer an answer to each of these questions using standard game
theoretical modeling.

1.1.4 game theoretical modeling for environment

economics

The third part of the thesis departs from considerations on
learning and networks to explore alternative approaches to the
modeling of time preferences and their consequences in terms of
environmental decision making. The starting point to this study
is the failure of states in meeting the terms of the Kyoto Protocol
and their progressive disengagement as they drew closer to the
expiration dates. The Protocol was negotiated in December 1997

as an extension of the United Nations Framework Convention
on Climate Change, and became effective as of February 2005.
It expired in December 2012 at the end of a first commitment
period, then was extended for an additional 8-year period. In
December 2020, the second commitment period reached its end
with a contrasted efficiency. The Kyoto Protocol is a complex
treaty that received harsh criticism, part of which led to the draft-
ing of the Paris agreement, and many are the reasons invoked
for this insufficiency.

Game theoretical modeling has provided an array of expla-
nations to this problem. A first insight is to be found in the
incomplete nature of the agreement itself, which generated hold-
up problems. A second reason for the limited efficiency of the
treaty is its lack of enforcement power: only countries listed
as Annex B had binding targets and a punishment scheme in
case they do not meet their objectives. Further, punishments
were limited and did not deter deviations. Finally, it has been ar-
gued that when studying such long-term agreements, standard
models of time preferences, i. e. exponential discounting with
constant rate, do not fit time preferences as observed in experi-
ments. Rather, countries may display some time inconsistency:
today’s policymaker may disagree with the choices of a future
policy maker, as they do not evaluate outcomes in the same
way. Many models already exist on this topic and non-constant
discounting is fairly widespread in environmental economics.
But these models rarely incorporate the concept of a deadline.
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While most treaties fix a date at which some objective has to
be met, and the scientific communication on global warming
usually works on the forecast state of the world at a specific
horizon, little is known as to how fixing these dates influences
decision making over time.

In this part, we propose to approach this problem by building
a model where two states compete over a bounded time interval.
They jointly control one common state of the world via their
actions. They play at times determined by a Poisson process.
That way, we endogenize a decreasing discount factor: the closer
they are to the deadline, the less likely they will play again.
The objective of the study is to determine optimal trajectories
of actions and assess the influence of the rate of the Poisson
process.

1.1.5 general considerations

While each part of the thesis addresses a specific independent
problem, several underlying topics emerge throughout as com-
mon threads. All the models we consider rest on uncertain
environments: there is an unknown state of the world in Part i
and Part ii, and the sequence of times at which agents play
in Part iii is unknown. As a consequence, in all three parts,
our analysis relies on stochastic methods. Part i and Part ii are
thematically related: both consider learning models, although
under different heuristics, and are interested in the formation
and behavior of a public belief. Network externalities appear in
Part i as the diffusion of beliefs in the population is shaped by
the existence of a communication network, and in Part ii as the
combinatorial structure of the action space is characterized by a
routing network. Finally, both Part ii and Part iii are influenced
by considerations on cooperative behavior: both models seek to
establish results on cooperative behavior in environments where
Folk theorems fail to apply.
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1.2 S U M M A RY O F T H E M A I N C O N T R I B U T I O N S

We summarize below the contributions made in the different
parts of the thesis. Those summaries also appear in their respec-
tive parts.

1.2.1 Part i

In Part i, we propose a stochastic extension to non-Bayesian
models of opinion exchange. We build an opinion formation
model where agents communicate by drawing states according
to their beliefs instead of directly communicating subjective
probabilities. To do so, we model beliefs as a system of interact-
ing urns. Balls of different colors represent the possible values
of the state of the world. At each iteration of the communication
process, the number of balls in urns grows as they add new balls
based on their neighbors’ draws. We assimilate the evolution of
beliefs to the evolution of urns’ compositions.

In this setup, we prove that under very general conditions,
the dynamics of beliefs converge to a rest point. Our proof relies
on stochastic approximation techniques. We then show that at
the steady-state, all agents in a connected component of the
communication network share the exact same belief on the state
of the world. This result follows from algebraic properties of
graphs. Finally, we show that as long as initial beliefs cover the
whole state space, the consensus is drawn from a distribution
with full support. This strongly contradicts the predictions of
DeGroot’s and similar models. We then try to characterize this
limit distribution using simulations. We establish a set of con-
jectures regarding the limit consensus. First, we believe that
the limit belief follows a beta distribution. This conjecture is
supported by the close connection between our model and the
Polya urn model. Second, we believe that the expected value of
the limit belief on the wrong state of the world is equal to the
initial probability that an urn is misinformed. In other terms,
while not being a martingale, the vector of proportions in urns
behaves as if it were one. This result is proved for regular graphs
where we prove that the sum of proportions across urns is a
martingale, and conjectured in the general case.
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This part contributes to the literature on opinion exchange
and emergence of consensus by extending one of the canonical
models to a stochastic framework, and showing that this drasti-
cally changes its predictions. An existing literature has already
criticized the robustness of the DeGroot model for reasons de-
tailed in Chapter 3. We add new elements to the controversy,
while providing a model where extreme events that are observed
in reality but were absent of DeGroot can occur with positive
probability. The original purpose of the paper was to provide
tractable metrics on disinformation to help build models of
strategic disinformation. While the exact nature of the limit con-
sensus remains a conjecture, we have good hope to be able to
prove these results and use them in a broader model.

1.2.2 Part ii

In Part ii, we consider a repeated symmetric nonatomic routing
game where the cost functions of each edge of the routing
network depend on the load of the edge and on an unknown
state parameter that is invariant over time. The set of states
is finite and endowed with a common prior. At each period
of time, a short-lived generation of users with a given total
demand plays the game and realizes a Wardrop equilibrium
with respect to the expected costs on edges: each path that
receives positive load has the least expected cost. For every used
edge, its load and the corresponding realized cost become public
information for the following generations. There is perfect recall,
so each generation knows the entire past history of the game and
updates its beliefs in a Bayesian way. The sequence of different
generations’ demands is assumed to be random, independent
and identically distributed (i.i.d.).

We consider two concepts of social learning: under strong
learning, players eventually learn the true state of the world;
under weak learning they learn to play the game as if the true
state of the world was known. We show that weak learning
is a strictly weaker concept than strong learning and that the
conditions to achieve either of them depend on the topology of
the network and on the support of the random demand. Our
main theorem proves that weak learning occurs if the routing
network is series-parallel and both the cost functions and the
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support of the demand are unbounded. Further, we show that
strong learning is achieved under the same prerequisites and
the additional condition that the demand has full support over
R+. The intuition behind this result is the following: when the
demand is stochastic, equilibrium flows vary. This generates
observations of the cost functions for different values of loads.
Based on results from Cominetti, Dose, and Scarsini [44] on
the variation of equilibrium flows with respect to the demand,
we prove that in a series-parallel network, as the demand goes
high, all edges are used in equilibrium and equilibrium loads are
unbounded. This implies that the cost functions will be observed
at levels which allow distinguishing between the cost-relevant
states with probability one. Finally, we prove that the condition
on the network topology is necessary: for typical networks that
do not satisfy it, we show that there exists an assignment of cost
functions and capacities such that weak learning fails for any
distribution of the demand.

This part contributes to the literature on social learning by
offering a case of a large game where sequences of continuous
player sets achieve learning. We also contribute to the literature
on routing games by reconnecting it to a more traditional ap-
proach on learning in games. As such, we offer a learning model
that is immune to chaos where beliefs converge in finite time.

1.2.3 Part iii

In Part iii, our objective is two-fold. From a theoretical perspec-
tive, we intend to build a model of revision games with flow
payoffs and a cumulative state to structure the trade-off faced by
states involved in environmental transition. Two players act over
a finite time interval and are offered at stochastic dates to revise
their decision. This yields a flow of payoffs and determines a
common state of the world that captures the share of time each
player played the non-cooperative action. This state is a proxy
to model the impact of countries emissions over the course of
the game. When time reaches the end of the interval, a terminal
payoff is determined according to the state of the world.

This model remains an early-state project and most of our
efforts have been spent in identifying the adequate model. Nev-
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ertheless, we provide a detailed agenda of the results we are
working on. In practical terms, we first intend to prove the ex-
istence of an optimal symmetric strategy profile in the form of
a threshold strategy: prior to a time threshold that negatively
depends on the expected frequency of revision times, both play-
ers play the Nash equilibrium of the one-shot game, then shift
to a cooperative action profile. In that respect, the higher the
frequency at which players revise their strategies, the shortest
the duration of the cooperative regime. This relationship be-
tween decision frequency and cooperative behavior is already
observed in revision games without flow payments.

This project contributes to the recent literature on revision
games by offering an alternative version of the model where
players balance a flow of payoffs and a terminal payoff. It also
contributes on the literature on environmental decision making
by connecting theoretically the frequency at which policies are
revised with the enforcing of cooperative behavior. Finally, while
being equivalent to stochastic games, the class of revision games
is immune to existing Folk theorems. Proving the existence of
subgame perfect equilibria sustaining some cooperation is then
an addition to what is known on cooperation in non-cooperative
dynamic games.

1.3 G U I D E L I N E S F O R T H E R E A D E R

This section details the organization of the remainder of the
thesis. In particular, we refer the reader to chapters where our
main contributions are stated.

The next chapter, Chapter 2 is a continuation of this general
introduction. It offers a complete overview on mathematical
tools used throughout the thesis. We first review general results
of game theory as a mean to fix our terminology and notation.
Then we recall some important definitions and facts related to
graph theory. Finally, we also provide some material on the
study of dynamical systems and stochastic approximation. The
reading of these contents is absolutely dispensable for the reader,
and any of these sections may be skipped independently of the
others.
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Part i is devoted to our first paper on the emergence of con-
sensus and reinforcement learning. It comprises two chapters.
Chapter 3 is mostly introductory, as it offers a detailed review
of the literature on the emergence of consensus and motivates
our main problem consequently. Chapter 4 contains our contri-
bution on the topic. We first detail the model we study, and then
provide our main results and their proofs. A section is devoted
to results obtained from simulations, and additional outputs
feature in Appendix a.

Part ii is based on a paper written in collaboration with Tris-
tan Tomala and Marco Scarsini on social learning in routing
games. Chapter 5 is devoted to an introduction of the problem
and provides information on our modeling choices and the re-
lated literature. Chapter 6 contains our main model, results and
examples.

Part iii contains our ongoing project on revision games. It
consists in a single chapter, Chapter 7, that motivates the main
problem and details our modeling process. Our main model
is fully stated and we included a detailed perspective on our
ongoing research.

Section 7.4 contains an extensive summary of the thesis in
French.

Appendix a provides further information on the simulations
used in Part i. We present the main code elements used to run
the simulations as well as additional outputs that support the
content of Chapter 4.

Thus, chapters in this thesis may be split as follows: Chapter 2

is a technical preliminary, Chapter 3 and Chapter 5 are mostly
introductory material that cast light on what is contained in
other chapters. The reader seeking our own contributions is
referred to Chapter 4 and Chapter 6 that only contain our models
and results. Finally, Chapter 7 is a hybrid, containing contextual
elements as well as our model.





2
T H E O R E T I C A L P R E L I M I N A R I E S

In order to ease the reading and make this thesis as much of
a self-contained document as possible, we devote this chapter
to a technical exposition of the major mathematical concepts,
tools and results that will be used throughout. Most of the
definitions and results in this chapter are well-known, hence
an informed reader may prefer to skip some sections. Featured
results will not be proved but references containing the proofs
will be mentioned. Section 2.1 covers the basic elements of game
theory: normal-form games, repeated games and games with
incomplete information. Section 2.2 presents the main elements
of graph theory that will be of use in the thesis. Section 2.3
provides some background on dynamic systems and stochastic
approximation methods which we use. Table 2.1 details which
part of the thesis require each section of the present chapter.

Sections of Chapter 2 Part i Part ii Part iii

Section 2.1 X X X

Section 2.2 X X 7

Section 2.3 X 7 7

Table 2.1: Correspondence between Sections and Parts of the Thesis.

2.1 N O N - C O O P E R AT I V E G A M E T H E O RY

Game theory aims at modeling and analyzing strategically in-
teractive environments in which agents make decisions with
mutual outcomes. In this thesis we will not cover cooperative –
or coalitional – games, i. e. situations where agents seek to form
coalitions. Our focus will be entirely on non-cooperative games,
with agents acting for their own good. All the results featured in
this section are textbook material. This section is greatly inspired

15
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by Laraki, Renault, and Sorin [101] and Laraki, Renault, and
Tomala [102] as well as the lecture notes by Bruno Ziliotto.

2.1.1 games , players and equilibria

A strategic game is defined by the following elements:

• A set of players N – assumed finite for the moment – of
cardinal n which identifies the agents (e. g.individuals,
countries, populations) operating;

• A set of pure strategies S i for each i ∈ N – also referred to
as actions – that contains all the elements player i chooses
from;

• A payoff function g mapping S = ∏i∈N S i to a vector in
Rn.

A game in normal form is described as a tuple G = (N, (S i)i∈N, g).
All sets are assumed to be non-empty. If the player set and every
action set are finite, the game G is called finite. An action profile
is a vector s = (s1, . . . , sn) of strategy choices for each player. We
write s = (si, s−i) where s−i denotes the choice of strategies sj
for any player j 6= i and S−i = ∏j 6=i S j. For any player i ∈ N, the
i-th entry gi(s) of the payoff vector corresponds to i’s individual
gain (or loss) when the strategy profile s is played. Throughout,
we do not distinguish the utility of an agent from her payoff.
Normal form games are simultaneous move games: every player
chooses an action independently from the other players.

The payoff map g creates a natural hierarchy over strategies:
for any player i ∈ N, for a fixed profile s−i, the higher the payoff
gi(si, s−i) a strategy si grants, the "better" it is. This leads to the
concept of domination.

Definition 1. A strategy si ∈ S i is dominated if there exists
another strategy s′i ∈ S i such that

∀s−i ∈ S−i, gi(s′i, s−i) ≥ gi(si, s−i) (2.1)

If the inequalities are strict, we say si is strictly dominated by s′i.
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Intuitively, a rational player is expected not to play any strictly
dominated strategy.

Definition 2. A strategy si ∈ S i is dominant if for every other
strategy s′i ∈ S i such that s′i 6= si,

∀s−i ∈ S−i, gi(si, s−i) ≥ gi(si, s−i) (2.2)

If the inequalities are strict, we say si is strictly dominant.

Similarly, a strictly dominant strategy is the only rational
choice when it exists.

Players are assumed to be rational in the sense that they
maximize their utility (respectively, minimize their disutility)
using every available information. Utility maximization leads
naturally to the definition of the best-response correspondence.

Definition 3. For any i ∈ N, given a profile s−i of opponents’
actions, a strategy s ∈ S i is a best-response to s−i if gi(s, s−i) ≥
gi(s′, s−i) for any s′ ∈ S i.

We define the best-response correspondence of player i, BRi,
as the set-valued function mapping profiles in S−i to best-
responses of player i. Building on this definition, we can in-
troduce our main equilibrium concept.

Definition 4. An action profile s = (s1, . . . , sn) is a Nash equi-
librium (N.e.) of the game G if, for every i ∈ N and s′i ∈ S i,

gi(si, s−i) ≥ gi(s′i, s−i) (2.3)

Equivalently, an action profile s = (s1, . . . , sn) is a Nash equi-
librium if for every player i ∈ N, si ∈ BRi(s−i).

At times, we will have to use the following weaker definition
of the best-response:



18 theoretical preliminaries

Definition 5. Let ε > 0. For any i ∈ N, given a profile s−i of
opponents’ actions, a strategy s ∈ S i is a ε-best-response to s−i if
gi(s, s−i) ≥ gi(s′, s−i)− ε for any s′ ∈ S i.

For ε = 0, we fall back to Definition 3.

Definition 6. A mixed strategy σi of player i ∈ N is a probability
distribution over S i.

Mixed strategies of player i ∈ N belong to the simplex ∆(S i)
which we write Σi. The set of mixed strategy profiles is Σ =

∏i∈N Σi. For any mixed strategy profile σ = (σ1, . . . , σn), for
any player i ∈ N, we define the extended payoff gi(σ) as the
expected payoff:

gi(σ) = ∑
s∈S

[
n

∏
j=1

σj(sj)

]
gi(s) (2.4)

Definition 7. The mixed extension Γ of the normal form game
G = (N,S , g) is the normal form game (N, Σ, g).

Having defined the mixed extension of a game, we can state
the main existence theorem from Nash et al. [119].

Theorem 8. Any finite game G admits a N.e. in mixed strategies.

2.1.2 repeated games , folk theorem and observabil-
ity

In the section above, we only consider a game played once but
many strategically interactive situations involve some degree
of repetition. Repeated games aim at modeling those that fit a
discrete time setup. A repeated game proceeds as follows: let G
be a normal form game, at discrete times t ≥ 1,

• Every player i ∈ N chooses independently and simultane-
ously a (possibly mixed) action st

i ;
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• Every player i ∈ N receives her payoff gi(st
1, . . . , st

n);

• The action profile st = (st
1, . . . , st

n) is publicly observed.

The game G is referred to as the stage game. As action pro-
files are observed publicly and perfectly, at any stage t, players
remember past plays. This leads to the natural definition of
histories of the game.

Definition 9. Fix t ≥ 1. A history of length t of the repeated
game is an element (s1, . . . , st) ∈ S t.

For any t ≥ 1, let Ht be the set of histories of length t, with
H0 = {∅}. Let H = ∪t≥0Ht be the set of histories and H∞ = S∞

the set of infinite plays. We can define pure strategies in the
repeated game as follows.

Definition 10. A pure strategy of player i in the repeated game
selects an element in S i for any period t and history h ∈ Ht−1.

Repeating a game greatly expands the set of pure strategies.
Mixed strategies of the repeated game are defined as probability
distributions over the set of pure strategies. This concept may
be difficult to handle when dealing with explicit construction
of strategies, hence the following alternative concept is often
preferred.

Definition 11. A behavior strategy of player i ∈ N is a map from
H to Σi.

In other terms, a behavior strategy associates a mixed strategy
of the stage game to any history of the game. Observe that any
measurable profile of strategies σ induces a unique probability
Pσ on the set of histories of finite length, as players’ choices
are independent. This probability uniquely extends to H∞ by
Kolmogorow extension theorem. The next result, due to Kuhn
[99] and Aumann [11] connects mixed and behavior strategies.

Theorem 12. We have the following equivalences:
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1. Every behavior strategy of player i is equivalent to a mixed
strategy of player i in the following sense: for every behavior
strategy βi of player i there exists a mixed strategy σi such that
for any measurable profile σ−i, Pβi,σ−i = Pσi,σ−i ;

2. Every mixed strategy of player i is equivalent to a behavior
strategy of player i.

Having discussed strategies in the repeated game, we now
turn to payoffs.

Definition 13. Let T ≥ 1. The T-repeated game is the game
GT = (N, Σ, γT) where, for every i ∈ N, σ ∈ Σ,

γT
i = Eσ

[
1
T

T

∑
t=1

gi(st)

]
(2.5)

The T-repeated game is the finitely repeated game where
payoffs are evaluated at their average value.

Definition 14. Let δ ∈ [0, 1). The δ-discounted game is the game
GT = (N, Σ, γδ) where, for every i ∈ N, σ ∈ Σ,

γδ
i = Eσ

[
(1− δ)

∞

∑
t=1

δt−1gi(st)

]
(2.6)

The δ-discounted game is an infinitely repeated game where
the value of 1 at stage t + 1 is 1− δ at stage t. Nash equilibria
of both the T-repeated game and the δ-discounted game may
display suboptimal choices, in particular in the case of punish-
ment strategies. This requires a refinement of the equilibrium
concept suited for repeated games. For any history h ∈ H and
strategy σi of player i, let σi [h] be the strategy induced by σi
after history h.
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Definition 15. Let T ≥ 1. A subgame perfect equilibrium (S.P.e.)
of GT is a N.e. σ such that for any time t ≤ T and any history
h ∈ Ht, σ [h] is a N.e. of GT−t+1.

This equilibrium definition is stronger than Definition 4 as it
requires that the equilibrium strategy profile is a N.e. at every
history, in particular after some players potentially deviated. A
similar definition exists for the δ-discounted game.

Definition 16. Let δ ∈ [0, 1). A S.P.e. of Gδ is a N.e. σ such that
for every t ≥ 1 and every history h ∈ Ht, σ [h] is a N.e. of Gδ.

Finally, we introduce the uniform approach to infinitely re-
peated games.

Definition 17. A strategy profile σ is a uniform equilibrium of
G∞ if:

1. ∀ε > 0, σ is a ε-N.e. of any sufficiently long finitely repeated
game, i. e. :

∃T0, ∀T ≥ T0, ∀i ∈ N, ∀τ ∈ Σi, γT
i (τi, σ−i) ≤ γT

i (σ)+ ε, and
(2.7)

2. The sequence (γT(σ))T converges to a vector γ(σ) of Rn,
called the uniform equilibrium payoff of G∞.

We note E∞, ET and Eδ the sets of equilibrium of, respectively,
G∞, GT and Gδ. The three sets are compact and GT and Gδ

are non-empty. Further, one has E1 ⊂ ET ⊂ E∞ and E1 ⊂
Eδ ⊂ E∞. We now turn to the characterization of equilibrium
payoffs. The first criteria for a payoff vector to be sustained in an
equilibrium of the repeated game is that there exists a (mixed)
Nash equilibrium generating said payoff vector.

Definition 18. A payoff profile u ∈ Rn is feasible if there exists
π ∈ ∆(S) such that, for every i ∈ N,

ui = ∑
s∈S

π(s)gi(s) (2.8)
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The set of feasible payoffs is Co(S) = g(δ(S)).

The set Co(S) is a convex compact polytope containing E∞.
The second criteria for the sustainability of a payoff vector is that
players deem it rational to receive such payoffs. To formalize
that idea, we introduce the following definition.

Definition 19. For any i ∈ N, we define the punishment level of
player i as

vi = min
σ−i∈∏j 6=i ∆(S j)

max
σi∈∆(S i)

gi(σi, σ−i) (2.9)

For any player i, vi is the lowest payoff that non-coordinated
opponents may impose on i.

Definition 20. A payoff profile u ∈ Rn is individually rational if,
for every player i, ui ≥ vi. We denote by IR the set of individu-
ally rational payoffs.

This sequence of definitions leads to the all-important Folk
theorem. Of unknown lineage, the first written version of this
result is attributed to Aumann and Shapley [14] and Rubinstein
[136].

Theorem 21.

E∞ = Co(S) ∩ IR (2.10)

This result states that any feasible and individually rational
payoff vector can be obtained as the outcome of a uniform
equilibrium. We will conclude by citing the equivalent results
for finitely repeated and discounted games. Sorin [146] prove
the convergence of the set Eδ to Co(S) ∩ IR.

Theorem 22 (Sorin [146]). If there are only two players or there
exists u ∈ Co(S) ∩ IR with ui > vi for every player i, then

Eδ → Co(S) ∩ IR as δ→ 1. (2.11)
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Fudenberg and Maskin [64] provides an equivalent result for
S.P.e. of the discounted game. For finitely repeated games, the
following result is due to Benoit and Krishna [23].

Theorem 23 (Benoit and Krishna [23]). If for every player i there
exists u ∈ E1 with ui > vi, then

ET → Co(S) ∩ IR as T → ∞. (2.12)

An equivalent result for S.P.e. of finitely repeated games fea-
tures in Benoit and Krishna [22].

2.1.3 games with incomplete information

We finish this overview of game theory by introducing the gen-
eral framework of games with incomplete information. As un-
certainty is at the heart of most economic situations, they form a
canonical yet heterogeneous class of games within the literature.
Just like repeating a game makes the set of equilibria explode,
introducing uncertainty in games made the literature sprawl
in uncountable and sometimes strongly different directions, let
alone considering repeated games with incomplete information.
For the curious reader, Aumann, Maschler, and Stearns [13]
contains most of the major – though dated – references on the
subject. In particular, it includes the seminal works for the U.S.
Arms Control and Disarmament Agency where major results
on games with lack of information on one side were originally
stated.

The foundations of the framework analyzing games with
incomplete information – or Bayesian games – were established
in Harsanyi [78] and Mertens and Zamir [113]. They propose
to model incomplete information via types that belong to a
"universal type space" over which players form Bayesian beliefs.
In its general statement, a Bayesian game is defined as a tuple
G = (N, (S i)i∈N, (Θi)i∈N), (µi)i∈N, g where:

• N is a set of players;
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• S i is the set of pure strategies of player i ∈ N;

• Θi is the set of types of player i ∈ N;

• µi : Θi → ∆(Θ−i) maps each type of player i to a distribu-
tion over types of other players;

• A payoff function g mapping S ×Θ to a vector in Rn.

Initially, a type vector (t1, . . . , tn) is drawn. Each player i ∈ N
knows her realized type ti, as well as the game G. Her belief
is given by the distribution µi(ti), which may be seen as the
conditional probability distribution of the common prior distri-
bution of types µ ∈ ∆(Θ) conditional on ti being realized. This
framework may also include uncertainty on the set of actions of
other players by fixing arbitrarily low payoffs to an action for
certain types. We now turn to strategies.

Definition 24. A behavior strategy of player i ∈ N in the Bayesian
game G is a mapping σi : Θi → ∆(S i). We denote by Σi the set
of mixed strategies of player i and by Σ = ∏i∈N Σi the set of
strategy profiles.

We now define the adequate equilibrium concept.

Definition 25. A strategy profile σ ∈ Σ is a Bayesian equilibrium
– or Bayes-Nash equilibrium – of the game G if for each player
i ∈ N and type ti ∈ Θi,

Eσ(gi|ti) ≥ Eτi,σ−i(gi|ti) ∀τi ∈ Σi (2.13)

In other terms, Bayesian equilibria of the game G are Nash
equilibria of the normal-form game with expected payoffs. Con-
sequently, Theorem 8 applies and ensure existence of an equilib-
rium when types and actions sets are finite. More generally, an
equilibrium exists when the type spaces are countable, action
sets are compact metric and payoffs are continuous.

We stop our description of game theoretical results here, as
this framework is important for the understanding of Part i,
Part ii and Part iii. Each of these parts carry the basic Bayesian
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model to very different directions and will provide the necessary
elements for their own understanding independently.

2.2 G R A P H T H E O RY

In this section, we introduce the essential definitions and results
from graph theory which we will use in later parts. Graphs
– or networks – have become a staple of economic modeling,
as a tool to structure local externalities and interdependencies.
Such models capitalize on a vast corpus of literature in discrete
mathematics and combinatorics. In this section we will present
the elements which are useful for further chapters. More infor-
mation is to be found in graph theory monographs like Wilson
[156] or Diestel [54]. For economic applications of graph theory,
see Jackson [85].

2.2.1 elementary definitions

The language of graph theory is not necessarily standardized.
To avoid confusions, we recall the basic definitions and the
notations used thereafter.

Definition 26. A graph N consists in:

• A non-empty countable set V of nodes (or vertices);

• A countable set E of pairs of elements of V , the edges.

If the set of vertices V is finite, N is said to be finite. For any
a, b ∈ V , if {a, b} ∈ E , then a is connected to b by an edge of
the graph. We may also write ab ∈ E when there is no risk of
confusion. This leads to the following distinction.

Definition 27. For any graph N ,

• If the edge set E is unordered – i. e. {a, b} = {b, a} for any
a, b ∈ V , we say that N is undirected;
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• If, instead, the edge set is ordered, in which case {a, b} 6=
{b, a}, we say that N is directed – equivalently, N is called
a digraph.

This distinction involves strong differences both in the analy-
sis and in terms of modeling. In a directed graph, node a being
connected to node b does not imply the converse. If, for instance,
edges are defined as an observation structure, this implies that
observation is asymmetric.

In Definition 26, we do not forbid the presence of self-loops –
i. e. an edge connecting a node a to itself – nor do we preclude
the existence of several edges connecting the same pair of nodes.
To avoid any confusion, we say that a graph N is a simple
graph when it contains no self-loops and only a single edge
may connect an ordered pair of nodes. Else, we say that N is a
multigraph. In Part i, we consider undirected simple graphs while
in Part ii we consider directed multigraphs without self-loops.

Graphs are an essential tool to model indirect relations. To
that end we define the following notions.

Definition 28. A walk in N from node a to node b is a sequence
of edges v1v2, v2v3, . . . , vkvk+1 ∈ E such that a = v1 and b =
vk+1. If every node in the sequence v1, . . . , vk is distinct, the
walk from a to b is called a path. A walk from one node to itself
is called a cycle.

A graph is connected if for every two nodes a, b ∈ V , there
exists a path from a to b.

It is frequent to study networks in terms of local interactions.

Definition 29. Two nodes a, b ∈ V are said to be adjacent if:

• The graph N is undirected and ab ∈ E ;

• The graph N is directed and either ab or ba ∈ E .

Definition 30. The neighborhoodN (a) of node a is the set {b ∈ V|ab ∈ E}.
The neighborhood of a set S of nodes is the union of their neigh-
borhoods.
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The size of the neighborhood of a node is an important tool in
assessing the importance a node plays in a graph. This involves
the following definitions.

Definition 31. In an undirected graph N , the degree da of a node
a is the cardinality of the neighborhood of a, that is

da = card {b : ba ∈ E} (2.14)

When dealing with directed graphs, it is important to distin-
guish between edges pointing to and from a node, hence we
make the following distinction.

Definition 32. Let N be a directed network. For any a ∈ V ,

• The in-degree of a is the cardinal card {b : ba ∈ E};

• The out-degree of a is the cardinal card {b : ab ∈ E}.

2.2.2 subgraphs , components and minors

It is often useful to restrict the analysis of a graph to a limited
number of nodes and edges.

Definition 33. A graph N ′ = (V ′, E ′) if a subgraph of a graph
N = (V , E) if V ′ ⊆ V and E ′ ⊆ E .

Subgraphs can be obtained by deleting edges, nodes, etc. A
frequent and useful way to decompose a graph into subgraphs
is through connectedness.

Definition 34. A (connected-)component of a network N =
(V , E) is a non-empty subgraph N ′ = (V ′, E ′) such that:

• N ′ is connected, and

• If a ∈ V ′ and ab ∈ E , then b ∈ V ′ and ab ∈ E ′.
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The components of a graph are the maximal connected sub-
graphs. It allows to decompose a graph into sets of path-connected
nodes. Two nodes belonging to different components generally
have no influence over each other. There is no convention re-
garding whether isolated nodes are components or not.

Another way to build a relation between graphs is through
the concept of minors. For a moment, we will only consider
undirected graphs. For such a graph N , consider the following
operations:

• (D): Deleting an edge between two nodes;

• (C): Contracting an edge ab by merging its two end-nodes
into a new node which is adjacent to all nodes in the
former neighborhoods of a and b;

• (R): Remove an isolated node.

Definition 35. Any undirected subgraph N ′ that can be ob-
tained from N by a finite application of (D), (C) and (R) is
called a minor of N and we say that N ′ is embedded in N . A
minor N ′ of N such that no path in N ′ has an inner vertex on
another path is called a topological minor of N .

For directed networks, these definitions extend in the follow-
ing sense: an undirected graph N ′ is a (topological) minor of
a directed graph N = (V , E) if N ′ is a (topological) minor of
the undirected graph N̄ = (V , Ē) where ab ∈ Ē if either ab ∈ E
or ba ∈ E . Both minor and topological minor relations define
a partial ordering on the set of finite graphs. Some classes of
graphs can be defined by the exclusion of certain minors. For
instance, the class of series-parallel introduced in Definition 83

in Chapter 5 can be characterized as the class of graphs that do
not admit the graph depicted in Fig. 2.1 as a topological minor.
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Figure 2.1: A forbidden minor.

2.2.3 families of networks

We now introduce several families of graphs which will be used
in the thesis.

Definition 36. A finite simple network N = (V , E) is a complete
graph if for any pair of nodes a, b ∈ V , ab ∈ E .

In other terms, a complete graph is a simple graph in which
all the possible edges exist. Another important family is circle
graphs.

Definition 37. A finite simple undirected (resp. directed) net-
work N is a circle if it is connected and every node has a degree
equal to 2 (resp. in- and ou- degree equal to 2).

Both circles and complete graphs belong to the broader class
of k-regular graphs.

Definition 38. Let N be a finite undirected (resp. directed) sim-
ple graph of n nodes, and let k ≤ n. N is a k-regular graph if
every node has a degree equal to k (resp. in- and out-degree
equal to k).

Thus, circles are 2-regular networks and complete networks
are regular networks of maximal index of regularity k. When
not required, we omit the k.

Definition 39. A (n, m)-bipartite graph N = (V , E) of n + m
nodes is a network whose vertex set V can be divided into two
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sets A of size n and B of size m such that if there are two nodes
a, b ∈ V such that ab ∈ E , then either a ∈ A and b ∈ B or a ∈ B
and b ∈ A. A bipartite graph is complete if every vertex in A is
connected to every vertex in B and vice versa.

Finally, we define the family of star graphs.

Definition 40. A finite simple graph N of n nodes is a star if it
is a complete (1, n− 1)-bipartite graph.

Alternatively, star graphs consist of one single node called the
center connected to every other node, called leaves, and such that
no two leaves are connected.

2.2.4 network algebra

An alternative representation of graphs involve algebraic tools.
Indeed, considering a finite network N = (V , E) of size n, we
can representN by a n× n squared matrix A called the adjacency
matrix of N .

Definition 41. For any finite network N = (V , E) of size n, the
adjacency matrix A of N is the n× n squared matrix with entries

Aij =

1 if ij ∈ E ;

0 else.
(2.15)

If N is undirected, then A is symmetric. To model situations
where two connections do not have the same weight, it is possi-
ble to allow A to have values in R instead of {0, 1} only. In that
case, entries Aij contain the weights that are put on the edges
and the graph N is said to be weighted. We may also present the
degrees of an undirected graph in matrix form.
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Definition 42. The degree matrix of an undirected graph N of
size n is the n× n diagonal matrix D with diagonal entries

Dii = di (2.16)

And Dij = 0 if i 6= j.

The degree matrix of a graph is not involved as often as its
adjacency matrix, but both serve in defining the Laplacian matrix
concept.

Definition 43. Let N be a finite unweighted undirected graph.
The Laplacian matrix of N is the n× n squared matrix L defined
as

L = D− A. (2.17)

The Laplacian matrix of a graph N carries essential informa-
tion about the structure of N and has the following important
properties.

Property 44. For any undirected network N with non-negative
weights,

1. L has only real eigenvalues;

2. L is positive semidefinite;

3. The smallest eigenvalue of L is λ1 = 0 with corresponding
eigenvector (1, . . . , 1)′. The multiplicity of λ1 is equal to the
number K of connected components of N .

Those properties will be recalled when used in Section 4.2.2
where a proof is featured. For further properties and results
on Laplacian matrices, we refer the reader to the survey Mohar
[115]. There stops our brief overview of graph theoretical termi-
nology. When required, further chapter will provide additional
information on specific points.



32 theoretical preliminaries

2.3 S T O C H A S T I C A P P R O X I M AT I O N A L G O R I T H M S

In this section, we present the main methods and terminology
used in stochastic approximation theory. In essence, stochas-
tic approximation aims at approaching limit sets of a discrete
stochastic differential system by trajectories of a well-defined
continuous-time differential system. The objective is not to deter-
mine analytical solutions but rather to characterize the set where,
in the limit, trajectories will converge and remain stable. This re-
quires a certain amount of definitions to precisely fix the nature
of such limit points. There exists a vast literature on the subject,
where Kushner and Yin [100] and Borkar [29] stand as high-
quality textbooks. The survey by Pemantle [124] gives a good
overview of the connection between dynamical systems theory
and the study of stochastic processes. For a detailed review of
dynamical systems theory, see Hirsch, Smale, and Devaney [83].
Most of this section is inspired by these references.

2.3.1 dynamical systems

Dynamical systems theory is the field of mathematics that
studies the long-term behavior of systems described by a time-
dependent state. As an independent field, it possesses its own
terminology, which requires proper defining.

We begin by defining the state space Θ as a subset of some
Euclidian space, typically Θ ⊆ Rn for some n < ∞. A dynamical
system is a description of the evolution of points in Θ along time.
When time is measured at integer values, the system is said to
be discrete, and when it is measured continuously the system
is said to be continuous. When the system evolves continuously
with respect to time, it is said to be smooth. Formally,

Definition 45. A smooth dynamical system on Rn is a continuously
differentiable function Φ : R×Rn → Rn where Φ(t, x) = Φt(x)
satisfies:

• Φ0 is the identity function, i. e. Φ0(x) = x∀x ∈ Rn;

• Φt ◦Φs = Φt+s for any t, s ∈ R.
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Given some point x ∈ Rn, the map t→ Φt(x) is called a tra-
jectory and describes the evolution over time of a system starting
in state x. When the system is smooth, it can be formulated as

the ordinary differential equation (o.d.e.) ẋ ≡
dx
dt

= f (x) with

f (x) =
d
dt

∣∣∣
t=0

Φt(x). (2.18)

The map Φt is the time flow associated to the differential
system ẋ = f (x). When f is C1, by Cauchy-Lipschitz theorem,
we immediately have existence and uniqueness of solutions
and the continuity of Φ with respect to t and x. Although
these solutions exist, in the general case, they seldom have a
computable closed-form expression, especially when the o.d.e.
system is non-linear. Instead of solving the differential equation,
dynamical systems theory studies the asymptotic behavior of
the trajectories defined by the o.d.e..

Definition 46. The orbit of a point p ∈ Rn is the set

γ(p) =
{

x ∈ Rn
∣∣∣p = Φt(x) for some t ∈ R

}
. (2.19)

In other terms, the orbit of a point p is the trajectory of Φ
passing at p. Note that two orbits containing a same point p
are necessarily equal. Our objective is to characterize orbits that
bear suitable stability properties in the limit. To that end, we
first define invariant sets of points.

Definition 47. A set P ⊆ Rn is called a positively invariant set if
for all x ∈ P and t ≥ 0, Φt(x) ∈ P .

Invariant sets are, trivially, sets of points whose trajectories
remain within themselves. We will need an additional property
of invariant sets called chain transitivity.

Definition 48. An invariant set P is internally chain transitive if
for any x, y ∈ P , any ε > 0 and T > 0 there exist n ≥ 1 and
points x0 = x, x1, . . . , xn−1, xn = y in P such that the trajectory
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initiated at point xi meets with the ε-neighborhood of xi+1 for
0 ≤ i ≤ n after a time greater or equal to T.

The next definition concerns the forward – or ω− – limits of
the system, but equivalent statements exist for the backward –
or α− – limits.

Definition 49. A point p ∈ Rn is an ω-limit point for an orbit
γ(x) if there exists a sequence tn → ∞ such that limn→∞ Φtn(x) =
p.

The set ω(x) of all ω-limit points of trajectories going through
a point x is called the ω-limit set of x.

They bear the following properties.

Property 50. The ω-limit set of any orbit γ is:

• A closed set;

• An invariant set;

• Transitive, in the sense that if z ∈ ω(y) and y ∈ ω(x) then
z ∈ ω(x).

Moreover, if the orbit γ is bounded, then its ω-limit set is non-empty
and connected.

Two asymptotic behavior within ω-limit sets are to be distin-
guished.

Definition 51. An equilibrium of the o.d.e. ẋ = f (x) is a point
p ∈ Rn such that f (p) = 0.

Equilibria of an o.d.e. are ω-limit points. If a trajectory reaches
an equilibrium, it remains there forever. Alternatively, when
they converge, trajectories may enter a periodic orbit.

Definition 52. An orbit γ(x) of the dynamical system Φ is
periodic if there exists p ∈ γ(x) and T > 0 such that Φt(p) =
Φt+T(p)
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Although thanks to Poincaré-Bendixon theorem, in dimen-
sions 1 and 2 ω-limit sets are easily characterized as being either
equilibrium points or periodic orbits, this is not the case in di-
mension 3 or higher where much richer behavior may emerge.
Thus, it is essential to identify within the limit sets of an o.d.e.
those where trajectories will converge and remain stable.

Definition 53. A compact invariant set M is an attractor if there
exists an open neighborhood O of M such that every trajectory
in O remains in O and converges to M. The largest such O is
called the domain of attraction of M.

Definition 54. A compact invariant set M is Lyapunov stable if,
for any ε > 0 there exists δ > 0 such that every trajectory in the
δ- neighborhood of M remains in its ε-neighborhood.

A compact invariant set M that is both Lyapunov stable and
an attractor is asymptotically stable. When M is equal to a single
equilibrium point x, then the equilibrium x∗ is asymptotically
stable. There exist several criteria to check asymptotic stability of
equilibria, but the most widespread is Lyapunov’s second method.
Assume that there exists a continuously differentiable map V
defined on a neighborhood O of x∗ such that 〈∇V(x), f (x)〉 < 0
for x∗ 6= x ∈ O and 〈∇V(x∗), f (x∗)〉 = 0, with V(x) → ∞ as
x goes to the boundary of O. Then x∗ is asymptotically stable.
Conversely, if an equilibrium x∗ is asymptotically stable, then
such a function V exists. The same method may be applied to
compact invariant sets instead of equilibrium points. Finding a
Lyapunov function V may be difficult in practice but, when the
o.d.e. is defined as a linear system with constant coefficients, i. e.

ẋ = Ax (2.20)

where A is a squared matrix, then equilibria are asymptoti-
cally stable if and only if A is semi-definite negative.

An equilibrium point that is asymptotically stable and such
that every trajectory of the o.d.e. converges to it is said to be glob-
ally stable. In that case the set O above may be replaced by the en-
tire state space Rn. More generally, if there exists a continuously
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differentiable function V : Rn → R such that 〈∇V(x), f (x)〉 ≤ 0
for every x ∈ Rn then any trajectory of the o.d.e. converges to the

largest invariant set in
{

x ∈ Rn
∣∣∣ 〈∇V(x), f (x)〉 = 0

}
. When the

o.d.e. is a linear system with constant coefficients, if the matrix
A is semi-definite negative, then equilibrium points are globally
stable and trajectories converge at exponential rate.

2.3.2 monro-robbins algorithm

So far, we only discussed continuous dynamical systems. In
Part i though, we need to analyze the behavior of discrete
stochastic systems. Approaching the latter by trajectories of
continuous systems is a method known as stochastic approxima-
tion (SA). Consider a stochastic sequence (xt) in Rn. A stochastic
approximation algorithm (s.a.a.) consists in finding a determinis-
tic map f , a sequence of positive scalars γt and a stochastic
sequence ut such that

xt+1 = xt + γt [ f (xt) + ut] , t ≥ 0. (2.21)

Eq. (2.21) is known as the Monro-Robbins algorithm, introduced
in Robbins and Monro [128]. While it strongly resembles a New-
ton discretization scheme, it is specifically designed to handle
cases where the latter fails. Their original idea was to build a
method to find roots of a regression function when observations
are affected by random errors that preclude convergence of
Newton’s scheme. The recursive scheme is designed to average
out the errors ut in the limit. Then, convergence happens with
probability 1 at the cost of the following assumptions.

Assumption 1. The map f : Rn → Rn is Lipschitz, i. e.

∃0 < L < ∞, ‖ f (x)− f (y)‖ ≤ ‖x− y‖ (2.22)

This assumption is standard in differential calculus and en-
sures that the o.d.e. ẋ = f (x) is well-posed.
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Assumption 2. The sequence of positive scalars (γt) satisfy

∑
t

γt = ∞, and (2.23)

∑
t

γ2
t < ∞ (2.24)

The first condition follows from the discretization intuition:
(γt)t is a sequence of step-sizes on the time interval, which we
want to cover fully. The second condition is essential in order
to ensure that the noise ut vanishes in the limit, jointly with the
next assumption.

Assumption 3. The sequence (ut)t is a sequence of square-
integrable martingale difference noises with respect to the filtra-
tion F = (F t, t ≥ 0) = (σ(xs, us, s ≤ t)t ≥ 0), i. e.

E
[
ut+1

∣∣∣F t

]
= 0 (2.25)

Finally, we want the sequence of observations (xt)t to satisfy
the following assumption.

Assumption 4. The iterates of Eq. (2.21) are bounded almost-
surely, i. e.

sup
t
‖xt‖ < ∞ (2.26)

This is generally a tricky assumption although when we will
use SA in Part i, we will work on bounded random variables
only. Under Assumptions 1–4 we have convergence of Eq. (2.21)
with probability 1 in the following sense.



38 theoretical preliminaries

Theorem 55. The sequence (xt)t converges almost surely to a compact
connected internally chain transitive invariant set of the o.d.e.

ẋ = f (x) (2.27)

Studying limit values of a s.a.a. is then equivalent to charac-
terizing invariant sets of the associated o.d.e.. Popularity of this
method is explained by the high versatility of its main result. Nu-
merous variations of Eq. (2.21) are shown to behave in a similar
fashion, when stepsizes are stochastic, or f is time-dependent,
or the o.d.e. is projected on a particular set, or even when As-
sumption 4 only holds on some set with positive probability.
Part i will require such extensions but, in flavor, the method
remains very close to what is exposed in the present section.



Part I

M I S I N F O R M AT I O N , L E A R N I N G A N D
C O N S E N S U S I N N E T W O R K S

This part is based on the paper Stochastic Consensus and
the Shadow of Doubt. It proposes a stochastic approach to
non-Bayesian learning models and on the emergence of
consensus in networks. Namely, we propose a stochastic
model of opinion exchange in networks, where agents
communicate by signaling states drawn according to their
beliefs. A finite set of agents is organized in a fixed net-
work structure. There is a binary state of the world and,
ex ante, each agent receives a random signal informing
them about one of the two values of the state of the world.
Based on reinforcement learning models and stochastic
approximation techniques, we show that if some fraction
of the agents are misinformed with positive probability at
the beginning of the process, then in the limit, all beliefs
converge to the same value, which is a random variable
with full support. This result strongly departs from stan-
dard in the literature and shows that even with a marginal
fraction of misinformed agents, false information may
spread within the whole society with positive probability.
We further provide characterization elements on the dis-
tribution of the random limit belief through simulations.

Chapter 3 introduces the problem through an overview
of the literature on information exchange in networks.
Chapter 4 details the model and presents the main results.

While this paper is single-authored it greatly benefited
from the comments of members of the department of
Economics and Finance at LUISS, the department of Eco-
nomics and Decision Science at HEC Paris and partici-
pants in the Parisian seminar of Game Theory at Institut
Henri Poincaré.





3
O N O P I N I O N E X C H A N G E I N N E T W O R K S

Doubt is our product since it is the best means
of competing with the "body of fact" that exists
in the mind of the general public. It is also the
means of establishing a controversy.

Smoking and Health Proposal, 1969

(Brown and Williamson Tobacco
Corporation Records)

This chapter introduces the main problem studied in Chap-
ter 4 and the connected literature. It explores major models
of opinion exchange, their results and limitations. It is largely
based on the surveys Acemoglu and Ozdaglar [5], Mossel and
Tamuz [118] and Golub and Sadler [75], and on the textbook
Jackson [86]. Section 3.1 introduces and motivates the main
problem. Section 3.2 presents Condorcet’s early model of opin-
ion aggregation. Section 3.3 presents the Bayesian approach on
opinion exchange in networks. Section 3.4 introduces bounded-
rationality modeling and major results on the DeGroot model
of belief exchange. Section 3.5 develops a critical view on naive
learning and motivates the use of reinforcement learning in
opinion formation models.

41
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3.1 I N T R O D U C T I O N

Historical instances of misinformation date back as far as the
existence of written testimonies of battles of opinion. A long-
lasting example is to be found in the late years of the Roman
Republic. After the death of Julius Caesar, his adopted son
Octavian and his general Marcus Antonius both claimed the
legitimacy of the power and engaged in a civil war. Throughout
years of conflict, they also waged war to gain the opinion of the
Roman public. In an attempt at discrediting Marcus Antonius,
Octavian spread poems and slogans depicting his enemy as a
frivolous defector engaged in a romance with queen Cleopatra
Philopator against Roman moral principles. Octavian eventu-
ally won the war, leading to the suicide of Marcus Antonius
and Cleopatra and the progressive establishment of the Roman
Empire. Yet, over two millenia later, the myths spread by the
future emperor Augustus still outshadow historical facts in the
minds of the public, reinforced through artistic depictions of
these events.

This story highlights three key points in the functioning of
misinformation. First, we observe the call to emotions and irra-
tional thinking over actual facts – later coined post-truth politics
in Tesich [150] – in a situation where the public had no means
to check whether the conveyed information was true or not.
Second, we see that in the long-run, the consensual belief may
remain away from the truth. Despite efforts in reestablishing the
facts, the romanticized picture of Marcus Antonius and Cleopa-
tra remains dominant in the views of today’s public. Finally,
we note that this piece of misinformation has spread through
almost the entire population although the civil war officially
lasted for two years, after which efforts in disinforming the
population stopped.

It appears important at this point to establish a distinction
between misinformation that is, the spread of a false informa-
tion, and disinformation, which additionally requires a purpose
sought in manipulating one’s belief. Two thousand years after
the death of Augustus, methods and means used to disinform
have evolved drastically. Yet, the mechanics at the heart of misin-
formation have remained very similar. Bernays [25] even argues
that the presence of beliefs manipulation is a characteristic el-
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ement of democratic societies. What changed, though, is the
speed and scale at which information transits. The generaliza-
tion of social media as the main means of communication and
information has conducted to a noticeable increase both in the
occurrences of and the attention given to instances of misinfor-
mation.

Up to this date, it remains difficult to assess the exact scale
of misinformational content on social platforms, as pointed out
in Lazer et al. [104]. The authors acknowledge the limited and
sometimes contradictory measures of the impact of fake news
in the 2016 American elections. On this particular point, All-
cott, Gentzkow, and Yu [7] provides a partial answer suggesting
a strong increase in the production of fallacious content until
2017, after which a slight decrease is observed. Yet, despite
public investments in media education and the development of
counter-measures that followed 2016, misinformation remains
an ongoing issue with tangible consequences. The recent exam-
ples of the COVID-19 pandemics and the following vaccination
campaign have highlighted how quickly inaccurate, deceptive
or politically biased information spreads in a context of distrust
towards experts and institutions.

Extensive work on the mechanisms behind mis- and disinfor-
mation in cognitive and political sciences highlighted an array
of explanatory factors for this recent outburst – e.g. cognitive
biases, mistrust in institutions and media, political motives –
which fall beyond the scope of this thesis. Under pressure to
limit the spread of deceptive content, media and open web
companies have put in place a set of policies to regulate news
contents on their platforms. Such policies mostly include source
highlighting, fact checking and advertisement campaigns, all
of which have proved to have a debatable efficiency as high-
lighted in Levin [106]. In this part, we claim that the failure of
counter-disinformation policies may be explained by theoretical
modeling shortcomings.
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3.2 C O N D O R C E T A N D T H E F O U N D AT I O N O F
O P I N I O N E X C H A N G E M O D E L S

The question of information aggregation stands as one of the
oldest and most driving problems in economic theory in partic-
ular, and social sciences in general. Attempts at understanding
how one shared public opinion emerges from the interaction
of individuals’ private information through the use of mathe-
matical tools can be traced back to Condorcet [46] at least. In
this early model, as summed up in Chamley [36], Condorcet
considers an unknown binary state of the world and a set of
agents each receiving a private signal informing them of the
true state with some fixed probability p. He then studies the
asymptotics of majority voting with respect to the size of the
population, which led to the well known jury theorem.

Formally, consider a set of n ∈N identical players – the juries
– having to decide whether a person if guilty or not. There is a
state of the world θ ∈ {G, I} corresponding to the true nature
of the defendant: guilty (G) or innocent (I). Prior to making
a decision, each member of the jury receives a private signal
drawn as follows: with probability p, she is informed of the true
state, and with probability 1− p, she is informed of the wrong
state. In the deliberation, each member decides according to the
value of her signal and the final decision is taken by majority
rule. We then have the following:

Theorem 56 (Condorcet’s Jury Theorem). Let hn(p) be the proba-
bility that the final decision is correct,

1. If p > 1/2, then hn(p)→ 1 as n→ ∞;

2. If p < 1/2, then hn(p)→ 0 as n→ ∞.

This simple example does not involve any assumption on
the beliefs of the members of the jury and only considers a
simple aggregation rule. Yet, it introduces the basic framework
upon which several strands of literature emerged studying the
dynamics of information aggregation. It is important to note at
this point that although the situation described above does not
define a game per se, as there are no payoffs, one may translate
this problem into a strategic framework by introducing some
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utility function u : {G, I}2 → R. A profile a = (a1, . . . , an) ∈
{G, I}n of decisions made by juries yields a final choice m(a)
where m is the majority function. With the true state being θ,
players receive a payoff given by u(m(a, θ)) and it is assumed
that:

u(G, G) > u(G, I) (3.1)
and u(I, I) > u(G, I). (3.2)

Condorcet’s model is an early example of belief aggregation.
It misses many elements that appear in the recent literature:
a dynamic setup, learning heuristics and network effects. Yet,
most of the literature dealing with learning in networks carries
elements of this example as a modeling basis: some state of the
world and a population of agents each having private informa-
tion on this state and some communication happening either
directly or by observing the choices of surrounding players. In
the nebula of models building on this initial setup, two main
families are distinguished based on how beliefs are modeled:
frameworks with agents updating their beliefs according to
Bayes rule on the one hand, and models where, on the contrary,
agents are assumed to bear some limitations in their rational
computation of probabilities. In those two strands of models,
similar questions arise naturally: how does opinion exchange
behave dynamically, do beliefs converge in the long-run and, if
so, do agents end up agreeing on a consensus? Further, when a
consensus emerges, do agents learn the true state of the world,
or put differently, is the consensus belief equal to a Dirac mass
on the true state of the world?

3.3 B AY E S I A N L E A R N I N G I N N E T W O R K S

In this section, we present the foundational elements of Bayesian
learning models in networks, an overview of the existing litera-
ture, and critical elements which support the use of bounded
rationality modeling.
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3.3.1 the bayes rule and belief formation

The Bayes rule stands as one of the most intuitive yet subtle
results in the realm of probability theory. In its simplest form,
it states that if A and B are two events of a probability space,
then the probability that A is true conditional on B being true is
given by

P(A|B) =
P(A ∩ B)

P(B)
(3.3)

Or, by symmetry,

P(A|B) =
P(B|A) ·P(A)

P(B)
(3.4)

In a economic framework, this translates as the foundation
of rational information computing. Consider a agent facing
uncertainty on some unknown state of the world θ drawn from
a set Θ. This agent holds some prior belief on the possible values,
denoted P(θ). Upon receiving some state-relevant signal s drawn
from some set S, a Bayesian agent is assumed to update her
belief on θ by computing the conditional probability P(θ|s), that
is:

P(θ|s) =
P(s|θ) ·P(θ)

P(s)
(3.5)

This requires that the agent knows the right-hand side prob-
ability measures P(s|θ), P(θ)and P(s). Assuming both knowl-
edge and exact computational capability is of course not in-
nocuous and largely debated. For foundational material, we
refer the reader to Savage [141]. For a critical perspective on the
connection between the Bayesian paradigm and rationality, see
e.g. Gilboa [72]. Beyond foundational critiques and tractability
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issues, especially in the context of a network of agents, Bayesian
models remain an essential benchmark of an idealized rational
behavior.

3.3.2 networks of bayesian agents

The Bayesian literature on the emergence of consensus mostly
started with Aumann [12] and its seminal result that two agents
with equal prior beliefs and common knowledge posteriors
must have equal beliefs. Generalizations have been proposed by
Geanakoplos and Polemarchakis [70] and Parikh and Krasucki
[123] who showed respectively that two players repeatedly com-
municating must agree in the long run and that a finite number
of players communicating in pairs will eventually agree. To
some extent, Parikh and Krasucki [123] may be seen as the first
model characterizing the emergence of consensus in a network
of Bayesian agents.

They consider a finite set N of n players. A state of the world θ

is drawn from a finite set Θ according to a common-knowledge
prior distribution µ ∈ ∆(Θ). Additionally, players receive some
private information: in Aumann’s framework, each player i ∈ N
has a partition Pi on Θ. A key element in the model is the com-
munication protocol: at discrete time t, a pair of players (s(t), r(t))
is selected and s(t) transmits a message to r(t). A protocol is
a pair of functions (s, r) mapping the natural numbers to the
player set N. At a given time t, let C(θ, i, t) be the set of possible
states for player i given that the true state is θ. When a pair
(s(t), r(t)) = (i, j) is selected, player i displays some informa-
tion to player j in the form of a number f (C(θ, i, t)) given by
a mapping f from 2Θ to some arbitrary domain D. A protocol
(s, r) generates a directed graph N whose vertices are elements
of N and, for any pair (i, j) ∈ N2, there is an edge from i to j if i
sends a message to j infinitely often.

Theorem 57 (Parikh and Krasucki [123]). There exists a time t0
such that for any θ ∈ Θ, i ∈ N and t, t′ > t0 ∈ N, C(θ, i, t) =
C(θ, i, t′). Moreover, if f is convex and N is strongly connected,
f (C(θ, i, t)) = f (C(θ, j, t)) for all i, j ∈ N.
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This theorem states that if a finite set of Bayesian agents
communicate truthfully infinitely often with each other both
as a sender and as a receiver, then in the limit they must all
share the same belief. In a similar direction, Bala and Goyal
[15] proves that when agents are embedded in a connected
undirected network and observe the outcome of their actions
with some noise, rather than communicating truthfully, players
are able to learn the true payoff distributions for actions that
their neighbors take infinitely often, hence all actions converge
to a consensual action. It is worth noting that although Bala and
Goyal [15] considers Bayesian agents, they limit their ability to
compute beliefs by assuming that they do not make inferences
on unobserved players and behave myopically.

Gale and Kariv [69] extends Bala and Goyal [15] by showing
that in any connected network of privately informed Bayesian
players observing the actions of their neighbors, actions chosen
by all players converge to the same value in finite time with
probability one. Note that, as is Bala and Goyal [15], while
actions converge, beliefs may not and the limit consensual action
may be suboptimal. These results are closely related to social
learning models and the observational learning literature as
Banerjee [16], Smith and Sørensen [145] or Rosenberg, Solan,
and Vieille [130]. Mossel et al. [117] generalizes those results to a
large class of social learning models by introducing the concept
of social learning equilibrium to study the asymptotic properties of
learning processes and characterize conditions that agreement
and herding behavior. In the same line, Acemoglu et al. [3] and
Acemoglu, Bimpikis, and Ozdaglar [2] connect the emergence
of social learning with Bayesian agents and the topology of the
communication network.

The Bayesian framework is arguably at the core of policies
aimed at countering misinformation. Most of them are based on
the assumption that agents behave rationally when it comes to
information processing. By displaying the limited trustworthi-
ness level of a spurious source, they assume agents will revise
their beliefs over secure sources and naturally evacuate false
news. As such, when platforms and news sources developed fact-
checking programs, it was expected that when confronting the
public with factual evidences against false information, viewers
would revise their beliefs and prevent further spread. Similarly,
Facebook implemented the "Trust Indicator", which consists in
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associating each news content-maker to a score of trustworthi-
ness established by an independent agency. The underlying idea
was that agents would filter spurious content by themselves if
provided a proxy of the probability that the source is accurate.
The persistence of detrimental spread of misinformation despite
the implementation of such measures, as well as the identifica-
tion of critical biases in belief formation by behavioral studies,
show the limits of this modeling in a large-scale context.

3.4 L E A R N I N G W I T H B O U N D E D LY R AT I O N A L
A G E N T S

Issues in the tractability of Bayesian models as well as criti-
cal views on rationality have pushed the exploration of non-
Bayesian – or bounded rationality – models. Non-Bayesian con-
sensus models emerged through DeGroot [52], where the author
introduces a model where agents living in a network repeatedly
exchange their beliefs over some state of the world. At each
stage, each agent replaces her belief by the average of her neigh-
bors’ beliefs. It is shown that if the communication network is
connected, beliefs converge to a consensus which depends on
initial beliefs and the network topology only.

3.4.1 consensus in the degroot model

Consider a finite set N = {1, . . . , n} of agents embedded in
a network N = (N, E) with edge set E . The network N is
possibly weighted and directed, and we denote by A ∈ Mn(R)
its weighted adjacency matrix. In other terms, any entry Aij
denotes the weight agent i puts on the opinion of agent j. Entries
are assumed to be non-negative and such that for any i ∈ N,
∑j Aij = 1. There is an unobservable state of the world θ drawn
from a binary state space Θ. For clarity, we will assume that
Θ = {0, 1}. For any i ∈ N, let µi(t) be the belief of i on the
event {θ = 0} at time t, and let µ(t) = (µ1(t), . . . , µn(t)) be the
probability vector of beliefs at time t. Initially, each agent has a
private belief µi(0) ∈ [0, 1].
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So far, the model is close to any Bayesian updating model.
Where it departs from this literature is in the definition of the
updating process. Namely, time is discrete and, at any stage t,
each agent i updates her belief according to the following rule:

µi(t + 1) =
n

∑
j=1

Aijµj(t) (3.6)

or, in matrix form,

µ(t + 1) = Aµ(t) (3.7)

At each period, every agent replaces her opinion by a weighted
average of her neighbors, hence this learning dynamics is of-
ten called "local averaging dynamics". Variations on the up-
dating rule have been proposed, for instance in Friedkin and
Johnsen [62] where authors allow some persistence on agents
beliefs by including one’s persistent belief in the averaging pro-
cess. Namely, each agent i has a private belief νi and a weight
αi ∈ [0, 1] and updates her belief as follows:

µi(t + 1) = αi

n

∑
j=1

Aijµj(t) + (1− αi)νi (3.8)

Other models involve a time-varying and/or non-deterministic
matrix A(t) (see e.g. Chatterjee and Seneta [37] and DeMarzo,
Vayanos, and Zwiebel [53]). Throughout the present chapter and
Chapter 4, we will not consider such extensions and keep all the
network and possible weights fixed. Similar to the Bayesian case,
the objective is to characterize the conditions under which the
opinion exchange dynamics converge and to determine whether
this limit consists in a consensus value or not. Hopefully, this
study is heavily simplified by Markovian properties of the pro-
cess. Indeed, observe that the matrix A is (row-)stochastic and,
as such, is the transition matrix of a finite discrete time Markov
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chain. Thus, convergence properties of the belief exchange pro-
cess can be pinned down by properties of A. Before presenting
major results on convergence, we require the following defini-
tions:

Definition 58. A subset of agents C is closed if and only if there
does not exist a pair i, j ∈ N such that i ∈ C, j /∈ C and Aij > 0.

In the case of undirected networks, a strongly-connected
closed set of agents is referred to as a connected component. In
Markov chain theory, closed sets of agents correspond to the
communicating classes of the associated chain. We recall that a
chain is said to be irreducible if it has a single communicating
class. Similarly, we introduce the definition of aperiodic player
sets:

Definition 59. For any player i ∈ N, we define the period
di of i as the length of the longest cycle containing i: di =
max

{
d ∈N|Ad

ii > 0
}

. For any set of players C, the period dC
of C is defined as the greatest common denominator of the set
{di|i ∈ C}.

For any two i, j ∈ N belonging to the same closed set C,
di = dj.

Definition 60. A player i ∈ N is said to be aperiodic if di = 1.
Similarly, a closed set of players is said to be aperiodic if dC = 1.

We then have the following convergence property:

Theorem 61. The opinion exchange process converges if and only if
every strongly-connected and closed set of nodes is aperiodic.

A full proof of this result is available in Golub and Jackson [74].
After having established convergence, consensus arises naturally.
In the limit of the belief averaging process, it is trivial that
any strongly-connected and aperiodic group of players cannot
disagree. Before detailing the conditions behind the emergence
consensus, we formally define it:
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Definition 62. We say a subset C ⊆ N of agents reaches a
consensus if, given the matrix A and a vector of prior beliefs µ0,
we have that for any two i, j ∈ C, limt µi(t) = limt µj(t).

We then have the following:

Proposition 63. A consensus is reached in the DeGroot model if and
only if the matrix A is irreducible and aperiodic.

3.4.2 instances of naive learning

To illustrate Proposition 63, we present two examples of a con-
verging and a non-converging communication networks, bor-
rowed from Jackson [86].

Consider three agents connected as depicted in the communi-
cation network displayed in Fig. 3.1.

A =

0 1/2 1/2
1 0 0
0 1 0

 1

2

3

1/2

1/2

1
1

Figure 3.1: Irreducible and aperiodic communication network

In this first example, the matrix A is irreducible and aperiodic.
Powers of A converge to a limit

A∞ =

2/5 2/5 1/5
2/5 2/5 1/5
2/5 2/5 1/5

 (3.9)
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This implies that for any initial vector of beliefs µ(0) =
(µ1(0), µ2(0), µ3(0)), the communication process converges to a
consensus, which is given by limt Atµ(0):

µ1(∞) = µ2(∞) = µ3(∞) =
2
5

µ1(0) +
2
5

µ2(0) +
1
5

µ3(0) (3.10)

But if, instead, the communication network is given by the
one in Fig. 3.2, then there is no convergence anymore.

A =

0 1/2 1/2
1 0 0
1 0 0

 1

2

3

1/2

1/2

1
1

Figure 3.2: Irreducible and periodic communication network

The network is indeed periodic of period 2: A = A3 = . . . and
A2 = A4 = . . . hence agents will keep swapping their beliefs
over time.

In the DeGroot model, the emergence of consensus is charac-
terized by elementary properties of the communication network
N . While these properties were also proved in the Bayesian
case, although at a higher technical cost, the important benefit
from resorting to bounded rationality models is the analytical
tractability of the consensus belief. The example in Fig. 3.1 hints
at the fact that, given an irreducible and aperiodic communica-
tion network N , its limit consensus is analytically determined
by the product of the stationary distribution of N and the vector
of initial beliefs. This fact follows directly from Eq. (3.7): if the
sequence (At)t admits a limit A∞ then one immediately has

µ(∞) = A∞µ(0). (3.11)
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Note that asN is assumed to be finite, having both irreducibil-
ity and aperiodicity is a sufficient condition to ensure unicity
of a stationary distribution πA, and the consensus belief is also
given by

µ(∞) = π′adjaµ(0) (3.12)

The DeGroot model gained popularity in the economic litera-
ture with Golub and Jackson [74] which connects consensus and
learning with the network’s adjacency matrix using properties
of Markov chains steady-states and provides interpretations in
terms of centrality measures and influence. They refer to De-
Groot’s belief averaging dynamics as naive learning. Examples
of the use of DeGroot [52] in economic modeling are too nu-
merous to be listed. In the recent literature, Mandel and Venel
[112] considers a stochastic game where two misinformers try
to influence a population of agents applying naive learning. We
refer the reader to the aforementioned surveys Acemoglu and
Ozdaglar [5], Mossel and Tamuz [118] and Golub and Sadler
[75] for further applications and variations on the model. A
more recent reference is Grabisch and Rusinowska [76].

3.5 F R O M N A I V E T O R E I N F O R C E M E N T L E A R N -
I N G

3.5.1 limitations of naive learning

There is a vast body of literature questioning the robustness of
learning dynamics.

Criticism on the DeGroot model already featured in Golub
and Jackson [74] where authors proved that in the general case,
beliefs do not converge for countably infinite player sets. In a
recent work, Peretz et al. [125] shows that in the presence of
agents with fixed beliefs over time, which they call bots, the
common limit can converge to any value.
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In our view, two major limitations are to be opposed to models
based on DeGroot dynamics. First, they have been shown to
have limited robustness, in the sense that the repeated averaging
overweights initial beliefs while enforcing fast convergence of
beliefs. This is particularly the case when some agent i puts some
weight on her own belief, i.e. the entry Aii is strictly positive.
Consider for instance the following communication network:

A =

 0 1/2 1/2
1/2 0 1/2

1/10 1/10 8/10

 (3.13)

The stationary distribution of the matrix is given by the vector

πA = (
1
7
,

1
7
,

5
7
). We see here that as agent 3 has in important

weight on herself, her final influence on the limit consensus is
much stronger than that of agents 1 and 2.

Second, one may question the relevance of a setup where
agents directly access and exchange their beliefs on some state.
An important consequence of the belief averaging dynamics is
that it does not leave room for the occurrence of extreme events
like the spread of a marginal belief to a substantial part of a
population. As such, using non-Bayesian learning models as a
reference in order to build policies countering misinformation
may be inefficient. The two core elements of the process, namely
the exact access by agents to their beliefs and the averaging
equation, yield a deterministic result which can be interpreted
as the outcome of Bayesian models, that is, an idealized bench-
mark. In most small-world communication setups, it seems more
realistic to assume that agents do not access the subjective prob-
abilities they put on the possible values of a state, but rather
decide to relay some information over another according to the
relative probabilities they put on those events. The more they
believe in some event, the more likely it is they will transmit
that information to their neighbors. In other terms, they do
not exchange beliefs but communicate possible states by draws
based on their beliefs. In this regard, we introduce and analyze
a stochastic variant of DeGroot dynamics where agents behave
in this respect.
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Introducing some degree of stochasticity strongly changes the
perspective on misinformation: in DeGroot [52], slightly modify-
ing the prior beliefs of some agents cannot change drastically the
consensus outcome. Yet, most disinformation platforms display
some "shadow of doubt" strategy: agents do not transmit false
information because they necessarily believe it to be true, but
rather because there is some – even small – probability that it
may not be false. In other words, they manage to disinform by
inducing limited beliefs on their false information. The goal of a
disinformer is not to convince but to weave some doubt, as the
means of establishing a controversy.

3.5.2 polya urn models in practice

Our technical approach to this modeling problem is based on the
seminal Polya urn model from Eggenberger and Pólya [57] pre-
sented in Chapter 2. In this paper, authors consider an urn with
balls of several colors and study the convergence of reinforce-
ment dynamics. It is a well known result that proportions in the
urn converge to a beta distribution (see Klenke [96] for instance).
The strength of Polya’s model is its intricate connection with
exchangeability. Central papers in the foundation of Bayesian
inference like De Finetti [51] and Hewitt and Savage [81] heavily
rely on the concept of exchangeability. Polya urn plays a par-
ticular role in that Hill, Lane, Sudderth, et al. [82] proved that
any exchangeable process of {0, 1}-valued random variables is
either Bernoulli, deterministic or generated by draws from a
Polya urn. Our model considers a system of interacting urns in
the flavor of Paganoni and Secchi [120] which introduced such
systems and first proved convergence when the number of balls
in all urns grow at the same speed. Similarly, Dai Pra, Louis,
and Minelli [50] shows convergence of proportions in a system
where urn reinforcement depends both on proportions in each
urn and on the average proportions in the system. Crimaldi,
Dai Pra, and Minelli [49] gives further results on convergence
and fluctuations around the limit of such system. The model we
consider is close yet different, as we consider a system where
urns are reinforced at different speeds which correspond to their
degree in the communication network. Usual probabilistic tools
do not apply as proportions are not martingales and draws are
not exchangeable. Instead, we rely on stochastic approximation
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as introduced by Robbins and Monro [128]. Motivation for the
use of stochastic approximation in the study of urn systems can
be found in Laruelle, Pages, et al. [103], where authors use this
technique in the context of clinical trial modeling.

3.6 C O N T R I B U T I O N S O F T H E C H A P T E R

In the model we develop in Chapter 4, we build an opinion
formation model where agents communicate by drawing states
according to their beliefs instead of directly communicating sub-
jective probabilities. To do so, we model beliefs using reinforcing
urns. Studying the evolution of beliefs comes down to charac-
terizing the evolution of urns’ compositions. Using stochastic
approximation techniques, we show that in such models, under
very general conditions, the dynamics of beliefs converge to a
rest point. We show that at the steady-state, all agents share the
exact same belief on the state of the world. As long as initial
beliefs cover the whole state space, the consensus is drawn from
a distribution with full support. This strongly contradicts the
predictions of DeGroot’s and similar models. We then try to
characterize this limit distribution using simulations.
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S T O C H A S T I C C O N S E N S U S A N D T H E S H A D O W
O F D O U B T

But I think, in general, it’s clear that most
bad things come from misunderstanding, and
communication is generally the way to resolve
misunderstandings — and the Web’s a form
of communications — so it generally should
be good.

Tim Berners-Lee
(developerWorks Interviews, 2006)

In this chapter, we present our contribution to the problem
raised in Chapter 3. In Section 4.1, we begin by exposing our
stochastic extension of non-Bayesian opinion formation models.
Our model carries much of the elements already present in the
DeGroot model, but transforms the exchange dynamics into a
reinforcement learning process. Section 4.2 presents our theoret-
ical contribution. We characterize conditions required to ensure
the emergence of a consensus and prove that, when it exists and
under mild conditions, the limit belief is a random variable with
full support. Section 4.3 provides empirical elements to charac-
terize the distribution of the limit belief based on simulations.
Section 4.4 concludes both the chapter and Part i.

59
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4.1 A S T O C H A S T I C M O D E L O F O P I N I O N E X -
C H A N G E

4.1.1 agents and communication networks

We consider a finite population N = {1, . . . n} of n agents,
embedded in a exogeneous, fixed and undirected graph N =
(N, E) with edge set E . For any agent i, we denote by N (i) the
neighborhood of i and by di the degree of i. Let A = (Aij)i,j∈N be
the adjacency matrix of N , with the convention that Aii = 0 for
all i ∈ N. Unlike in DeGroot [52] and the resulting literature, we
consider an unweighted graph and do not require the matrix A
to be stochastic. Finally, let D be the diagonal matrix of degrees,
that is, the matrix with values di on the diagonal and zero
elsewhere.

There is a binary state space Θ, e.g. Θ = {0, 1}. At the begin-
ning of the game, a state θ is drawn at random from Θ and is
unobserved.

The only information agents will access throughout the com-
munication process originates from an initial noisy private sig-
nal informing them about the state of the world. We model
this signal in the same flavour as Condorcet [46]. Formally, let
α ∈ [0, 1], any player i receives a signal si displaying one of the
two possible states. With θ the true state,

si = θ with probability α

si = 1− θ with probability 1− α
(4.1)

For a large network, by the law of large numbers, α repre-
sents the average proportion of agents initially well-informed.
Throughout, we will assume that every player i has at least one
neighbor in N . This rules out trivial cases where some agents
would be isolated within the communication process, hence
their beliefs would remain at their original value µi(0).
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4.1.2 beliefs and the communication process

Our objective is to extend naive learning models to a setup
where agents communicate by signaling states drawn at random
according to their relative beliefs. To this end, we model beliefs
using urns of infinite capacity with red and blue balls of rep-
resenting the possible values of the state θ. For any observed
signal indicating one of those two events, agents reinforce their
urns by balls of the corresponding color. In this sense, at any
time t ≥ 1, the proportions of a given color in agent i’s urn then
represent her belief over the corresponding event. At time t = 0,
urns are initialized with a ball corresponding to the agent’s
signal si.

Time is discrete and, at each stage t ≥ 1, the communication
process is as follows:

1. First, each agent draws a ball from her urn with uniform
probability and replaces it;

2. Then, each agent observes the draws from her neighbors;

3. For any observed draw, agents reinforce their urns by
adding one ball of the corresponding color.

We introduce the following notational elements:

rt
i = number of red balls in urn i at the end of period t,

bt
i = number of blue balls in urn i at the end of period t,

st
i = rt

i + bt
i = total number of balls in urn i at the end of period t,

zt
i =

bt
i

st
i

= proportion of blue balls in urn i at the end of period t,

xt
i = indicator function of a blue draw from urn i at period t.

Let zt = (zt
1, . . . , zt

n), xt = (xt
1, . . . , xt

n). Finally, let F t =
σ
({

xk} , k ≤ t
)

be the sigma-field generated by the sequence of
draws and F be the corresponding filtration. For any i, j ∈ N
and any t ≥ 1, xt

i and xt
j are assumed to be independent. There-

fore, for a given value of α, there exists a unique probability
measure on the product set Ω of infinite sequences of draws,
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which we will denote Pα. The expectation with respect to this
measure is denoted Eα. The communication process is repeated
infinitely.

At any given time, an agent’s current belief on θ is given by the
proportions of balls in her urn (zt

i , 1− zt
i). The communication

protocol defines a stochastic process over an interacting urn
system. Our objective is to study the evolution of the urn system
and determine whether proportions converge, if a consensus is
reached and if so, to characterize it given the network topology
and the value of α.

4.1.3 introductory example

Consider three agents connected in line as displayed in Fig. 4.1.
Assume that at time t = 0, agent 1 and 3 received a signal
s1 = s3 = θ and agent 2 received s2 = 1− θ. Then at time t = 0
urns 1 and 3 will contain a blue ball and urn 2 will contain one
red ball. At time t = 1, every player draws the only ball their
urns contain and display it. Then, they all replace their draw
and add a new ball of the corresponding color for every draw
they observe. That is, at the end of the first stage, urns 1 and 3

will contain each one blue ball and one red ball, and urn 2 will
contain one red ball and two blue balls. Given the initialization
procedure detailed above, the first stage of the communication
process is always deterministic.

1 2 3

Figure 4.1: Three urns in line.

At time t = 2, the communication protocol is repeated: the end
urns will draw one blue or one red ball with equal probability
and the middle urn will draw one blue ball with probability 2/3
and a red ball with probability 1/3.

Table 4.1 details the possible outcomes at time t = 2. The left
column is the vector of draws from urn 1, 2 and 3 respectively
and the right column gives the compositions at the end of the
time period in the same order. Left figures correspond to the
number of blue balls in the urn and right figures to the number
of red balls.
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Vector of draws Probability of occurence Urns compositions

(B,B,B) 1/6 (2,1)–(4,1)–(2,1)
(B,R,B) 1/12 (1,2)–(4,1)–(1,2)
(R,B,B) 1/6 (2,1)–(3,2)–(2,1)
(R,R,B) 1/12 (1,2)–(3,2)–(1,2)
(B,B,R) 1/6 (2,1)–(3,2)–(2,1)
(B,R,R) 1/12 (1,2)–(3,2)–(1,2)
(R,B,R) 1/6 (2,1)–(1,4)–(2,1)
(R,R,R) 1/12 (1,2)–(1,4)–(1,2)

Table 4.1: Possible outcomes at time t = 2.

4.2 B E L I E F D Y N A M I C S A N D C O N V E R G E N C E

In this section, we present the analytical results we obtain in
terms of convergence of beliefs.

4.2.1 urn dynamics

The sequence of proportions (zt)t as defined in Section 4.1 forms
a recursive system whose dynamics can be derived as follows:


bt+1

i = bt
i + ∑j∈N (i) xt+1

j

rt+1
i = rt

i + di −∑j∈N (i) xt+1
j

st+1
i = st

i + di = s0
i + di(t + 1)

(4.2)

Additionaly, by definition we have that for any i ∈ N and
t ≥ 1,

xt
i ↪→ B

(
zt−1

i

)
(4.3)
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Hence

E
[
bt+1

i − bt
i |F t

]
= E

 ∑
j∈N (i)

xt+1
j |F t

 = ∑
j∈N (i)

zt
j (4.4)

Eq. (4.4) shows that, in expectation, the belief updating pro-
cess obeys some local averaging property as in canonical naive
learning models: the variation of proportion in any urn evolves
according to the sum of the proportions in the neighboring urns.

4.2.2 convergence of beliefs

We first show that beliefs converge in the sense that color pro-
portions in each urn converge to a stable point. The proof relies
on SA techniques, as probabilistic methods do not apply in our
case. Indeed, unless the graph N is regular, neither local nor
global proportions are martingales and it is easy to see that the
process (zt) is not exchangeable as the rate at which the number
of balls in an urns evolve depends both on the urn’s degree and
on time. Nevertheless, we are able to write the dynamics as a
recursive algorithm for which we can prove convergence.

Theorem 64. For every α ∈ [0, 1] and any graphN , limt→∞ zt
i exists

Pα-almost-surely for all i ∈ N.

Proof. From Eq. (4.2) we derive the following recursive formula
on zt

i :

zt+1
i − zt

i =
− dizt

i + ∑j∈N (i) xt+1
j

s0
i + di(t + 1)

(4.5)
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By adding and subtracting the conditional expectation of the
number of red draws in neighboring urns to the numerator, we
have:

zt+1
i − zt

i =
1

s0
i + di(t + 1)

−dizt
i + E

 ∑
j∈N (i)

xt+1
j |F t


+

1
s0

i + di(t + 1)

 ∑
j∈N (i)

xt+1
j −E

 ∑
j∈N (i)

xt+1
j |F t


(4.6)

Observing that by Eq. (4.3), conditional on F t, the expected
number of blue draws in neighboring urns at time t + 1 is equal
to the sum of their proportions at time t, we obtain:

zt+1
i − zt

i =
1

s0
i + di(t + 1)

−dizt
i + ∑

j∈N (i)
zt

j


+

1
s0

i + di(t + 1)

 ∑
j∈N (i)

xt+1
j −E

 ∑
j∈N (i)

xt+1
j |F t


(4.7)

We now rescale the equation by a factor that is independent
of di:

zt+1
i − zt

i =

(
1 + (t + 1)

s0
i + di(t + 1)

)
1 + (t + 1)

−dizt
i + ∑

j∈N (i)
zt

j



+

(
1 + (t + 1)

s0
i + di(t + 1)

)
1 + (t + 1)

 ∑
j∈N (i)

xt+1
j −E

 ∑
j∈N (i)

xt+1
j |F t


(4.8)
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We simplify this system by introducing the following short-
hand notations. Let

f t : [0, 1]N → [0, 1]N

zt 7→ ( f t
1(z

t), . . . , fN
t(zt))

with f t
i (z

t) =
1 + t

s0
i + dit

∑
j∈N (i)

zt
j − dizt

i .
(4.9)

The function f t
i is the deterministic part – or mean-flow – of

the stochastic system mapping zt−1 to zt. Let

ut = (ut
1, . . . , uN

t),

with ut
i =

1 + t
1 + dit

∑
j∈N (i)

xt+1
j −E

 ∑
j∈N (i)

xt+1
j |F t

 (4.10)

The elements ut
i are random variables (r.v.s) measuring how

the realized proportions zt
i move away from their mean-flow

value. Finally let

γt =
1

1 + (t + 1)
(4.11)

The sequence (γt) may be seen as a sequence of step sizes at
which the system evolves.

We can rewrite Eq. (4.8) in matrix form, which yields the
much nicer system:

zt+1 − zt = γt [ f t(zt) + ut] (4.12)
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The system Eq. (4.12) forms a s.a.a. in the sense of Robbins
and Monro [128]. It describes the evolution of a discrete-time
stochastic process, zt, as the γt-weighted sum of a deterministic
continuous-time map f t and a random residual ut. SA theory
aims at establishing conditions that ensure trajectories of the
discrete-time stochastic differential system Eq. (4.12) will ap-
proach those of a suitable continuous-time o.d.e. in the limit.

We now study the asymptotic behavior of Eq. (4.12). In order
to ensure convergence of the stochastic system, we first make
the following observations.

Observation 1. The sequence (γt)t satisfies∑∞
t=1 γt = ∞

∑∞
t=1
(
γt)2

< ∞
(4.13)

Observation 1 is central in any s.a.a. à la Robbins and Monro
[128] with deterministic weights. These weights serve as the
increments of time discretization. In that perspective, the first
point implies that the algorithm will cover the entire time inter-
val. The second point involves, jointly with the next observation,
the disappearing of noises ∑t ut

i in the limit. As γt is of the order
of 1/t, Observation 1 is immediate.

Observation 2. For every i in N, the sequence (ut
i) is a martingale

difference noise relative to F t.

Observation 2, when combined with the second point in Ob-
servation 1, ensures that the cumulative error due to the dis-
cretization noise is negligible almost-surely, as the noise variance
will vanish asymptotically. Observation 2 holds as, for any i ∈ N,
the sequence (ut

i) is a sequence of bounded r.v.s with zero mean.

Observation 3. The maps f t
i are Lipschitz continuous and mea-

surable with respect to F t and uniformly continuous in t for
t ≥ 1.

SA ensures that a discrete-time stochastic process evolves
along the trajectories of a continuous-time o.d.e.. In that respect,
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Observation 3 ensures that the o.d.e. is well defined and has a
unique solution.

Finally, although the maps ( f t
i )i,t in Eq. (4.12) depend on

time, for any i ∈ N, the sequence of maps ( f t
i ) converge to a

time-independent limit as time goes to infinity. Indeed, for any
i ∈ N and any z ∈ [0, 1]n, let f̄i(z) = 1

di
∑j∈N (i) zj − dizi and

f̄ : z 7→
(

f̄1(z), . . . , f̄n(z)
)
.

Observation 4. For any z ∈ [0, 1]N and any k ∈N∗,

lim
s→∞

∣∣∣∣∣s+k

∑
t=s

γt [ f t
i (z)− f̄i(z)

]∣∣∣∣∣→ 0

Observation 4 holds immediately as, for any i ∈ N, f t
i → f̄i

as t→ ∞.

Based on Observations 1–4, we can apply Theorem 2.3 from
Kushner and Yin [100, chapter 5].

Theorem 65 (Kushner and Yin [100, chapter 5]). If Observa-
tions 1–4 hold and

(
zt) is bounded with probability one, then for

Pα-almost all ω ∈ Ω, the limits z̄(ω) of convergent subsequences of(
zt(ω)

)
are trajectories of

żt = f̄ (zt) (4.14)

in some bounded invariant set and
(
zt(ω)

)
converges to this invari-

ant set.

This result ensures that the system Eq. (4.12) evolves almost-
surely along trajectories of Eq. (4.14) and converges to some
invariant set of the o.d.e. system, that is, a set M ⊆ [0, 1]n such
that f̄ (M) = M where f̄ (M) denotes the image of the set M by
the map f̄ .

To further characterize convergence properties of Eq. (4.8), we
turn to the study of limit points of the o.d.e. Eq. (4.14). Observe
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that Eq. (4.14) is a autonomous linear system with constant
coefficients. For any z ∈ [0, 1]n, we can rewrite the system as
follows:

ż = f̄ (z) (4.15)

= −
(

1
d1

, . . . ,
1
dn

)′
Lz (4.16)

Where L is the Laplacian matrix of N as introduced in Chap-
ter 2. The behavior of trajectories in the vector field defined by
Eq. (4.14) is captured by spectral properties of L. More precisely,
equilibrium points of Eq. (4.14) belong to the nullspace of −L,
as 1

di
> 0 for every i ∈ N.

Going further requires a bit of additional notation. Let {1, . . . , K}
be the connected components of N , i.e. maximal subsets Nk of
agents such that for any two i, j ∈ Nk there exists a path from
i to j. For any connected component k, let nk be its number of
nodes.

By permuting the agents according to their belonging to a
same component, let

LN =


a1, . . . , a1︸ ︷︷ ︸

n1 times

,
n2 times︷ ︸︸ ︷

a2, . . . , a2, . . . , ak, . . . , ak︸ ︷︷ ︸
nk times

 |a1, . . . , ak ∈ [0, 1]


(4.17)

That is, LN is the set of vectors in [0, 1]n with identical entry
for all agents belonging to a same component. We now state our
main convergence result on Eq. (4.14):

Lemma 66. Every trajectory of Eq. (4.14) converges to the set LN .

Proof of Lemma 66. The proof of Lemma 66 follows entirely from
arguments on the properties of the matrix L. First, we show
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that LN is the eigenspace of L associated with the eigenvalue 0.
Recall that for any i, j ∈ N,

Li,j =


di if i = j;

−1 if i 6= j and i and j are neighbors;

0 elsewhere.

(4.18)

The Laplacian matrix of a graph captures crucial informa-
tion about the topology of the graph. We recall its elemental
properties:

Property 67. For any undirected network N with non-negative
weights,

1. L has only real eigenvalues;

2. L is positive semidefinite;

3. The smallest eigenvalue of L is λ1 = 0 with corresponding
eigenvector (1, . . . , 1)′. The multiplicity of λ1 is equal to the
number K of connected components of N .

Positive semidefiniteness follows immediately from the ex-
pression of the inner product 〈Lz, z〉 = ∑i∼j(zi − zj)

2. The last
property is a bit more difficult to prove. Let N be a graph con-
sisting in one single connected component. By definition of L,
the sum of entries on each row is equal to zero, hence zero is an
eigenvalue of N with associated eigenvector 1n = (1, . . . , 1)′. To
prove that the eigenspace associated with zero is of dimension
one, let y 6= 1n be another eigenvector associated to zero. Then,
by definition,

y′Ly = ∑
i∼j

(yi − yj)
2 = 0 (4.19)

therefore y ∈ Vect (1n) and the multiplicity of the eigenvalue
zero is one. Now, if a graph N consists in K > 1 connected
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components, then its Laplacian matrix L can be written as a
block diagonal matrix where blocks correspond to the Laplacian
matrices L1, . . . , LK of its components. By what precedes, each
components has an eigenvalue 0 with multiplicity 1, therefore
L has the eigenvalue 0 with multiplicity K. Corresponding K
eigenvectors are vectors with entry 1 for agents belonging to
component k and 0 else, for each component k. This proves
that for any graph N , the set LN is indeed the nullspace of its
Laplacian matrix. For further properties and results on Laplacian
matrices, we refer the reader to the survey Mohar [115].

In turn, this implies that the set of equilibrium points – i.e.
points z such that ż = 0 – of Eq. (4.14) is equal to LN . Note that
LN is trivially an invariant set of Eq. (4.14). From Property 67,
we know that L is positive semidefinite, hence −L is negative
semidefinite. As a consequence, the set LN is exponentially
stable. In other terms, once a trajectory of Eq. (4.14) approaches
the set LN , not only does it it remain close to LN forever, but it
also converges to LN at exponential speed. Once it reaches any
point p in the set, as −Lp = 0, it remains at this point forever.

Finally, it remains to show that LN is the only invariant set to
which the process zt converges. This fact follows immediately
from the fact that −L is negative semidefinite.

Having established Lemma 66, Theorem 64 follows directly
since Theorem 65 guarantees that for any ω ∈ Ω, zt(ω) con-
verges along trajectories of Eq. (4.14). As the latter converge to
stable points in LN , so does zt(ω), which concludes the proof.

This first result ensures that for any graph structure N and
any initial condition on the urns, proportions converge almost-
surely to a stable point. In particular, convergence is indepen-
dent of the initial signal structure and applies for any alternative
initialization of the system. By the construction of the set LN ,
we recover the result from Theorem 61 in an undirected context.
The next result details the conditions required for a consensus
to emerge.
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4.3 E M E R G E N C E O F C O N S E N S U S

In this section, we will show that in our model, a consensus
emerges under the sole condition that the network N is con-
nected. This condition strongly resembles what the DeGroot
model requires to achieve a similar outcome – see Section 3.4.

Theorem 68. For every α ∈ [0, 1], suppose that the graph G is
connected. Then for any i, j ∈ N, limt→∞ zt

i = limt→∞ zt
j Pα-almost-

surely.

Proof. From Theorem 64, we know that proportions converge
Pα-almost-surely along the trajectories of Eq. (4.14), that is:

żt
i =

1
di

∑
j∈N (i)

zt
j − dizt

i (4.20)

As shown in the proof of Theorem 64, limit values of Eq. (4.20)
belong to limit values of the following autonomous linear sys-
tem:

żt = −Lzt (4.21)

Where L is the Laplacian matrix of the graph N . From Prop-
erty 67, we know that if N is connected, then the nullspace of
−L is of dimension 1 with associated eigenvector (1, . . . , 1)′. By
the same arguments than the proof of Theorem 64, it follow if
N is connected, any trajectory of the process zt converges to the
set

LN = {(a, . . . , a) |a ∈ [0, 1]} (4.22)

which corresponds exactly to the set of beliefs where all agents
agree on one consensual belief.
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Throughout the rest of the chapter, we will assume N is con-
nected hence beliefs converge to a limit consensus. So far, we
obtained results very similar in substance to those obtained in
the DeGroot model, namely convergence of beliefs in a gen-
eral setup and emergence of a consensus if the communication
network is connected. This confirms the interpretation of our
model as a stochastic extension of DeGroot [52]. Yet, while a
consensus emerges in both models, its value strongly differs.
Recall from Section 3.4 that in naive learning, with a irreducible
and aperiodic communication network, the value of the limit
belief is given by the product of the stationary distribution of the
matrix A and the vector of prior beliefs. In other terms, given
a communication network and a vector of initial beliefs, there
exists a unique consensus which is analytically tractable ex-ante.
From this fact originate both the strength and main failure of the
DeGroot model: namely an extreme tractability easing the use
of the framework in modeling, but not leaving room to realistic
phenomena. In that respect, our model features an opposite
behavior: it provides realistic predictions in terms of the spread
of competing beliefs within a population, at the cost of limited
tractability. The next theorem states our main result: that in our
stochastic extension of DeGroot [52], the limit consensus is no
longer a value but a full-support r.v..

Theorem 69. For any connected graph N and any α ∈ (0, 1), the
limit belief z̄ is a non-trivial r.v. with full support on [0, 1].

Proof. The proof is based on the concept of attainability from
Benaïm [21].

Definition 70. A point p ∈ RN is attainable by z if for every
t > 0 and every open neighborhood U of p,

Pα (∃s ≥ t : zs ∈ U) > 0.

In other terms, a point p is attainable if, from any vector
of proportions, there is a strictly positive probability that zt

becomes arbitrarily close to p in finite time.

Lemma 71. Any point p in the interior of LN is attainable.
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To prove Lemma 71, simply observe that, from Eq. (4.2), zt+1
i −

zt
i is of the order of 1

t . If α ∈ (0, 1), P
(
zt

i ∈ (0, 1)
)
> 0 for every

i and t ≥ 0.

We showed that any point in LN is attainable. To complete
the proof of Theorem 64, it remains to show that any attainable
point in LN belongs to the support of z̄. This follows trivially
as, by definition, the support of a r.v. is the smallest closed set
with full probability mass. Then, all points in LN being both
attainable and equilibria is sufficient to conclude.

The limit cases where either α = 0 or α = 1 are trivially
solvable, as urns in the system display only one color hence
beliefs will remain at their original value forever.

Theorem 69 marks a major difference between our model
and the original model of DeGroot [52]. The limit belief being
a r.v. with full support as long as α ∈ (0, 1) means that if the
probability that an agent is misinformed is strictly positive then,
ex-ante, the limit belief may take any possible value in [0, 1]. In
particular, occurrences where one single agent spreads some
misinformation and overturns the opinion of the entire network
may happen. Such phenomenon only appears in extensions of
DeGroot [52] where heterogeneous agents are considered.

These results lead naturally to the study of the distribution of
the limit belief. The strength of DeGroot [52] is to connect ana-
lytically the consensus to premisses of the model, and seeking a
similar result is a logical extension of our work. Unfortunately,
the characterization of closed-form formulas for the distribu-
tion of limit values of a s.a.a. is known to be a seldom solvable
problem. For details on the general intractability of limits of
interacting urn systems, we refer the reader to Paganoni and
Secchi [120] and Crimaldi, Dai Pra, and Minelli [49] where au-
thors detail state of the art methods to obtain partial fluctuation
results. This is why we resorted to using simulations in order
to obtain further results in this direction. Interestingly, the data
obtained from these simulations highlighted a tighter relation
between our model and classical instances of reinforcement
learning as Eggenberger and Pólya [57]. The next section details
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the empirical evidence we obtained on the limit distribution of
beliefs.

4.4 L I M I T D I S T R I B U T I O N

While our efforts in characterizing the limit distribution of the
consensus z̄ as a function of N and α failed, large scale simula-
tions provide some useful evidence. We simulated the learning
dynamics on three network structures: stars, regular graphs
with varying degree and complete networks, each of size up to
n = 100. The values of the limit belief were simulated for differ-
ent values of α. The value of the limit belief was collected after
3000 iterations of the communication process. Main elements of
the code used for the simulation feature in Appendix a.1.

4.4.1 reinforcement learning and the beta distri-
bution

In the classical model from Eggenberger and Pólya [57], an urn
is initialized at time t = 0 with α ≥ 1 blue balls and β ≥ 1 red
balls. Then, at each discrete time step, a ball is drawn from the
urn and replaced with m ≥ 1 additional balls of the same color.
It is widespread that the proportion of blue balls converges in
distribution to a beta distribution B(α/m, β/m). For a proof of
the result, see for instance Mahmoud [111].

For any two reals a, b > 0, the beta distribution B(a, b) has a
density function

p(x, a, b) =
xa−1(1− x)b−1

B(a, b)
1{x∈[0,1]} (4.23)
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where B(a, b) = Γ(a)Γ(b)
Γ(a+b) and Γ is the Gamma function defined

by

Γ(z) =
∫ +∞

0
tz−1e−tdt (4.24)

for any z > 0.

Although we consider a system of interacting urns rather than
a single urn, the beta distribution stands as a strong candidate
for the limit distribution.

Conjecture 72. The distribution of z̄ follows a beta distribution
B(a, b) for some a, b,> 0 which depend only on α and N .

A more refined intuition that would support Conjecture 72

relies on Hill, Lane, Sudderth, et al. [82]. In this seminal paper,
authors show that in a general class of urn models, if a {0, 1}-
valued process of the outcomes of draws is exchangeable, then
this process is a sequence of i.i.d. Bernoulli draws, deterministic,
or generated by a Polya urn.

Definition 73. A finite sequence X1, . . . , Xn of r.v.s is said to be
exchangeable if its joint probability is invariant under any finite
permutation. An infinite sequence X1, X2, . . . is exchangeable
is its finite subsequences X1, . . . , Xn are exchangeable for any
n ∈N.

Exchangeability is known to be connected to i.i.d. r.v.s since
De Finetti [51], where it is proved that if an infinite sequence of
{0, 1}-valued r.v.s is exchangeable, then the joint distribution of
any subsequence is a mixture of independent Bernoulli distri-
butions. It is also a well-known result that, given a Polya urn
scheme, the random sequence defined by the indicator variable
of draws being of a fixed color is an exchangeable sequence.
What Hill, Lane, Sudderth, et al. [82] achieves is to show that
in a class of generalized Polya urn processes, any exchangeable
{0, 1}-valued random sequence based on the outcome of draws
must either be deterministic, a sequence of i.i.d. Bernoulli draws
or generated by a Polya urn.
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Figure 4.2: Fitness measures for beta and normal distributions on a
star graph with α = 0.75, n = 5000 observations.

Our framework strongly differs from those considered in Hill,
Lane, Sudderth, et al. [82], both in its setup – as we consider
a system of interacting urns instead of a single urn – and its
properties as sequences of draws x1, x2, . . . are usually not ex-
changeable. Yet, since Theorem 68 ensures that proportions
converge to a limit random value, the belief process obeys a
looser definition of exchangeability.
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Definition 74. A sequence (X1, X2, . . . ) is said to be asymptot-
ically exchangeable if there exists an exchangeable sequence
(Y1, Y2, . . . ) such that

(Xk+1, Xk+2, . . . ) D−−−→
k→∞

(Y1, Y2, . . . ) (4.25)

In our model, the sequence of draws (x1, x2, . . . ) is clearly
asymptotically exchangeable since proportions converge to a
common fixed value. This implies the following proposition:

Proposition 75. For any i ∈ N, the sequence of draws x1
i , x2

i , . . . is
asymptotically exchangeable.

This result follows directly from the almost-sure convergence
of the vector of proportions to a stable vector with identical
entries. This implies that the sequence of draws converges to a
sequence of i.i.d. Bernoulli variables with equal parameter, hence
for each urn i we have asymptotic exchangeability.

To our knowledge, there is no result connecting immediately
exchangeability in the limit to Polya urns and the beta distribu-
tion. Yet, we believe that there is a potential for an analytical
proof of Conjecture 72 when combined by the local properties of
the communication protocol in the limit. The exploration of this
idea is still ongoing. In the meantime, to support our statement,
we relied on large-scale simulations.

We collected the values of the limit belief for star, k-regular
and complete graphs of fixed size N = 100 and fixed values
of α. As all the simulations were run independently, for any
given graph structure and value of α, the set of values of the
limit beliefs is an i.i.d. sample. A beta distribution fitting was
computed by maximum likelihood estimation. Other distribu-
tions were fitted in order to assess goodness-of-fit using usual
criteria. Fig. 4.2 compares the fitted distributions assuming re-
spectively a normal distribution and a beta distribution. The
graph displays empirical and theoretical densities, quantile-
quantile plots, cumulative distribution functions and probability
plots. The beta distribution clearly appears as well fitted to the
sample. Additional plots feature in the appendix for different
network structures and values of α. In all the aforementioned
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cases, fitness measures yielded similar results, where the beta
distribution clearly appears as more adapted to describe the
data.

4.4.2 estimation of the parameters

Assuming the limit belief does follow a beta distribution, we
are able to estimate its parameters using maximum likelihood
estimation for various networks and values of α. Our first con-
jecture concerns the average of the limit distribution. All the
simulations we ran conducted to a strong belief in that its value
is α. In other terms, the expected proportion of red balls in the
limit is equal to the expected number of misinformed agents
ex-ante.

Conjecture 76. For any α ∈ [0, 1] and any i ∈ N, Eα [z̄] = α.

While this stands as a conjecture in the general case, it can be
proved for regular networks:

Theorem 77. For any natural 1 ≤ r ≤ n, assume N is a r-regular
network. Then for any α ∈ [0, 1] and any i ∈ N, Eα [z̄] = α.

Proof. Let Mt = ∑i∈N zt
i .

Mt −E [Mt+1|Ft] = E

[
N

∑
i=1

zt+1
i − zt

i |Ft

]
(4.26)

=
N

∑
i=1

− dizt
i + ∑j∈N (i) zt

j

di (t + 1) + 1
(4.27)

=
N

∑
i=1

zt
i

 ∑
j∈N (i)

1
dj(t + 1) + 1

−
1

di(t + 1) + 1


(4.28)
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If N is r-regular, di = r for every i ∈ N, hence

Mt−E [Mt+1|Ft] =
N

∑
i=1

zt
i

 ∑
j∈N (i)

1
r(t + 1) + 1

−
1

r(t + 1) + 1

 = 0

(4.29)

This proves that the process (Mt) is a martingale. In partic-
ular, we have that E

[
Mt|z0] = nα for every t. Additionally, by

Theorem 68,

lim
t→∞

Mt = lim
t→∞ ∑

i∈N
zt

i = ∑
i∈N

lim
t→∞

zt
i = nz̄ (4.30)

hence we conclude that Eα [z̄] = α.

To support this conjecture in the case of non-regular graphs,
we simulated the communication dynamics on a star graph
of size n = 50 for increasing values of α. Table 4.2 provides
estimates of the sample means.

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Av. 0.097 0.20 0.29 0.40 0.49 0.60 0.69 0.79 0.89

Table 4.2: Empirical mean in a star network of size N = 50 (7500 obs.).

According to Theorem 77 and Conjecture 76, the network
structure does not influence the average limit belief, which re-
mains close to the initial average belief on average. This leaves
room for further study of the fluctuations of z̄ around its ex-
pectation. In terms of applications of the model, Conjecture 76

implies that a risk-neutral disinformer who would try to max-
imize the spread of a false belief in the network is indifferent
regarding who to influence. While this seems very intuitive in
the case of regular graphs, as no player should have more influ-
ence than the other give they all share the same degree, this is
quite surprising for non-regular graphs. In particular, it would
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imply than when trying to disinform a star network, on expec-
tation targeting the central agent yields the same result than
targeting any other node. Finally, note that while Theorem 77

and Conjecture 76 state that the network topology does not
influence the average value of the limit belief, it is not true for
higher order moments. On this point, simulations on different
graph structures with identical number of agents and signal ac-
curacy α yield different parameter estimates when fitting a beta
distribution. The network structure also influences the speed
of convergence, which happens at a faster rate in star networks
than in circles for instance.

4.5 C O N C L U S I O N

In this chapter, we have provided an alternative approach to
modeling non-Bayesian opinion exchange using a stochastic
framework. We assimilate the network of communication agents
to an interacting urn system that evolves according to reinforce-
ment dynamics. Based on stochastic approximation methods,
we are able to prove the convergence of our model and recover
the central properties of the DeGroot model with respect to the
emergence of consensus.

Beyond the existence of this limit belief, the two models di-
verge in their results. In our case, we obtain a full-support
random variable under the condition that the initial signals re-
ceived by agents put a non-zero probability on the two possible
states of the world. This answers our critiques regarding naive
learning and its deterministic built-in convergence. By contrast,
a random consensus leaves room to propagation phenomena
that are observed in reality, as unlikely as they may be. Both
Conjecture 72 and Conjecture 76 provide information on the
likelihood of extreme events.

In their current state, Chapter 3 and Chapter 4 form a working
paper which is still under progress. Several points still deserve
additional efforts, in particular when it comes to characteriz-
ing the limit distribution and generalizing our results to finite
state spaces and general urn initializations. While an analytical
characterization of the limit belief is unlikely, we have strong
hints that suggest this limit distribution is a beta distribution.



82 stochastic consensus and the shadow of doubt

This confirms the intuition that, as a whole, the system acts as a
global Polya urn. Further exploration of exchangeability proper-
ties and their connection to the beta distribution might help in
supporting this intuition and provide some tools for a full proof
of Conjecture 72. To our knowledge, no paper has been able to
achieve such formal results on interacting urn systems.

A better understanding of the limit distribution would pro-
vide a better applicability of our results, in particular in de-
signing a model of strategic disinformation with disinformants
being parts of the network. That application was the initial mo-
tivation of the paper and remains its main objective. In that
respect, proving Conjecture 76 would strengthen our results in
an interesting direction. If it does stand for any graph topology,
it would imply that the degree of an agent plays no role in the
process of information spreading.



Part II

L E A R N I N G I N D Y N A M I C N O N AT O M I C
R O U T I N G G A M E S W I T H I N C O M P L E T E

I N F O R M AT I O N

This part is based on the paper Social Learning in Nonatomic
Routing Games in collaboration with Tristan Tomala (HEC
Paris) and Marco Scarsini (LUISS). We consider a discrete-
time nonatomic routing game with variable demand and
uncertain costs. Given a routing network with single ori-
gin and destination, the cost function of each edge de-
pends on some uncertain persistent state parameter. At
every period, a random traffic demand is routed through
the network according to a Wardrop equilibrium. The re-
alized costs are publicly observed and the public Bayesian
belief about the state parameter is updated. We say that
there is strong learning when beliefs converge to the truth
and weak learning when the equilibrium flow converges
to the complete-information flow. We characterize the net-
works for which learning occurs. We prove that these
networks have a series-parallel structure and provide a
counterexample to show that learning may fail in non-
series-parallel networks.

Chapter Chapter 5 introduces routing games and rational
learning, the two central elements of the model. It pro-
poses a brief overview of the standard models and major
results. Chapter Chapter 6 details the model and presents
the main results.

The paper has been presented at several conferences and
published as an abstract in Chen et al. [40]. It is currently
in R&R status at Games and Economic Behavior. Since we
started this project, we greatly benefited from fruitful
comments from participants in seminars and conferences
where we got the chance to present it.





5
S O C I A L L E A R N I N G A N D C O N G E S T I O N G A M E S

99 second hand smartphones are transported
in a handcart to generate virtual traffic jam
in Google Maps. Through this activity, it is
possible to turn a green street red which has
an impact in the physical world by navigating
cars on another route to avoid being stuck in
traffic.

Simon Weckert, 2020

(Google Maps Hack Performance, Berlin)

This chapter presents the problem of social learning in rout-
ing games studied in Chapter 6 through an overview of the
major related threads of literature. Section 5.1 presents the non-
theoretical motivations that lead to our main problem. Sec-
tion 5.2 details the main elements in the informational frame-
work at play in our model. Section 5.3 introduces the classes of
congestion, potential and routing games. It exposes the main
modeling elements and results from the algorithmic game the-
oretical literature. Section 5.4 presents the existing models on
the topic of routing games with incomplete information and
explains the main differences with what is done in Chapter 6. In
Section 5.5, we discuss the key differences between continuous
and finite player sets. Finally, Section 5.6 gives an overview of
our main contributions on the topic.

85
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5.1 N AV I G AT I O N S Y S T E M S A S L E A R N I N G S Y S -
T E M S

The market for navigation systems has settled as one of the
biggest among the information and communication technolo-
gies, both in its number of users and its revenues. According
to GlobalWebIndex data, 54% of cellphones used GoogleMaps
in the year 2013, making it the most popular app, with nearly
$3 billion in revenue for the year 2019. With numerous opera-
tors, the market for navigation systems is highly competitive,
with the competition between providers being driven by their
respective reliability as perceived by users. A majority of current
navigation systems rely on real-time estimations to propose the
most efficient path. To do so, they combine users’ data streams
to compute the level of congestion and corresponding travel
times on each road in the routing network. This naturally raises
the question of the reliability of their available data. In a no-
table performance, German artist Simon Weckert connected 99

phones to GoogleMaps and wandered in Berlin to simulate what
the app recognized as a traffic jam. Through this performance,
he intended to prove that not only is the data inflow of navi-
gation systems manipulable, but that is also has consequences
on other drivers, as path recommendations changed to avoid
his artificial jam, rerouting actual drivers. This, of course, is an
extreme instance of data manipulation and, although it deserves
to be acknowledged as a potential threat to such systems, there
are reasons to believe that, in general, GPS crowd-sourced data
is trustworthy. But even in the sole presence of what could be
called truthful drivers, basing recommendations on users data
is highly problematic per se as all observations are equilibrium
outcomes. Indeed, although this may be a sensible scheme when
it comes to estimating real-time congestion on heavily used
roads, it is unclear whether decentralized equilibrium dynamics
provide a sufficient level of exploration of the whole network
or not. Two mechanics are at play in this setup. First, the entan-
gled relationship between equilibrium actions and information
in-flow, characterized in Kremer, Mansour, and Perry [98] as the
feedback effect: agents’ choices generate new information, which
will influence equilibrium behavior thereafter. Second, routing
frameworks usually aim at modeling a vast number of agents
that is, belong to the class of large games. Arbitrarily large player
sets are approximated by continua of agents which are know
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to show myopic behavior in repeated settings. The conjunction
of these two effects – endogeneous information acquisition and
myopic behavior – may prevent agents from exploring their
whole action sets and leave optimal paths unidentified.

There are two complementary approaches to this problem,
which mostly depends on how the player set is modeled. On the
one hand, drivers may be thought of as a set of agents sequen-
tially arriving and making their decisions. In other terms, the
navigation system, which performs the role of a principal, faces
one driver at a time. It provides some information to the agent,
which then chooses a path to go from her origin to her desti-
nation. It is then possible for the platform to reverse-engineer
equilibrium behavior with respect to the offered information
and determine the optimal information provision in order to
achieve some social optimum. Of course, this requires the navi-
gation system to have a sufficient knowledge of the routes, hence
it has to incentivize some exploration of the routing network
first. To do so, the platform has to provide – from time to time
– some information on the unknown roads in order to push
users to explore them and provide better information to later
agents. This generates an exploration/exploitation trade-off in a
sequential information design approach, which was studied in
Kremer, Mansour, and Perry [98].

On the other hand, instead of considering a sequence of sin-
gle players acting independently, one may consider instead a
sequence of player sets. If player sets are continuous, hence all
agents are negligible, the platform is limited to a non-strategic
role, only acting as an information aggregator and public broad-
caster. The central mechanics there becomes the interplay be-
tween the sequence of equilibria and the dynamics of beliefs,
à la sequential learning. This is where players’ myopia hinders
accurate information aggregation, as there may exist some paths
which would not be take along the sequence of equilibria, while
being optimal if their cost functions were known. In other terms,
even if information is publicly and completely broadcast – i.e.
all drivers have perfect information about traffic – the amount
of gathered information might not be socially efficient, as some
routes may never be taken at any equilibrium of the game. This
is the problem we tackle in Chapter 6.
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Of course, there exists some middle-ground between the two
models. One may consider a sequence of finite player sets for in-
stance. They are not under the scope of our paper, but Section 5.5
provide some elements on their behavior.

5.2 R AT I O N A L L E A R N I N G I N G A M E S

5.2.1 bayesian learning dynamics

The understanding of learning in the present part strongly dif-
fers from Part i. In the previous chapters, we referred to learning
in the sense of belief exchange within a population that has
no access to further information. Every signal was present ex
ante and the main focus was on how they transit across the
agent network, given some communication protocol. In this
part, the information is obtained gradually through feedbacks
controlled by action profiles. Those feedbacks may take many
forms, from observing the choice of actions of other players to
state-dependent payoffs. The central problem becomes whether
the equilibrium dynamics lead players to learn efficiently, in
the sense that the sequence of equilibria converges to the set of
Nash equilibria of the game with full information.

The interest of game theorists in processes converging to Nash
equilibria can be traced back to early works by Robinson [129]
on the convergence of fictitious play. Most of these early models
consider a non-strategic process or boundedly-rational players.
The inclusion of a full-fledged Bayesian framework in the study
of learning dynamics originated through two concurrent lines
of work. The first line studies the concept of rational learning and
transposes results in statistical learning into a game theoretical
language. Introduced in Kalai and Lehrer [90], the phrasing
rational learning refers to a framework where agents are assumed
to be subjectively rational in the sense that prior to the game they
hold private prior beliefs on their opponents payoffs, which they
adapt over the course of the game via Bayes Rule. The model
accounts for the fact that players know that their opponents
are also engaged in the process of learning and operate in the
long-term. The main result from Kalai and Lehrer [90] show that,
for finite player and action sets, if agents’ prior beliefs on their
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opponents’ strategies are absolutely continuous with respect to
the truth, then the sequence of Nash equilibria of the game with
incomplete information converges to a point arbitrarily close
to the set of Nash equilibria of the game with full information
almost-surely. The absolute continuity condition, also referred to
as grain of truth condition, follows from the seminal result from
Blackwell and Dubins [28] on merging of stochastic processes.
Importantly, authors in Kalai and Lehrer [90] distinguish two
outcomes of the learning process: in the long-run, and under
the conditions of their main result, as the sequence of equilibria
converges to the set of equilibria of the full-information game,
players may not learn their opponents strategies accurately. We
carry this distinction throughout Chapter 6.

The second line of work which introduced Bayesian learn-
ing dynamics in repeated games originated with Banerjee [17]
and is referred to as sequential social learning. These models con-
sider short-lived agents sequentially facing a decision problem.
Agents differ only in their initial private information. Prior to
making their decision, they observe a subset of actions selected
by past players. The core mechanics at play is the interaction
of the two sources of information: private signals and observed
plays. Banerjee [17] and Bikhchandani, Hirshleifer, and Welch
[27] considered models where agents enter a market sequen-
tially, update their beliefs by taking into consideration their
private signals and the actions chosen by the previous agents,
and make their optimal decisions accordingly. They show that
social learning may fail, that is, it is possible that in equilibrium
all agents choose a suboptimal action. Such phenomenon occurs
when, after some time threshold, players ignore their private sig-
nals. This pattern is know as an informational cascade. Smith and
Sørensen [144] showed that cascades are due to the hypothesis
that the private signals are bounded, so, from some point on, no
private signal can overcome the observations’ strength. When
signals are unbounded, social learning occurs with probability
one. A very general version of this model was recently studied
by Arieli and Mueller-Frank [9]. A thorough overview of the
subject can be found in the survey Golub and Sadler [75]. From
this part of the literature, we borrow the idea of a sequence of
short-lived agent sets. In the general case, this is done at the
cost of a strong reduction of the set of equilibria of the repeated
game, as short-lived agents do not optimize intertemporally. In
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our case, though, there is no loss of generality. Details on this
specific point feature in Section 5.5.

5.2.2 partial learning in games

There is an important body of literature on partial learning and
the interaction between equilibrium and beliefs dynamics. As
exposed above, Kalai and Lehrer [91] defined rational learning
for an infinitely repeated game where Bayesian players with
heterogeneous beliefs maximize their expected utilities. They
showed that, if agents’ prior beliefs and the truth satisfy an
“absolute continuity” condition, then the sequence of plays con-
verges to an outcome arbitrarily close to a Nash equilibrium. Yet,
in general, even if agents perfectly observe action profiles, errors
in prior beliefs may persist over the course of the game. Fuden-
berg and Levine [63] introduced the concept of self-confirming
equilibrium, where players’ beliefs about other players’ actions
are required to be correct only on the equilibrium path. As
agents play best reponses to their beliefs, these may differ sub-
stantially from the truth, as long as nothing contradicts the
beliefs. Hence, self-confirming equilibria and Nash equilibria of
a game need not be the same. Given the sequential nature of
the repeated game, self-confirming equilibria may allow play-
ers to hold beliefs on other agents that may be inconsistent
with rational behavior. Battigalli and Guaitoli [19] refined self-
confirming equilibrium by proposing the concept of conjectural
equilibrium for extensive form games of incomplete information
without a common prior. At a conjectural equilibrium, players
are assumed to behave rationally given the information they
have about the game parameters. Rubinstein and Wolinsky [137]
pushed this idea further through the concept of rationalizable
conjectural equilibrium, which requires that agents’ rationality
be common knowledge. In this paper, we adopt a similar point
of view. Namely, we study the steady states of social learning
dynamics where players myopically best-respond to the infor-
mation obtained by previous generations. We show that this
information is correct for the edges of the network that have
been explored along the equilibrium path, but may remain in-
correct for other edges. Thus, some paths that would be used
under full information may remain unused forever.
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5.3 I N T R O D U C I N G R O U T I N G G A M E S

Routing games form a popular family of models at the inter-
section of economics and computer science. Their popularity
stems both from the practicality of the problem they pose – how
does traffic route in a decentralized network – and the strength
of their structure. As they form the main building element in
our model, we propose a brief overview of the various existing
models, their properties and the essential questions studied in
the literature.

5.3.1 congestion games and potential games

Routing games belong to the broader class of congestion games.
In the most general sense, they consist in games where players
aim at minimizing a cost generated by congestion externalities.
In the formal sense, a congestion game if defined as a tuple
(N, E ,R, {ce}e∈E ) containing the following:

• N is the player set;

• E is a finite set of resources or facilities;

• R ∈ 2E is the set of pure strategies consisting in subsets of
the resource set E ;

• For each e ∈ E , ce is a continuous, positive and increasing
function mapping the mass of players using facility e to
the cost they incur by doing so.

The congestion externalities are captured by the cost functions:
the more players use some resource e, the higher the cost they
will have to pay. Two different models are defined depending
on the nature of the player set N:

• A congestion game is atomic if the set N is countable;

• A congestion game is nonatomic if the set E is a continuum.
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In congestion games, players are characterized by the mass
of resource, or unit of flow, they require. In nonatomic games
it corresponds to the Lebesgue measure d of the player set N.
In an atomic congestion game each player i ∈ N is associated
to her mass di expressed in units of flows. The total mass d is
then the sum of individual masses di. Two important variants of
atomic games exist depending on the nature of available actions:

• An atomic congestion game is said to be non-splittable if
players only have access to pure strategies;

• An atomic congestion game is said to be splittable if players
may play mixed strategies.

In other terms, if a game is splittable, players can split their
mass on the different subsets of resources. For any pure strategy
r ∈ R, yr ∈ R+ denotes the mass of players choosing pure
strategy r. We refer to y as a flow. For each resource e ∈ E , the
load xe of e is defined as

xe := ∑
r3e

yr. (5.1)

The symbols x = {xe}e∈E and y = {yr}r∈R denote the load
vector and the flow vector, respectively. Notice that x is uniquely
determined by y, but not vice versa.

The cost of using edge e is ce(xe), with an abuse of notation
the cost of using path r is denoted by

cr(y) := ∑
e∈r

ce(xe). (5.2)

The cost vector (ce(xe))e∈E induced by the load vector x is de-
noted by c(x). When considering atomic games, we denote ci(y)
the cost paid by player i ∈ N under the flow y.

A flow vector y is feasible if it satisfies the demand, i.e.,

∑
r∈R

yr = d, (5.3)

The set of feasible flows is denoted by Y .

We now define the equilibrium concepts.
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Definition 78. A feasible flow y∗ ∈ Y is a Nash equilibrium of an
atomic game G if, for every i ∈ N and action r ∈ R, we have

ci(y∗) ≤ ci(r, y∗−i). (5.4)

For nonatomic games, the standard solution concept is Wardrop
equilibria, due to Wardrop [154].

Definition 79. A feasible flow y∗ ∈ Y is a Wardrop equilibrium
(WE) of a nonatomic game G if, for all r, r′ ∈ R with y∗r > 0, we
have

cr(y∗) ≤ cr′(y
∗). (5.5)

An important consequence of Definition 79 is that, at equi-
librium, all the paths receiving a non-zero mass of users have
the same cost. Further, monotonicity of the cost functions imply
uniqueness of this equilibrium cost.

Haurie and Marcotte [80] studies the connection between the
two equilibrium concepts. The details of the asymptotic relation
between atomic and nonatomic congestion games have been
examined by Cominetti et al. [43].

Atomic congestion games were introduced by Rosenthal [131],
who proved that any congestion game admits a potential func-
tion, whose local minimizers are the pure Nash equilibria of the
game.

Definition 80. A game G = (N,S , u) is a potential game if there
exists a function Ψ : S → R such that, for all i ∈ N, all s−i ∈ S−i
and si, s′i ∈ S i,

ui(si, s−i)− ui(s′i, s−i) = Ψi(si, s−i)−Ψi(s′i, s−i) (5.6)
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For any atomic non-splittable game, the Rosenthal potential
is defined as

Ψ(y) = ∑
e∈E

xe

∑
i=1

ce(i) (5.7)

If, instead, the game is atomic splittable or nonatomic, then
the Rosenthal potential is

Ψ(y) = ∑
e∈E

∫ xe

t=0
ce(t)dt (5.8)

The existence of a potential implies the following theorem,
which holds both for atomic and nonatomic games with the
corresponding equilibrium concept.

Theorem 81. Every congestion game has at least one equilibrium
flow.

Note that for atomic non-splittable games with finitely many
players, this immediately involves the convergence of the myopic
best-response dynamics in finite time. An important example
of congestion games which is featured in Rosenthal [131] is the
Cournot oligopoly.

Monderer and Shapley [116] studied potential games and
some of their generalizations and proved that for any potential
game there exists a congestion game with the same potential
function. Congestion games with a continuum of players and
their relation to potential games were studied by Sandholm
[140]. This isomorphic connection between the classes of conges-
tion and potential games make the latter a natural framework
for the study of online optimization algorithms. In particular,
in nonatomic games, under strict monotonicity of the cost func-
tions, the potential is a strictly convex function, which ensures
uniqueness of the equilibrium flow. Coucheney, Gaujal, and
Mertikopoulos [48] provides a regularized algorithm whose tra-
jectories converge to Nash equilibria for both continuous and
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discrete-time potential games. Foster et al. [59] and Lykouris,
Syrgkanis, and Tardos [110] provide fast-converging algorithms
for regret minimization under smoothness assumption. Algorith-
mic game theory is a vivid field of research with a high fre-
quency of publications and large range of applications. Giving
an exhaustive account falls far beyond the scope of the present
thesis. We refer the interested reader to the recent edition of
Roughgarden [134].

5.3.2 routing networks and braess’ paradox

Traffic routing games exist as a subclass of congestion games.
They study the problem of decentralized agents who choose one
path on a network from their origin to their destination, with
the goal to minimize their cost, identified with the traveling
time. This traveling time depends on the choice of all players,
since the cost of an edge increases with the number of agents
who use it. This family of models have applications in trans-
portation, data traffic, patient flows in healthcare, etc. The major
addition with respect to congestion games is a routing network
structuring the set of pure strategies. From an abstract perspec-
tive, routing games add a combinatorial structure on the set of
pure strategies. A routing network is an multigraph N = (V , E),
where V is the vertex set and E is the edge set, endowed with
an origin/destination pair O,D ∈ V . In the vast majority of the
literature, N is a directed network. Given v, u ∈ V , a path from
v to u is an ordered set of edges e1, . . . ek such that the tail of e1
is v, the head of ek is u, and, for each i ∈ {1, . . . , k− 1}, the head
of ei is the tail of ei+1. The set R indicates the set of paths from
O to D. To avoid trivialities, we assume that each edge is part of
a path in R. Each e ∈ E is endowed with a continuous increas-
ing function ce : [0, γe) → R+ that represents the cost of using
edge e as a function of its load. Every routing game being a
congestion games, all the definitions and results aforementioned
apply.

The earliest example of a traffic congestion game can be found
in Pigou [126] through a simple example. There are two nodes,
the origin O and the destination D, connected by two parallel
directed edges. Costs are defined as in Fig. 5.1: the upper edge
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has a linear cost c1(x) = x while the lower edge has a constant
cost c2(x) = 1.

O D

c1(x) = x

c2(x) = 1

Figure 5.1: Pigou’s Routing Network.

Assume there is a demand mass d = 1. Then, there is a unique
flow y∗ where all users transit through the upper road, with
total cost at equilibrium y∗1 ċ1(y∗) = 1.

Some properties of this class were then studied by Beckmann,
McGuire, and Winsten [20], in particular connections to linear
programming and queueing theory.

Starting with Roughgarden and Tardos [135], an important
body of work has been devoted to the study of equilibrium
efficiency. In most applications of routing games, network per-
formance is a crucial issue which is difficult to address by simple
regulatory means. Roughgarden and Tardos [135] and followers
worked on quantifying the degradation in performance due to
pure decentralized behavior. Quantification is based on the ratio
of total equilibrium and optimal costs. The worst-case value
of such ratio is coined price of anarchy (P.o.A.) in Papadimitriou
[122]. Its best-case counter-part is named price of stability (P.o.S.)
in Anshelevich et al. [8]. In Pigou’s example, it is immediate to
see that the unique equilibrium flow y∗ is not efficient. An equal
splitting of the demand between the two paths would yield a

total cost of
(

1
2

)2

+
1
2
=

3
4

. This value corresponds to the lowest

achievable cost, hence in this example PoA = PoS =
4
3

.

More generally, Roughgarden and Tardos [135] show that the

P.o.A. is bounded above by
3
4

for affine cost functions. Rough-
garden [132] shows that this inefficiency is not a property of
the network in the sense that in a Pigou network, it is possible
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to obtain an unbounded P.o.A. using appropriate cost functions.
Different bounds are computed for other classes of cost func-
tions and we refer the reader to Roughgarden [134] for further
information on the subject.

Proving that it is possible to achieve an arbitrarily high P.o.A.
in a Pigou network is not proving that the network topology also
has no impact on equilibrium efficiency. On the contrary, there
is a strong connection between the routing network and the
occurrence of a phenomenon known as the Braess paradox, after
Braess [30]. We borrow the following definition from Milchtaich
[114].

Definition 82. Let G := (d,N , {ce}e∈E ) be a routing game.
Braess paradox occurs in G if there exist an edge e ∈ E and two
cost functions ĉ and c̃ such that ĉ(x) ≤ c̃(x) for any load, and
such that for any equilibrium flows ŷ when ce = ĉ and ỹ when
ce = c̃ with equal demand, the total equilibrium costs c(ŷ) and
c(ỹ) satisfy c(ŷ) > c(ŷ).

In other terms, Braess paradox occurs in a network N when
raising the cost on an edge strictly lowers the total equilibrium
cost. A simple instance of this phenomenon occurs in the fol-
lowing. Let N be the network depicted in Fig. 6.1.

O

a

b

D

e1

e2

e4

e5

e3

Figure 5.2: Braess Paradox.

Let c1, c2, c3, c4, c5 be respectively the cost functions on edges
e1, e2, e3, e4 and e5 and assume for any x ∈ R

c1(x) = c5(x) = x (5.9)
c2(x) = c4(x) = 1 (5.10)

and c3(x) = 0. (5.11)
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Assume that the demand mass is 1. Then, there is a unique
equilibrium flow with a mass 1 routing on the path e1 − e3 − e5
and the total equilibrium cost is equal to 2. If instead we have
c3(x) = ∞ for any x ∈ R, then there exists a unique equilibrium

flow with a mass
1
2

of users choosing the path e1− e4 and a mass

1
2

using the path e2 − e5. The total equilibrium cost becomes
3
2

which is strictly lower: by removing edge e3, the equilibrium
cost improves for every player.

Braess paradox has been shown to emerge from the topol-
ogy of the routing network. Holzman and Law-yone [84] and
Milchtaich [114] have characterized respectively the directed
and undirected network classes that are immune to this phe-
nomenon in routing games with a single origin-destination pair.
Chen, Diao, and Hu [39] extends both papers to networks with
a finite number of origin-destination pairs. In those papers, au-
thors show that the class of networks where Braess paradox
does not happen corresponds to the class of series-parallel net-
works defined in Duffin [56] and Riordan and Shannon [127].
They consist in a class of graphs that can be constructed by an
iterative process of series and parallel operations.

Definition 83. A network N is called series-parallel (S.P.) if it can
be defined sequentially as follows:

(a) Either N has a single edge.

(b) Or N consists of two S.P. networks connected in series, by
merging the destination of the first with the origin of the
second.

(c) Or N consists of two S.P. networks connected in parallel,
by merging the origin of the first with the origin of the
second and the destination of the first with the destination
of the second.

Fig. 5.3 provides examples of S.P. and non-S.P. networks.

Intuitively, S.P. aim at preventing the embedding of subnet-
works similar to Fig. 5.2. We refer the reader to Duffin [56],
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O a

b

c

D

(A)

O a

b

c

D

(B)

Figure 5.3: Network (A) is S.P.. Network (B) is not S.P., due to the
edge from node c to node b.

Holzman and Law-yone [84], Milchtaich [114], and Riordan and
Shannon [127] for further information on S.P. networks.

5.4 R O U T I N G G A M E S W I T H I N C O M P L E T E I N -
F O R M AT I O N

In most of the existing literature on routing games, costs are
assumed to be known, but in reality they are affected by un-
predictable circumstances: car accidents, downed servers and
so on. Uncertainty relative to these cost functions may strongly
impact the equilibrium behavior, attracting agents away from
potentially optimal actions. Thus the analysis of routing games
of incomplete information is an important object of study.

As being a playground for economists and computer scientists,
much has been said on the efficiency of algorithmic learning in
routing games. This is less true when it comes to more tradi-
tional economic approaches to learning, although there exists
some body of literature. As is shown in Acemoglu et al. [4] as
well as Chapter 6, informational issues in routing games are
strongly connected to the topological issues posed by Braess
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paradox. We review papers that are closely related to our work.
Due to the diversity of these papers and the relative relevance
of their results regarding our own, we will only describe their
main focal points briefly.

5.4.1 informational issues and equilibrium efficiency

Informational issues in static and dynamic routing games have
been considered by several authors, some of them dealing with
atomic games. For instance, Gairing, Monien, and Tiemann [66]
considered atomic routing games with incomplete information
where the type of a player is her traffic, which is private infor-
mation. They proved existence of Bayesian pure equilibria and
they studied their complexity. Then, they studied properties of
completely mixed Nash equilibria and finally they provided
bounds for the price of anarchy. Gairing [65] studied atomic con-
gestion games where each player can be of two types, rational
or malicious. He proved that pure Bayesian equilibria may fail
to exist and studied the price of malice. Ashlagi, Monderer, and
Tennenholtz [10] studied symmetric congestion games where
the number of active players is unknown and there is no known
prior distribution over the number of active players. Berenbrink
and Schulte [24] considered evolutionary stable strategies for
Bayesian routing games with parallel links. Fotakis et al. [60]
studied how the inefficiency of equilibria in congestion games
is affected by what they call social ignorance, that is, the lack of
information about the presence of other players. Scarsini and
Tomala [142] studied repeated versions of routing games. Syrgka-
nis [149] and Roughgarden [133] proved that known bounds
for the price of anarchy in smooth games extend to their in-
complete information version when players’ private preferences
are drawn independently. Roughgarden [133] showed that the
extension does not hold for correlated preferences. Cominetti
et al. [42] studied the behavior of the price of anarchy in atomic
congestion games where each player i takes part in the game
with some probability pi and the participations are independent.
Gaitonde and Tardos [67] and Gaitonde and Tardos [68] exam-
ined discrete-time queueing models where routers compete for
servers and learn using strategies that satisfy a no-regret condi-
tion. The key element of their model is the explicit consideration
of carryover effect from one period to the other.
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5.4.2 routing games with random demand

Our model adopts parts of the sequential social learning frame-
work, mainly in the form of a sequence of demands of random
size. The following references deal with uncertainty in the traffic
demand. Wang, Doan, and Chen [153] examined nonatomic
routing games with random demand and studied the depen-
dence of the price of anarchy on the variability of the demand
and on the network structure. Correa, Hoeksma, and Schröder
[47] studied a class of nonatomic routing games where different
sets of players take part in the game with some probability;
they considered the Bayes Nash equilibrium of these games and
showed that the bounds for price of anarchy do not deteriorate
with respect to the complete information version of the game.
Bhaskar et al. [26] studied non-atomic routing games where cost
functions are unknown. Their goal was to determine edge tolls
in order to achieve specific equilibria. They showed that this can
be done under mild conditions through the use of an oracle com-
puting equilibrium flows given a set of tolls. In particular, they
computed tight complexity bounds for series-parallel routing
networks.

5.4.3 informational braess paradox

The closest thread of research to our work studies the connection
between equilibrium inefficiency, the topology of the network
and the information structure.

Acemoglu et al. [4] dealt with nonatomic routing games where
different types of agents have different information sets and each
agent can only use paths in her own information set. They con-
sidered non-oriented routing networks and defined the concepts
of information-constrained Wardrop equilibrium and of infor-
mational Braess paradox, that is, a situation where, if agents get
more information, they experience a higher cost in equilibrium.
They showed that such a paradox cannot happen if and only
if the network is series of linearly independent (SLI). The class of
SLI networks is a subclass of S.P. networks that prevents the em-
bedding of subnetworks in the form of the network depicted in
Fig. 5.4.
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O D

Figure 5.4: An undirected, non-SLI S.P. network.

Wu, Liu, and Amin [160] studied a routing game where agents
subscribe to one of two traffic information systems and char-
acterized equilibria under two information structures whose
difference is the assumption of the common prior in one and
not in the other. In the routing game studied by Wu, Amin, and
Ozdaglar [159] the population of users is divided into groups
and each group subscribes to one specific traffic information
system. The cost functions on each edge are state dependent
and each traffic information system sends a noisy signal only
to its subscribers. The solution concept that they adopted is the
Bayesian Wardrop equilibrium. They studied the sensitivity of
the equilibria with respect to changes in the size of the groups.
The paper by Wu and Amin [158] is the closest in spirit to our
own. They analyze nonatomic routing games with unknown
costs where Bayesian public beliefs are updated over time. At
equilibrium, only the used edges provide some information
about the realized costs. The difference between their model and
ours is that they consider constant demand and noisy costs with
Gaussian noise, possibly correlated across different edges. While
close in flavor, the two different sets of assumptions produce
different learning outcomes. In our model, costs are determin-
istic functions of a random state of the world which is fixed
ex-ante. This implies that learning revolves around sampling
the cost functions at sufficiently many load levels in order to
accurately distinguish the different possible states. This allow
us to find conditions on distribution of demand and network
topology that ensure learning. The differences between the two
models are detailed in Section 6.5 where we provide instances of
routing games where noisy costs cannot induce learning while
a random demand does.
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5.5 O N F O L K A N D A N T I F O L K T H E O R E M S

One of the reasons why sequential social learning models con-
sider sequences of short-lived agents is that this enforces myopic
behavior. An agent living only one period has no incentives to
play some dominated strategy in the hope to provide informa-
tion to future generations. This shrinks the set of equilibria of the
repeated game, as they reduce to a sequence of Nash equilibria
of the stage games. In our paper, we adopt a similar modeling
hypothesis as we consider a sequence of demand masses of
short-lived agents. The reason we require this is to allow for
randomness on the demand size, which would make little sense
if we considered the same agent set at every period. Regarding
the nature of equilibria in the dynamic game, this assumption is
not as strong as it may seem. We even claim that it is done at
very little loss of generality.

5.5.1 myopic behavior of continuous player sets

While it may seem counter intuitive that long-lived agents may
only behave myopically in a repeated game, it is mostly a conse-
quence of the nonatomic nature of the games we consider. When
dealing with continua of players, folk theorems usually cease
to apply and leave room for their opposite counterpart, anti-folk
theorems. This line of results originated with Dubey and Kaneko
[55], Green [77], and Kaneko [95]. In these papers, authors ex-
pose the limits of folk theorems with respect to the observability
of actions. They show that the set of equilibria of a repeated
game shrinks when players have limited monitoring of their op-
ponents. Green [77] restricts his analysis to the implementability
of trigger strategies in a context of public monitoring and anony-
mous actions. He shows that in a repeated game where players
are not informed of their opponents’ actions, any equilibrium
sustained by a trigger strategy is a sequence of ε- equilibria of its
stage games. Dubey and Kaneko [55] shows that in discounted
games with public monitoring, if actions are anonymous, i.e.
individual deviators cannot be identified, then the set of Nash
equilibria of the repeated game is equal to the set of sequences
of Nash equilibria of the stage games. A particular case where
this result applies is games with continuous player sets: if pay-
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offs only depend on the aggregate distribution of actions, then
a zero-measure deviation is not detectable hence players are
anonymous and the anti-folk theorem applies. With a finite
number of players, conditions are more demanding as whenever
a player deviates, there is a change in the aggregate choice of
actions. Sabourian [138] provides proofs on the tightness of the
anonymity assumption for games with large but finite player
sets and extends the results from Green [77] to general strategy
sets. In Al-Najjar and Smorodinsky [6], authors further extend
these results to games where payoffs are not necessarily anony-
mous. More recently, Pai, Roth, and Ullman [121] extended the
analysis to games with private monitoring.

In our model, the player sets are continuous and cost func-
tions are continuous and strictly increasing functions of the
mass of agents using the edges of the network. Building on
these theorems, it is equivalent to assume that realized costs are
unobserved on edges receiving a zero-measure of agents and to
assume that the demand consists in a sequence of short-lived
agent sets. In Chapter 6, due to this consequential non-strategic
behavior, we will avoid referring to players and player sets and
mostly consider them as a demand inflow.

5.5.2 atomic routing games with unknown costs

As we stressed the strong differences between atomic and nonatomic
models, it is natural to wonder what would have happened of
our model in the case of a finite player set. Fortunately, in the
case of agents with non-splittable demand, an answer has al-
ready been provided by Wiseman [157]. In this paper, Wiseman
aims at establishing a folk theorem result for games where pay-
offs depend on an unknown state parameter. There is finitely
many players, states and actions. There is a common prior belief
µ on the state and the history of the game is public. Agents
share a common discount rate. His main result is as follows: fix
an ε > 0 and a vector (v(θ1), . . . , v(θk))of payoffs in the interior
of the set of feasible and individually rational payoffs in each
state and assume that the common prior belief µ puts a strictly
positive weight on each state, then there exists a discount thresh-
old δ̄(µ) < 1 such that for all δ > δ̄(µ) there is a sequential
equilibrium such that when the realized state is θ, the expected
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payoff vector is ε-close to v(θ) and with probability at least 1− ε,
the belief on θ is ε-close to 1 in finite time.

As our model considers a finite routing network N , a finite
state space Θ and a public history, were we to consider an
atomic agent set with non-splittable demands, we would fall
under the scope of this partial folk theorem. We would jointly
have a characterization of payoffs that can be sustained in the
repeated game as well as learning in finite time.

There remains the case of an atomic player set with splittable
demand. We do not have an immediate answer to this ques-
tion, which is non-trivial. We leave the door open for future
exploration.

5.6 C O N T R I B U T I O N S O F T H E C H A P T E R

We consider a repeated symmetric nonatomic routing game
(NRG) where the cost functions of each edge depend on the
load of the edge and on an unknown state parameter that is
invariant over time. The set of states is finite and endowed with
a common prior. At each period of time, a short-lived generation
of users with a given total demand plays the game and realizes a
Wardrop equilibrium with respect to the expected costs on edges:
each path that receives positive load has the least expected cost.
For every used edge, its load and the corresponding realized
cost become public information for the following generations.
There is perfect recall, so each generation knows the entire past
history of the game and updates its beliefs in a Bayesian way.
The sequence of different generations’ demands is assumed to
be random, i.i.d..

We consider two concepts of social learning: under strong
learning, players eventually learn the true state of the world;
under weak learning they learn to play the game as if the true
state of the world was known. We show that weak learning
is a strictly weaker concept than strong learning and that the
conditions to achieve either of them depend on the topology of
the network and on the support of the random demand. Our
main theorem proves that weak learning occurs if the routing
network is series-parallel and both the cost functions and the
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support of the demand are unbounded. Further, we show that
strong learning is achieved under the same prerequisites and
the additional condition that the demand has full support over
R+. The intuition behind this result is the following: when the
demand is stochastic, equilibrium flows vary. This generates
observations of the cost functions for different values of loads.
Based on results from Cominetti, Dose, and Scarsini [44] on
the variation of equilibrium flows with respect to the demand,
we prove that in a series-parallel network, as the demand goes
high, all edges are used in equilibrium and equilibrium loads are
unbounded. This implies that the cost functions will be observed
at levels which allow distinguishing between the cost-relevant
states with probability one. Finally, we prove that the condition
on the network topology is necessary: for typical networks that
do not satisfy it, we show that there exists an assignment of cost
functions and capacities such that weak learning fails for any
distribution of the demand.

The intuition is that a network which is not series-parallel
contains a Wheatstone sub-network, and the topology of Wheat-
stone network is such that some edges are not used in equilib-
rium when the demand is high.



6
S O C I A L L E A R N I N G I N N O N AT O M I C R O U T I N G
G A M E S

Y en la antena de la radio flotaba locamente la
bandera con la cruz roja, y se corría a ochenta
kilómetros por hora hacia las luces que crecían
poco a poco, sin que ya se supiera bien por qué
tanto apuro, por qué esa carrera en la noche
entre autos desconocidos donde nadie sabía
nada de los otros, donde todo el mundo miraba
fijamente hacia adelante, exclusivamente hacia
adelante.

Julio Cortázar, La Autopista del Sur
Todos los fuegos el fuego (1966)

The main question raised in Chapter 5 may be expressed as
follows: if a routing game where cost functions are not known
is repeated over time and beliefs of players are updated taking
into account observations of previous players, will the costs
functions be eventually learned? We identified two opposite
effects arising naturally: on one hand, agents aim at minimizing
the costs they incur immediately. On the other hand, socially
efficient behavior requires agents to explore the routing network
in order to learn the actual costs. We consider generations of
short-lived players who play the game only once and are being
replaced every period by a new set of players. This artifact
from sequential models of social learning eases the exposition
while being down at a relatively small loss of generality. Some
amount of social learning may be achieved as players of one
generation update their beliefs based on the behavior of the

107
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previous generations. Thus, selfish behavior may provide public
information for the next generations of players. One challenge is
to analyze the amount of such public information provision. If
the game parameters are stationary, given that each generation
has no incentive to be forward looking, potentially informative
behavior may be off equilibrium path and thus social learning
may fail. Yet, when there is variability in the circumstances in
which the game is played, current equilibrium behavior may
provide useful information to the subsequent generations of
players.

The chapter is structured as follows. Section 6.1 presents
the static model of routing games with unknown costs. Then
Section 6.2 presents the dynamic version of the game and our
definitions of weak and strong learning. In Section 6.3, our
main results are stated along with examples that illustrate the
importance of the conditions they require. In Section 6.4, we
provide the complete proofs of our main theorems. Section 6.5
details the major differences between our model and its closest
counterpart, Wu and Amin [158]. Finally, Section 6.6 concludes
the chapter and Part ii.

6.1 R O U T I N G G A M E S W I T H U N K N O W N N E T-
W O R K S TAT E

6.1.1 capacitated routing games

Our modeling is based on the baseline routing game detailed in
Section 5.3. Let N = (V , E) be an oriented multigraph endowed
with an origin/destination pair O,D ∈ V . The set R indicates
the set of paths from O to D.

We consider capacitated edges: every edge in the network
allows for a given maximal mass of agents. This framing encom-
passes the model presented in Section 5.3 as capacities can be
infinite.

Formally, each e ∈ E is endowed with a capacity γe ∈ (0,+∞]
and with a continuous strictly increasing function ce : [0, γe)→
R+ that represents the cost of using edge e as a function of
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its load. The traffic demand is denoted by d. The tuple G :=
(d,N , {γe}e∈E , {ce}e∈E ) defines a nonatomic routing game.

A cut C of the network is a subset of E such that there does
not exist a path from O to D the uses only edges in E \ C. The
capacity of C is the sum of the capacities of its edges γC :=
∑e∈C γe. The capacity γ of the network N is the smallest capacity
among all possible cuts; it corresponds to the maximum traffic
that can flow from origin to destination [see 58]. Throughout
the paper, we assume d ∈ [0, γ), that is the demand satisfies the
capacity constraints. If γ = ∞, then any positive demand can be
satisfied.

For each path r ∈ R, yr ∈ R+ denotes the flow over path r.
For each edge e ∈ E , the load xe of e, load vector x = {xe}e∈E
and the flow vector y = {yr}r∈R are defined as in Section 5.3.

A flow vector y is feasible if it satisfies the demand and obeys
the capacity constraints, i.e.,

∑
r∈R

yr = d, (6.1)

xe < γe, for all e ∈ E . (6.2)

The set of feasible flows is denoted by Y . Notice that x is uniquely
determined by y, but not vice versa.

This model encompasses the classical case where there is no
limit of capacity: γe = +∞ for each e. It also covers M/M/1

queuing models where the cost (or waiting time) tends to infinity
as the demand approaches the capacity. An alternative approach
would be to extend the cost functions to the whole R+ and allow
values in [0,+∞]; this would have no impact on our results.

Since cost functions are strictly increasing, there exists a
unique load x∗ associated to any equilibrium flow y∗ (this
unique load is the minimizer of a strictly convex potential func-
tion).
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6.1.2 bayesian wardrop equilibrium

We now introduce uncertainty, represented by a finite proba-
bility space

(
Θ, 2Θ, µ

)
called the state space. A nonatomic routing

game with unknown network state is a tuple Gµ :=
(
G,
(
Θ, 2Θ, µ

))
,

where G is a nonatomic routing game as before and, for each
e ∈ E and each θ ∈ Θ, the cost function x 7→ ce(x, θ) is contin-
uous and strictly increasing on x ∈ [0, γe). To guarantee iden-
tifiability of the states, we assume that for every pair θ, θ′ ∈ Θ,
there exists an edge e ∈ E such that ce( · , θ) 6= ce( · , θ′).

Given a prior distribution µ ∈ ∆(Θ), with a common abuse
of notation, the expected costs are denoted by

ce(x, µ) :=
∫

Θ
ce(x, θ) dµ(θ) and cr(y, µ) :=

∫
Θ

cr(y, θ) dµ(θ).

(6.3)

We extend the concept of the WE to incomplete information
by defining the Bayes-Wardrop equilibrium (BWE) as the Wardrop
equilibrium flow of the game played with the expected costs. A
similar definition appeared in Wu, Amin, and Ozdaglar [159].

Definition 84. A flow y∗ ∈ Y is a BWE of Gµ if, for all r, r′ ∈ R
with y∗r > 0, we have

cr(y∗, µ) ≤ cr′(y
∗, µ). (6.4)

Note that strict monotonicity of the cost functions implies
uniqueness of the equilibrium load. The BWE load of the game
Gµ with demand d is denoted by x∗(d, µ).
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6.2 D Y N A M I C R O U T I N G G A M E S W I T H U N K N O W N
S TAT E

6.2.1 sequences of random demands

We now consider a discrete-time model of social learning where
a routing game with unknown network state is played over time
and with a population that changes at every period. The goal
is to find conditions under which social learning is achieved,
that is, each generation learns from the behavior of the previous
generations and the public beliefs about the state of nature
converge to the true value.

If the traffic demand were constant over time, then the same
BWE would end up being played every period. As a conse-
quence, learning does not occur whenever some equilibrium
paths of the complete-information games are not used along the
sequence of equilibria. Therefore, to achieve learning, we will
assume that demands are given by a sequence (Dt)t∈N of i.i.d.
nonnegative random variables with common marginal distribu-
tion, denoted by F. The symbol D denotes a generic element
of the sequence and supp(D) denotes its support. We assume
independence between the demands and the state of nature.
Therefore, by Kolmogorov extension theorem, F and µ induce
a unique product measure P on the measurable product space(
[0, γ)∞ ×Θ,B([0, γ)∞)⊗ 2Θ).

At every period t, a demand Dt is realized and observed, the
WE is played, the equilibrium load profile x∗t and the equilib-
rium costs c(x∗, θ) = (ce(x∗t, θ))e∈E are observed. Therefore, for
every t = 1, 2, . . . , the history at period t is

ht :=
(

D1, x∗1(D1), c
(

x∗1(D1), Θ
)

, . . . , Dt−1, x∗t−1(Dt−1), c
(

x∗t−1(Dt−1), Θ
)

, Dt
)

=
(

h̃
t−1

, Dt
)

,

(6.5)

where Θ is the random state.
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The distribution µ on the state space is updated according to
Bayes rule and µt denotes the posterior distribution µ( · | ht),
that is,

µt(θ) := P
(
Θ = θ | ht). (6.6)

The pair (G, P) defines a dynamic nonatomic routing game with
unknown network state, which will be denoted by Γ.

The sequence of posterior beliefs is a bounded martingale.
Thus, by the martingale convergence theorem, there exists a
random variable µ∞ such that µt → µ∞ almost surely. Moreover,
since the set of states is finite and costs are deterministic func-
tions of states and loads, there exists a random time τ such that
almost surely, µt = µ∞, ∀t ≥ τ. Indeed in every period, either
µt = µt+1 or the support of µt+1 is a strict subset of the support
of µt.

6.2.2 defining learning

As mentioned before, we will find conditions under which social
learning is achieved. We now define two concepts of learning.
To this end, the Dirac measure on θ will be denoted by δθ.

Definition 85. Consider a dynamic nonatomic routing game
with unknown network state Γ. We say that:

(a) strong learning is achieved if

µ∞ = δΘ P -a.s.. (6.7)

(b) weak learning is achieved if

x∗( · , µ∞) = x∗( · , δΘ) P -a.s.. (6.8)

The idea of Definition 85 is the following. If strong learning is
achieved, asymptotically the true state of the world is discovered.
Actually, given the fact that the state space Θ is finite, strong
learning implies that there exists a random time τ such that
µt = δΘ for all t ≥ τ. Under weak learning the true state is not
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necessarily discovered, but, asymptotically, in equilibrium, traf-
fic is routed as if the state were known. This distinction follows
Kalai and Lehrer [92], who studied the convergence of beliefs in
repeated games and showed that players may learn to predict
their opponents’ actions even though they do not learn their
payoff matrices. Similarly, in our model, players may not identify
the true state of the world, yet they may learn to play optimally
conditional on this state. It is not difficult to see that strong
learning implies weak learning, but the converse implication is
false. We will show this with the following example.

6.2.3 strong learning implies weak learning

O

a

b

D

e1

e2

e4

e5

e3

Figure 6.1: Wheatstone network.

Example 86. Consider the network in Fig. 6.1 where each edge
has infinite capacity and

c1(x, θ) = c5(x, θ) = x, (6.9)
c2(x, θ) = c4(x, θ) = 1 + εx, (6.10)

c3(x, θ) =

εx for θ = θG,

10 + εx for θ = θB

(6.11)

with µ(θB) = µ(θG) = 1/2 and ε < 1. Let the demand Dt have
a distribution with support [20, ∞).

In this setup, for every value of the demand in the support,
edge e3 is not used. To see this, consider the paths

r1 = (e1, e4), r2 = (e2, e5), r3 = (e1, e3, e5), (6.12)

and let y1, y2 and y3 be their respective equilibrium flows under
µ. Observe that for any value of Dt, y1 = y2 by symmetry. Then,
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given a realization d of D1, there is a positive flow on r3 if and
only if cr3(0, µ) ≤ cr1(d/2, θ), that is,

d + 5 ≤ d
2
(1 + ε) + 1, i.e.,

d/2 + 4
d/2

≤ ε,

which is impossible. Thus, no demand is routed on r3, edge e3
remains unexplored, and the state is not identified at time 1.
At time 2 the situations is the same, so, by induction, µt = µ

for every t ∈ N. On the other hand, observe that even under
full information, e3 would not be used given that Dt ≥ 20.
This shows that weak learning is trivially achieved, but strong
learning is not.

6.3 S O C I A L L E A R N I N G I N T H E D Y N A M I C G A M E

6.3.1 main results

Our convergence result requires assumptions on the cost func-
tions, on the sequence of demands, and on the structure of the
network. As is shown later, these assumptions are necessary. The
next theorem provides conditions for weak and strong learning.

Theorem 87. Let Γ be a dynamic nonatomic routing game with
unknown network state such that, the network N is S.P. and, for each
edge e ∈ E and each θ ∈ Θ, we have limx→γe ce(x, θ) = +∞.

(a) If supp(D) = [0, γ), then strong learning occurs.1

(b) If for every ε > 0, there exists d ∈ (γ− ε, γ) such that d ∈
supp(D), then weak learning occurs.

The following theorem shows that the assumption that the
network is S.P. is necessary in the sense that, if it does not hold,
it is possible to construct an assignment of cost functions and
capacities that satisfies the other hypotheses of Theorem 87

and for which weak learning fails for any distribution of the
demand.

1 By definition, the support of a random variable is a closed set. Here it is
closed relative to the space of feasible demands [0, γ).
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Theorem 88. If the network N is not S.P., then there exist capacities
and uncertain unbounded cost functions such that weak learning fails
for every distribution of the demand.

6.3.2 learning failure

Learning may fail if any of the assumptions of Theorem 87 does
not hold. We present below a series of examples that show why
learning may fail in those cases.

O D

c1(x, θ)

c2(x, θ)

Figure 6.2: Parallel edge network.

Example 89 (Bounded costs). Consider the network in Fig. 6.2
with infinite capacity on each edge and

c1(x, θ) = 1− e−x, c2(x, θ) =

x for θ = θG,

x + 10 for θ = θB,
(6.13)

with µ(θB) = µ(θG) = 1/2.

In the unique equilibrium of the game all the demand uses
edge e1 at any period t, for any possible value of Dt. This is
due to the fact that the cost c1(·, θ) is bounded above by 1 and
c2(x, µ) = x + 5. The lower path is dominated in expectation for
every possible value of Dt; hence, no positive mass ever uses it
at any equilibrium and the public belief remains equal to the
prior. As a consequence, weak learning does not occur.
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Example 90 (Bounded demand). Consider the network in Fig. 6.2
with infinite capacity on each edge and

c1(x, θ) = x, c2(x, θ) =

x for θ = θG,

x + a for θ = θB,
(6.14)

with a > 0 and µ(θB) = µ(θG) = 1/2.

The expected cost of edge e2 is

c2(x, µ) = x +
1
2

a. (6.15)

Therefore, if Dt < a/2 with probability 1, then edge e2 is never
used and even weak learning fails. In this example, learning
fails because the lower path is dominated in expectation for low
values of Dt. Under complete information, edge e2 is used in
equilibrium when the state is θG. When states are unknown, the
presence of a fixed cost a in state θB deters the use of edge e2
for low values of the demand. Hence in equilibrium the public
belief remains equal to the prior.

Example 91 (Non-SP network). Consider the costs and network
of Example 86 with infinite capacity on each edge. The expected
cost of edge e3 is

c3(x, µ) = εx + 5. (6.16)

If the demand Dt has an exponential distribution with parameter
1, then edge e3 is never used, no matter the realization of Dt.
Yet, it would be used for small values of the demand under θG.
This shows that weak learning fails.

Since the network of this example is not series-parallel, we
were able to find costs such that edge e3 is used only under com-
plete knowledge of state θG and for low values of the demand.
Due to the fixed cost in state θB, no demand will use this edge,
hence no learning occurs.
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6.4 P R O O F S O F T H E M A I N R E S U LT S

In this section we provide the proofs of our main results.

6.4.1 proof of Theorem 87

Proof of Theorem 87. Given a prior µt, we define L(µt) the set
of possible demands d such that, under the equilibrium load
profile x∗t, we have

µt 6= µt+1 (6.17)

if Dt = d. Notice that if µt 6= µ∞, the set L(µt) is nonempty.

Whenever µt 6= δΘ, there exist θ1, θ2 such that

0 < µt(θ1) < 1 and 0 < µt(θ2) < 1. (6.18)

Eq. (6.18) implies that there exists an edge e ∈ E such that, for
the above states θ1, θ2,

ce( · , θ1) 6= ce( · , θ2). (6.19)

Let x̄e be such that

ce(x̄e, θ1) 6= ce(x̄e, θ2). (6.20)

We want to prove that there exists a value d of the demand for
which the equilibrium load on edge e is x̄e. To do this we use
the following lemmata:

Lemma 92 (Cominetti, Dose, and Scarsini [45, Proposition 3.12]).
Let N be a finite S.P. network. Then there exists an equilibrium load
profile function d 7→ x∗(d) whose components x∗e (d) are nondecreas-
ing functions of the demand d.

The equilibrium edge costs are continuous in the demand
[see, e.g., 45, Proposition 3.1]. Unboundedness, continuity and
monotonicity of the equilibrium edge costs imply the following
lemma.
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Lemma 93. In a nonatomic routing game played on a SP network,
for every e ∈ E , the equilibrium load map x∗e is unbounded.

Proof of Lemma 93. By Lemma 92 and strict monotonicity of the
cost functions, the equilibrium load profile x∗e is weakly in-
creasing. Since cost functions are unbounded, continuous and
monotonic, equilibrium costs are unbounded as the demand
tends to infinity. Therefore, for large enough demand, all routes
are used and have the same equilibrium cost, which is also
unbounded. It follows that equilibrium flows on routes are un-
bounded. Therefore equilibrium loads on edges are unbounded
as well.

Continuity of ce( · , θ) for every θ ∈ Θ and Eq. (6.20) imply that
ce(xe, θ1) 6= ce(xe, θ2) for every xe in some neighborhood I of x̄e.
Moreover, there exists a demand interval D such that, for every
dt ∈ D, the expected equilibrium cost of edge e is ce(x∗e , µt),
with x∗e ∈ I . Therefore, when a demand dt ∈ D occurs, learning
is achieved because one of the two costs ce(x∗e , θ1) or ce(x∗e , θ2)
is realized, so that either

µt(θ1) = 0, or µt(θ2) = 0. (6.21)

(a) The assumption that supp(D) = [0, γ) implies that the
event Dt ∈ D has positive probability. Therefore,

P
(

Dt ∈ D, for some t ∈N
)
= 1, (6.22)

which concludes the proof.

(b) If µ∞ = δΘ, then strong learning is achieved. This implies
that weak learning is achieved. If µ∞ 6= δΘ, then there exist
θ1, θ2 ∈ Θ and t̄ such that

0 < µt(θ1) < 1 and 0 < µt(θ2) < 1, for all t ≥ t̄. (6.23)

From the previous arguments, for any such θ1, θ2, if a value d of

the demand is such that, for ht =
(

h̃
t−1

, d
)

, either

µt(θ1) = 0 or µt(θ2) = 0, (6.24)
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then d /∈ supp(D). This shows that there is no value in the
support of D such that an edge with unknown cost is used.
Therefore the split of the flow is the same as it would be under
perfect information.

6.4.2 proof of Theorem 88

The following lemma will be used in the proof of Theorem 88.

Lemma 94 (Chen, Diao, and Hu [39, Theorem 3.5]). If a network
N is not S.P., then it contains an O-D paradox, i.e., a subgraph G =
r1 ∪ r̃2 ∪ r̃3 such that

(i) r1 is a path from O to D that meets in this order the vertices
O, a, u, v, b,D,

(ii) r̃2 is a path from a to v whose only vertices in common with r1
are a and v,

(iii) r̃3 is a path from u to b whose only vertices in common with r1
are u and b,

(iv) r̃2 and r̃3 have no common vertices.

O a u v b De3

e1 e2

r1 : O
r̃2 : a
r̃3 : u

D
v
b

Figure 6.3: O-D paradox. The yellow squares represent finite se-
quences of nodes connected in series.

Proof of Theorem 88. Let N be a network that is not S.P.. Then, by
Lemma 94, it contains an O-D paradox N ′ as in Fig. 6.3. The
idea of the construction is to assign capacities and cost functions
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to edges in such a way that, the cost function c5 is never learned,
whatever the feasible demand.

Call r2 the path that coincides with r1 from O to a, with r̃2
from a to v, and with r1 from v to D. Call r3 the path that
coincides with r1 from O to u, with r̃3 from u to b, and with r1
from b to D.

Let

kOa = number of edges on r1 between O and a,
kau = number of edges on r1 between a and u,
kuv = number of edges on r1 between u and v,
kvb = number of edges on r1 between v and b,
kbD = number of edges on r1 between b and D,

k2 = number of edges on r̃2,
k3 = number of edges on r̃3.

Let A and ε be two positive real numbers such that

ε <
1
3

and 3 < A. (6.25)

All the edges that appear in Fig. 6.3 have infinite capacity. Let
Θ = {θG, θB} with µ(θG) = µ(θB) = 1/2 and let the costs on
the edges of the network be as follows:

c2(x, θ) =

(
A +

ε

kvb

)
x, for all θ ∈ Θ (6.26)

c3(x, θ) =

(
A +

ε

kau

)
x, for all θ ∈ Θ (6.27)

c1(x, θ) =



(
A +

ε

kuv

)
x for x ≤ 1, for all θ ∈ Θ(

A +
ε

kuv

)
+ ε2(x− 1) for x > 1 and θ = θG,(

A +
ε

kuv

)
+

(
2A +

2ε

kuv
− ε2

)
(x− 1) for x > 1 and θ = θB.

(6.28)
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For every other edge e appearing in Fig. 6.3 the cost functions
are as follows:

ce(x, θ) =
ε

kOa
x, for all θ ∈ Θ, if e is between O and a,

ce(x, θ) =
ε

kau
x, for all θ ∈ Θ, if e is between a and u,

ce(x, θ) =
ε

kuv
x, for all θ ∈ Θ, if e is between u and v,

ce(x, θ) =
ε

kvb
x, for all θ ∈ Θ, if e is between v and b,

ce(x, θ) =
ε

kbD
x, for all θ ∈ Θ, if e is between b and D,

ce(x, θ) =
ε

k2
x, for all θ ∈ Θ, if e is on r̃2,

ce(x, θ) =
ε

k3
x, for all θ ∈ Θ, if e is on r̃3.

(6.29)

All the edges e that do not appear in Fig. 6.3 have a capacity

γe =
κ

|R| , (6.30)

where |R| is the cardinality of R and

κ <
1
2

. (6.31)

Moreover, for these edges

ce(xe) =
1

γe − xe
, for xe ∈ [0, γe). (6.32)

Eq. (6.30) implies that the load on edge e1 coming from flows
of paths different from r1 is smaller than 1.

We prove now that, in equilibrium, the total load on edge e1 is
smaller than 1. Let y be a feasible flow vector and let y1, y2, y3 be
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the corresponding flows on r1, r2, r3, respectively. The expected
costs given µ satisfy the following inequalities

cr1(y, µ) ≥ ε(y1 + y2 + y3) + (ε + A)(y1 + y3) + (ε + A)y1 + (ε + A)(y1 + y2)

cr2(y, µ) ≤ ε(y1 + y2 + y3 + κ) + ε(y2 + 1) + (ε + A)(y1 + y2 + κ)

cr3(y, µ) ≤ ε(y1 + y2 + y3 + κ) + (ε + A)(y1 + y3 + κ) + ε(y3 + κ)

(6.33)

The path r1 has a positive flow in equilibrium if and only if

cr1(y, µ) ≤ cr2(y, µ) (6.34)

and

cr1(y, µ) ≤ cr3(y, µ). (6.35)

The inequalities in Eqs. (6.33) and (6.34) imply

(ε + A)(2y1 + y3) ≤ ε(y2 + κ) + (2ε + A)κ. (6.36)

Similarly, from Eqs. (6.33) and (6.35), we obtain

(ε + A)(2y1 + y2) ≤ ε(y3 + κ) + (2ε + A)κ. (6.37)

Summing Eqs. (6.36) and (6.37), we obtain

(ε + A)(4y1 + y3 + y2) ≤ (2A + 6ε)κ + ε(y2 + y3), (6.38)

that is,

y1 ≤
(2A + 6ε)κ − A(y3 + y2)

4(ε + A)
≤ (A + 3ε)κ

2(ε + A)
≤ (A + 3ε)κ

2A
≤ κ.

(6.39)

Therefore, because of Eq. (6.31), the load on e1 is at most κ + κ ≤
1. This implies that the cost function c1 is not learned, for any
value of the demand. On the other hand, if the true state were
known to be θG, the equilibrium flow would be different than
the one under uncertainty. This shows that weak learning is not
achieved.
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6.5 R A N D O M D E M A N D O R N O I S Y O B S E RVAT I O N S

In our model, the demand is random and realized costs are
observed with certainty. Wu and Amin [158] also considered
dynamic nonatomic routing games with unknown states where
realized costs are observed. Unlike what we do in our paper, they
assumed constant demand and noisy costs, that is, in their model
realized costs depend on the unknown state and on multivariate
normally distributed noises. The following example shows that
these different sources of randomness lead to different learning
outcomes.

Consider the network in Fig. 6.2 with infinite capacities and

c1(x, θ) = x, c2(x, θ) =

x for θ = θG,

x + a for θ = θB,
(6.40)

with a > 0 and µ(θB) = µ(θG) = 1/2. As shown before, the
expected cost of edge e2 is

c2(x, µ) = x +
1
2

a. (6.41)

Assume that Dt has an exponential distribution with mean a/4.
As supp(Dt) = R+, we have

P
(

Dt > a/2, for some t ≥ 1
)
= 1, (6.42)

which implies that, almost surely, edge e2 is used at some point
and, in our model, strong learning occurs.

Consider now the same network game with the information
model of Wu and Amin [158] with the demand dt = a/4, i.e.,
equal to the expected demand of our model. Let the observed
costs at period t be realizations of the random variables

c̃t
e(x) := ce(x) + εt, (6.43)

for e = 1, 2, with εt normally distributed with mean 0 and
variance σ2. No matter the realization of the random cost, at any
period t, the expected cost of edge 1 is lower than the expected
cost of edge 2, so edge 2 is never used and weak learning fails.
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In this example, there is learning only when high demand
forces exploration of the edge with unknown cost. This shows
that, despite their similarities, from the perspective of learning,
the model with random demand and the one with noisy costs
are different.

6.6 C O N C L U S I O N

In this paper, we showed that the occurrence of social learning
in nonatomic routing games is a complex phenomenon, which
involves the topology of the routing network, properties of the
cost functions and high volatility in the demand. Nonetheless,
we are able to characterize necessary and sufficient conditions
that ensure that either strong or weak learning will happen
in the long-run. These conditions may appear as demanding.
Requiring that the demand may reach values arbitrarily close
to the capacity of the network may make sense when thinking
about large cities whose networks are often saturated, but much
less when considering routing networks at large scale. Having
latencies approaching infinity may also seem extreme. And, last
but not least, series-parallel networks are seldom observed in
actual routing environments. But what we propose here is a
theoretical artifact and, in the terms of a wise reviewer, "it is as
unrealistic as the assumptions of a continuum of players and
infinite-horizon games".

Chapter 5 and Chapter 6 form together an article, Social Learn-
ing in Nonatomic Routing Games which was revised and resub-
mitted to Games and Economic Behavior in September. The paper
was previously accepted and published as an abstract in Chen
et al. [40] and has been presented in talks and poster sessions at
various conferences since its first version in the summer of 2019.

Over its two years of existence, our model has drastically
evolved yet many things remain to be said on the subject. Al-
though the example in Section 6.5 shows that models with noisy
observation of realized costs and models with variable demand
yield different properties, an interesting open question is how
these two sources of randomness interact when combined. One
particular case of interest is a model where the variance of the
noise on a given edge is proportional to either its equilibrium
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load or the total demand. Another direction of extension is to
provide bounds on the speed of learning for specific classes of
cost functions. Little can be said on convergence speed without
restrictions on the class cost functions. Indeed, two functions
may differ by an arbitrarily small margin, or on a set of arbitrar-
ily small probability. In line with the literature, restricting to a
specific class of costs may yield computable bounds.





Part III

R E V I S I O N G A M E S

This part is devoted to an ongoing project studying the
impact of the frequency at which players choose and revise
their actions on the level of commitment to environmental
policy-making. We consider a 2-player stage-game where
two countries decide on their levels of emissions. We
assume that choosing to reduce emissions yields lower
instantaneous returns than keeping the status quo, so that
the latter is strictly dominant in the one-shot game, in the
flavor of a prisoner’s dilemma. The general game is as
follows: there is a continuous and bounded time interval
and, at times determined by a Poisson clock, the stage-
game is played. A state of the world captures the overall
frequencies at which each action has been chosen for the
duration of the game. When time reaches the end of the
interval, a terminal payoff is realized as a function of the
state of the world. Our aim is to study the influence of
the rate of the Poisson clock on the trade-off between flow
and terminal payoffs. We aim at characterizing symmetric
strategies that support cooperative behavior.

This project is still at an early stage of development and
has neither been presented nor submitted yet.





7
R E V I S I O N G A M E S W I T H F L O W PAY O F F S

In the past, as we have sought new energy
sources, we have too often damaged or de-
spoiled our land. Actions to avoid such damage
will probably aggravate our energy problems
to some extent and may lead to higher prices.
But all development and use of energy sources
carry environmental risks, and we must find
ways to minimize those risks while also pro-
viding adequate supplies of energy.
Richard Nixon, State of the Union Message

to the Congress on Natural Resources
and the Environment,

February 15, 1973

In this chapter, we study the influence of time preferences on
the existence of cooperative strategies in a model where two
competing countries choose their level of emissions repeatedly.
Their decisions influence the environmental state of the world
that captures a cumulative effect of emissions throughout the
duration of the game. Decisions are made at the ticks of a Pois-
son clock on a bounded time interval. Thus, the probability to
act once more decreases as time advances, which is equivalent
to players discounting their payoffs with a decreasing discount
factor. When time reaches the end of the interval, players receive
a terminal payoff that depends only on the state of the world.
Our main interest is to study both the influence of this decreas-
ing discount factor on the optimal emission trajectories and the
existence of equilibria sustaining cooperative strategies.

129
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This chapter is structured as follows. In Section 7.1, we present
the applied motivation and the main theoretical problem at play
in our model. Then in Section 7.2 we review the general frame-
work of revision games as introduced originally in Kamada
and Kandori [93]. In Section 7.3, we expose our model in detail.
Section 7.4 presents our research agenda.

7.1 E N V I R O N M E N TA L D E C I S I O N M A K I N G A N D
T I M E P R E F E R E N C E S

As its consequences are becoming more and more tangible,
climate change has slowly risen as one of the top preoccupation
of citizens worldwide. The scientific consensus on the human
impact on the environment is facing a lesser opposition and
populations as well as their leaders are internalizing the fact
that drastic measures need to be taken to reduce the global level
of emissions. But it has also become clear that state-level actions
cannot achieve these goals on their own, and that international
cooperation is necessary to establish clear goals, enforce them
and reduce any source of misalignment between those goals
and the countries taking part in those decisions.

7.1.1 the limited efficiency of climate agreements

International cooperation started with the early IPCC works
32 years ago, which led to the Rio agreements of 1992 and the
organization of 27 United Nations Climate Change Conferences
since 1995. This fast-paced collective decision system has led to
two major agreements, the Kyoto agreements in 1997 and the
Paris agreements in 2015. With the benefit of hindsight, it is now
clear that the goals set in those agreements will not be achieved.
While the United Nations Environment Program stated that in-
stead of the 2°C target increase, average temperatures will likely
increase by at least 3.2°C, with harsh economic consequences.
Several explanations have been put forward to explain this inef-
ficiency. First, it has been argued – see e.g. Calvo, Rubio, et al.
[34] and Harstad [79] – that the non-binding aspect along with
the incomplete nature of climate agreements disincentivizes par-
ticipation. This creates a coalitional problem where agreements
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have to be designed by accommodating duration, punishments
and each country’s participation constraints, as in Battaglini and
Harstad [18]. While providing important explanatory factors,
this approach is not self-sufficient. Indeed, even with a binding
structure and punishment options, climate coordinated action
is still difficult to implement. On this point, one may consider
the European action on climate: while having better collective
performance within the European Union, as highlighted by the
European Green Deal negotiations, the overall action remains
insufficient to fulfill the the UNCCC objectives. Another comple-
mentary explanation focuses on technological investments and
spillovers – see Acemoglu et al. [1] for instance – and studies
models where states optimize a mix of clean and dirty technolo-
gies over time. Quite notably, these topics were absent from the
Paris agreements. Such absence can be explained both by the
limited control states have on an uncertain research outcome,
which limits technological investment policies, and the strong
competition on the field of green technologies which limits the
existence of technological spillovers. It appears that long-term
incentives for cooperation do not out-balance the strong drive
for immediate returns, which is particularly salient since the
short-term economic returns from renewable energies remain
generally lower than fossil fuels. This is mostly due to costs per
MWh remaining higher for renewable sources although pub-
lic subsidies along with technological improvements reduced
the gap over the recent years. Still, there remains a short-term
opportunity cost in converting energy production from fossil
to renewable sources. Meanwhile, the economic cost of long-
term consequences keeps growing as we approach most of the
IPCC deadlines. This intertemporal tradeoff justified a third ap-
proach to the problem, which revived a game theoretic debate in
arguing the role played by discounting and time inconsistency.

7.1.2 time-preferences and cooperation

Naturally, in taking decisions with strong long-term impact,
the discount factor is of utmost importance; yet its nature and
possible values are subject to strong debate (see for instance
the Nordhaus-Stern debate following the publication of Stern
[147]). Such discussions were already present in Samuelson
[139] where exponential discounting was introduced. Samuelson
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expressed reservations as "It is completely arbitrary to assume that
the individual behaves so as to maximize an integral of (this) form". To
address these concerns, many authors have proposed alternative
discounting schemes like hyperbolic discounting in Strotz [148]
– backed by empirical evidence in Frederick, Loewenstein, and
O’donoghue [61]. Uncertainty relative to the discounting factor
and resulting controversies are addressed in Weitzman [155]
and Gollier and Weitzman [73].

Ecological transition – e.g. conversion of energy production
to renewable sources – requires to sustain instantaneous costs
to the benefit of the global environment, assuming a constant
technological level. Existence and sustainability of cooperative
strategies strongly depend on the time preferences of the play-
ers. This effect has been proved in the lab in Jackson and Yariv
[87]. Jackson and Yariv [88] further shows that aggregating het-
erogeneous time preferences yields time-inconsistency. Hetero-
geneous and/or non-constant discounting has been a difficult
technical problem in the context of repeated games. Lehrer and
Pauzner [105] shows that usual cooperative results like Folk
Theorems do not hold when players have different discounting
factors. For infinitely repeated games, Chen and Takahashi [38]
extends results from Lehrer and Pauzner [105] and establish
conditions to ensure cooperation. Similarly, Kochov and Song
[97] shows that cooperative behavior emerges in an infinitely
repeated Prisoner’s dilemma with endogenous discounting. But
in the context of environmental policy making, the strong pres-
ence of a time horizon, either fixed in agreements or as an
endogenous deadline imposed by natural factors, prevents the
application of such results. Managing non-standard time pref-
erences in the presence of a time-horizon requires a stronger
modeling structure. The seminal model of revision games intro-
duced in Kamada and Kandori [93], later published as Kamada
and Kandori [94], allows for both heterogeneous time-varying
discounting and a fixed deadline. In such games, players act
over a finite time interval. At random times determined by a
– possibly individual – Poisson clock, they are offered the op-
portunity to revise their decision. As time approaches the end
of the interval, the probability of revising a decision vanishes,
which is equivalent to a discount factor converging to zero. This
makes revision games an important framework in which agents
discount their utilities at en endogenous rate that decreases as
time increases. Kamada and Kandori [94] studies how it influ-



7.1 environmental decision making and time preferences 133

ences cooperative strategies in generalized prisoner’s dilemma.
This interplay between time preferences and the sustainability
of cooperative strategies in environmental policy-making is the
core question that this chapter proposes to explore. We try to
answer this problem by modeling the trade-off between short-
term revenue maximization and long-term control of a common
state of the world.

7.1.3 contribution of the chapter

In this part, our objective is two-fold. From a theoretical perspec-
tive, we intend to build a model of revision games with flow
payoffs and a cumulative state to structure the trade-off faced by
states involved in environmental transition. Two players act over
a finite time interval and are offered at stochastic dates to revise
their decision. This yields a flow of payoffs and determines
a common state of the world that captures the share of time
each player has played the non-cooperative action. This state
is a proxy to model the impact of countries emissions over the
course of the game. When time reaches the end of the interval,
a terminal payoff is determined according to the state of the
world.

This model remains an early-state project and most of our
efforts have been spent in identifying the adequate model. Nev-
ertheless, we provide a detailed agenda of the results we are
working on. In practical terms, we first intend to prove the ex-
istence of an optimal symmetric strategy profile in the form of
a threshold strategy: prior to a time threshold that negatively
depends on the expected frequency of revision times, both play-
ers play the Nash equilibrium of the one-shot game, then shift
to a cooperative action profile. In that respect, the higher the
frequency at which players revise their strategies, the shortest
the duration of the cooperative regime. This relationship be-
tween decision frequency and cooperative behavior is already
observed in revision games without flow payments.
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7.2 R E V I S I O N G A M E S

Revision games is a class of games originally introduced in the
mimeo Kamada and Kandori [93], later published in Kamada
and Kandori [94]. They consist in games played over a finite
time interval where players get to change – revise – their actions
at random times. This is not the first model where agents are
allowed to revise their choice of actions along the course of the
game, which appears in Caruana and Einav [35] with switching
costs for instance, nor is it the first that introduces a decreasing
replay-probability as an endogenous discount factor, as was
done in Vives [151] with continua of agents and infinite time
horizon, but it features a comprehensive formal framework that
best fits our modeling needs.

7.2.1 general framework

Formally, a revision game Γ as exposed in Kamada and Kandori
[94] is described as follows. Consider a 2-player normal form
game G = (N, (S i)i, (ui)i) called the component game with N =
{1, 2}. Time is continuous over an interval [−T, 0] with T > 0.
At time t = −T, each player chooses an action. Then, at times
determined by a Poisson process, players can revise their choice
of actions and observe their opponent’s choice and revisions.
When time reaches the deadline, i. e. t = 0, each player i receives
her payoff ui(a) according to the action profile chosen at the last
revision opportunity.

It is important to distinguish between two subsequent models:
on the one hand, revision times may be determined by one
single Poisson clock with rate λ, in which case the game is
a synchronous revision game. On the other hand, each player i
may receive revision opportunities by her own independent
clock with rate λi in which case the game is an asynchronous
revision game. Each model yields slightly different results, with
the asynchronous case being more technically involving. In their
paper, the authors focus on the synchronous case. The compo-
nent game is assumed to be a generalized prisoner’s dilemma:
action spaces S1 = S2 = S are convex subsets of R and payoffs
u1(s, s′) = u2(s′, s) satisfy the following assumptions:
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• The component game G admits a unique pure symmetric
N.e. profile (sN, sN) with payoff uN and a unique best
symmetric action s∗ that maximizes u(s) = u1(s, s) for
s ∈ S ;

• If sN < s∗, u(s) is strictly increasing for s < s∗ and sym-
metrically if s∗ < sN;

• u1(s1, s2) is continuous and maxs1 u1(s1, s2) exists for all s2
so the gain from deviation at a symmetric profile (s, s)

d(s) ≡ max
s1

u1(s1, s)− u1(s, s) (7.1)

is well-defined;

• If sN < s∗, d(s) is increasing on
[
sN, s∗

]
and non-decreasing

for s > s∗ and symmetrically if s∗ < sN.

In this framework, cooperation refers to a choice of actions that
provides a payoff superior to uN to both players.

7.2.2 strategies and optimal plans

Revision games are defined in continuous time but as revision
times are countable, the games behaves admits a tree structure.
At the n-th revision time tn, the history of the game is given by

htn =
(
sT, t1, st1 , . . . , tn−1, stn−1 , tn

)
. (7.2)

The set of histories of size n is then Hn = (S1 × S2) ×
([0, T]× (S1 × S2))

n. Then, a (behavior) strategy σi of player
i in the game Γ is a measurable mapping from ∪n≥0(Hn× [0, T])
to the set ∆(S i) of probability distributions over S i. Note that
in this definition, the dependence on time is with respect to the
remaining time until the deadline.

In Kamada and Kandori [94], the analysis is restricted to
trigger strategies where players coordinate on a symmetric coop-
erative action and punish deviations by playing the N.e. action
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sN. A symmetric trigger strategy is characterized by a revision
plan x : [0, T] → S that maps the amount of time remaining
until the deadline to actions. At time t = −T, players start the
game with action x(T) and then play according to the revision
plan. If a deviation occurs, then the Nash action sN is played at
all subsequent revision opportunities. Given a revision plan x,
the expected payoff is

V(x) = u(x(T))e−λT +
∫ T

0
u(x(t))λe−λtdt. (7.3)

The first element in the right-hand side corresponds to the
case where no revision opportunity occurs during the game.
The second element is the expected payoff with respect to the
distribution of the last revision time. Then, under the additional
assumption that the gain from deviation is differentiable on(
sN, s∗

]
with positive derivative if aN < a∗ (and symmetrically),

the prove their main result.

Theorem 95 (Kamada and Kandori [94]). There exists a revision
plan x̄ that achieves the maximum trigger strategy payoff. It is contin-
uous in t with x̄(0) = sN and satisfies

dx
dt

= f (x̄(t)) (7.4)

if x̄(t) 6= a∗ and d′(x̄(t)) 6= 0, where

f (x) =
λ(d(x) + u(x)− uN)

d′(x)
(7.5)

Moreover, x̄(t) ∈
[
sN, s∗

]
for all t ∈ [0, T] and f (x) > 0 on

(
sN, s∗

)
.

They further characterize the existence of cooperative strate-
gies under the assumption that the mapping f above is Lipschitz
continuous on

[
sN + ε, s∗

]
for any ε ∈

(
0, s∗ − sN] when sN < s∗

and symmetrically when sN > s∗.
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Theorem 96 (Kamada and Kandori [94]). The optimal trigger
strategy equilibrium plan x̄ sustains cooperation, i. e. x̄(t) ∈

(
sN, s∗

]
for some t, if and only if

lim
s↓sN

∫ s∗

s

1
f (x)

dx < ∞. (7.6)

The condition in Eq. (7.6) requires that the solution to the
differential equation in Theorem 95 travels from s∗ to sN in
finite time. Thus, they characterize a necessary and sufficient
condition for the existence of an optimal cooperative plan.

In the general case, a strategy σi is Markovian if it depends
only on the remaining time and the opponent’s action, i. e. σi
is a measurable mapping from [0, T] × S−i to ∆(S i). A pair
σ = (σ1, σ2) of strategies induces a unique probability distribu-
tion Pσ over the set of histories of finite length. The relevant
equilibrium concept is the following:

Definition 97. A strategy profile σ is a Markov Perfect equilibrium
(M.P.e.) of Γ if both σ1 and σ2 are Markovian and σ is a S.P.e. of Γ.

In Kamada and Kandori [94], authors explain that the core
element at play in Theorem 96 is the relative speed of conver-
gence of gains to deviation and benefits from cooperation as the
symmetric action profile converges to the N.e. profile of the com-
ponent game. Namely, if the gains from deviation converge to
zero faster than u(s)− uN does, then there exists an equilibrium
which sustains cooperation. If the condition is not satisfied, then
there is no cooperation in any equilibrium of the revision game.

A similar model was introduced in Calcagno and Lovo [33] to
study preopening of financial markets. In Calcagno et al. [32],
authors study the connection between players revision rates and
equilibrium selection. Their results depend on the cooperative
or adversarial nature of the game. Gensbittel et al. [71] studies
asynchronous revision games with zero-sum payoffs.
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7.2.3 stochastic revision games

Closer to what we aim at modeling, Lovo and Tomala [109]
introduces a model of stochastic revision games where players
control a payoff-relevant state of the world through their actions
and proves the existence of M.P.e.. Their model consists in the
following elements:

• A finite set N of n players and a finite state space Θ;

• For each i ∈ N and θ ∈ Θ, S i(θ) is the set of actions
available to player i in state θ;

• The payoff function u maps states to Rn;

• States evolve according to the transition probability q :
Θ×∏i∈N S i → ∆(Θ);

• Each state θ is associated with a positive rate λθ;

• A time interval [−T, 0].

The timing of the game is as follows: at time t = −T, an
initial state θ0 is drawn and the the game starts. A random time
τ is drawn according to the exponential distribution E(λθ0). If
τ − T > 0 then the initial action profile is fixed and the game
terminates in state θ0 with payoff u(θ0). If τ − T ≤ 0, then a
revision happens at time τ− T. Each player i selects an action in
S i(θ0). With s the chosen action profile, a new state θ′ is drawn
with probability q(θ′|θ0, s). Then the subgame with remaining
time T − τ and state θ′ starts. Actions, states and revision times
are perfectly observed.

The main results of Lovo and Tomala [109] prove the existence
of M.P.e. with and without correlation. These results closely re-
late to the general scope of continuous-time stochastic games,
studied in Levy [107], where general existence of equilibria
in Markovian public correlated strategies is proved. Indeed,
although payoffs are received only when time reaches the dead-
line, any revision game can be shown to be strategically equiva-
lent, in the sense that strategy spaces and expected payoffs are
equal, to a stochastic game as in Shapley [143]. The equivalent
stochastic game is as follows: time is discrete and each period
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tn corresponds to the n-th revision opportunity of the revision
game. A state variable θtn is defined as the remaining time in
the associated revision game. At each period, with chosen action
profile (s1, s2), received payoffs are given by ui(s1, s2)e−λθtn . The
discount factor e−λθtn can be seen as the probability that the
game continues on the next period, a interpretation which was
originally detailed in Shapley [143]. Importantly, Kamada and
Kandori [94] points out the fact that the subclass of stochastic
games equivalent to revision games does not belong to the set
of stochastic games for which Folk theorems have been proved.

7.3 M A I N M O D E L

In this section, we detail our modeling choices and the subse-
quent retained model. We begin by introducing the component
game G.

7.3.1 component game

The model we build is adapted from revision games. We define
the normal-form component game G as follows:

• There is a set N = {1, 2} of two players;

• S1 and S2 are the two finite action sets of players 1 and 2;

• A payoff function u maps pairs of actions to R2.

We denote by u1 and u2 respectively the payoffs of player 1
and 2. We assume that u is symmetric: for every pair (s, s′) ∈
s1 × S2, u1(s, s′) = u2(s′, s). Similar to Kamada and Kandori
[94], we consider a version of the prisoner’s dilemma and make
the following assumptions:

1. S1 = S2 = S = {s,s∗};

2. The game G admits a unique N.e. profile (sN, sN) with pay-
off u1(sN, sN) = u2(sN, sN) = uN and a unique best sym-
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metric profile (s∗, s∗) that maximizes the sum u1(s, s′) +
u2(s, s′) for s, s′ ∈ S ;

The action sN represents the status quo action where the player
choosing it maintains its emissions level, while the action s∗

represents emissions reduction. In the one-shot game G, the
status quo is then a dominant strategy. Modeling using variants
of the prisoner’s dilemma is frequently met in the environmental
literature. Here, it captures both the fact that countries outputs
are positively correlated with their individual level of emissions
and the existence of some level of competition between the two
players.

7.3.2 revision game and cumulative state

We now define our revision game Γ. Time is continuous over the
interval [0, T], with T > 0. On this interval, the two countries
play a synchronous revision game with rate λ > 0. At time t = 0,
they both choose an initial action and then revise it at random
times determined by the ticks of the Poisson clock. We denote
by (τ0, τ1, . . . ) the sequence of revision times, with τ0 = 0. At
any point in time, player i receives a payoff stream of ui(a)dt
with a the action profile chosen at the last revision time.

We assume that revision times and subsequent choices are
perfectly observable. At any point in time t, we write nt the
number of revision times occurring prior to t. The history of the
game is given by

ht =
(

sτ0 , τ1, sτ1 , . . . , τnt , sτnt
, t
)

. (7.7)

To capture the cumulative effect of the level of emissions, we
introduce a state parameter that contains, through the game, the
share of time players maintained the status quo. Namely, for
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any player i at any time t with history ht, we define player i’s
cumulated emission level as

θi(t) =
1

T − t

(
nt−1

∑
k=0

(τk+1 − τk)1sτk ,i=sN + (t− τnt)1sτnt ,i=sN

)
(7.8)

with sτk,i the action chosen by player i at the k-th revision
time. We assume both countries emit in equal fashion, hence we
define the overall cumulated emission level as

θt = θ1(t) + θ2(t). (7.9)

When time reaches 0, θ(hT) ∈ [0, 2] corresponds to the total
share of time countries kept the status quo over the course of the
game. A terminal payoff v(θ(hT)) is received by both players,
with v : [0, 2] → R−. We assume that v is continuous and de-
creasing, with v(0) = 0. The terminal payoff v can be interpreted
as the impact of emission trough the duration of the revision
game on the economic value of the world at the deadline. This
choice of modeling emissions via a cumulative state is close to
the literature on games with frequency-dependent payoffs as
introduced in Brenner and Witt [31]. These games correspond
to stochastic games with a deterministic state modeled, in the
case of two players, as a matrix whose entries converge to the
empirical distribution of action profiles over the course of the
game. Such games are further studied in Joosten, Brenner, and
Witt [89] where authors prove a Folk theorem.

7.3.3 strategies and equilibria

A (behaviour) strategy for any player i is then a measurable map-
ping from the set H of histories to ∆(S i). A pair σ of strategies
and a rate λ > 0 induce a unique probability distribution Pσ,λ
on the set of histories of finite length, that uniquely extends to
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all histories by Kolmogorov extension. Then, for any profile σ of
strategies at revision time t = 0, we can write player i expected
payoff as

Vi(σ) = (Tui(σ) + Eσ [v(θT)]) e−λT

+
∫ T

0
λe−λ(T−t) (ui(σ) + Eσ [v(θT)|ht]) dt

(7.10)

A pair of strategies σ = (σi, σ−i) is a N.e. of the game Γ if, for
every player i and every strategy σ′i,

Vi(σi, σ−i) ≥ Vi(σ
′
i, σ−i) (7.11)

We are particularly interested in the existence of M.P.e., that is,
S.P.e. in Markovian strategies.

7.4 F U T U R E D I R E C T I O N S

This research project is ongoing and although some results were
obtained on previous versions of the model, they do not fit its
current form. Based on previous work and the existing literature,
we have established the following research agenda.

1. Prove the existence of M.P.e. in the general case: there is
no a priori reason to believe M.P.e. would not exist under
mild conditions. We believe that the reasoning displayed
in Lovo and Tomala [109] transposes to our framework at
a small cost.

2. Prove the existence of an optimal share of time τ∗ that
depends on λ, u and v during which players cooperate,
which is equivalent to the existence of an optimal global
emission level θ∗.

3. Prove the existence of an optimal symmetric strategy that
works in the following way: at any revision time prior to
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T − τ∗, both players play the N.e. action sN and switch
actions to s∗ at any revision time happening after. Such
behavior was obtained in previous variations of the model.
The intuition is as follows: if players could revise their
strategies at any time, there could not be an equilibrium
strategy such that players first cooperate then defect, as,
granted the existence of aforementioned threshold τ∗, for
any revision time happening in [T − 2τ∗, T − τ∗], coun-
tries have a strict incentive to deviate to the N.e. action sN

unilaterally as long as, if they do so, their opponent would
support the action s∗.

Establishing these results is a first step in obtaining com-
parative statics on τ∗ with respect to λ. Preliminary work on
simplified versions of the model provided results sustaining the
idea that, for a fixed terminal payoff function v, the higher λ is,
the shortest the amount of cooperation should be.
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8
R É S U M É D E L A T H È S E

8.1 C A D R E G É N É R A L D E L A T H È S E

8.1.1 introduction

La théorie des jeux émerge en tant que champ de recherche
indépendant dans les années 1940, à la suite de la publica-
tion de Von Neumann and Morgenstern [152], à l’interface des
mathématiques et des sciences sociales. Depuis, le cadre de
ses applications s’est étendu à de nombreux autres domaines
parmi lesquels la science politique, l’informatique et la biolo-
gie. Près de 80 ans après la publication de son texte fondateur,
la théorie des jeux se nourrit d’une variété de problèmes nou-
veaux et s’enrichit aussi bien en tant que discipline que comme
outil. Un tel succès s’explique en ce qu’elle propose un cadre
de pensée simple et transposable pour lequel toute situation
d’interaction stratégique se modélise en un jeu à partir duquel il
est possible de dériver une variété de résultats prédictifs. Ces
prédictions se fondent sur le concept d’équilibre, un état où
les comportements individuals s’équilibrent de sorte qu’aucun
agent ne peut améliorer sa situation en changeant unilatérale-
ment sa décision. Il est démontré que ces équilibres existent
sous des conditions usuelles et, le cas échéant, ils offrent un
point de référence pour les décideurs cherchant à appréhender
l’issue la plus probable à une interaction entre des individus
rationnels et stratégiques. La théorie des jeux est un objet dual,
à la fois champ de recherche en-soi et ensemble de méthodes
aux applications interdisciplinaires. Cette dualité est essentielle
pour comprendre comment la théorie des jeux a évolué et in-
tégré aussi bien les problèmes que les méthodes des domaines
périphériques.

147
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Cette thèse subsume les travaux effectués pendant nos études
doctorales sur trois sujets différents, qui nous ont intéressé
en ce qu’ils permettaient d’éclairer des problématiques réelles
tout en ayat un attrait méthodologique. Les trois études qui en
résultent sont essentiellement indépendantes, aussi bien dans les
problèmes abordés que dans les méthodes employées pour les
résoudre. Elles figurent donc en tant que trois parties distinctes,
présentées dans l’ordre chronologique de leur conception.

8.1.2 désinformation et apprentissage dans les jeux

La première partie de cette thèse trouve son origine dans les
phénomènes de désinformation à large échelle observés au
début des années 2010. La mise en oeuvre fréquente de fausses
informations a créé une brèche dans la confiance du public
envers les agences de presse, les institutions publiques mais
aussi les acteurs du monde scientifique. En a résulté un état
de doute et de méfiance aux conséquences économiques et in-
stitutionnelles certaines. Il convient alors de s’intéresser aux
mécaniques de la désinformation pour comprendre comment
fonctionnent les stratégies mises en oeuvre pour désinformer et,
surtout, comment s’en prémunir.

Il existe une importante littérature étudiant l’information dans
les jeux. Les asymétries et externalités d’information occupent
une place essentielle dans le raisonnement économique, et la
théorie des jeux a apporté des éclairages sur le sujet depuis la
publication des travaux pionniers de R. Aumann et M. Maschler
sur les jeux à information incomplète, réédités dans Aumann,
Maschler, and Stearns [13]. L’obtention et l’exploitation de
l’information dans les jeux est un phénomène généralement bien
compris lorsqu’il se produit dans les limités du cadre bayésien.
Ces modèles analysent les interactions entre des agents traitant
l’information de façon rationnelle en ce sens qu’ils forment des
croyances probabilistes sur les éléments incertains et mettent
à jour ces croyances en appliquant la formule de Bayes. Ce
courant de littérature a démontré que les extensions informa-
tionelles des modèles usuels – e.g. autoriser un agent à connaître
un paramètre inconnu des autres agents – change fortement
l’ensemble des équilibres d’un jeu. Pourtant, la modélisation
bayésienne peine à analyser des grandes populations: elle repose
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sur une hypothèse forte sur les aptitudes calculatoires des agents
et propose des solutions dont la complexité explose lorsque le
nombre d’agents considérés augmente, sauf dans des structures
de jeux précises comme dans Smith and Sørensen [144]. Pour ces
raisons, les modèles bayésiens sont efficaces dès lors qu’il s’agit
d’expliquer les comportements d’un faible nombre d’agents for-
mant des croyances et exploitant de l’information, mais offrent
une perspective limitée sur les phénomènes de masse comme la
désinformation et la propagation de fake news.

Une approche alternative, dite non-bayésienne ou à rationalité
limitée, comprend l’ensemble des modèles qui rejettent – par-
tiellement ou entièrement – le cadre bayésien. Ces travaux re-
posent sur l’idée que les agents ont une capacité calculatoire
et/ou d’observation limitée qui restreint leur traitement de
l’information. Ce principe général abrite une variété de mod-
èles et d’approches mais, en matière de formation d’opinion et
d’échange de croyances à large échelle, un de ces modèles fait
figure de référence canonique: le modèle de DeGroot. Ce mod-
èle considère une population d’agents structurée en un réseau
où, itérativement, chaque joueur remplace sa croyance par la
moyenne de celles de ses voisins. Ce processus converge, sous
des conditions raisonnables, vers un consensus qu’il est facile de
déterminer à partir de la structure du réseau de communication
et des croyances initiales. De nombreuses variations autour de
ce modèle ont été proposées, la plupart reposant sur ce principe
de moyenne locale. Bien que la simplicité des calculs qu’il pro-
pose soit un avantage comparatif certain du modèle de DeGroot
par rapport aux modèles bayésiens, il n’en est pas moins sans
reproche. En particulier, ce modèle ne permet pas l’existence de
phénomènes extrêmes où une croyance marginale se propage à
une part substantielle de la population. De notre opinion, ce fait
est principalement dû à la nature du processus d’échange des
croyances.

Pour ces raisons, nous proposons dans la première partie de
cette thèse une approche alternative au modèle de DeGroot où
les agents communiquent en effectuant des tirages selon leur
croyance plutôt qu’en diffusant directement celle-ci. Ce modèle
étend l’analyse de DeGroot et, dans le même temps, pose la
question de la robustesse de ses prédictions.
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8.1.3 réseaux de routage et externalités de conges-
tion

La seconde partie de cette thèse est également liée à la littéra-
ture sur l’apprentissage dans les jeux mais avec une perspective
inverse. Alors que la première partie se concentre sur l’échange
et la diffusion d’opinions exogènes, cette deuxième partie étudie
un modèle où l’information est obtenue de façon endogène, ré-
sultant des équilibres d’un jeu dynamique. Ce travail trouve son
origine dans la littérature à l’interface entre la théorie des jeux et
l’informatique. Ces deux champs présentent un intérêt fort pour
les problématiques liées à l’apprentissage, mais les abordent de
deux façons radicalement différentes. L’informatique est le do-
maine naturel d’étude des algorithmes d’apprentissage comme
la méthode des poids multiplicatifs ou les équations de réplica-
tion. Ces approches non-comportementales de l’apprentissage
ont prouvé leur efficacité dans plusieurs classes de jeux, parmi
lesquelles celle des jeux de congestion est une des plus étudiées.
Ces modèles de jeux étudient les situations où émergent des ex-
ternalités de congestion, c’est-à-dire des problèmes d’allocation
de ressources où plus le nombre d’agents utilisant une même
ressource est élevé, plus le coût d’utilisation de cette ressource
est élevé. Plusiers propriétés expliquent l’attrait particulier de
cette classe de jeux: les équilibres en stratégies pures existent
presque toujours, l’unicité de l’équilibre s’obtient à la simple hy-
pothèse que les coûts sont strictement monotones, et il existe un
lien fort entre ces jeux et l’optimisation convexe. Néanmoins, en
dépit de ces propriétés structurelles fortes, et même si les algo-
rithmes d’apprentissage y convergent en espérance, ces derniers
sont parfois sujets à des comportements chaotiques. Il a été
montré dans Chotibut et al. [41] que ce phénomène se produit
dans des cas simples et non-dégénérés de jeux de routage.

Les jeux de routage forment une sous-classe des jeux de con-
gestion. Ils modélisent les déplacements d’un flux d’agents sur
un réseau de routage – e.g. un réseau routier ou un réseau in-
formatique – chacun cherchant à minimiser son temps de trajet
d’un noeud origine à un noeud destination. Chotibut et al. [41]
démontre en particulier que dans un réseau comportant un seul
noeud origine et un seul noeud destination, avec deux chemins
parallèles les connectant, si les temps de trajet des deux chemins
sont linéaires dans la demande, alors il existe un ensemble de
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paramètres pour lesquels la méthode des poids multiplicatifs
se comporte de façon chaotique au sens de Li-Yorke. Si ce type
de comportement peut se produire au sein du monde algorith-
mique, il est impossible qu’une croyance bayésienne se comporte
de la sorte, puisqu’elle converge presque-sûrement en tant que
martingale. Ainsi, alors qu’en première partie nous proposions
une solution non-bayésienne aux limites rencontrées par les
modèles bayésiens, dans cette seconde partie nous proposons
l’inverse. Nous étudions un modèle de jeux de routage dy-
namiques en information incomplète et explorons les conditions
permettant la convergence d’une croyance publique bayésienne
vers la vérité.

Notre problématique principale peut être formulée comme
suit. Considérons un système de navigation non-stratégique
qui agrège et diffuse les choix de déplacement et les temps
de trajet afférents à une population renouvelée chaque jour. Si
les fonctions de coût qui font correspondre les temps de trajet
à la demande sont inconnues, peuvent-elles être efficacement
identifiées par le système de navigation? Le cas échéant, lui
suffit-il d’un nombre fini d’observations? Au-delà, comment la
dynamique de l’apprentissage est-elle influencée par la structure
du réseau de routage? Nous apportons une réponse à l’ensemble
de ces questions en utilisant une modélisation bayésienne.

8.1.4 théorie des jeux et modélisation environemen-
tale

La troisième partie de cette thèse quitte les questions d’apprentissage
et de réseaux pour explorer des approches alternatives à la mod-
élisation des préférences pour le temps et leurs conséquences
et termes de décision environnementale. Le point de départ de
cette étude est le constant de l’échec d’un grand nombre d’états
à tenir les objectifs du protocole de Kyoto et leur progressif
désengagement de l’accord à mesure que sa date d’expiration
approchait. Le protocole de Kyoto a été négocié en décembre
1997 en étendant la convention-cadre des Nations unies sur les
changements climatiques, et est devenu effectif en février 2005.
Une première période d’engagement s’est terminée en décem-
bre 2012, suivie par une prolongation du traité pour 8 ans. En
décembre 2020, la seconde période d’engagement s’est achevée
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sur un bilan mitigé. Le protocole de Kyoto est un accord com-
plexe qui a reçu de nombreuse critiques, celles-ci ayant mené à
la rédaction des accords de Paris, et nombreuses sont les raisons
invoquées pour expliquer l’insuffisance de ses résultats.

La théorie des jeux propose un ensemble d’explications à ce
problème. En premier lieu, la nature incomplète du contrat entre
les états explique l’émergence de problèmes de hold-up. En deux-
ième lieu, on constate le manque de pouvoir exécutif dans le dis-
positif proposé: seuls les pays figurant dans l’annexe B s’étaient
engagés à des objectifs sous risque de sanctions. Au demeurant,
ces sanctions restaient limitées et n’ont pas dissuadé les dévia-
tions individuelles. Enfin, il semble que dans l’étude d’accords
de long-terme, le modèle usuel de préférences pour le temps, i. e.
un escompte exponentiel à taux constant, ne correspond pas aux
comportements observés de façon expérimentale. Au contraire,
les états semblent montrer des incohérences temporelles en ce
sens qu’un décideur aujourd’hui serait en désaccord avec ses
choix du futur car, à deux dates différentes, ils ne pondèrent pas
le futur de façon égale. Plusieurs modèles existent sur ce sujet
et l’escompte à taux non-constant est fréquemment rencontré
en économie de l’environnement. Mais ces modèles intègrent
rarement le concept de date butoir, alors même qu’elles sem-
blent jouer un rôle détermiant aussi bien dans la conception des
accords internationaux que dans la communication scientifique
sur le réchauffement climatique.

Dans cette partie, nous proposons une approche à ce problème
fondée sur un modèle où deux états sont en concurrence sur un
intervalle de temps borné. Ils jouent à des dates déterminées
par un processus de Poisson et contrôlent un état du monde
commun via leurs actions. De cette façon, nous endogénéisons
l’existence d’un taux d’escompte décroissant: plus les états ap-
prochent de la limite de l’intervalle de temps, moins il est prob-
able qu’ils puissent rejouer ensuite. L’objectif de cette étude
est de déterminer les stratégies optimales et d’étudier le rôle
joué par la fréquence du processus de Poisson sur l’existence de
comportements coopératifs.
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8.1.5 considérations générales

Bien que chaque partie de cette thèse aborde un problème in-
dépendant, plusieurs thèmes sous-jacents les relient. Chacun des
modèles considérés repose sur une forme d’incertain: dans les
deux premières parties, un état du monde est inconnu et, dans
la dernière partie, la séquence des dates auxquelles les agents
jouent est aléatoire. En conséquence, l’analyse de chacun de ces
modèles repose sur l’utilisation de méthodes stochastiques. Les
deux premières parties sont thématiquement réliées: chacune
étudie un modèle d’apprentissage, bien que reposant sur des
heuristiques différentes, et s’intéressent à la formation et à la
nature d’une croyance publique. La présence d’externalités de
réseau lie également les deux parties, puisque la diffusion des
croyances se fait dans un réseau de communication en première
partie, et que la structure combinatoire des ensembles d’actions
est caractérisée par un réseau de routage en deuxième partie. En-
fin, la deuxième et la troisième partie s’intéressent toutes deux
à l’existence de comportements coopératifs dans des situations
où les Folk theorems ne s’appliquent pas.

8.2 R É S U M É D E S P R I N C I PA L E S C O N T R I B U T I O N S

Nous résumons ci-dessous les principales contributions des
différentes parties de la thèse.

8.2.1 première partie

Dans la première partie de cette thèse nous proposons une
extension stochastique aux modèles non-bayésiens d’échange
d’opinion. Nous contruisons un modèle de formation d’opinion
où les agents communiquent et tirant les valeurs possibles de
l’état du monde selon leur croyance plutôt que de communi-
quer directement leur croyance. Pour cela, nous modélisons les
croyances des agents par un système d’urnes en interaction. Des
boules de différentes couleurs représentent les valeurs possibles
de l’état du monde. A chaque itération du processus de commu-
nication, chaque agent tire une boule de son urne et présente le
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résultat à ses voisins. Puis, chacun ajoute à son urne une boule
correspondant à chaque tirage observé. A un instant donné, la
croyance d’un agent en l’une des valeurs possibles de l’état du
monde est donnée par la proportion de boules de la couleur
associée dans son urne. Nous assimilons ainsi l’évolution des
coyances au cours du processus de communication à l’évolution
des proportions des différentes couleurs dans les urnes.

Dans ce cadre, nous prouvons que la dynamique des croy-
ances converge vers un point stable sous des conditions générales.
Notre preuve s’appuie sur les méthodes de l’approximation
stochastique. Nous démontrons ensuite qu’à la limite, tous les
agents d’un même sous-graphe connecté partagent la même
croyance sur les états du monde: un consensus émerge. Ce résul-
tat découle des propriétés algébriques des graphes. Finalement,
nous montrons que, dès lors que les croyances initiales cou-
vrent l’espace des états dans son ensemble, le consensus est
une variable aléatoire tirée selon à distribution à support com-
plet. Ce résultat contredit fortement les prédictions du modèle
de DeGroot. Nous nous consacrons ensuite à la caractérisation
de cette croyance limite sur la base de simulations. Nous étab-
lissons un ensemble de conjectures à propos de ce consensus.
D’abord, il apparaît que la croyance limite suit une loi beta.
Cette conjecture est appuyée par la proximité entre notre mod-
èle et le modèle d’urne de Polya. Ensuite, nous supposons que
la valeur moyenne de la croyance limite sur chacun des états du
monde est égale à leurs probabilités respectives dans le proces-
sus d’initialisation des urnes. En d’autres termes, à la limite, la
croyance moyenne sur la mauvaise valeur de l’état du monde
est égale à la probabilité initiale d’être mal informé. Ce résultat
implique que, bien que n’état pas une martingale, le vecteur
des proportions se comporte de façon similaire. Ce résultat est
démontré pour les graphes réguliers, et demeure à l’état de
conjecture dans le cas général.

Cette partie contribue à la littérature portant sur les modèles
d’échange d’opinion et sur l’émergence d’un consensus en éten-
dant l’un des modèles canoniques dans un cadre stochastique
et en montrant en quoi les prédictions sont fortement changées.
Des travaux préexistant critiquaient déjà la robustesse du mod-
èle de DeGroot. Nous apportons des éléments nouveaux à la
controverse, tout en proposant un modèle où des phénomènes
extrêmes, observés dans la réalité mais absents des prédictions



8.2 résumé des principales contributions 155

de DeGroot, peuvent se produire avec une probabilité positive.
L’objectif initial de cette étude était de proposer une métrique
sur les croyances permettant de construire un modèle de désin-
formation stratégique. Bien que la nature exacte du consensus
limite demeure à l’état de conjecture, nous avons bon espoir de
pouvoir démontrer ces résultats et de les mettre en oeuvre dans
un modèle plus large.

8.2.2 deuxième partie

Dans la deuxième partie de cette thèse, nous considérons un
jeu de routage non atomique répété où les fonctions de coût
de chaque arête du réseau de routage dépendent conjointe-
ment de la demande sur cette arête et d’un paramètre d’état
inconnu et ne variant pas au cours du temps. L’ensemble des
états est fini et doté d’une croyance a priori. À chaque période
de temps, une génération éphémère d’utilisateurs ayant une
demande totale donnée joue le jeu et réalise un équilibre de
Wardrop par rapport aux coûts espérés sur les arêtes : chaque
chemin recevant une charge positive d’agents minimise le coût
espéré. Pour chaque arête utilisée, sa charge et le coût réalisé
correspondant deviennent des informations publiques pour les
générations suivantes. On suppose que chaque génération con-
naît toute l’histoire passée du jeu et met à jour ses croyances de
manière bayésienne. La séquence des demandes des différentes
générations est supposée être aléatoire, i.i.d..

Nous considérons deux concepts différents d’apprentissage
social : dans le cas d’un apprentissage fort, les joueurs finis-
sent par apprendre le véritable état du monde ; dans le cadre
d’un apprentissage faible, ils apprennent à jouer le jeu comme
si le véritable état du monde était connu. Nous montrons que
l’apprentissage faible est un concept strictement plus faible que
l’apprentissage fort et que les conditions pour atteindre l’un
ou l’autre dépendent de la topologie du réseau et du support
de la demande aléatoire. Notre théorème principal prouve que
l’apprentissage faible se produit si le réseau de routage est série-
parallèle et si les fonctions de coût et le support de la demande
sont non-bornés. De plus, nous montrons que l’apprentissage
fort est obtenu avec les mêmes conditions préalables et la con-
dition supplémentaire que la demande ait un support complet
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sur R+. L’intuition derrière ce résultat est la suivante : lorsque
la demande est stochastique, les flux d’équilibre varient. Cela
génère des observations des fonctions de coût pour différentes
valeurs de charges. En se basant sur les résultats de Cominetti,
Dose, and Scarsini [44] sur la variation des flux d’équilibre par
rapport à la demande, nous prouvons que dans un réseau série-
parallèle, lorsque la demande augmente, toutes les arêtes sont
utilisées à l’équilibre et les charges d’équilibre sont non-bornées.
Ceci implique que les fonctions de coût seront observées à
des niveaux qui permettent de distinguer les états pertinents
presque-sûrement. Enfin, nous prouvons que la condition sur
la topologie du réseau est nécessaire : pour les réseaux qui ne
la satisfont pas, nous montrons qu’il existe une affectation des
fonctions de coût et des capacités telle que l’apprentissage faible
échoue pour toute distribution de la demande.

Cette partie contribue à la littérature sur l’apprentissage
social en offrant un exemple de jeu large où des séquences
d’ensembles continus de joueurs permettent l’apprentissage.
Nous contribuons également à la littérature sur les jeux de
routage en la reconnectant à une approche plus traditionnelle
sur l’apprentissage dans les jeux. Ainsi, nous offrons un mod-
èle d’apprentissage qui est immunisé contre le chaos et où les
croyances convergent en temps fini.

8.2.3 troisième partie

Dans la troisième partie de cette thèse, notre objectif est double.
D’un point de vue théorique, nous construisons un modèle de
jeux de révision avec des flux de paiement et un état cumu-
latif pour modéliser l’arbitrage intertemporel auquel font face
les Etats impliqués dans la transition environnementale. Deux
joueurs agissent sur un intervalle de temps fini et se voient
proposer à des dates stochastiques de réviser leur décision. Cela
produit un flux de paiements et détermine un état commun du
monde qui capture la part de temps pendant laquelle chaque
joueur a joué l’action non-coopérative. Cet état est une approxi-
mation de l’impact des émissions des joueurs au cours du jeu.
Lorsque le temps atteint la fin de l’intervalle, un gain final est
déterminé en fonction de l’état du monde.
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Ce projet reste à un stade précoce de développement et
l’essentiel de nos efforts a été consacré à l’identification du
modèle adéquat. Néanmoins, nous fournissons un programme
détaillé des résultats sur lesquels nous travaillons. En termes
pratiques, nous avons d’abord l’intention de prouver l’existence
d’un profil symétrique de stratégies optimales sous la forme de
stratégies de seuil : avant un seuil de temps qui dépend négative-
ment de la fréquence attendue des temps de révision, les deux
joueurs jouent l’équilibre de Nash du jeu à un coup, puis passent
à un profil d’action coopératif. À cet égard, plus la fréquence
à laquelle les joueurs révisent leurs stratégies est élevée, plus
la durée du régime coopératif est courte. Cette relation entre la
fréquence de décision et le comportement coopératif est déjà
observée dans les jeux de révision sans flux de paiement.

Ce projet contribue à la littérature récente sur les jeux de
révision en proposant une version alternative du modèle où
les joueurs arbitrent entre un flux de paiements instantanés et
un gain terminal. Il contribue également à la littérature sur
la prise de décision environnementale en reliant théorique-
ment la fréquence à laquelle les politiques sont révisées avec
l’émergence d’un comportement coopératif. Enfin, tout en étant
équivalente aux jeux stochastiques, la classe des jeux de révision
ne permet pasl’application des Folk theorems existants. Prouver
l’existence d’équilibres parfaits en sous-jeu soutenant une forme
de coopération est donc un apport à ce qui est connu sur la
coopération dans les jeux dynamiques non-coopératifs.
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A P P E N D I X





a
S I M U L AT I O N S U S E D I N PA RT i

In this appendix, we provide elements on the simulations used
to support conjectures made in Chapter 4. Appendix a.1 pro-
vides elements of the code used to simulate the communication
process. Appendix a.2 gives additional visual outputs from those
simulations that further support our conjectures.

a.1 P Y T H O N C O D E

We provide the main elements coded to simulate the communi-
cation process. The code is annotated with details on the nature
of the different functions and a description of the parameters.
This code is a simplified version of the main code we used.
The main difference between the two version is that the final
code was optimized to reduce its run time and adapted to a
multiprocessing environment.

###################################

###0: Packages required

###################################

import networkx as nx

import matplotlib.pyplot as plt

import random

from scipy.stats import bernoulli

import csv

import numpy as np

###################################

###1: Functions definitions

###################################

## Star Graph generator
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def star_gen(n):

g=nx.Graph()

for i in range(1,n+1):

g.add_node(i)

if i>1:

g.add_edge(1,i)

return g

### 1.1 Urns initialization

###################################

## IID Bernoulli initialization (g=graph, error=alpha, theta=

true value)

def init_urns(g,error,theta):

urns={}

for i in g.nodes():

own={}

gen=random.uniform(0,1)

if gen>error:

own['W']= theta

else:

own['W']=1-theta

own['B']=1-float(own['W'])

urns[i]=own

nx.set_node_attributes(g,urns,'urn')

## Uniform initialization (1W 1B, g=graph)

def init_unif(g):

urns={}

for i in g.nodes():

own={}

own['W']=1

own['B']=1

urns[i]=own

nx.set_node_attributes(g,urns,'urn')

### 1.2 Updating processes

###################################

## Draw step (g=graph, state=vector of proportions)

def draw_step(g,state):

draw={}
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cb=0

cw=0 for j in g.nodes():

urn = nx.get_node_attributes(g,'urn')[j]

rat=float(urn['W'])/(float(urn['B'])+float(urn['W']))

state[j].append(rat)

#print rat

gen=random.uniform(0,1)

if gen>rat:

tirage = 'B'

cb+=1

else:

tirage = 'W'

cw+=1

draw[j]=tirage

#print draw

return draw

## Aggregates neighbors' draws and updates urns (g=graph, draw=

vector of draws)

def gather_neighbor(g,draw):

nurn={}

for i in g.nodes():

N=dict()

N[i]=nx.all_neighbors(g,i)

own={}

B=nx.get_node_attributes(g,'urn')[i]['B']

W=nx.get_node_attributes(g,'urn')[i]['W']

for j in N[i]:

if 'W' in draw[j]:

W+=1

if 'B' in draw[j]:

B+=1

own['W']=W

own['B']=B

nurn[i]=own

nx.set_node_attributes(g,nurn,'urn')

## Updates selecting on neighbor at random (g=graph, draw=

vector of draws)

def rand_neighbor(g,draw):

nurn={}

for i in g.nodes():

N=list(nx.all_neighbors(g,i))

own={}

B=nx.get_node_attributes(g,'urn')[i]['B']

W=nx.get_node_attributes(g,'urn')[i]['W']

s=np.random.randint(0,len(N))

n=N[s]
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if 'W' in draw[n]:

W+=1

if 'B' in draw[n]:

B+=1

own['W']=W

own['B']=B

nurn[i]=own

nx.set_node_attributes(g,nurn,'urn')

## Process functions combining draws and updating (g=graph, t=

number of iterations, state=vector of proportions)

def com_sequence(g,t,state):

l=1

while l<t+1:

draw=draw_step(g,state)

gather_neighbor(g,draw)

l+=1

def com_randneigh(g,t):

l=1

while l<t+1:

draw=draw_step(g)

rand_neighbor(g,draw)

l+=1

###################################

### 2 Simulation Function

###################################

## 2.1 Star graph simulation

## (size=N, err=1-alpha, sims= number of simulations, lenproc=

number of iterations)

###################################

def do_star(size,err,sims,lenproc):

cons=[]

for t in range(0,sims):

g=star_gen(size)

state={}

for s in g.nodes():

state[s]=[]

init_urns(g,err,1)

com_sequence(g,lenproc,state)

cons.append(state[1][len(state[1])-1])

print(cons)

return(cons)

## 2.2 Regular graph simulation
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## (size=N, deg= degree of G, err=1-alpha, sims= number of

iterations,

## lenproc=number of iterations)#

##################################

def do_reg(size,deg,err,sims,lenproc):

cons=[]

for t in range(0,sims):

g=nx.random_regular_graph(deg,size)

while nx.is_connected(g) == "False":

g=nx.random_regular_graph(deg,size)

state={}

for s in g.nodes():

state[s]=[]

init_urns(g,err,1)

com_sequence(g,lenproc,state)

cons.append(state[1][len(state[1])-1])

print(cons)

return(cons)

## 2.3 Complete graph simulation

## (size=N, err=1-alpha, sims= number of simulations, lenproc=

number of

## iterations, res=collections of proportions)

###################################

def do_comp(size,err,sims,lenproc,res):

cons=[]

for t in range(0,sims):

g=nx.complete_graph(size)

state={}

for s in g.nodes():

state[s]=[]

init_urns(g,err,1)

com_sequence(g,lenproc,state)

cons.append(state[1][len(state[1])-1])

res.append(cons)

a.2 A D D I T I O N A L O U T P U T S

In this section, we provide additional outputs obtained from the
simulations.
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a.2.1 beta distribution fit for varying values of α

The outputs below show the empirical and theoretical densities
and cumulative distribution functions, quantile-quantile and
P-P plots obtained in fitting a beta distribution on the outcomes
of N = 14000 simulations run on a 5-regular graph of size 50

for values of α ranging from 0.1 to 0.9. Similar results were ob-
tained in other graph structures. These outputs strongly support
Conjecture 72 ad Conjecture 76.

Figure a.1: Fitness measures for beta distribution on a 5-regular graph
with α = 0.90, n = 14000 observations.
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Figure a.2: Fitness measures for beta distribution on a 5-regular graph
with α = 0.80, n = 14000 observations.
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Figure a.3: Fitness measures for beta distribution on a 5-regular graph
with α = 0.70, n = 14000 observations.
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Figure a.4: Fitness measures for beta distribution on a 5-regular graph
with α = 0.60, n = 14000 observations.
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Figure a.5: Fitness measures for beta distribution on a 5-regular graph
with α = 0.50, n = 14000 observations.
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Figure a.6: Fitness measures for beta distribution on a 5-regular graph
with α = 0.40, n = 14000 observations.
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Figure a.7: Fitness measures for beta distribution on a 5-regular graph
with α = 0.30, n = 14000 observations.
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Figure a.8: Fitness measures for beta distribution on a 5-regular graph
with α = 0.20, n = 14000 observations.
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Figure a.9: Fitness measures for beta distribution on a 5-regular graph
with α = 0.10, n = 14000 observations.
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Résumé : Cette thèse étudie les dynamiques d’ap-
prentissage dans les jeux dynamiques. Elle comporte
trois parties indépendantes. Dans la première, j’étudie
les modèles non-bayésiens de formation d’opinion
dans un réseau. Ces modèles considèrent un en-
semble d’individus structuré en réseau échangeant en
temps discret leur croyance sur un état du monde.
Je propose une approche stochastique fondée sur
l’apprentissage par renforcement. J’analyse les pro-
priétés de convergence et l’émergence d’un consen-
sus au sein de la population. Dans la seconde
partie, j’étudie les dynamiques d’apprentissage so-
cial dans les jeux de routage en information pu-
blique incomplète. En temps discret, un continuum
d’agents traverse un réseau orienté d’un nœud ori-
gine à un nœud destination. Le temps de trajet, ou la-
tence, de chaque arête est modélisé par une fonction
dépendant de la masse d’agents utilisant l’arête ainsi

que d’un paramètre global inconnu. Je caractérise les
conditions nécessaires et suffisantes pour que soit les
croyances des individus convergent vers la vérité, soit
à la limite ils jouent à chaque étape un équilibre du
jeu en information complète. Dans la dernière partie,
je propose un modèle théorique d’économie environ-
nementale. J’étudie comment deux états en concur-
rence économique arbitrent entre un flux de paie-
ments de court-terme et un paiement dépendant de
l’état du monde à long-terme lorsqu’ils décident de
s’engager, ou non, dans une transition écologique. Ce
modèle propose une approche transverse mêlant des
éléments des jeux de révision et des jeux à paiements
dépendant de la fréquence. Dans ce contexte, je tente
de caractériser les stratégies optimales et d’identifier
les conditions permettant l’émergence de comporte-
ments coopératifs.

Title : Information, Coordination and Cooperation: Essays on Learning in Dynamic Games.

Keywords : Dynamic games, routing games, revision games, incomplete information, social learning.

Abstract : This thesis studies leaning patterns in dy-
namic games. It consists in three independent parts.
In the first one, I study non-Bayesian models of opi-
nion formation in networks. These models consider
a set of agents embedded in a network structure ex-
changing their opinion on some state of the world at
discrete times. I propose a stochastic extension of
non-Bayesian learning based on reinforcement lear-
ning models. I analyze convergence properties and
characterize conditions that ensure the emergence
of a consensus among a population. In the second
part, I study the dynamics of social learning in rou-
ting games with incomplete public information. At dis-
crete times, continua of agents route through a net-
work from an origin node to a destination node. The
travel time, or latency, of each edge is modeled as a
function depending both on the mass of agents using

that edge and a global unknown state parameter. I
characterize necessary and sufficient conditions so
that, in the limit, either the public belief converges
to the truth or agents play an equilibrium of the full-
information game at each stage. In the last part, I
propose a theoretical model of environmental econo-
mics. I study how two competing states balance bet-
ween a short-term payment flow and a long-run payoff
depending on the state of the world when they can
choose between engaging in environmental transition
or keeping the status quo. This model proposes an
approach combining elements from revision games
and games with frequency-dependent payoffs. In this
context, I aim at characterizing optimal strategies and
identifying conditions that allow the emergence of co-
operative behavior.
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