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Abstract

Highly optimized reasoning algorithms have been developed to allow inference tasks on expressive

ontology languages such as OWL (DL). Nevertheless, DL reasoning remains a challenge in practice. In

fact, reasoner evaluation results are often surprising the experts as reasoner efficiency, may remarkably

vary on different ontologies standing at the same computational complexity level. Furthermore, the

reasoners could disagree over the inferences computed for the same input ontology. In overall, a reasoner

could be optimized for some, but not all ontologies.

Given these observations, the main purpose of this thesis is to investigate means to cope with

the reasoner performances variability phenomena and ways to gain insights into the ontology primary

features likely to be reasoner performances degrading factors. Our final goal is to provide simple,

efficiently computable guidelines to novice and expert users. The guidelines are in their basic form

a set of predictions covering different aspects of the ontology reasoning. To achieve this purpose, we

opted for the supervised learning as the kernel theory to guide the design of our solution. Our main

claim is that the output quality of a reasoner is closely depending on the quality of the input, i.e. the

ontology and machine learning technique can help us capture these dependencies. Accordingly, we first

introduced a novel collection of efficiently computable ontology features, that characterise the design

quality of an OWL ontology. Afterwards, we modelled two learning problems: first, predicting the

overall empirical hardness of OWL ontologies regarding a group of reasoners; and then, anticipating a

single reasoner robustness when inferring ontologies under some online usage constraints. To fulfil this

goal, we designed a generic learning framework which integrates the introduced ontology features. The

framework employs a rich set of supervised machine learning algorithms and feature selection methods.

Owing to this solution, we succeeded to establish highly accurate predictive models. Furthermore, by

analysing the learned models, we unveiled a set of key ontology features likely to alter the reasoner

empirical robustness. In the final part of the thesis, we proposed two domain applications were the

established predictive models could be integrated. First of all, we discussed the issue of reasoner auto-

matic selection for ontology based applications. We introduced a novel reasoner ranking framework.

Correctness and efficiency are our main ranking criteria. We applied bucket order rules to model the
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ranking of reasoners according to these criteria. Then, we proposed two distinct methods to be able

to automatically predict these ranking: i) a ranking based on single label prediction, and ii) a multi-

label ranking method. Afterwards, we suggested to extract from a predicted hard to manage ontology,

those sub-parts that are the most computationally demanding ones. Our method mainly rely on the

atomic decomposition of the ontology. We extracted syntactic locality modules using the signature

of specific atoms. Then, we identified the hard ones using our predictive model of ontology overall

hardness. All of our proposals were gathered and modelled as distinct services offered by one system,

called ADSOR, the "Advisor System over Ontology Reasoners". The system was designed to allow

the different learning operations within an offline stage and to interact with the user requests in an

online stage. Excessive experimentations were carried out to prove the worthiness of our approaches

and their competitiveness with existing solutions.

Keywords: ontology, reasoner, empirical performance, supervised learning, prediction, hardness,

robustness, ranking, extraction.



Résumé

Le raisonnement en logique de description (LD) autour des ontologies écrites en OWL est un réel défi

en raison du niveau d’expressivité élevé de ce langage. En effet, la complexité dans le pire cas de

raisonnement avec une ontologie OWL2 (DL) est 2N-EXPTIME-complet. De multiples approches de

raisonnement et de techniques d’optimisation ont été implémentées afin de surmonter le compromis

entre la complexité des algorithmes de raisonnement et l’expressivité du langage de formulation de

l’ontologie. Cependant les compagnes d’évaluation des raisonneurs continuent de confirmer l’aspect

imprévisible et aléatoire des performances de ces logiciels à l’égard des ontologies issues du monde réel.

Partant de ces observations, l’objectif principal de cette thèse est d’assurer une meilleure com-

préhension du comportement empirique des raisonneurs en fouillant davantage le contenu des onto-

logies. Nous avons déployé des techniques d’apprentissage supervisé afin de capturer les relations de

corrélation entre, d’une part, les attributs qui décrivent les modèles conceptuels des ontologies et d’autre

part, l’historique des performances des raisonneurs. Les relations découvertes sont exploitées afin de

permettre la prédiction des comportements futurs des raisonneurs. Nos propositions sont établies

sous forme d’un système d’assistance aux utilisateurs afin de faire face au phénomène de variabilité

de performance des raisonneurs. Quatre composantes principales ont été proposées. La première est

un profileur d’ontologie qui décrit son modèle conceptuel par l’intermédiaire de 116 descripteurs. La

deuxième composante est un module d’apprentissage supervisé capable d’établir des modèles prédictifs

de la robustesse des raisonneurs et de la difficulté empirique des ontologies. La troisième composante

est un module de ordonnancement par apprentissage des raisonneurs LD. Cette composante a été mise

en place afin d’aider à la sélection du raisonneur le plus robuste étant donnée une ontologie. Nous

avons proposé deux approches d’ordonnancement automatique; la première fondée sur la prédiction

mono-label et la seconde sur la prédiction multi-label. La dernière composante de notre système offre

la possibilité d’identifier les parties potentiellement les plus complexes d’une ontologie. Notre solution

repose sur l’approche de décomposition atomique et de l’extraction de modules ontologiques de loc-

alité. L’identification des modules complexes est guidée par notre modèle de prédiction du niveau de

difficulté d’une ontologie. Chaque composante du système proposée a été validée grâce à une large



RÉSUMÉ vii

palette d’expérimentations. Ces composantes ont été intégrées dans un système intelligent d’assistance,

intitulé "ADSOR: Advising System Over Ontology Reasoners", destiné aux utilisateurs de raisonneurs

d’ontologie.

Mots clé: ontologie, logique de description, raisonnement, apprentissage supervisé, prédiction,

classement, extraction.
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0.1 Introduction

Lorsque Berners-Lee et al. [BLHL01] ont formulé la notion de Web sémantique, ils ont porté une

grande attention aux ontologies. En effet, une ontologie peut fournir un vocabulaire commun, une

grammaire de publication de données, offrir une description de pages web, etc. Dès lors, les ontologies

sont utilisées comme des modèles conceptuels pour l’intégration de données dans des domaines très

divers. Moyennant les ontologies, le futur Web sémantique devrait représenter l’information de telle

façon qu’elle soit beaucoup plus porteuse de sens pour les humains mais aussi pour les machines.

Une ontologie est typiquement encodée dans un langage de représentation des connaissances (KR).

Une classe majeure des langages d’ontologie est fondée sur les logiques des descriptions (DLs) [BCM+10]

qui sont des fragments décidables de la logique du premier ordre (FOL1). Le langage d’ontologie le

plus notablement connu dans cette classe est le langage OWL [HPSV03]. OWL est très utilisé dans

les mondes académique et industriel, sachant que c’est une recommandation du W3C (World Wide
1First Order Logic
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Web Consortium) comme le standard de création d’ontologie. Une ontologie exprimée en OWL peut

être vue comme un ensemble de formules FOL, appelées axiomes, et donc comme une théorie logique.

Par conséquent, le vocabulaire exprimé en OWL est bien défini et sans ambiguïté. Cependant, il y a

souvent un décalage entre la représentation visée et la représentation réelle de la connaissance décrite

dans l’ontologie. Alors que la connaissance du domaine d’intérêt est généralement bien maîtrisée ou tout

au moins comprise, il n’est pas trivial de prévoir et de comprendre les conséquences logiques d’un ajout,

d’un retrait ou d’une modification d’axiome, notamment quand la terminologie est fortement inter-

connectée. Ainsi, un ingénieur en ontologie a besoin d’utiliser des systèmes de déduction automatisés,

communément appelés raisonneurs, pour vérifier certaines formes de déduction à partir des axiomes pré-

établis et de rendre explicites ceux qui sont déclarés implicitement. Les raisonneurs sont donc, à l’heure

actuelle, des éléments clés pour travailler avec des ontologies. Ayant mis en évidence l’importance et le

rôle crucial de ces derniers, beaucoup d’efforts en recherche et en ingénierie ont été faits pour proposer

de nouveaux algorithmes de raisonnement sémantique [BS01, MSH09, SKH11] avec des optimisations

conséquentes, tels que FaCT++ [TH06], Pellet [SPG+07] et HermiT [GHM+12]. Matentzoglu et al.

[MLH+15] ont récemment analysé cet effort dans le domaine de la recherche dans une étude détaillée.

Challenges

Malheureusement, la prolifération des ontologies a un coût. Elles continuent à gagner en importance,

que ce soit par leur taille et/ou par leur complexité ; ce qui outrepasse les capacités cognitives de

tout homme pour comprendre et pour manipuler manuellement les connaissances modélisées. Cette

complexité cognitive a entraîné une dépendance vis-à-vis des raisonneurs pour contrôler et gérer ces

ontologies. De plus, les raisonneurs, eux-aussi, ont gagné en complexité. En fait, il existe un réel

compromis entre l’expressivité logique du langage des ontologies et la complexité du raisonnement

DL ; plus le langage est expressif, plus sa complexité computationnelle sera importante. Horrocks et

al. [HKS06] ont montré que les problèmes de raisonnement sur des ontologies écrites en SROIQ,

soit la logique de description qui est le fondement de OWL 22 sont, dans le pire des cas résolus par

un algorithme non déterministe en un temps (doublement) exponentiel dans le respect de la taille de

l’ontologie donnée en entrée. Par contre, différents travaux, dont [MRW11, Abb12], ont montré qu’en

général, le raisonnement est faisable en pratique et beaucoup moins complexe qu’en théorie. Cet état

de fait serait dû à diverses techniques d’optimisation sophistiquées du raisonnement [Hor03, THPS07].

Néanmoins, les auteurs respectifs de [WLL+07, GPS12] ont souligné le fait qu’en pratique aussi, les

raisonneurs ont tendance à présenter des comportements imprévisibles quand ils travaillent avec des

ontologies du monde réel. Leurs performances varient énormément d’une ontologie à l’autre, même

2Deuxième version de OWL, OWL 2 [Gro09], est une recommandation du W3C depuis 2009
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quand la taille ou l’expressivité de ces dernières restent constantes. En effet, les observations parci-

monieuses existantes concernant les performances des raisonneurs ont incité l’organisation de plusieurs

bancs d’essai de raisonneurs [DCtTdK11, Abb12] et des compétitions d’évaluation annuelles, telle que

"Ontology Reasoner Evaluation Workshop" (ORE) [GBJR+13, BGJ+14, DGG+15]. Tous essaient de

comparer les avancées dans le domaine des systèmes de raisonnement et examinent la robustesse de ces

derniers face à des ontologies du monde réel. Les résultats empiriques de ces campagnes d’évaluation

surprennent souvent les novices et les experts. Les principaux constats ont été résumés par Gonçalves

et al. [GPS12] comme suit: i) étant donnée une même ontologie, écarts énormes de temps de rais-

onnement apparaissent ; ii) performances aléatoires d’un raisonneur pour un ensemble d’ontologies

partageant les même caractéristiques ; iii) échecs de tous les raisonneurs à traiter une certaine catégorie

d’ontologies. En outre, il a été constaté par Gardiner et al. [GTH06] et plus récemment Lee et al.

[LMPS15] que les inférences calculées pour une même ontologie peuvent variées d’un raisonneur à

un autre, ce qui remet en question l’exactitude ainsi que l’exhaustivité de leurs méthodes de raison-

nement. D’une manière générale, il est largement admis qu’il n’y a pas de moteur de raisonnement

qui puisse surclasser tous les autres pour toute catégorie d’ontologie. Il y a simplement un consensus

[GTH06, WLL+07, WP07, GPS12, GMPS13, LMPS15] établissant que la complexité empirique du

raisonnement autour des ontologies est en relation avec le phénomène de variabilité des performances

de ces outils. Ce problème rend l’utilisation des raisonneurs assez fastidieuse, ce qui risque de freiner

leur prolifération et par conséquence, le développement du Web Sémantique. Dans cette thèse, nous

nous sommes focalisés sur deux principaux aspects de ce phénomène à savoir (i) la variabilité du temps

de calcule en fonction de l’ontologie en cours de traitement, (ii) la disparité des déductions calculées

par différents raisonneurs sur une même ontologie.

Face à ces constats, il est réaliste d’affirmer que les qualités les plus désirées, i.e. la justesse

du résultat et l’efficacité temporelle, ne sont pas garanties empiriquement par tous les raisonneurs

et pour toutes ontologies. Un raisonneur pourrait être optimisé pour certaines ontologies mais pas

pour toutes. Ces observations identifient la difficulté de compréhension des comportements empiriques

des raisonneurs même pour des concepteurs de raisonneur expérimentés et compétents. Comme l’ont

précédemment soutenu Wand and Parsia [WP07], le problème réel avec le raisonnement LD est le

manque de théorie et d’outil d’assistance aidant tout aussi bien un novice qu’un expert pour analyser

les performances empirique des raisonneurs. En outre, faute de manque de connaissances, les règles

de décision préétablies par les experts concernant le bien fondé d’un raisonneur pour une ontologie

particulière sont moins effectives en pratique, excepté pour des cas triviaux.

Partant de ces constatations, dans cette thèse, nous allons développer et de nouveau examiner deux

questions de recherche fondamentales à nos yeux pour un utilisateur final à savoir :
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1. Quelles caractéristiques des ontologies sont susceptibles d’avoir un impact sur les performances

d’un raisonneur ?

2. Est-ce que c’est faisable de raisonner sur une ontologie écrite en une LD particulière, en utilisant

les meilleurs raisonneurs disponibles ?

Cette seconde question pourrait également être détaillée. Premièrement, nous pourrions nous demander

s’il est possible a priori de prédire les performances de tout raisonneur sur une ontologie quelconque.

Ensuite, comment pourrions nous assister les utilisateurs finaux afin qu’ils obtiennent une sélection

automatique des raisonneurs les plus "appropriés" pour leurs ontologies ?

Objectifs et contributions

L’objectif principal de cette thèse est d’apporter des solutions pour faire face au phénomène de vari-

abilité des performances des raisonneurs ; et donc, de faire au préalable un état de l’art de l’analyse

empirique des raisonneurs DL. Nous croyons que fournir un guide sur les comportements empiriques

des raisonneurs pourrait améliorer davantage leur optimisation et la conception d’ontologie en évitant

les facteurs dégradant les performances de ceux-ci.

Pour apporter des solutions à notre première question, nous avons mené une investigation sur les

méthodes et les outils existants destinés à identifier une corrélation potentielle entre le comportement

empirique d’un raisonneur et les caractéristiques particulières d’une ontologie. Nous avons essayé

de donner aux utilisateurs une vue globale au travers d’un état de l’art dans ce domaine. Les tout

premiers travaux ont été analysés et ensuite catégorisés. Nos investigations nous ont amené à penser

que la complexité de conception d’une ontologie est le résultat d’une combinaison complexe de multiples

caractéristiques dimensionnelles et ne peut être mesurée directement en utilisant une unique métrique.

Aussi, nous avons proposé un ensemble de caractéristiques d’ontologie couvrant un large spectre des

propriétés structurelles et syntaxiques d’ontologie. Nous revendiquons le fait que ces caractéristiques

devraient être des indicateurs clés du niveau de difficulté d’une ontologie par rapport aux tâches de

raisonnement.

Notre seconde question concerne deux problèmes : (i) la prédiction des comportements empiriques

d’un raisonneur et (ii) la sélection automatique du raisonneur adéquat étant donné une ontologie. La

prédiction de la performance d’un raisonneur a aussi été étudiée par Gonçalves et al. [GPS12]. Ils

ont suggéré qu’une voie possible pour expliquer pourquoi un raisonneur fonctionne mal sur une cer-

taine ontologie est de prédire si l’ontologie contient certains composants coûteux informatiquement

parlant. Leur principale revendication est que si le temps exigé pour classer une ontologie par un

raisonneur particulier n’est pas corrélé linéairement à la taille de ses sous-ensembles, alors l’ontologie
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est dite hétérogène en performance pour ce raisonneur. Dans ce cas, il est vraisemblable que cer-

taines sous-parties de l’ontologie, i.e. les modules, sont des "zones sensibles" (dit "hotspots") de la

performance du raisonneur. Cependant, les expérimentations ont révélé qu’il n’y a pas de corrélation

précise entre le temps de raisonnement sur un seul hotspot et la réduction en temps de raisonnement

quand un tel hotspot est enlevé de l’ontologie globale. Ils ont affirmé que d’autres recherches devraient

être faites sur des interactions possibles entre hotspots et d’autres caractéristiques de l’ontologie. Une

autre plus-value de ces travaux, principalement décrite dans [KLK12, SSB14, KLK14], a utilisé des

techniques d’apprentissage supervisé (SML) [Kot07] visant à prédire le temps de calcul d’un raison-

neur sur n’importe quelle ontologie. Leurs modèles prédictifs s’appuient sur un grand ensemble de

métriques ontologiques pré-calculées. La rationalité de ce choix est d’être capable d’apprendre auto-

matiquement les comportements futurs d’un raisonneur fondé sur ce qui a été éprouvé dans leurs

exécutions passées. Les approches de prédiction des performances d’un raisonneur sont encore à leur

balbutiement mais ont montré des résultats très prometteurs dans différents champs d’application.

Par exemple, les auteurs respectifs de [KLK14, SSB14] ont déployé leurs modèles de prédiction du

temps d’exécution de raisonneur pour identifier les hotspots d’ontologie. Par ailleurs, nous tenons à

souligner que l’idée d’apprentissage pour prédire le temps d’exécution d’un algorithme à partir de don-

nées empiriques n’est pas nouveau. Après plus d’une décennie de recherche, Brown et al. [LBHHX14]

ont démontré que le temps d’exécution des solveurs sur des problèmes NP-complet SAT peut être

prédit précisément fondé sur la facilité de calculer des caractéristiques et en employant des techniques

SML. Hutter et al. [HXHLB14] ont effectué une large étude récapitulant tous les travaux pionniers

essayant d’apprendre des modèles empirique de performance (EPMs) d’algorithme. Nous constatons

en cela que les approches basées apprentissage automatique sont d’un grand intérêt pour satisfaire

la demande de dépistage des phénomènes de variabilité de performance de raisonneur. En effet, les

méthodes d’apprentissage sont génériques et pourraient donc manipuler n’importe quel raisonneur ou

n’importe quelle ontologie. D’autre part, elles ont un large éventail d’application. Néanmoins, les

solutions existantes de prédiction de performance des raisonneurs sont encore limitées puisque toutes

évaluent seulement le temps d’exécution des raisonneurs. Pourtant, selon nous, un raisonneur qui

vérifie rapidement mais incorrectement la cohérence d’une ontologie est de peu d’intérêt. Dans cette

thèse, nous proposons d’apporter une pierre supplémentaire à la modélisation prédictive des comporte-

ments empiriques de raisonneur en recherchant également la qualité des résultats des raisonneurs et

en identifiant les ontologies qui vont probablement dégrader ces qualités. Plus spécifiquement, nous

essaierons de prédire la correction des raisonneurs ainsi que leur efficacité. Pour terminer, nous ét-

ablirons une spécification détaillée d’un cadre de travail générique d’apprentissage capable de réaliser

plusieurs tâches prédictives de modélisation pour du raisonnement sur des ontologies. Ce cadre utilise

la suite proposée de caractéristiques d’ontologie et un large ensemble d’algorithmes d’apprentissage
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supervisé couplé à de multiples techniques de sélection de caractéristiques. En utilisant ce cadre de

travail, nous commencerons à entraîner un modèle capable de prédire si une ontologie est difficile

empiriquement selon un groupe de raisonneurs. Puis, les performances des ontologies ingérables pour-

raient être identifiées. Cherchant une analyse plus fine, nous essaierons de décrire la robustesse de

chaque raisonneur en combinant des modèles conditionnels prédictifs de sa justesse et de son efficacité.

Cette association particulière matérialise notre concept de profil prédictif de robustesse de raisonneur.

Nous montrerons que, fondés seulement sur des caractéristiques d’ontologie simples et faciles à cal-

culer, les modèles de grande précision traitant à la fois la difficulté des ontologies et la robustesse des

raisonneurs devraient être appris par une exploration intelligente des données empiriques. Enfin, nous

fournirons des indications pour interpréter les différents modèles prédictifs entraînés dans le but de

découvrir de nouvelles relations entre les caractéristiques d’ontologie et la qualité du raisonneur ; et,

par là, favoriser notre compréhension des caractéristiques clés d’ontologie probablement source de la

dégradation de la robustesse empirique des raisonneurs. Notre hypothèse est que, plus efficaces sont les

caractéristiques dans la description de la complexité de conception des ontologies, plus exacts seront

les modèles prédictifs entraînés.

Notre interrogation suivante est liée au problème déjà ancien de sélection d’algorithme, discuté la

première fois par John Rice [Ric76] au milieu des années 70. Ce sujet est à la croisée de beaucoup de

domaines de problème, tels que l’apprentissage machine (ML) et l’intelligence artificielle (AI). Un trait

commun parmi les solutions proposées est qu’elles emploient des techniques d’apprentissage supervisé,

de régression ou de classification de ML3, pour construire un système prédictif efficace des performances

des algorithmes candidats pour chaque instance de problème. Par conséquent, le plus adéquat devrait

être identifié. Le méta-apprentissage [BGCSV08] et la construction d’un algorithme portfolio [GS01]

sont les champs principaux où le modèle de Rice d’algorithme de sélection ont été mis en pratique.

Alors que les approches de méta-apprentissage fondamentalement tendent à recommander le meilleur

algorithme ML selon un ensemble de données fourni, le but final des approches portfolio est de tirer

profit de la complémentarité des algorithmes en les combinant dans le but d’obtenir des performances

éprouvées dans le cas moyen. L’idée de construire un portfolio de raisonneurs a séduit Kang et al.

[KKL15]. Ces derniers ont utilisé leurs modèles prédictifs de temps d’exécution de raisonneurs précé-

demment entraînés pour construire R2O2, une sorte de méta-raisonneur qui combine les raisonneurs

existants et essaie de déterminer le plus efficace pour une ontologie donnée. Leurs résultats ont été

remarquables, prétendant que R2O2 pourrait surclasser le plus efficace des raisonneurs. Cependant,

aucune évaluation rigoureuse sous condition particulière n’a été conduite pour confirmer les assertions

3Il est important de noter que la "classification DL" représente pour une tâche de raisonnement la tendance à inférer

des relations de subsumption entre les classes et les propriétés pour une ontologie donnée, alors que la "classification

ML" dénote le processus d’entraînement d’un modèle prédictif à partir d’un ensemble de données étiquetées.
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de Kang et al. En fait, le temps supplémentaire induit par les étapes de prédiction n’est pas pris en

compte. Dans cette thèse, nous avons choisi de nous intéresser au problème de la sélection de raison-

neur d’ontologie selon un point de vue différent. Nous croyons qu’avoir des raisonneurs sélectionnés

comme étant les plus adaptés pour une ontologie donnée est un type de recommandation qui serait

faite pour des utilisateurs cherchant à être conseillés. Le conseil fourni devrait être, dans sa forme

basique, un classement des raisonneurs dans l’ordre de préférence. Comme précédemment souligné par

[PdSL11], fournir un classement des algorithmes candidats est une solution plus informative et flexible

que suggérer le meilleur algorithme. Par exemple, un utilisateur peut décider de continuer à utiliser son

raisonneur favori si sa performance est légèrement en dessous que le meilleur dans le classement. Pour

réaliser ceci, nous avons formalisé un nouveau cadre de classement de raisonneurs qui prend en compte

la robustesse des raisonneurs candidats, et plus précisément leur niveau de correction et d’efficacité

pour une ontologie donnée. Nous avons étudié deux approches distinctes de classement : une première

méthode qui permet des liens et suit les règles des principes du "bucket order" et une méthode basée

classement de labels qui applique les règles de préférence d’apprentissage. Nous avons prouvé expéri-

mentalement le mérite de chaque approche proposée et avons discuté de leurs avantages et de leurs

inconvénients. A notre connaissance, nous sommes les premiers à employer plus d’un critère de classe-

ment de raisonneurs et nous croyons que c’est une étape importante dans le classement multi-critères

des raisonneurs d’ontologie.

Au delà de la sélection de raisonneur, nous avons proposé un autre type de conseil pour les util-

isateurs finaux cherchant à gagner en compréhension de leurs ontologies. En effet, quand une ontologie

est reconnue comme étant difficile à gérer, un utilisateur cherchera à détecter les causes de cette dif-

ficulté. Dans ce cas, nous suggérons de lui fournir la possibilité d’extraire les sous-parties de son

ontologie qui sont potentiellement les plus exigeantes en terme de coût de raisonnement. Comme

décrit ci-dessus, ces sous-parties sont appelées des hotspots d’ontologie [GPS12]. Les hotspots sont des

goulots d’étranglement de performance lors du raisonnement, et ils représentent des opportunités de

remaniement pour les concepteurs d’ontologie. Aussi, une identification efficace de ces composants est

hautement nécessaire. Nous avons revisité les approches respectives de Gonçalves et al. [GPS12] et

Kang et al. [KLK14] d’extraction d’hotspot. Nous avons suggéré une nouvelle méthode qui repose

sur la représentation de graphe de dépendance des axiomes d’une ontologie. Notre extraction tire

avantage du modèle général entraîné de difficulté d’ontologie et elle est guidée par les caractéristiques

de l’ontologie reconnues comme clés et ayant probablement un impact sur la robustesse du raisonneur.

Nos premiers résultats expérimentaux sont encourageants, témoignant du potentiel de cette méthode.
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Un premier aperçu

Pour résumer, le propos principal de cette thèse est d’examiner les moyens à mettre en oeuvre pour faire

face aux phénomènes de variabilité de performances de raisonneur et les voies possibles pour gagner

en compréhension sur les caractéristiques principales d’ontologie dégradant probablement les facteurs

de performance des raisonneurs. Notre but final est de fournir des orientations simples, calculables

efficacement pour des novices et des experts concernant, d’une part, la difficulté empirique des onto-

logies OWL et, d’autre part, la robustesse empirique des raisonneurs DL modernes. Ces orientations

sont basiquement un ensemble de prédictions sur les comportements attendus d’un raisonneur ou un

classement d’un groupe de raisonneurs pour une ontologie donnée. Nous croyons que la délivrance de

telles indications à un nouvel utilisateur ayant peu d’expérience dans les algorithmes sophistiqués de

raisonnement devrait être une solution utile lui faisant économiser un temps précieux en recherche et

en analyse. Mais c’est aussi un point de départ également utile pour les experts pour conduire des

examens approfondis sur leurs ontologies ou leurs raisonneurs. Pour terminer ce propos, nous avons

opté pour l’apprentissage supervisé comme théorie centrale pour guider la conception de notre solution.

Ce mémoire est structuré selon l’étude expérimentale qui a été effectuée. De façon plus détaillée,

les chapitres ultérieurs sont centrés sur les sujets suivants :

Chapitre 1 jette les bases de la terminologie employée et les notions de fond centrales utilisées tout

au long de cette thèse. Nos questions de recherche sont à la croisée de deux champs disciplinaires :

le Web sémantique [BLHL01] et l’apprentissage machine [Sam59]. C’est pourquoi nous rappelons

quelques unes de leurs notions fondamentales. En particulier, nous nous focalisons sur les trois

notions clés à savoir les ontologies, les raisonneurs et l’apprentissage supervisé.

Chapitre 2 examine les travaux liés au notre. Nous commencerons par aborder les niveaux de com-

plexité de modélisation des ontologies OWL et la façon de caractériser sa conception. Puis, nous

focaliserons notre étude sur le phénomène de variabilité de performances des raisonneurs. Nous

allons mettre en place des méthodes de comparaison et des outils qui essaient de le détecter

et l’analyser. La dernière section de ce chapitre sera d’ailleurs dédiée aux avancées s’adressant

au problème de sélection d’algorithme. Nous examinerons les approches connues dans le méta-

apprentissage et la construction de portfolio d’algorithme.

Chapitre 3 décrit en détail notre ensemble de caractéristiques proposées pour classer une ontologie.

Ces caractéristiques sont classées en quatre catégories de base et couvrent un large spectre des

propriétés structurelles et syntaxiques des ontologies. Nous employons nos caractéristiques pour

décrire des ontologies OWL sélectionnées à partir d’un corpus bien connu. Enfin, nous avons
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mené une comparaison sur le coût computationnel de mesure de nos caractéristiques dans le but

d’identifier celles qui sont les plus efficacement calculables.

Chapitre 4 détaille notre méthodologie d’apprentissage de raisonneur qui dépend de notre riche en-

semble de caractéristiques avancées pour ontologie. Grâce aux avantages de cette proposition,

nous avons modélisé le profil de robustesse d’un raisonneur, en terme de modèles prédictifs de sa

correction et son efficacité. Pour démontrer le mérite de nos propositions, nous avons conduit un

examen rigoureux à partir de six raisonneurs bien connus et sur 2 500 ontologies. Nous avons com-

paré divers algorithmes d’apprentissage supervisé et des techniques de sélection de caractéristique

dans le but d’entraîner les meilleurs modèles de prédiction de raisonneur. Les modèles prédictifs

entraînés ont montré qu’il sont des solutions surpassant grandement les autres solutions présentées

dans l’état de l’art.

Chapitre 5 décrit les deux domaines d’application où les modèles prédictifs établis pourraient être

intégrés. Les deux font partie d’un système générique que nous avons nommé ADSOR pour

"Advising System Over Ontology Reasoners". Le propos principal de ce système est de fournir

une assitance aux utilisateurs finaux pour une sélection facile du raisonneur le plus approprié

pour leur ontologies basées applications. De plus, le système aide les utilisateurs pour gagner

en compréhension sur la difficulté globale de leur ontologie. Il suggère de prédire cette difficulté

et, plus intéressant, il offre la possibilité d’extraire ses sous-parties les plus coûteuses en temps,

connues comme des hotspots d’ontologie. Les diverses approches qui fournissent les bases pour la

conception centrale de ce systèmes sont détaillées dans ce chapitre. Le mérite de chaque approche

a été prouvé expérimentalement et analysé en détail.

Enfin, nous concluons ce mémoire en résumant nos principales contributions et les résultats per-

tinents, en pointant quelques questions ouvertes et les futures directions.

0.2 Résumé du chapitre 1 : Un peu de théorie

Dans ce chapitre, nous avons présenté les concepts relatifs à notre problématique de recherche. Ces

concepts ont été introduits en partie pour rendre ce mémoire plus indépendant et, particulièrement,

pour familiariser le lecteur aux notations formelles qui seront utilisées tout au long de cette thèse.

Notre problématique de recherche se trouve à la croisée de deux champs : le Web sémantique

[BLHL01] et l’apprentissage automatique (dit Machine Learning)[Sam59]. Nous avons exposé, en

premier lieu, les notions fondamentales du Web sémantique. Puis, nous avons présenté l’étude des

ontologies du point de vue de la représentation des connaissances. C’est pourquoi, nous avons rappelé
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les caractéristiques principales du langage de création d’ontologie OWL. En particulier, nous avons

étudié les logiques de description (LD) dont OWL est dérivé. Les LDs sont particulièrement bien

adaptées pour la représentation des ontologies et elles sont pertinentes pour le Web sémantique car

elles ont des sémantiques précises et permettent le raisonnement automatique. Les LDs offrent de

riches caractéristiques d’expressivité et différents degrés de logiques. Cependant, un compromis devrait

être fourni entre l’expressivité DL et la complexité de raisonnement. En effet, les divers moteurs de

raisonnement ont été présentés dans la littérature pour traiter les ontologies de la façon la plus fiable

et efficace possible. Nous avons établi une comparaison de leurs principaux attributs fonctionnels afin

de dresser une idée générale de la couverture et des tendances actuelles autour du développement des

raisonneurs d’ontologies.

Dans la seconde partie de ce chapitre, nous avons passé en revue les notions de base du

champ d’apprentissage automatique. Nous rappelons que nous avons l’intention d’utiliser l’approche

d’apprentissage supervisée pour faire face aux phénomènes de variabilité de performance des raison-

neurs. Pour satisfaire cette exigence, nous avons rappelé les notations formelles habituelles. Puis,

nous avons décrit les étapes générales de tout processus d’apprentissage. Ensuite, nous avons passé

en revue les caractéristiques principales des algorithmes d’apprentissage automatique supervisé et des

méthodes de sélection de variables les plus généralement utilisés. Nous avons finalement décrit les

façons d’évaluer la qualité des modèles prédictifs.

Ontologie

T. R. Gruber [Gru93] a défini une ontologie comme "une spécification formelle, explicite d’une con-

ceptualisation partagée". Une ontologie délimite un vocabulaire commun que les utilisateurs peuvent

partager dans un domaine de connaissance. Les ontologies sont devenues très importantes dans la

mouvance globale du Web sémantique. Elles sont utilisées comme des modèles conceptuels pour

l’intégration de données ou pour représenter directement de l’information dans des champs discip-

linaires très variés. Les ontologies sont disponibles sur le Web pour une multitude de machines afin

de favoriser les échanges et partager la connaissance. Aussi, beaucoup de raisons devraient motiver le

développement d’ontologie ; par exemple, pour :

• partager la compréhension commune de la structure de l’information parmi les personnes ou les

agents logiciels,

• permettre la réutilisation d’un domaine de connaissance,

• rendre explicite les hypothèses d’un domaine,
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• séparer la connaissance du domaine de la connaissance opérationnelle,

• analyser le domaine de connaissance.

Le potentiel des ontologies, à savoir fournir des domaines avec un vocabulaire non ambigu, a attiré

l’intérêt de beaucoup d’experts de domaine provenant de champs divers tels que la médecine, la bio-

informatique, la géographie, etc. De gros efforts ont été faits pour modéliser et maintenir les ontologies.

Un exemple notable de ce processus est le thésaurus NCI-t de l’Institut National du Cancer4. NCI-t a

été mis à jour mensuellement depuis 2003 et beaucoup de versions de cette ontologie sont téléchargeables

gratuitement. D’autres ontologies médicales d’importance pourraient aussi être mentionnées : Snomed

Ct5, le projet Open Galen 6 et FMA7.

Les ontologies sont typiquement encodées dans un langage de représentation des connaissances. Une

classe importante des langages d’ontologie est fondée sur la famille des logiques de description (DLs)

[BCM+10], qui sont généralement des fragments décidables de la logique du premier ordre (FOL). Par

conséquent, une ontologie peut être vue comme un ensemble de formules FOL, dites axiomes. C’est

donc une théorie de la logique. Un exemple notable de langages d’ontologie fondé sur les DLs est le

langage OWL (i.e. Web Ontology Language [HPSV03], un standard du W3C qui a été utilisé à la

fois par le monde académique et le monde industriel depuis que sa première version est devenue une

recommandation du W3C en 2004.

Raisonneur

Un aspect central de la représentation des connaissance basée logique est la capacité à employer (ef-

ficacement) des systèmes de déduction automatisés. En DLs, ces systèmes, appelés raisonneurs, implé-

mentent des procédures de décision (par exemple, l’algorithme Tableau [BS01], Hyper-Tableau [MSH09]

et Consequence-Based [SKH11]). Ils déduisent des conséquences logiques à partir d’un ensemble de

faits ou d’axiomes explicitement affirmés et fournissent typiquement un support automatisé pour les

tâches de raisonnement [BCM+03].

Les raisonneurs DL modernes supportent un nombre de services logiques primaires tels que la

cohérence, la classification, le contrôle d’instance et le contrôle de l’implication logique, et des service

secondaires tels que l’explication pour l’implication logique et l’incohérence, l’extraction (sémantique)

de module et les accès aux données basées ontologies (OBDA).

4https://wiki.nci.nih.gov/display/VKC/NCI+Thesaurus+Terminology
5Plus de détails sur Snomed Ct sur le site http://www.ihtsdo.org/
6voir http://www.opengalen.org/
7voir http://sig.biostr.washington.edu/projects/fm/AboutFM.html

https://wiki.nci.nih.gov/display/VKC/NCI+Thesaurus+Terminology
http://www.ihtsdo.org/
http://www.opengalen.org/
http://sig.biostr.washington.edu/projects/fm/AboutFM.html
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Propriété FacT++ JFacT Pellet TrOWL ELK HermiT MoRE Konclude

Catégories

Langage de programmation C++ Java Java C++ Java Java Java C++

Interface de programmation OWL+Jena OWL OWL OWL+Jena OWL OWL OWL OWL+Jena

Éditeurs supportés PG PG+NT PG+NT PG PG PG+NT PG ∅

Open source Oui Oui Oui Non Oui Oui Oui Oui

Vérification ABox Oui Oui Oui Oui Non Oui Non Oui

Support des types de données limité limité Oui limité Non Oui Oui Oui

Justification Non Non Oui Non Non Non Non Non

Support des règles Non Non Oui Non Oui Oui Non Oui

Profil natif DL DL DL,EL Dl,EL EL DL DL,EL DL

Expressivité SROIQ SROIQ SROIQ SROIQ EL+ SROIQ SROIQ SROIQV

Méthodologie MC MC MC CB CB MC HM HM

(T) (T) (T) (HT) (MOD+MC) (CB+MC)

Correction/ SC SC SC SC/ SC/ SC SC SC

Complétude (EL+QL) (EL)

Table 1: Comparaison des attributs fonctionnels des raisonneurs DL.

Un raisonneur est un programme qui infère des conséquences logiques à partir d’un ensemble de faits

ou d’axiomes explicitement avérés et fournit typiquement un support automatisé pour les tâches de

raisonnement telles que la classification , le débogage et le requêtage. Tout raisonneur pourrait être dis-

tingué selon un ensemble important d’attributs fonctionnels tels que l’algorithme d’inférence, la logique

supportée, le degré de complétude du raisonnement, le langage d’implémentation, etc. Dans cette sec-

tion, nous essaierons d’établir les caractéristiques généralement exhibées des raisonneurs DL modernes.

Plutôt que de comparer les performances des raisonneurs, nous discuterons des caractéristiques fonc-

tionnelles pertinentes de ces implémentations et essaierons de les classer dans des catégories. En accord

avec l’étude la plus récente sur les raisonneurs d’ontologie établie par Matentzoglu et al. [MLH+15], il

existe pratiquement 35 raisonneurs d’ontologies connus dont la plupart ont été développés entre 2010

and 2015. Ces réalisations pourraient être catégorisées selon des critères variés. La Table 1.4 synthétise

les caractéristiques fonctionnelles détaillées précédemment pour ces raisonneurs. La comparaison a été

mise en place selon les critères de classification introduits. Dans ce tableau, (OWL) représente OWL

API et (J) Jena API. Par (PG), nous faisons référence à l’éditeur Protégé et par (NT) à Neon-Toolkit.

A l’issu de cet examen, il parait évident que les raisonneurs d’ontologies varient de façon significative
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au regard des tous les attributs que nous avons examinés. Cette richesse en terme d’approche de

raisonnement, de capacité et de couverture fonctionnel rend difficile la tâche de sélection d’un raisonneur

pour une application basée sur les ontologies. En outre, on ignore encore l’impact de ces attributs

fonctionnels sur les performances empiriques des raisonneurs. Ainsi, il est certes nécessaire d’établir

des évaluations empiriques critiques des performances de ces raisonneurs afin de pouvoir juger avec

certitude de leurs robustesse, spécialement à l’égard des ontologies issues du monde réel.

Apprentissage automatique

La modélisation prédictive [HTF01] est le nom donné à une collection de techniques mathématiques et

statistiques ayant comme but commun de trouver des patrons cachés dans les données et de développer

des fonctions capables de prévoir les tendances et les résultats futurs avec un degré acceptable de

fiabilité. En d’autres mots, la modélisation prédictive est un concept général d’analyse des données

réelles dans le but de construire des modèles qui sont capables de faire des prédictions sur un domaine

d’intérêt. Typiquement, un tel modèle inclut des algorithmes d’apprentissage automatique, dit machine

learning (ML).

La présentation générale du processus de ML est donnée ci-dessous (plus de détails sont fournis

dans [Abb14]) :

Collection de données : les données liées au domaine d’étude sont extraites. Elles seront dans un

format brut et non structuré. D’où, des mesures de pré-traitement doivent être adoptées.

Pré-traitement de données : l’ensemble de données (dit dataset) initial est soumis à un pré-

traitement. Le pré-traitement est exécuté pour enlever les données non pertinentes et/ou re-

dondantes. Les valeurs manquantes sont remplacées par normalisation et transformation.

Développement de modèle : les données pré-traitées sont soumises à différents algorithmes ML

pour le développement de modèles. Ces modèles sont construits à partir de techniques de classi-

fication ou bien de clustering ou encore à partir des règles d’association.

Extraction de connaissance : les modèles sont évalués pour représenter la connaissance capturée.

En pratique, la tâche de modélisation prédictive décrite précédemment a une importance pour beaucoup

de domaines, de la médecine aux sciences sociales en passant par divers champs de l’ingénierie.

En se référant à [Kot07], nous introduisons quelques concepts de base du machine learning

(ML). Explicitement, chaque cas dans tout dataset utilisé par des algorithmes ML est représenté

en utilisant le même ensemble de caractéristiques. Puis, chaque cas est un vecteur M -dimensionnel
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Cas Caractéristique1 Caractéristique2 ... CaractéristiqueM Classe

1 XX XX ... XX bon

2 XX XX ... XX mauvais

...

N XX XX ... XX bon

Table 2: Exemple de dataset pour l’apprentissage supervisé [Kot07]

x(i) = [x1
(i), x2

(i), . . . , xM
(i)] appelé un vecteur de caractéristiques, où i réfère le i-ème cas du dataset,

i ∈ [1 · · ·N ] avec N le nombre total de cas et M le nombre total de caractéristiques. Nous utiliser-

ons aussi X pour noter l’ensemble de caractéristiques contenant N vecteurs de caractéristiques, sinon

l’espace des valeurs d’entrée. Les caractéristiques peuvent être continues, catégorielles ou binaires.

Dans ce mémoire, nous nous sommes intéressés spécialement à l’apprentissage supervisé. Le vecteur de

tous les labels est noté Y, où yi est le label du i-ème cas. Ainsi, le dataset pourrait être noté par D =

[XN,M | YT ]. Un exemple d’un dataset pour un apprentissage supervisé est donné dans la Table 1.5.

Un problème supervisé est dit de classification quand les labels sont qualitatifs (e.g. bon/mauvais) et

de régression dans le cas de valeurs quantitatives (e.g. valeur de température). Ici, il est important de

noter la différence entre la tâche de "classification" en ML et la "classification" décrite précédemment

dans le contexte du raisonnement. Pour éviter toute ambiguïté, nous nous référerons à cette dernière

par la dénomination "classification DL" et à la première par "classification ML". Quand le vecteur

de label, Y, contient seulement deux labels discrets, alors le problème de classification ML est appelé

classification ML binaire, sinon c’est un problème de classification ML multi-classes.

Soit le dataset d’entraînement D, une tâche d’apprentissage supervisée est le processus de déduction

d’une fonction souvent mentionnée comme une hypothèse ou un modèle, F : X → Y, qui prédit le

"meilleur" label y à partir du vecteur de caractéristiques x pour toute paire (x, y) tirée de D. Les

fonctions prédictives peuvent être une distribution de probabilités, un réseau neuronal, un arbre de

décision, etc. Nous avons décrit, de plus, différentes catégories d’algorithmes d’apprentissage supervisé

dans le mémoire. Après avoir construit le modèle prédictif, quand un nouveau cas apparaît, x′, qui

n’appartient pas au dataset D mais ayant le même type et décrit avec le même type de caractéristiques

que certains cas dans D, alors la tâche est de prédire son label exact en utilisant le modèle préalablement

construit ỹ = F(x′).

Sur les bases de ce court examen, nous admettrons que le choix des techniques d’apprentissage

appropriées est un problème réel. En effet, il n’existe pas une étude comparative approfondie de ces

techniques qui a été dédié au problématique de prédiction des performances d’algorithmes et en par-
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ticulier les performances des raisonneurs d’ontologies. Ayant présenté une pléthore riche et importante

de réalisations existantes, nous avons l’intention d’examiner empiriquement un certain nombre de ces

réalisation afin de pouvoir juger avec certitude de leur adéquation à notre contexte d’étude.

0.3 Résumé du chapitre 2 : Travaux connexes

Le but de ce chapitre est de présenter le contexte général de ce mémoire et de placer notre travail dans

l’état de l’art actuel. Ainsi, ce chapitre inclut à la fois une vue générale de la littérature des domaines

concernés et une introduction à de nouvelles idées, présentées de façon entrelacée.

Notre travail pose la question très pertinente pour un utilisateur final :

"Est-il possible de raisonner sur une ontologie écrite avec une logique de description particulière, en

utilisant les meilleurs des raisonneurs disponibles ?"

Pour répondre à cette question, nous commencerons par une discussion sur cette faisabilité d’un

point de vue théorique en rappelant les classes principales de complexité computationnelle du lan-

gage d’ontologie, i.e. OWL, et ses DLs sous-jacentes. Puis, nous étudierons la faisabilité d’un point

de vue empirique. Par conséquent, nous décrirons la complexité pratique des algorithmes de raison-

nement. Nous esquisserons quelques challenges concernant à la fois les concepteurs et les utilisateurs

des raisonneurs DL modernes. Plus spécifiquement, nous éclaircirons les phénomènes de variabilité

de performance des raisonneurs, puisque la plupart des problèmes concernent la compilation lors de

l’utilisation pratique des raisonneurs. Notre but est d’examiner les efforts de recherche qui ont abordé

cette question et de discuter de l’utilité de leurs propositions. Aussi, nous mettrons en perspective

des méthodes et des outils qui ont essayé de détecter et d’analyser ces phénomènes. Puis, nous abor-

derons cette question dans une plus large perspective en examinant des solutions proposées dans des

champs différents, tels que le machine learning (ML) et l’intelligence artificielle (IA). Plus spécifique-

ment, nous examinerons les avancées s’adressant aux problèmes liés à la difficulté empirique et à la

sélection d’algorithme. En conséquence, les approches dans le méta-apprentissage et la construction de

portefeuille d’algorithmes seront passées en revue. Tout ces efforts d’investigation sont mis en avant

dans le but de déduire les leçons qui pourraient être tirées de ces domaines et, point essentiel, ceux

transférables à notre contexte d’étude, i.e. le raisonnement d’ontologie fondé sur les DLs.
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Phénomène de variabilité des raisonneurs et solutions existantes

Lors d’une analyse théorique, il n’y a pas besoin d’introduire une procédure efficace qui résolve un

problème de déduction. Les classes de complexité sont établies juste en analysant la description des

algorithmes et les caractéristiques génériques des cas d’entrée sans exécution réelle. A contrario, lors

d’une analyse pratique, nous déterminons la complexité temporelle et la complexité spatiale d’un

algorithme particulier qui est proposé pour implémenter un problème de déduction à résoudre. En

fait, la complexité théorique d’un langage est indépendant de l’algorithme qui le décide et présume

que l’algorithme sait quelle branche survivra dans le cas du non déterminisme. Par conséquent, tous

les résultats analytiques fournis restent des résultats théoriques et peuvent facilement être réfutés par

une analyse expérimentale. Pour cette raison, nous nous sommes tournés vers une analyse empirique

plutôt qu’analytique.

Différents travaux [MRW11, Abb12] ont établi qu’en général le raisonnement est faisable en pratique

et est beaucoup moins complexe que la complexité théorique prévue. De façon assez intéressante,

même avec les fragments assez expressifs d’OWL 2, des performances acceptables de raisonnement

pourraient être atteintes. Ceci serait dû aux efforts considérables, en recherche et en ingénierie, qui

ont été consacrés à la conception d’algorithmes de raisonnement sophistiqués avec des implémentations

hautement optimisées. Dans le Chapitre 1, nous avons effectué un tour d’horizon des raisonnements

examinant avec attention ces efforts. Nous avons décrit les raisonneurs les plus connus et comparé

leurs attributs fonctionnels. Néanmoins, les auteurs respectifs de [WLL+07, GPS12] ont souligné

que, souvent, en pratique, les raisonneurs tendent à montrer des comportements imprévisibles sur des

ontologies réelles et que leurs performances varient énormément selon les ontologies traitées, même

quand la taille ou l’expressivité de ces dernières sont maintenues constantes. Nous avons exposé deux

aspects principaux qui devraient décrire le phénomène de variabilité des performances de raisonneur :

(i) la variabilité du temps d’exécution des raisonneurs en fonction des ontologies ; (ii) la disparité des

déductions calculées par différents raisonneurs sur une même ontologie.

Concernant la variabilité d’exécution des raisonneurs, Gonçalves et al. [GPS12] ont exposé trois

situations particulières qu’un utilisateur pourrait rencontrer lors d’une tentative de raisonnement sur

une ontologie : (i) pour une ontologie de cas de test, changer de raisonneur peut dégrader le temps

de raisonnement de quelques secondes à une non terminaison ; (ii) les ontologies ayant la même taille

et la même expressivité dépenseront différentes plages de temps de calcul pour le même raisonneur

; (iii) un changement minimal sur une ontologie OWL augmentera ou probablement diminuera le

temps de raisonnement sur un raisonneur. Lorsqu’une de ces situations survient, souvent, aucun

retour d’information n’est obtenue par l’utilisateur. Habituellement, ce dernier continuera à changer

de raisonneurs jusqu’à ce qu’il en trouve un qui lui convienne. D’autres utilisateurs essaieront de



RÉSUMÉ DÉTAILLÉ 17

Figure 1: Exemple de la variabilité du temps d’exécution de raisonneurs, extrait des résultats de

classification ORE 2014 [BGJ+14]. Le temps est en millisecondes.

modifier leur ontologie en espérant une amélioration, mais courant le risque de rendre la situation

pire que précédemment. Globalement, il est accepté qu’il n’y ait pas de système de raisonnement qui

puisse surpasser les autres pour toutes les ontologies. Ceci pourrait être observé en examinant les

résultats émis lors des campagnes d’évaluation annuelle de raisonneurs, telles que l’"ORE Evaluation

Workshop" [GBJR+13, BGG+13, BGJ+14]. La Figure 2.2 décrit deux cas de test que nous avons

extraits des résultats publics disponibles du challenge de classification DL d’ORE 20148.

Dans chaque cas, une ontologie a été classée par différents raisonneurs. Le temps de calcul était

enregistré sachant que le temps limité était fixé à 3 minutes. Lors de la consultation de ces résultats,

nous avons remarqué que deux ontologies ont le même profil OWL, appartiennent à la même famille

DL et leur tailles sont dans la même classe ; cependant, les raisonneurs examinés ont montré des

comportements assez distincts sur ces entrées. D’un point de vue théorique, nous nous attendions à

ce que le raisonnement sur ces ontologies ne se termine pas dans un temps raisonnable, puisque la

complexité de la classe de SHOIN est N-ExpTime. Cependant, les résultats ont montré le contraire,

particulièrement dans le second cas. Néanmoins, le temps d’exécution de ces raisonneurs est assez

variable pour la même ontologie, e.g. dans le second cas, une différence de temps d’exécution jusqu’à

un ordre de grandeur de 10 entre Konclude et TrOWL ; et, à l’analyse des deux cas, e.g. TrOWL

a été le seul raisonneur à terminer la classification dans le premier cas mais a été le plus lent dans

le second cas, sachant que les deux ontologies sont similaires en regard de leur taille et de leur degré

d’expressivité.

Concernant la dispersion des résultats des raisonneurs, beaucoup moins de travaux ont abordé ce

phénomène puisque les bases formelles des procédures au coeur du raisonneur sont bien comprises et

que les concepteurs fournissent souvent une preuve théorique de la correction et de la complétude de

leurs algorithmes de raisonnement. Cependant, Gardiner et al. [GTH06] et, plus récemment, Lee et

al. [LMPS15] ont identifié que les raisonneurs pouvaient délivrer des déductions ou des réponses à des

requêtes assez distinctes à partir d’une ontologie. Ils ont mis en évidence que ce problème pourrait

8résultats ORE 2014 disponibles à https://zenodo.org/record/11142/

https://zenodo.org/record/11142/
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Figure 2: Exemple sur la diversité de déductions calculées de raisonneur, fondé sur le challenge de

classification d’ontologie ORE 2014 [BGJ+14].

entraver le développement et menacer sérieusement l’interopérabilité du Web sémantique. De plus,

les raisonneurs ayant calculé des déductions pendant les évaluations ORE sont comparés aux autres,

dans le but d’identifier les cas de divergences et afin de décider quels résultats de raisonneur sont

probablement les plus corrects. La Figure 2.3 décrit un autre extrait des résultats de classification

d’ORE 2014 DL. Ici, nous avons vérifié le degré d’accord entre les cinq raisonneurs que nous avions

précédemment listés dans la Figure 2.2. Nous aimerions faire remarquer que le degré d’accord était

différent sur deux ontologies appartenant à la même taille et au même niveau d’expressivité. En effet,

dans le premier cas, seulement 3 des 5 raisonneurs ont maintenu les mêmes axiomes ; cependant, dans

le second cas, tous ont obtenu les mêmes résultats.

Gardiner et al. ont expliqué que la divergence peut être due au mécanisme d’approximation que

certains concepteurs de raisonneur utiliseraient pour manipuler des expressivités particulières et qui

sont difficiles à manipuler par des composants DL. Cependant, les concepteurs de raisonneur souvent ne

communiquent pas beaucoup de détails sur ces composants et leurs techniques d’approximation. Lee et

al. ont aussi souligné ce point. Ils ont mis en évidence que peu de détails d’optimisation de raisonnement

et d’astuces d’ingénierie sont fournis ; et, habituellement, ces astuces sont seulement contrôlées par

les développeurs. Ayant acté cela, nous aimerions admettre que la fiabilité des implémentations de

raisonneurs est encore en cours d’investigation.

Selon cette étude, nous pouvons affirmer que, bien que le raisonnement en pratique est bien moins

complexe que la complexité computationnelle théorique établie, les comportements empiriques des

raisonneurs sont encore difficilement prévisibles a priori dus à une variabilité inattendue sur les onto-

logies. Par conséquent, de nouveaux challenges émergent, tels que comment est-il possible d’anticiper

cette variabilité et comment en expliquer les causes. Globalement, nous pouvons noter que les ontolo-

gies appartenant à la même classe de complexité théorique ne sont pas toutes équitablement difficiles.

Manifestement, il existe certaines caractéristiques d’ontologies autres que la taille ou l’expressivité qui

vont probablement avoir un impact sur les performances des raisonneurs. Par conséquent, une im-

plémentation de raisonneur qui exploite certaines caractéristiques particulières du langage OWL peut
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s’exécuter sur la classe correspondante d’ontologies mieux que le scénario du pire des cas. En effet,

plusieurs auteurs [GTH06, GPS12, LMPS15] ont expliqué la variabilité des performances de raisonneur

par le fait que les systèmes de raisonnement modernes ont une architecture de conception complexe, et

tendent à implémenter un large spectre de techniques d’optimisation qui peuvent interagir et s’affecter

les unes les autres lors du traitement d’ontologies particulières. Par conséquent, un raisonneur pourrait

être optimisé pour certaines ontologies mais non pour toutes. Sur ce constat, nous admettrons qu’une

meilleure compréhension des facteurs de complexité des ontologies générant des difficultés pour les rais-

onneurs est d’un besoin impérieux. Selon nous, se focaliser sur ce qui rend un raisonnement difficile en

pratique peut guider le processus de modélisation des ontologies pour éviter les facteurs de dégradation

de performance du raisonnement. En outre, les ontologies existantes peuvent être révisées vers un rais-

onnement efficace en détectant, et même en réparant, leurs composants critiques. D’autre part, quand

une telle connaissance est rendue disponible, la sélection automatique d’un raisonneur adéquat pour

une ontologie donnée en entrée pourrait être fait plus facilement et sans besoin d’expérimentations et

d’essais excessifs. Dans la suite de ce chapitre, nous étudierons et discuterons des solutions existantes

qui concernent la complexité pratique des raisonneurs DL et fournissent une solution pour la gérer.

Sélection automatique des algorithmes

La Table 2.2 synthétise les attributs fonctionnels de base et l’utilisation pratique des approches décrites.

Selon cette étude, il semble clair qu’en employant des méthodes statistiques et des méthodes de ML

supervisé plus spécifiques, nous pourrions tirer avantage d’une compréhension plus nuancée des com-

portements empiriques d’algorithme plutôt que des analyses analytiques dans le pire des cas. Grâce à

cette approche, il a été montré que les performances des algorithmes provenant de champs différents

(ceux du ML ou ceux de l’AI) pourraient être décrites avec un haut degré de fiabilité fondée sur la

facilité de traitements des caractéristiques des cas de problème. Aussi, divers problèmes pratiques al-

gorithmiques tels que la sélection automatique d’algorithme, la recommandation ou la paramétrisation

optimale ont été résolus efficacement. Ceci rend l’approche basée ML pour une analyse et une sélection

d’algorithme importante même pour les informaticiens qui sont théoriquement enclin à préférer des

preuves à des découvertes expérimentales.

Toutes ces études renforcent notre conviction que l’utilisation des approches basées ML pour la

prédiction des performances et de sélection d’algorithme devraient apporter une réponse à nos questions

de recherche. Quelques leçons pourraient être tirées, de cet état de l’art, selon nous, qui sont d’une

importance majeure pour arriver à une prédiction et une sélection de raisonneurs réalistes.

• un des challenges pratiques les plus importants dans n’importe quelles expérimentations al-
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Propos Critères Techniques ML Usage practique

Méta-

apprentissage

- Exécution

- Qualité de

prédiction

- Critères com-

binés

- Classification

- Régression

- Apprentissage

de préférence

- Recommandation d’Algorithme

- Paramètre de réglage d’algorithme.

- Apprentissage "Ensemble".

- Sélection dynamique de biais.

Algorithme

portfolio

- Exécution - Classification

- Régression

- Apprentissage

de préférence

- Construction algorithme portfolio.

- Paramètre de réglage d’algorithme.

- Génération des bancs de test des

cas difficiles.

- Identifier les caractéristiques clé de

la difficulté des cas de problème.

Table 3: Résumé des attributs des approches d’analyse et de sélections d’algorithme.

gorithmiques est de rassembler les cas de test exigés. Les meilleurs cas de test sont probablement

ceux du monde réel qui sont extraits des applications réelles. C’est aussi le cas si l’on veut tester

les performances des raisonneurs Une population représentative des ontologies devrait être sélec-

tionnée avec attention pour éviter qu’un raisonneur, sachant traiter seulement certaines ontologies

et donc optimisé pour elles, est de bons résultats ;

• la sélection des caractéristiques d’ontologie est liée fortement à la connaissance du domaine. Notre

tour d’horizon des travaux existants a montré qu’il n’y a pas d’accord sur les origines de la difficulté

des ontologies par rapport aux tâches de raisonnement et qu’il n’y a aucune définition de la notion

de caractéristique d’une "bonne" ontologie. Globalement, une caractéristique devrait être facile à

traiter (habituellement c’est négligeable comparée au temps de raisonnement) et plus pertinente

à la performance d’un raisonneur particulier ou une classe d’ontologies particulière ;

• le temps d’exécution et la qualité de la solution sont les deux mesures les plus connues de per-

formance d’algorithme. Dans notre cas, nous essaierons de prédire le temps d’exécution du raison-

nement et la justesse des résultats engendrés. Cependant, des contraintes expérimentales devraient

être fixées pour assurer la reproductibilité des résultats. De plus, une tâche de raisonnement par-

ticulier, e.g. la classification d’ontologies ou le contrôle de cohérence, devrait être fixée comme le

sujet principal de la prédiction de la performance ;

• un autre problème concernant la fiabilité des données empiriques pour la prédiction est l’équilibre

entre le temps et la qualité de la solution. Jusqu’ici, la façon la plus efficace pour comparer
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différents algorithmes heuristiques ou de décision est de permettre à tous les algorithmes de con-

sommer la même quantité de ressources et de traiter le même ensemble de cas de problèmes ;

• il n’y a pas de meilleur algorithme de ML supervisé pour la prédiction. Aussi, différents al-

gorithmes d’apprentissage devraient être explorés pour identifier celui qui serait capable de faire

l’entraînement des modèles avec une haute précision engendrant des données analysables sur les

performances des raisonneurs ;

• en général, tout raisonneur peut être utilisé comme un candidat pour une tâche de sélection ou

de recommandation. Mais, en pratique, nous pouvons utiliser la connaissance du domaine pour

éliminer les raisonneurs qui sont évidemment inférieurs aux autres ;

• le choix de la technique de sélection de raisonneurs est fortement dépendante du but final et du

contexte général de l’application. Certaines techniques sont sensibles au temps, principalement

pour l’algorithme de construction de portfolio. D’autres sont beaucoup plus informatifs et dev-

raient être souples quant aux conseils à donner aux utilisateurs finaux sur la disponibilité des

raisonneurs. Par conséquent, ce point devrait être examiné lors de la conception de notre solution.

0.4 Résumé du chapitre 3 : Profilage des ontologies

Le but principal de cette thèse est de faire face à la variabilité des performances empiriques des rais-

onneurs d’ontologies par une application rigoureuse d’une approche d’apprentissage supervisé. Cette

dernière nécessite la mise en correspondance entre un ensemble de caractéristiques décrivant l’entrée du

raisonneur, i.e. l’ontologie, et la variable de sortie représentant la performance du raisonneur à prédire.

De toute évidence, choisir de bonnes caractéristiques est crucial pour la construction de bons modèles

prédictifs. Dans le chapitre précédent, nous avons souligné le manque de méthodologie pour automat-

iser la construction de bons ensembles de caractéristiques pour décrire la complexité computationnelle

des ontologies OWL. En effet, les chercheurs doivent utiliser diverses connaissances du domaine pour

identifier les propriétés susceptibles de fournir des informations utiles quant à la complexité du modèle

conceptuel de l’ontologie à l’égard des traitements du raisonnement.

Compte-tenu des constatations faites dans ce chapitre, nous essaierons de déterminer les principaux

descripteurs de la complexité empirique d’une ontologie OWL. Pour ce faire, nous avons conduit une

large étude sur les travaux existants proposant des métriques pour évaluer la qualité de conception

d’une ontologies [GCCL06, TAM+05, LNJ+10, ZLT10] ou en abordant les origines de la complexité

du raisonnement en logiques de description [Don03, THPS07, BCM+10]. Notre étude s’est portée

sur la richesse de l’expressivité de l’ontologie du point de vue de la représentation des connaissances.
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Nos investigations nous ont amené à proposer une nouvelle collection comprenant 116 descripteurs

d’ontologie. Ces derniers sont, dans leur forme de base, les statistiques qualitatives et quantitatives

décrivant un large éventail d’attributs structurels et syntaxiques d’une ontologie modélisée avec le

langage OWL.

Dans la suite de ce chapitre, nous introduisons notre suite de descripteurs d’ontologie. Puis, nous

décrivons le corpus d’ontologie choisi pour les différentes expérimentations planifiées dans le cadre de

cette thèse. Enfin, nous soumettons à la discussion du coût de calcul des principaux sous ensembles

de descripteurs, afin de mettre le point sur ceux qui sont le plus efficacement calculables.

Caractéristiques des ontologies.

Comme énoncé précédemment, il n’existe pas de méthodologie pour construire de "bons" ensembles

de caractéristiques d’ontologie. Pour répondre à nos problématiques, nous avons réutilisé quelques ca-

ractéristiques d’ontologie proposées précédemment et en avons définies de nouvelles. Principalement,

nous avons renoncé à celles qui sont calculées sur des transpositions spécifiques de graphe d’ontologie

OWL, car il n’y a pas d’accord sur la façon dont ces ontologies devraient être traduites en graphe

[KKL15]. Nous avons scindé les caractéristiques d’ontologie en quatre catégories à savoir : (i) de-

scription de la taille, (ii) description de l’expressivité, (iii) caractéristiques structurelles et (iv) cara-

ctéristiques syntaxiques. La Figure 3 liste les principales9.

Description de la taille de l’ontologie

Le propos de cette catégorie est de spécifier la taille de l’ontologie en considérant à la fois le nombre

de ses termes et de ses axiomes. Donc, nous avons conçu cinq caractéristiques, chacune enregistrant

les noms d’une entité particulière OWL. De plus, nous avons calculé le nombre d’axiomes (SA) et plus

particulièrement les logiques (SLA).

Description de l’expressivité de l’ontologie

Nous avons retenu deux caractéristiques principales pour identifier l’expressivité du langage de

l’ontologie , nommément le profil OWL (OPR) et le nom de la famille DL (DFN).

9pour plus de détails, voir le mémoire
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Figure 3: Catalogue des caractéristiques d’ontologie.

Description structurelle de l’ontologie

Nous avons porté une attention spéciale à caractériser la structure taxonomique d’une ontologie, i.e. sa

hiérarchie d’héritage. Cette dernière schématise la structure arborescente des relations de subsumption

entre les classes A v B et entre les relations R v S. Dans cette catégorie, nous avons rassemblé

différentes caractéristiques qui ont été définies dans la littérature pour décrire les hiérarchies d’ontologie.

Ce sont, tout simplement, des métriques largement utilisées par la communauté d’évaluation de la

qualité d’ontologie [GCCL06, TAM+05, LNJ+10]. Les sous-catégories suivantes décrivent l’essence des

caractéristiques retenues.

Caractéristiques hiérarchiques des classes et des propriétés Cinq caractéristiques ont été

spécifiées pour souligner la conception de la hiérarchie de classes (CHierarchy). Elles considèrent

la profondeur de l’arbre et la distribution des sous-classes aussi bien que des super-classes. Ces

caractéristiques ont été aussi utilisées pour spécifier la conception de la hiérarchie des propriétés

(PHierarchy).

Caractéristiques de cohésion La littérature fournit pléthore de métriques pour concevoir la cohé-

sion de l’ontologie et, d’autre part, le degré de parenté de ses entités. Nous avons retenu celles in-

troduites par [FW10]. Grossièrement, la cohésion de l’ontologie (OCOH) est une agrégation pondérée

de la cohésion de classes (CCOH), la cohésion de propriétés (PCOH) et la cohésion de propriétés
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d’objet (OPCOH).

Caractéristiques de richesse de schéma Nous avons enrichi la catégorie structurelle de l’ontologie

par deux propriétés supplémentaires proposées par [TAM+05] : la richesse de relations de schéma

(RRichness) et la richesse d’attributs de schéma (AttrRichness). Ces caractéristiques sont bien

connues par la communauté d’évaluation d’ontologies comme une partie de l’outil ontoQA.

Caractéristiques syntaxiques d’ontologie

Lors de la collecte des caractéristiques de cette catégorie, nous avons conduit une étude sur les al-

gorithmes de raisonnement [BS01, MSH09]. Notre propos était de quantifier certaines des connaissances

générales théoriques sur les sources de complexité DL. Ainsi, nous avons rassemblé les caractéristiques

pertinentes qui ont inspirées l’implémentation des techniques bien connues d’optimisation de raison-

nement [HPSV03, TH06]. Les caractéristiques de ce groupe sont divisés en six sous-catégories, chacune

spécifique à un composant syntaxique particulier d’une ontologie. Cette organisation a été inspirée de

celle introduite par [KLK12].

Niveau d’axiomes Les raisonneurs traitent différemment chaque type d’axiome avec différents coûts

computationnels [BCM+03]. Nous avons introduit deux ensembles de caractéristiques, (KBF) et

(ATF), dans le but de spécifier les différents types d’axiomes OWL aussi bien que leurs pertinences

respectives dans l’ontologie. De plus, nous avons calculé la profondeur maximale et moyennée d’analyse

syntaxique des axiomes (AMP, AAP).

Niveau de constructeurs Ceci concerne particulièrement les constructeurs de classes DL10

[BCM+03]. Dans les précédents travaux sur la prédiction des raisonneurs [KLK12, KLK14], les auteurs

ont simplement compté les axiomes qui impliquent potentiellement les constructeurs difficiles. Cepend-

ant, ils ont oublié qu’un constructeur pouvait être invoqué plus d’une fois dans le même axiome. Con-

sidérant cela, nous avons proposé une métrique pour calculer la fréquence d’un constructeur de classe

dans une ontologie (CCF). De plus, nous avons défini la densité des constructeurs globaux (OCCD).

Nous avons aussi introduit trois patrons de modélisation de combinaisons particulières de construc-

teurs. Nous croyons que ces combinaisons, chaque fois qu’elles sont utilisées dans un axiome, devraient

augmenter le coût de déduction computationnelle.

10Par constructeur de classe DL, nous faisons référence à la conjonction (t), la disjonction (u), la négation (¬), la

quantification (∃, ∀), etc.
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Niveau de classes Les classes dans une ontologie pourraient être nommées, des expressions simples

ou complexes. Elles pourraient être cycliques ou disjointes. Dans cette sous-catégorie, nous avons

introduit des métriques qui caractérisent l’utilisation de chacune de ces méthodes dans la partie TBox

de l’ontologie.

Niveau de propriétés Nous nous sommes intéressés à la capture de deux aspects de description

syntaxique de propriétés d’ontologie. Tout d’abord, nous avons essayé de souligner la pertinence des

caractéristiques spécifiques de propriété d’objet, telles que la transitivité, la symétrie, la réflexivité,

etc. Puis, nous avons introduit une métrique, (OPCF), qui mesure leurs fréquences respectives dans

l’ontologie. Puis, nous avons proposé deux métriques supplémentaires (HCV,AVC) visant à examiner

l’impact de l’utilisation de hautes valeurs dans les restrictions de cardinalités.

Niveau d’individus Nous spécifions certaines des caractéristiques intéressantes d’individus nommés

qui devraient être déclarés dans l’ontologie. Nous avons examiné le ratio des nominaux dans la TBox

(NNF) et calculé le nombre d’individus déclarés comme équivalents (ISAM) ou disjoints (IDISJ).

Au cour de la modélisation de ces descripteurs, nous avons parti du principe que, en utilisant les

caractéristiques décrites ci-dessous, les ingénieurs d’ontologie pourraient obtenir une meilleure com-

préhension de la complexité globale de leurs ontologies. Par exemple, ils pourraient caractériser sa

taille, son degré d’expressivité et quel degré de régularité ou d’irrégularité potentielle a son arbre

d’héritage de classes et/ou de propriétés. De plus, ils pourraient examiner la richesse de l’ontologie en

terme de types d’axiome ou bien le degré d’utilisation des constructeurs pour exprimer des classes ou

les propriétés complexes. Il serait aussi possible d’informer l’ingénieur d’ontologie sur la présence de

certaines sources de complexité bien connues en logique de description dans le modèle conceptuel de

son ontologie.

Corpus local d’ontologie

Nous avons choisi 2500 ontologies provenant du corpus de la campagne d’évaluation des raisonneurs

d’ontologies, ORE [MBP13]. Cette sélection représente notre échantillon d’étude d’ontologies OWL,

notée par C(O) = {O1, . . . , On}. Cet ensemble sera utilisé dans les diverses expérimentations planifiées

tout au long de cette thèse. Notre échantillon couvre 167 différentes familles de logique de description

et les diverses profils d’OWL 2, dont OWL DL, EL, RL et QL. Les ontologies sont organisées en

classes selon leur taille11. Nous pouvons distinguer entre les petites (0, 100], moyennes (1000, 10000],

11La taille est calculée en terme de nombre d’axiomes logiques
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grandes (10000, 100000] et très grandes > 100000 ontologies. Il est à noter que la plus grande ontologie

comporte 3 182 261 axiomes logiques.

Coût de calcul des descripteurs

Afin d’évaluer leur coût, nous avons mémorisé le temps de calcul des valeurs des différents descripteurs

pour chacune de nos ontologies. Ensuite, le temps accumulé de calcul de certain ensemble de

descripteurs a été comparé au temps de chargement des ontologies. Comme résultat, nous avons identi-

fié qu’au moyenne 8 parmi nos 116 descripteurs sont le plus exigeants en temps de calcul. Plus précisé-

ment, il s’agit des descripteurs en relation avec le calcul du nombre des classes cycliques, l’identification

des patrons de couplage des constructeurs et le calcul du profondeur de hiérarchie de classe. De manière

général, nous pouvons considéré que notre bilan est positif. La majorité de nos descripteurs peuvent

être mesurés au bout d’un temps qui ne dépasse par celui nécessaire au chargement de l’ontologie. Ceci

nous indique que nous pouvons les déployer dans un système de prédiction autour des raisonneurs sans

craindre une charge supplémentaire qui risque de ralentir la réponse du système.

0.5 Résumé du chapitre 4 : Modélisation prédictive de la robustesse

des raisonneurs

Le but principal de cette thèse est de fournir une assistance pour les utilisateurs afin de faire face aux

phénomènes de variabilité de performances des raisonneurs d’ontologie. Les comportements empiriques

de ces systèmes sont étudiés et analysés par recourt à des techniques d’exploration intelligente des don-

nées décrivant l’historique des performances des raisonneurs. En particulier, nous avons opté pour une

approche fondée sur l’apprentissage supervisé (SML) afin de pouvoir capter les relations de corréla-

tion entre la complexité des modèles conceptuels des ontologies et les performances des raisonneurs.

La finalité de ce travail est d’apprendre des modèles génériques de prédiction capable d’anticiper les

comportements futurs des raisonneurs sur n’importe quelle ontologie. Plus spécifiquement, nous avons

mis en place une méthodologie générique d’apprentissage capable de traiter différents problèmes de

prédiction autour des raisonneur. Grâce à notre solution, nous avons pu construire un modèle de pré-

diction de la difficulté empirique d’une ontologie à l’égard d’un groupe homogène de raisonneurs. En

outre, nous avons conduit une analyse fine des raisonneurs, pris individuellement, dans le but de créer,

pour chacun d’eux, un profil prédictif de robustesse (PRP). Cette méthodologie a été conçu toute en

respectant un ensemble de contraintes fonctionnelles et non fonctionnelles relatives à cadre spécifique

d’utilisation des raisonneur. Dans cette thèse, nous avons choisi la classification en ligne des ontologies

OWL comme le scénario principal pour l’évaluation et l’étude de performances des raisonneurs. Un
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Framework générique d’apprentissage employant un riche ensemble de techniques SML a été mis en

place. Les détails de description de ce dernier aussi bien que son évaluation empirique sera présentée

dans ce chapitre. Suite

Nous avons organisé ce chapitre comme suit. Nous avons commencé par spécifier les problèmes

prédictifs examinés dans cette thèse. Ensuite, nous avons décrit la conception de notre méthodologie

générique d’apprentissage. Pour cela, nous avons discuté les diverses techniques d’apprentissage super-

visé que nous avons employées. Ensuite, nous avons illustrés les résultats d’évaluation empirique des

performances des raisonneurs dans le cadre de classification d’ontologie OWL. A l’issue de ces évalu-

ations, des bases de données d’apprentissage ont été produites, ensuite fournies à notre Framework

dans le but de construire les modèles prédictifs sur la "difficulté" des ontologies et sir la robustesse des

raisonneurs. Les détails d’évaluation de ce cas d’étude sont fournis dans le mémoire. Enfin, les divers

modèles que nous avons produits ont été examinés dans le but de découvrir les descripteurs clés des

ontologies, ceux qui ont été identifié comme les plus corrélés aux comportements des raisonneurs.

Définition de la robustesse

V. Mikolàs̃ek [Mik09] ont défini la robustesse dans le champ logiciel comme la capacité d’un système à

délivrer ses fonctions et à éviter les échecs de service lors de certaines conditions inattendues. Gonçalves

et al. [GMPS13] se sont fiés à cette définition dans le but de conduire une étude empirique sur

la robustesse des raisonneurs DL. Les auteurs ont souligné la nécessité de spécifier des contraintes

particulières computationnelles avant d’évaluer les raisonneurs. Ces contraintes devraient décrire un

scénario d’usage spécifique de raisonneur, sous lequel un raisonneur peut être considéré comme robuste

ou non. Nous avons étendu les recommandations de Gonçalves et al. en concevant l’ensemble RJC

comme suit :

Ensemble RJC RJC repose sur les contraintes de jugement de la robustesse d’un raisonneur. C’est

un ensemble fini de variables qui décrivent des exigences fonctionnelles (FC) et non fonctionnelles

(NFC) relatives à un scénario particulier de raisonnement. RJC inclut à la fois FC={limite-

temps, limite-mémoire, variété-ontologie} et NFC={tâche-raisonnement, état-succès, état-échec},

i.e. RJC = FC ∪NFC.

Dans notre étude, nous avons choisi d’examiner un scénario de classification en ligne des ontologies

OWL. Dans ce contexte, la durée du traitement est susceptible d’être très réduite, généralement limitée

à quelques minutes alors que l’utilisation de la mémoire pourrait être moins contrainte puisque les

raisonneurs devraient être exécutés sur des serveurs puissants. N’importe quel type d’ontologie devrait

être supporté par les raisonneurs. D’autre part, nous avons décidé de vérifier la tâche de classification
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DL dont nous avons montré l’importance précédemment. Ceci conduit aux définitions suivantes des

états de succès et d’échec :

• le succès est reporté quand le raisonneur termine la tâche de classification d’ontologies dans le

temps-limite imposé et délivre des résultats corrects ;

• l’échec signifie soit un raisonneur qui s’arrête lors du traitement de l’ontologie, soit qui dépasse le

temps-limite, soit qui, éventuellement, délivre des résultats inattendus.

Compte-tenu de cela, nous définissons la robustesse d’un raisonneur dans le respect d’un ensemble RJC

particulier comme suit :

Robustesse de Raisonneur La robustesse d’un raisonneur montre sa capacité à terminer une tâche

de raisonnement avec succès sous des contraintes spécifiques de ressources computationnelles pour

toute ontologie donnée.

Nous croyons que notre définition de robustesse devrait couvrir les qualités désirées à la fois d’efficacité

et de justesse. Ainsi, en retrouvant cette propriété, nous devrions fournir des moyens de comprendre

et de diminuer les phénomènes de variabilité des performances de raisonneur précédemment explicités.

La définition ci-dessus peut être, de plus, étendue pour spécifier le raisonneur le plus robuste selon un

corpus d’ontologie et un groupe particulier de raisonneurs candidats.

Raisonneur le plus robuste Soit un ensemble fixé de RJC, le raisonneur le plus robuste pour un

corpus d’ontologies est celui satisfaisant l’exigence de succès pour le plus grand nombre d’ontologies

tout en maintenant le temps de traitement le plus court.

Considérant les définitions précédentes, nous pouvons maintenant établir le concept de difficulté globale

empirique d’ontologie (OOH)12 comme suit :

Difficulté globale d’ontologie Soit un ensemble fixé de RJC, une ontologie est dite empiriquement

difficile à l’égard d’un groupe homogène de raisonneurs lorsqu’au moins un de ces raisonneurs ne

réussit pas à la traiter avec succès.

Un groupe de raisonneurs est dit homogène lorsqu’il partage un ou plusieurs attributs fonctionnels.

Dans cet thèse, nous avons choisi de catégoriser les raisonneurs selon leur méthodologie de raison-

nement. Par example, nous avons distingué entre les raisonneurs qui implémentent une approche

basée sur l’algorithme du Tableau [BS01] comme Pellet [SPG+07] ou bien Hermit [?], de ceux qui

adoptent une approche de raisonnement par conséquence [SKH11], tel que Konclude [LSN10].
12i.e. Ontology Overall Hardness
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Définition des problèmes d’apprentissage

Partant des définitions ci-dessous, notre objectif est de construire des modèles de prédictions du niveau

de difficulté empirique des ontologie et de niveau de robustesse empirique des raisonneurs.

Prédiction de la difficulté des ontologies Il s’agit de construire un modèle de classification bi-

classe qui permet d’attribuer à une ontologie décrite par un ensemble de descripteurs, une de ceux

deux labels : "Safe" ou bien "Hard". Ce modèle est appelé MOOH . Lorsqu’une ontologie est

étiquetée par "Safe", cela signifie que tous les raisonneurs du groupe en cours d’étude, peuvent

l’inférer au bout d’un délai fixé et que les résultats issus de ce traitement sont corrects. Dans le

cas d’une classification en tant que "Hard", le modèle anticipe qu’au moins un des raisonneurs

ne réussirait pas son traitement. Le vecteur qui contient les valeurs calculées des descripteurs de

l’ontologie est noté X(O). Ce vecteur appartient au dimension de tous les descripteurs noté par

Fs.

MOOH : X(O) ∈ Fs 7→ l̂ = ”Safe”, ”Hard” (1)

Prédiction de la robustesse des ontologies Dans cette thèse, nous nous sommes focalisé sur deux

aspects qui caractérisent la robustesse empirique d’un raisonneur. Il s’agit de son efficacité et de

l’exactitude de ses résultats. Partant des définitions ci-dessous et en particulier la spécification des

cas de "succès" et d’"échec", nous avons proposé de construire deux modèles de prédiction, afin

d’anticiper les qualités d’un raisonneur que nous avons précisé. Le premier, noté par MS|R, est un

modèle de classification multi-classes. Il permet de prédire l’état de terminaison de la tâche du

raisonnement réalisé par le raisonneur R sur une ontologie O donnée en entré. Plus précisément, il

s’agit de discriminer entre 4 états : i) "succès", qui indique une terminaison au bout d’un délai fixé

à l’avance et que des résultats sont correctes; ii) "inattendu", qui indique aussi une terminaison à

temps mais avec des résultats inattendus; iii) "timeout", lorsque le délai est dépassé; et finalement

iv) "arrêt", lorsque les traitements sont interrompus suite à une erreur d’exécution. Ces états

représentent les labels possibles que le modèle de prédiction MS|R peut attribuer à une ontologie

décrite par un vecteur de descripteurs X(O). Le deuxième modèle que nous avons proposé de

développer, est noté par MT |R est un modèle d’estimation du temps d’exécution d’un raisonneur

lorsque le succès de sa tâche de raisonnement est déjà prédite. Il s’agit de construire un modèle de

régression est associe au vecteur des descripteurs de l’ontologie, une valeur continue qui représente

le temps estimé pour le calcul. L’association entre ces deux modèles, i.e MS|R et MT |R, destinés

à prédire l’exactitude et l’efficacité d’un raisonneur, correspond à notre concept de profil prédictif

de robustesse d’un raisonneur. Ce profil est noté par PRPR. Dans ce mémoire, nous avons décrit

ce concept avec plus de précision.
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Méthodologie d’apprentissage

Rappelons que les performances des algorithmes d’apprentissage supervisé sont très sensibles à la

qualité des variables qui décrivent les instances d’une base d’apprentissage. Dans notre cas, il s’agit

des descripteurs d’ontologies. Ces descripteurs peuvent être inter-corrélés, redondants ou encore non

pertinents. Autrement dit, ils ne contribuent pas à l’anticipation des futures comportements des rais-

onneurs et risquent même de détériorer détériorer la précision des modèles prédictifs. Une approche

simple pour filtrer ces descripteurs est d’opter pour des méthodes de sélection de variable [CS14]. Ces

méthodes sont utilisées dans le but d’ôter les descripteurs redondantes et peu corrélés aux perform-

ances observées des raisonneurs. Un nombre considérable de ce type de méthodes est disponible dans

la littérature. Nous avons choisi les plus connues et nous les avons regroupé dans un ensemble spé-

cifique que nous avons noté FS. L’application de ces méthodes impliquera la création de nouvelles

variantes de base de données d’apprentissage, appelées les bases pré-traitées. Ces derniers sont ca-

ractérisés par un éventuel sous-ensemble réduit de descripteurs d’ontologie. De la même façon, nous

avons étudié plusieurs types d’algorithmes d’apprentissage supervisé, que nous avons regroupé dans

l’ensemble fini noté par SA. Il est intéressant de souligner que l’ensemble FS contient l’élément ∅,

qui signifie qu’aucun élagage des descripteurs n’est appliqué, autrement dit la base est maintenue dans

son état brute. Cette dernière est noté par RAWD. Le choix de cette configuration nous a permis de

comparer entre la qualité des modèles prédictifs issues de RAWD et ceux construits à partir des bases

pré-traitées. Étant donné une problème P qui nécessite la construction d’une modèle prédictif, les

étapes d’apprentissage seront répétées pour chaque variante de base d’apprentissage de ce problème,

en utilisant à chaque fois un algorithme d’apprentissage différent. A l’issue de cette phase un ensemble

de modèles candidats sont appris. Ainsi, la tâche suivante consiste à déterminer le "meilleur" modèle

parmi ces candidats. Il s’agit de choisir le modèle ayant la meilleure qualité de prévisions et le plus

faible nombre de descripteurs d’ontologies. Afin de réaliser cette sélection, les modèles établis sont

évalués par rapport à un groupe de mesures de qualité de prévision, noté AM. La validation croisée

stratifié est la technique principale que nous avons appliqué lors des évaluations. Nous avons proposé

un ensemble de scores qui synthétisent la qualité d’un modèle de prédiction. Ces scores varient selon

la nature du problème d’apprentissage. En se référant aux valeurs de ces scores, les modèles candidats

sont classés et le "meilleur" est retenu comme modèle final à sauvegarder pour un futur usage.

Les différents étapes qui constituent notre méthodologie d’apprentissage sont mis en place dans

le but d’identifier la combinaison la plus efficace (algorithme d’apprentissage, méthode de sélection

de variable), capable de nous fournir les meilleurs prévisions possibles, étant donnée, les données

mises à notre disposition. Dans notre cadre d’apprentissage, toutes les techniques SML déployées

sont rassemblées dans une base de techniques SML, notée T Bsml. Grosso modo, T Bsml correspond
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au triplet < FS,SA,AM >. Les éléments de T Bsml sont organisés de façon que cela indique s’ils

devraient être appliqués à la classification ML ou aux problèmes de régression.

Algorithm 1: Cadre d’apprentissage supervisé
Entrée: C(O) = {O1, . . . , On} l’ensemble des ontologies d’entraînement, LP = [l(O1), . . . , l(On)]

le vecteur de labels relatif au problème P .

Sortie : MBest
P meilleur modèle appris selon le problème P .

1 [X(O1), . . . , X(ON )] ← computeTheFeatureVectors(S(O));

2 DP ← buildTheRawDataSet([X(O1), . . . , X(ON )], LP ) ;

3 T Bsml ← getSMLTechniquesBase(LP ) ;

4 foreach F ∈ FS do

5 DFP ← buildTheFeaturedDataSet(F , DP );

6 foreach A ∈ SA do

7 < M (F,A), π(F,A) > ← trainAndAssess(A, DFP , AM) ;

8 MF ← MF ∪ {< M (F,A), π(F,A) >} ;

9 end

10 < M (F,best), π(F,best) > ← bestModelFromADataSet(MF ) ;

11 MBest ← MBest ∪ {< M (F,best), π(F,best) >} ;

12 end

13 MBest
P ← bestModelAccrossDataSets(MBest) ;

14 return MBest
P ;

L’algorithme 2 illustre les étapes principales du processus de production d’un modèle prédictif selon

la nature du problème d’apprentissage, i.e. P , qui a été précisé en entrée.

Description des techniques d’apprentissage

Nous avons choisi les algorithmes les plus représentatifs des principales catégories des approches

d’apprentissage supervisé (cf. Chapitre 1). Ainsi, nous avons assemblé, ensuite organisé le groupe

SA des algorithme SML selon la nature du problème d’apprentissage. La Table 4.1 liste et décrit

brièvement les divers algorithmes déployés dans l’ensemble SA. Il est important de noter que toutes

les implémentations utilisées dans nos évaluation sont appliquées avec les paramètres par défaut de

Weka Toolkit [HFH+09]. Plus de détails et de descriptions sur ces algorithmes peuvent être trouvés

dans [Abb14]. Outre les algorithmes d’apprentissage, nous avons choisi 3 différentes méthodes de sélec-

tion de variable. Ces méthodes ont été décrites et comparées dans [AT16], à savoir : 1) la méthode
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Algorithme Catégorie Tâche ML Description

Random Forest (RF) Logique Classification+

Régression

Une combinaison de prophètes d’arbre de dé-

cision C4.5.

Simple Logistique (SL) Logistique Classification Une régression logistique linéaire, utilisant

LogitBoost avec une fonction de régression

simple.

Perceptron multi-

couches (MP)

ANN Classification Un algorithme de propagation arrière pour

construire un modèle de réseau de neurones

artificiel pour classer les cas.

Optimisation minimale

séquentielle (SMO)

SVM Classification+

Régression

Une implémentation de Machine de Vecteur de

Support avec un noyau polynomial.

SVM L2-régularisé

(L2SVM)

SVM Classification+

Régression

Une autre implémentation de SVM avec un

noyau linéaire.

K-Plus proche-Voisin

(IBk)

Lazy Classification+

Régression

Un algorithme basé cas s’exécutant avec une

distance euclidienne normalisée.

Estimateurs moyennés

N-Dépendance (A1DE)

Bayes naïf Classification Un algorithme de pondération sur un petit es-

pace de modèles alternatifs "Bayes naïves".

Régression linéaire (LR) Linéaire Régression Un algorithme d’usage courant qui essaie

d’adapter les données à une courbe linéaire.

Table 4: Description des algorithmes d’apprentissage supervisé.

RELIF de filtrage de variables, noté par RLF ; 2) la méthode d’élimination de corrélation des sous

groupes de variable, noté par CSF ; 3) la méthode de discrétisation supervisée proposée par Fayyad &

Irani’s et connu par MDL. Nous avons enrichi cet ensemble par deux méthodes supplémentaires que

nous avons introduit. Il s’agit deMDL_RLF etMDL_CSF . Comme le nom l’indique, ces méthodes

sont une combinaison des méthodes élémentaires RLF , CSF et MDL. En outre, nous avons choisi

d’intégrer les bases d’apprentissage brutes dans notre processus. Ces bases comportent la totalité de

nos descripteurs d’ontologie et elles sont notées par RAWD. Les différents méthodes de sélection de

variable que nous avons listés constituent notre ensemble FS.

Synthèse des résultats des évaluations des raisonneurs

Nous avons établi la condition de limite de temps à 3 minutes pour classer une ontologie par un

raisonneur. Ce temps-limite serré est compatible avec le scénario choisi, i.e. la classification DL en
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Raisonneur #Succès #Échec

Inattendu Hors temps Arrêt

Konclude 2408 44 2 6

MORe 2182 71 241 6

HermiT 2167 3 312 18

TrOWL 2149 257 74 20

FaCT++ 1968 18 419 95

JFact 1679 41 636 144

Table 5: Synthèse des résultats d’évaluation des raisonneurs.

ligne. La Table 4.2 synthétise les résultats du challenge de classification d’ontologie effectué13. Elle

illustre pour chaque raisonneur le nombre d’ontologies classées avec succès ; sinon le nombre d’ontologies

traitées à temps avec des déductions correctes. Le nombres de cas où le raisonneur est marqué avec un

échec est aussi reporté dans la Table 4.2 et séparé selon la nature de l’échec. Les raisonneurs sont listés

dans la Table 4.2 dans l’ordre décroissant de leur taux de succès ; le raisonneur le plus robuste sur le

corpus d’ontologies est celui en haut de la liste (Définition 23). De plus, la Figure 4.1 décrit le temps

d’exécution moyen passé par chaque raisonneur sur les ontologies classées correctement, i.e. les cas de

succès. Nous pouvons facilement remarquer que Konclude est le raisonneur le plus robuste ; cependant,

ce système échoue à délivrer des résultats corrects pour 44 ontologies. D’autre part, TrOWL est le

raisonneur le moins fiable avec 257 cas de résultats inattendus ; ceci serait dû à son incomplétude pour

certains profils OWL. Néanmoins, TrOWL a le second temps d’exécution moyen le plus court pour

des cas corrects. Nous devrions aussi remarquer qu’en dépit de la capacité d’HermiT à délivrer des

résultats corrects, i.e. seulement 3 cas inattendus, son temps d’exécution moyen sur les cas corrects

est très haut. Par conséquent, il pourrait être difficile de déployer ce raisonneur dans des applications

en ligne. Tout ceci devrait souligner la difficulté à choisir un raisonneur absolument approprié pour

toutes les ontologies. Évidemment, un raisonneur devrait être choisi selon ses performances pour une

ontologie particulière donnée en entrée. Cependant, une telle tâche a un coût en terme de temps

et d’effort puisqu’il exige beaucoup d’expérimentations. C’est pourquoi, l’apprentissage pour prédire

automatiquement les performances d’un raisonneur semble une solution prometteuse. A partir des

résultats décrits ci-dessus concernant les évaluations des raisonneurs, les bases d’apprentissage du

profil prédictif de robustesse de chaque raisonneur, ainsi que la base d’apprentissage du modèle de

prédiction du niveau de difficulté d’un ontologie seront construits.

13Les résultats de notre évaluation sont disponibles à https://github.com/Alaya2016/

OntoClassification-Results2016/.

https://github.com/Alaya2016/OntoClassification-Results2016/
https://github.com/Alaya2016/OntoClassification-Results2016/
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Synthèse des résultats de prédiction de la difficulté des ontologies

Le groupe de raisonneurs que nous avons choisi d’étudier dans cette thèse comporte les raisonneurs

Hermit, MoRE, FaCT++ et JFact. Il s’agit d’une groupe homogène vu qu’ils implémentent des

approches de raisonnement inspirées de l’algorithme du Tableau [BS01] et partagent diverses techniques

d’optimisation [Hor03]. En partant des résultats d’évaluation des raisonneurs décrites ci-dessous, nous

avons étiqueté chacune de nos ontologies par l’une des deux labels "Hard" ou bien "Safe". Rappelons,

qu’une ontologie est dites difficiles ("hard"), lorsqu’au moins un raisonneur du groupe échoue à l’inférer

tout en respectant nos contraintes de jugement de robustesses. Au total, nous avons identifié 958

ontologies difficiles, soit 38.32% de l’ensemble de départ. Après calcul des descripteurs de chaque

ontologie, une dataset pour l’apprentissage du modèle de prédiction du niveau de difficulté empirique

d’une ontologie a été construit en appliquant notre méthodologie générique d’apprentissage. Nous

avons comparer la qualité de prédiction d’un ensemble des modèles candidats, générés par combinaison

d’un ensemble d’algorithmes d’apprentissage et de méthodes de sélection de variable. Figure 4.3 est

une synthèse des résultats de cette comparaison. Il est à noter que les modèles générés sont d’une

bonne qualité en terme de F1TP. Le meilleur modèle est celui construit en utilisant l’algorithme

d’apprentissage L2SVM, après application de la méthode de sélection de variable RLF_MDL. Cette

dernière a identifié 51 descripteurs d’ontologie comme étant les plus pertinents pour l’apprentissage.

Le F1-score de ce modèle de prédiction est égal à 0.947 alors que son F1TP score est égal à 844.182.

Ces valeurs sont remarquables et démontre que nous pouvons prédire la difficulté empirique d’une

ontologie avec une bonne marge de précision.

Synthèse des résultats de construction des profils prédictifs de robustesse

En appliquant notre méthodologie d’apprentissage, nous avons aussi réussi à établir des modèles de

prédiction de l’état de terminaison d’une tâche de raisonnement et de son temps de calcul. Ces mod-

èles ont été construits pour chaque raisonneur de notre étude. Tableau 4.4 résume les résultats de

notre analyse empirique des algorithme d’apprentissage et de méthode de sélection de variables. Le

tableau décrit la qualité des modèles de prédiction, identifiés comme les "meilleurs" en terme des scores

d’évaluation des performances que nous avons adopté. Nos résultats démontrent que l’exactitude ainsi

que la robustesse des raisonneurs peuvent être prédites avec grande précision. Ainsi, nous avons com-

posé le profil de robustesse prédictif pour chaque raisonneur examiné. A notre connaissance, nous

sommes les premiers à tenter de découvrir plus d’un critère possible d’évaluation de raisonneur. Nous

croyons que nos profils assemblés de raisonneurs et les modèles de difficulté globale d’ontologie sont

les premières étapes pour construire une base de connaissance concise unissant les données relatives
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Figure 4: Comparison des scores F1TP des différents modèles candidats pour la préduction de la

difficulté d’une ontologie.

aux raisonneurs DL actuels existants et les ontologies OWL. Nous croyons que ce type de connaissance

devrait fournir une assistance pour les concepteurs de raisonneur et d’ontologie pour un meilleur exa-

men de leurs réalisations et, cela, de façon plus facile. De plus, l’amélioration de notre cadre pourrait

être envisagée afin d’obtenir de meilleurs modèles prédictifs en moins de temps d’apprentissage. Par

exemple, nous aimerions étudier plus de techniques récentes de discrétisation. Il serait aussi intéressant

d’examiner plus de solutions de pointe pour manipuler le problème des datasets déséquilibrés, tels que

le sur/sous échantillonnage de cas ou l’apprentissage "sensible coût". D’autre part, nous supposons que

la réduction du temps global d’apprentissage exigerait plus de métaconnaissance sur les algorithmes

d’apprentissage. En effet, nous pouvons considérer que notre recherche pour identifier les techniques

les plus appropriées selon nos datasets d’apprentissage est une sorte de problème d’algorithme de sélec-

tion. D’où, examiner les solutions de méta-apprentissage [BGCSV08] est certainement une possibilité

attirante. Cependant, elle ne devrait pas être surestimée puisque nous ne sommes pas sûrs que les

techniques existantes conviendraient à nos diverses et particulières exigences et sans aucun coût de

calcul supplémentaire.

Synthèse générale

Les questions de recherche dont nous avons discuté dans ce chapitre sont à la croisée de deux

champs : le Web sémantique et l’apprentissage machine. Notre propos était d’utiliser des techniques
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Success models MBest
(S|R) Time models MBest

(T |R)

Reasoner FS SA MKS F1-Score #F FS SA R2 RMSE RRS #F

Konclude RLF_MDL L2SVM 0.653 0.974 53 CFS RF 0.987 0.334 0.004 20

MORe RLF_MDL MP 0.827 0.960 65 CFS RF 0.963 0.251 0.009 28

HermiT RLF_MDL SL 0.889 0.972 67 CFS RF 0.968 0.383 0.012 16

TrOWL RLF_MDL RF 0.787 0.951 55 CFS RF 0.975 0.291 0.007 16

FaCT++ RLF_MDL L2SVM 0.881 0.956 63 RLF RF 0.944 0.455 0.026 22

JFact RLF_MDL RF 0.904 0.952 60 CFS RF 0.971 0.386 0.011 13

Table 6: Assessment Summary of the Best Trained Predictive Models

d’apprentissage machine supervisé pour être capable de détecter la variabilité des performances em-

piriques des raisonneurs DL. Nous avons porté notre attention sur deux problèmes d’apprentissage à

savoir, d’une part, la prédiction de la difficulté globale des ontologies OWL au regard d’un groupe de

raisonneurs et, d’autre part, l’anticipation de la robustesse d’un raisonneur unique lors de déduction

d’ontologies sous certaines contraintes d’usage en ligne. Pour atteindre cet objectif, nous avons établi

un cadre générique d’apprentissage supervisé qui intègre les caractéristiques des ontologies que nous

avons proposées dans le chapitre précédant. Dans la suite de ce mémoire, nous introduirons deux

champs d’application où les modèles prédictifs établis pourraient être utilisés.

0.6 Résumé du chapitre 5 : Système générique d’assistance au rais-

onnement autour d’ontologies

Nous rappelons que le but principal de cette thèse est d’apporter des solutions pour faire face au

phénomène de variabilité des performances de raisonneur et, par conséquent, faire progresser l’état

de l’art dans l’analyse empirique des raisonneurs d’ontologies. La finalité de ce travail est de fournir

des directives simples et efficacement calculables destinées aux novices tout comme aux experts afin

d’anticiper, d’une part, la difficulté empirique des ontologies OWL, et, d’autre part, la robustesse

empirique des raisonneurs. Ces directives sont principalement un ensemble de prédictions sur les

comportements attendus d’un raisonneur ou bien un classement d’un groupe de raisonneurs en fonction

des caractéristiques d’une ontologie donnée en entrée.

Pour obtenir ceci, nous avons modélisé un système intelligent pour fournir une assistance à

l’utilisateur pour établir le choix d’un raisonneur. Nous avons appelé ce système ADSOR, pour

"Advising System Over the Ontology Reasoners". ADSOR fournit deux types d’assistance à un util-
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Figure 5: Architecture générale du système ADSOR.

isateur final : (i) il suggère un classement de raisonneurs selon leurs performances prédites par rapport

à l’ontologie d’entrée. L’ordonnancement, dit souvent le "ranking", est fourni dans le but d’aider

l’utilisateur à choisir le raisonneur le plus adéquat pour son application ; et (ii) il permet d’identifier et

d’extraire les sous-parties les plus complexes d’une ontologie empiriquement difficile. Ces extraits sont

des points de départ fournis à l’utilisateur afin de lui permettre d’établir des analyses plus approfondies

de son ontologie et potentiellement d’entrainer la révision de son modèle conceptuel.

Description générale du système ADSOR

Une description détaillée du composant principal d’ADSOR, ainsi qu’une analyse expérimentale

rigoureuse de leurs performances respectives sont fournies dans ce mémoire. Nous commençons à

décrire l’architecture conceptuelle globale d’ADSOR (cf. Figure 5.2).

Étape hors ligne : mode d’acquisition des connaissances. Le but principal de cette étape est

d’entraîner les modèles prédictifs sur divers problèmes autour du raisonnement d’ontologie. Les modèles
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sont acquis par une exploration intelligente de données décrivant des performances empiriques sur un

grand ensemble d’ontologies. Par conséquent, collecter ces données empiriques est la première étape

dans l’acquisition des connaissances. ADSOR utilise le cadre d’évaluation d’ORE [GBJR+13] qui est

disponible au public pour extraire des évaluations régulières sur les raisonneurs DL de pointe ; et, ainsi,

ADSOR délivre les données nécessaires sur lesquelles nous fondons le processus d’apprentissage. Ce

dernier est déclenché en suivant un utilisateur expert et est terminé par notre système d’apprentissage.

Dans le Chapitre 4, nous avons introduit quelques caractéristiques fonctionnelles de ce système. Nous

fournissons ici plus de détails. Un autre composant également important est le profileur d’ontologie

que nous avons présenté dans le Chapitre 3. Il caractérise la complexité de conception des ontologies

étudiées en utilisant une riche collection des caractéristiques efficacement calculables. Certains de ces

modèles entraînés sont produits par l’étape d’apprentissage décrit précédemment dans le Chapitre 4 tels

que les profils de robustesse prédictive des raisonneurs et les ontologies sur les modèles de difficultés.

Selon les auteurs respectifs [SM09, Van11], en combinant les caractéristiques avec les métriques de

performance sur un grand nombre d’ontologies déduites par différents raisonneurs, cela crée un ensemble

compréhensible de métadonnées sur les performances empiriques de raisonneur. Ces métadonnées

associées avec les modèles prédictifs entraînés représente la connaissance de fond sur les raisonneurs

DL impliqués. L’expertise apprise est stockée dans un format interprétable par les machines dans une

base de données spécifiques, appelée communément Base de métaconnaissances. Par conséquent, elle

pourrait être extraite automatiquement et appliquée sur de nouveaux problèmes.

Étape en ligne : mode d’assistance. ADSOR propose deux types de conseils aux utilisateurs

d’ontologies. Ces conseils sont fondés sur la connaissance acquise sur la robustesse empirique des

raisonneurs et le niveau de difficulté empirique des ontologies OWL. Les conseils sont demandés par

un utilisateur final sur une ontologie donnée en entrée. Il s’agit de lui proposer un classement des

raisonneurs selon les performances prédites étant donnée l’ontologie d’entré. Ce classement est une

sorte de recommandation fournie à l’utilisateur dans le but de l’aider à sélectionner le raisonneur le

plus robuste capable de traiter son ontologie efficacement et avec exactitude. Le deuxième conseil

est offert dans le cas où l’ontologie est prédite comme état empiriquement difficile. Dans ce cas, un

ensemble de modules logiques sont extraits de cette ontologie. Ces modules sont susceptibles d’être

les sous parties de l’ontologie responsable de son niveau de difficulté. Dans la suite, nous décrivons

brièvement les composants principales d’ADSOR.
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RakSOR: Ordonnancement des raisonneurs d’ontologie par apprentissage supervisé

Ce composant conseille les utilisateurs potentiels au regard des meilleurs raisonneurs disponibles en

tenant en considération la nature et les caractéristiques de conception de son ontologie. Les conseils

fournis sont dans leur forme basique, un classement des raisonneurs dans un ordre décroissant de

préférence, i.e le plus préféré possède le rang le plus faible.

Fournir des explications au regard du classement ou des résultats d’extraction est une des exigences

principales qui avait guidé le choix de nos techniques de conseils. Dans [Van11], J. Vanschoren a mis en

lumière qu’un système d’assistance à l’utilisateur devrait fournir la logique des conseils proposés. D’un

autre côté, il est important d’expliquer à l’utilisateur les composants de base qui ont amené à de tels

résultats et de lui offrir autant de détails que possible. Un tel type d’information devrait lui permettre

d’accepter l’aide fournie ou peut-être la rejeter et se tourner vers des propositions alternatives. Dans le

mémoire, nous décrivons plus en détails la conception de premier niveau des composants de classement

et d’extraction.

La robustesse d’un raisonneur est le critère principal de classement, ceci implique l’examen de

l’exactitude des résultats et de l’efficacité des traitements. Pour intégrer ces propositions dans une

application, nous avons formulé un nouveau cadre d’ordonnancement par apprentissage supervisé des

raisonneurs d’ontologie. Nous avons étudié deux sortes de stratégies de classement. Une première

méthode de classement fondée sur une prédiction d’un unique label par raisonneur candidat. Elle tire

avantage des profils de raisonneurs que nous avons construit. Après avoir prédit les performances de

chaque raisonneur sur une ontologie d’entrée, un algorithme les classe selon les règles de préférence

que nous avons préciser. La deuxième méthode est fondée sur des technique de classification et de

régression multi-labels. Il s’agit de construire un seul modèle de prédiction capable de fournir le

classement complet des raisonneurs en tenant en compte les descripteurs de l’ontologie d’entré. Figure

?? décrit les étapes majeures du processus d’apprentissage de chacune de nos stratégies.

Relation d’ordre entre raisonneurs Les deux stratégies d’apprentissage d’ordonnancement re-

specte un ensemble de règles de classement des raisonneurs. Ces règles traduisent nos préférences

quant à l’adéquation d’un raisonneur pour une ontologie tout en tenant en compte les deux critères

d’efficacité et d’exactitude. Intuitivement, en règle générale, le raisonneur avec le plus rapide succès

est préféré aux autres. Sauf dans certain cas, deux raisonneurs peuvent échouer à traiter une onto-

logie pour la même cause, par example, un état de Timeout. Ainsi, il serait impossible d’établir un

ordre de préférence entre ceux deux raisonneurs. Alors, ils sont dits incomparables. Partant de ces

constats, nous pouvons affirmer que dans notre contexte, un recourt à une modélisation fondée sur la

notion d’ordre partiel [BCLS06] s’impose. Plus spécifiquement, nous avons choisi de se référer à un
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Figure 6: Mise en correspondance entre les deux approches d’ordonnancement des raisonneurs par

apprentissage.

cas particulier d’ordre partiel, dit ordre par paquet ("Bucket Order") [FKM+06]. Selon cet ordre, les

alternatives au classement sont regroupé en paquets distincts. Les alternatives dans le même paquet

ont le même rang sachant que les paquets sont classés dans un ordre linéaire strict. En considérant nos

critères de classement, les paquets correspondent aux différents états de terminaison possibles d’une

tâche de raisonnement. Nous avons auparavant spécifier 4 états, par la suite 4 paquets que nous avons

ordonné comme suit: "Succès" ≺ "Inattendu" ≺ "Timeout" ≺ "Arrêt", tel que ≺ est la relation qui

correspond à la notion "est préféré à". Donc, les raisonneurs sont d’abord répartis sur les différents

paquets, ensuite ceux dans le paquet de succès subisse un deuxième classement qui tien en compte leurs

temps d’exécution. Ainsi, le premier paquet est éclaté en plusieurs paquets à élément unique, triés

dans un ordre croissant. Figure 7 explique le mécanisme d’ordre par paquet que nous avons proposé.

Un algorithme a été conçu afin de calculé cet ordre avec efficacité. Plus de descriptions sont établis

dans ce mémoire.

ExOH: Extraction des modules difficiles d’une ontologie

Au delà de la sélection de raisonneur, nous avons proposé un autre type de conseil pour les utilisateurs

finaux cherchant à gagner en compréhension de leurs ontologies. En effet, quand une ontologie est

reconnue comme étant difficile à gérer, un utilisateur cherchera à détecter les causes de cette difficulté.

Dans ce cas, nous suggérons de lui fournir la possibilité d’extraire les sous-parties de son ontologie qui
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Figure 7: La relation d’ordre par paquet appliquée aux raisonneurs d’ontologie.

sont potentiellement les plus exigeantes en terme de coût de raisonnement. Dans la littérature, ces sous-

parties ont été appelées des hotspots d’ontologie [GPS12]. Les hotspots sont des goulots d’étranglement

de performance lors du raisonnement, et ils représentent des opportunités de remaniement pour les

concepteurs d’ontologie. Aussi, une identification efficace de ces composants est hautement nécessaire.

Nous avons revisité les approches respectives de Gonçalves et al. [GPS12] et Kang et al. [KLK14]

d’extraction de hotspots. Nous avons suggéré une nouvelle approche qui repose sur la représentation

de graphe de dépendance des axiomes d’une ontologie, dit graphe d’atomes [DPSS11]. Un atome est

un groupe minimal d’axiomes qui co-occurrent ensemble dans les différents modules ontologique de

localité syntaxique [GHKS08], dont l’extraction est possible à partir d’une ontologie. Toujours d’après

Grau et al. [GHKS08], le nombre de ces modules peut être exponentiel par rapport à la taille de

l’ontologie. Ainsi, le graphe d’atome peut être considérer comme une représentation compacte de

tous les modules logiques de localité d’une ontologie. Partant de cette propriété, nous avons choisi

de calculer la décomposition atomique de l’ontologie. Ensuite, les modules logiques sont construits à

partir des signatures des atomes, identifié comme les plus pertinent. Nous avons proposé deux stratégie

de parcours du graphe d’atome dans le but d’identifier les atomes candidats pour l’extraction. Fur

et à mesure de l’extraction, l’identification des modules complexes est appliquée par recourt à notre

modèle de prédiction du niveau de difficulté d’une ontologie. Figure ?? décrit les principales étapes

qui composent le processus d’extraction et d’identification des modules ontologiques difficiles.

Dans nos évaluations, nous avons opté pour à une nouvelle méthode d’extraction des modules

logiques de localité syntaxique et de décomposition atomique d’une ontologie. Cette approche a été

introduite par Martín-Recuerda and Walther [MRW14]. Elle a outrepassé les méthodes existante en

terme d’efficacité. Son point fort, c’est l’utilisation des hypergraphes [GLPN93] pour modéliser la

dépendances entre les axiomes d’une ontologie. Les premiers résultats expérimentaux que nous avons
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Figure 8: Description générale de l’approche ExOH.

décrit dans ce mémoire sont encourageants, témoignant du potentiel de notre approche.

0.7 Conclusion

Dans cette section, nous résumerons les principaux résultats de cette thèse. Tout d’abord, nous al-

lons rappeler notre problématique de recherche, ensuite nous allons décrire les traits principaux de

la démarche de résolution, que nous avons détaillée lors des chapitres précédents. Finalement, nous

allons discuté la suite logique de nos avancées par le biais d’un certain nombres de nos perspectives de

recherche.

Principales contributions

Cette dernière décennie, plusieurs algorithmes de raisonnement sémantique et de raisonneurs ont été

proposés pour restreindre la complexité du calcul des tâches de déduction pour des langages expressifs

d’ontologie tels que OWL 2 DL. De gros efforts de recherche ont été dédiés à la conception d’algorithmes

efficaces de raisonnement avec des techniques d’optimisation hautement sophistiquées. Néanmoins,

des compétitions annuelles de raisonneurs ont révélé qu’il n’y a pas de moteur de raisonnement qui

puisse être performant sur toutes les ontologies données en entrée. Grosso modo, les performances

d’un raisonneur sont largement dépendantes du succès ou de l’échec de ses astuces d’optimisation.

Un raisonneur pourrait donc être optimisé pour certaines ontologies mais non pour d’autres. En
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conséquence, un phénomène de variabilité des performances empiriques de raisonneur est souvent

observé en pratique. De plus, il y a un réel manque de connaissances et d’outils d’assistance devant

aider à pointer les caractéristiques d’ontologie qui sont des facteurs de dégradation des performances

des raisonneurs. Aussi, des règles de décision pré-établies par des experts pour tester l’adéquation

d’un raisonneur pour une application basée ontologie ne sont pas efficaces en pratique, hormis pour

les cas triviaux. Toutes ces découvertes ont donné naissance à de nouveaux défis dans ce champ du

raisonnement. En effet, un utilisateur doit faire face aux problèmes suivants:

"Comment obtenir un aperçu de la difficulté empirique d’une ontologie? Comment établir un choix

intelligent d’un raisonneur pour une certaine ontologie, de façon à aboutir à des meilleures

performances que celle achevées par un raisonneur sélectionné arbitrairement ?"

Cette thèse a traité ces questions et a essayé de fournir des réponses pertinentes, faciles à compren-

dre pour un utilisateur final. Les solutions proposées dépendent d’une analyse empirique algorithmique

et utilisent des techniques d’apprentissage supervisé. Un des principaux avantages de cette analyse

empirique est qu’elle permet d’étudier à quel point la performance algorithmique dépend statistique-

ment des caractéristiques du problème. Par conséquent, les caractéristiques clés d’ontologie pourraient

être identifiées en essayant de traquer les performances des raisonneurs. Les dépendances ont été mod-

élisées comme des fonctions prédictives capables d’anticiper les performances d’un raisonneur pour

une ontologie donnée. Ces ontologies devraient être décrites par un ensemble de caractéristiques.

Un autre avantage de ce type d’analyse est qu’elle permet de comparer et de trier automatiquement

différents raisonneurs selon leurs performances attendues sur la même ontologie. En effet, les futurs

comportements empiriques de raisonneurs pourraient être appris par une exploration intelligente de

leurs exécutions passées. Par conséquent, aucune expérimentation supplémentaire ne serait nécessaire

pour décider quel raisonneur choisir.

Cette recherche a induit plusieurs contributions dans le champs du raisonnement avec des ontolo-

gies. Indiquons succinctement nos contributions dans les champs disciplinaires distincts mais complé-

mentaires suivants :

(i) Nous avons proposé un ensemble riche de caractéristiques, complet et efficacement calculable, pour

modéliser la complexité de conception des ontologies OWL. Nos caractéristiques ont été classées en

quatre catégories couvrant un large spectre de propriétés syntaxiques, structurelles et sémantiques

des composants d’une ontologie.

(ii) Nous avons proposé de régler la variabilité des performances des raisonneurs en les prédisant

automatiquement pour toute ontologie donnée en entrée. Nous avons étudié aussi la robustesse
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des raisonneurs. Par robustesse, nous signifions la capacité d’un raisonneur à terminer une tâche de

raisonnement de façon correcte et en un temps limite fixé. Nous avons fait valoir que la robustesse

devrait être déclarée sous certaines contraintes computationnelles et fonctionnelles. C’est pourquoi

nous avons choisi d’examiner un scénario d’usage en ligne où la classification DL d’ontologie est

la tâche principale requise.

(iii) Nous avons appliqué certains concepts d’apprentissage supervisé au problème de la prédiction em-

pirique de la robustesse de raisonneur. Nous avons proposé une méthodologie d’apprentissage qui

utilise notre suite de caractéristiques d’ontologie et qui dépend d’un ensemble riche de techniques

avancées de l’apprentissage machine supervisé. Grâce à cette proposition, nous avons modélisé un

profil de robustesse de raisonneur en matière de modèles prédictifs capable d’anticiper sa justesse

et son efficacité quelle que soit l’ontologie à manipuler.

(iv) En utilisant la même méthodologie, nous avons appris à prédire les ontologies difficiles empirique-

ment. Rappelons que nous parlons de "difficile" lorsque ces dernières sont difficiles à gérer par un

ensemble de raisonneurs.

(v) L’efficacité des systèmes d’apprentissage proposés a été examinée au travers de très nombreuses

expérimentations. Nous avons étudié six raisonneurs bien connus de la communauté et les avons

testés avec 2500 ontologies. Nous avons comparé divers algorithmes d’apprentissage supervisé et

techniques de sélection de caractéristiques dans le but d’entraîner les meilleurs modèles prédictifs

de raisonneur. Nous avons montré que tous nos modèles surpassaient les solutions de pointe

hautement performantes actuelles.

(vi) Les modèles entraînés ont été comparés et étudiés dans le but de découvrir les caractéristiques

d’ontologie les plus importantes. Certaines ont été décelées comme obligatoires pour assurer une

bonne qualité de prédictions. Autrement dit, elles sont fortement corrélées aux performances des

raisonneurs examinés. Nous pensons qu’une telle connaissance améliorerait des études futures sur

des méthodes de modélisation d’ontologie afin de faire en sorte que les facteurs de dégradation des

performances des raisonneurs soient évités.

(vii) Nous avons fourni un nouveau cadre de travail pour soutenir les utilisateurs non experts dans

la tâche de sélection de raisonneur. Le but principal de ce cadre est d’être capable de classer

automatiquement un ensemble de raisonneurs candidats selon leur robustesse attendue et ce, sur

n’importe quelle ontologie. Notre cadre de classement suit une approche de méta-apprentissage

et opère en deux phases : une phase hors ligne pour acquérir la connaissance ; et une phase pour

appliquer les règles de classement. Ce classement est calculé selon des règles de préférence qui

tiennent compte à la fois de l’exactitude et de l’efficacité des raisonneurs examinés. Ce cadre
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produit un ordonnancement des raisonneurs qui applique une relation d’ordre par paquet. Celle-ci

est un cas spécial d’une relation d’ordre partiel. A notre connaissance, nous sommes les premiers

à considérer plus d’un critère dans le processus de classement des raisonneurs.

(viii) Nous avons proposé deux stratégies d’ordonnancement par apprentissage supervisé qui appliquent

les règles de préférence établies. La première stratégie est fondée sur une prédiction d’un unique

label. Il tire avantage des profils de raisonneurs appris. Après avoir prédit les performances de

chaque raisonneur sur une ontologie d’entrée, un algorithme les classe selon les règles de préférence.

La seconde stratégie est fondée sur des techniques multi-labels. Un modèle prédictif est entraîné

afin d’être capable de coupler les caractéristiques d’une ontologie à un classement complet des

raisonneurs. Un nouvel algorithme de classement multi-labels a été introduit. Le propos principal

de cet algorithme est de produire un modèle capable d’appliquer nos règles de préférence. Tous

nos résultats expérimentaux témoignent de l’efficacité de nos propositions. Nous avons réalisé un

classement de grande qualité qui a surpassé ceux des solutions existantes.

(ix) Nous avons aussi examiné la possibilité de l’utilisation d’un modèle prédictif de difficulté

d’ontologie pour guider l’identification des zones sensibles, dites "hotspots", des ontologies. Nous

avons cherché à identifier ces sous-parties d’ontologie. La solution dépend de la décomposition

atomique de l’ontologie et du mécanisme d’extraction de la localité. Une fois que les atomes de

l’ontologie ont été calculés et transformés en modules, la difficulté de ces derniers est prédite en

utilisant notre modèle de prédiction. Nos premières évaluations ont montré des résultats encour-

ageants, qui prouvent le potentiel de notre solution.

(x) Toutes nos propositions ont été rassemblées et modélisées comme des services distincts fournis par

un système, appelé ADSOR (pour "Advisor System over Ontology Reasoners"). Le système a été

conçu pour permettre les différentes opérations d’apprentissage dans la phase hors ligne et pour

interagir avec des requêtes utilisateurs lors de la phase en ligne.

Perspectives

Tout au long de notre projet de recherche, nous avons fait un certain nombre de choix pour assurer

le succès de nos travaux. Cependant, certains de ces choix pourraient avoir limité la portée du travail

présenté. En conséquences, un certain nombre de questions demeurent et plusieurs directions futures

de recherche sont concevables. Nous présentons plusieurs possibilités mais nous soulignons que cette

liste n’est en aucun cas exhaustive.
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Méthode alternative de vérification de la justesse d’un raisonneur Par notre étude, nous

avons mis en exergue la nécessité d’examiner la justesse des résultats de raisonnement puisque les

raisonneurs devraient fournir des résultats assez distincts sur la même ontologie d’entrée. La justesse est

un critère important lorsque l’on conseille un utilisateur sur la pertinence d’un raisonneur. Cependant,

très peu de travaux ont parlé du problème de la vérification automatique de la justesse. Les recherches

dans ce domaine commencent à peine. Dans notre projet, nous avons utilisé une méthode basique de

vérification de la justesse dépendant du mécanisme de vote majoritaire. Assurément, ce n’est pas une

méthode irréprochable, par conséquent, il serait intéressant d’examiner des méthodes plus avancées.

Nous devrions mettre en évidence que le changement de méthodes de vérification de la justesse de

raisonneur ne devrait pas affecter nos méthodologies respectives d’apprentissage et de classement.

Uniquement le processus d’évaluation de raisonneur et, par conséquent, les données collectées subiront

ces changements. Nous pensons que l’utilisation de méthodes plus fiables de vérification de justesse

engendrerait des conseils plus significatifs et ainsi une meilleure satisfaction de l’utilisateur.

Évolution du système de classement de raisonneur Nous avons introduit les premières idées

de conception de ce que pourrait être un système de recommandation de raisonneurs d’ontologie.

Néanmoins, des améliorations supplémentaires devraient être faites. Nos futures propositions vont

vers un système de recommandation de raisonneur plus évolué selon les trois points suivants :

1. Augmentation du nombre de scénarios d’usage de raisonneur Dans notre étude, nous nous sommes

focalisés sur un scénario de classification des ontologies OWL. Nous nous sommes fixés un

calendrier très serré et nous avons fourni un travail de mémoire relativement important. En

perspective, nous avons l’intention de regarder de plus près des scénarios tels que l’utilisation de

raisonneurs dans des dispositifs mobiles. Dans ce contexte, la consommation mémoire devrait être

réduite tout en gardant le même degré d’efficacité. C’est un vrai challenge pour les raisonneurs.

Par conséquent, prévoir leur robustesse sous de telles contraintes est digne d’intérêt. Nous aim-

erions aussi étudier le cas où plus de contraintes de relâchement sont imposées. En fait, notre

but ultime est de conduire différentes campagnes d’évaluation de raisonneurs avec des machines

standard, des contraintes temporelles et une certaine configuration mémoire. Une fois que ces

données sont rassemblées et leurs modèles prédictifs entraînés, de nouveaux critères pourraient

être proposés qui prennent en compte les contraintes computationnelles étudiées.

2. Prise en comte des préférences utilisateur dans le classement Toutes les règles de préférence que

nous avons utilisé pour classer les raisonneurs sont par défaut codées dans le système. Il devrait être

aussi possible d’interroger l’utilisateur sur sa propre préférence et sur les conditions de classement.

Une telle information pourrait être traduite en des poids de critère ou d’autre forme de règles de
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préférence. Dans ce cas, il serait digne d’intérêt d’employer une approche de prise de décisions

multi-critères, telles que Outranking ou MAULT, pour classer les raisonneurs.

3. Analyse du retour de l’utilisateur Dans les systèmes de recommandation standard, les retours

d’utilisateur sur les recommandations fournies sont souvent demandés et analysés pour juger de

la qualité du système. Dans certains systèmes de recommandation d’élément, ces commentaires

sont vus comme de la connaissance auxiliaire précieuse et sont réutilisés pour améliorer les recom-

mandations futures. Dans notre contexte, ceci ne pourrait pas être appliqué puisque nos conseils

dépendent uniquement des comportements des raisonneurs. Cependant, il serait intéressant de

demander des retours à l’utilisateur comme, par exemple, demander à quel point nos conseils lui

ont donné satisfaction.

Vers un système de méta-raisonnement Nous avons abordé le problème de sélection de rais-

onneur du point de vue de l’utilisateur final. Nous avons calculé les classements pour lui fournir des

indications. Néanmoins, nous sommes convaincus que nos méthodes de classement pourraient être util-

isées pour construire un méta-raisonneur. Ce dernier est fondé sur une approche d’algorithme portfolio.

Pour assurer que le méta-raisonneur surpasse les moteurs existants, Le temps de dépassement dû aux

étapes de prédiction devrait être réduit. Par conséquent, des étapes d’optimisation supplémentaires

devraient être considérées. Une optimisation possible est de mettre un raisonneur par défaut à lancer

quand l’ontologie à étudier est un cas trivial. Chainsaw [TP12] est un autre type de méta-raisonneur.

Il extrait une module de l’ontologie pour chaque requête utilisateur et crée un raisonneur adaptable

à ce module pour être capable de répondre à la requête. Les auteurs ont souligné qu’ils cherchent

encore une stratégie pour choisir le raisonneur le mieux adapté à un module donné. A l’heure actuelle,

ils travaillent avec un couple de raisonneurs de façon arbitraire avec aucune sélection automatique

concrète. Nous sommes prêts à intégrer notre méthode de classement dans ce méta-raisonneur et à

conduire une nouvelle étude à grande échelle qui devrait nous aider à prouver les avantages de notre

méthode de classement supervisé.



Introduction

Context

When the vision of the Semantic Web was formulated by Berners-Lee et al. [BLHL01], they have

given great attention to ontologies. The Semantic Web of future would represent information more

meaningfully for humans and computers alike and the ontologies are the backbone of this representation.

Indeed, an ontology can provide a common vocabulary, a grammar for publishing data, and can supply

a semantic description of the web pages. Henceforth, ontologies are used as conceptual models for data

integration in a variety of domain areas.

An ontology is typically encoded in a Knowledge Representation (KR) language. A major class of

ontology languages is based on Description logics (DLs) [BCM+10], which are decidable fragments of

the First Order Logic (FOL). The Web Ontology Language, OWL [HPSV03] is a notable example of

this class of languages. OWL is widely used in both academic and industrial environments, since it

is recommended by the World Wide Web Consortium (W3C) as a standard language for the ontology

authoring. An OWL ontology may be viewed as a set of FOL formulae, called axioms, and it is

therefore a logical theory. Hence, the vocabulary described in an OWL ontology is provided with a

well-defined, unambiguous meaning. However, there is often a mismatch between the intended and the

actual representation of knowledge within an ontology. Whilst the knowledge of the domain of interest

is generally well-understood, or at least agreed on, it is not trivial to foresee and understand the logical

consequences of adding, removing, or modifying an axiom, especially when the terminology is highly

interconnected. Hence, an ontology engineer needs to employ automated deduction systems, so-called

reasoners, to verify certain forms of consequences of their stated axioms and to make the implicitly

asserted ones, explicit. Indeed, reasoners are for now the key components to work with ontologies.

Given the crucial role and the high importance of reasoners, considerable research and engineering

efforts was dedicated to propose new semantic reasoning algorithms [BS01, MSH09, SKH11] with

highly optimized implementation, such as FaCT++ [TH06], Pellet [SPG+07] and HermiT [GHM+12].

Matentzoglu et al. [MLH+15] have recently scrutinized this research effort in a detailed survey.
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Unfortunately, the proliferation of ontologies came with a cost. Ontologies continue to gain in

importance, as well as in size and complexity at a rate that has outpaced the cognitive capabilities of

human to understand and to manually handle the modelled knowledge. This cognitive complexity have

lead humans to rely on reasoners to check and manage their ontologies. Whereas, reasoners are also

gaining in complexity and their empirical behaviour is often hazy even to experts. In fact, it exists a real

tradeoff between the logical expressivity of the ontology language and the computational complexity of

the DL reasoning: the more expressive a language, the higher its computational complexity. Horrocks et

al. [HKS06] have shown that the reasoning problems over ontologies written in SROIQ, the description

logic underpinning OWL 2 DL14 are, in the worst case solvable by a non-deterministic algorithm in

time that is (double) exponential with respect to the size of the input. Hence from a theoretical

perspective, one would assume that reasoning with OWL ontologies is infeasible in practice. Luckily,

various works including [MRW11, Abb12] have settled that in general reasoning from an empirical

perspective is far less complex than the established theoretical complexity. Interestingly enough, even

with fairly expressive fragments of OWL 2, acceptable reasoning performances could be achieved.

This would be owing to the various sophisticated reasoning optimization techniques [Hor03, THPS07].

Nevertheless, the respective authors of [WLL+07, GPS12] have outlined that often in practice, reasoners

tend to exhibit unpredictable behaviours when dealing with real world ontologies and their performances

dramatically vary across the ontologies, even when the size or the expressivity of the latter ones are held

constant. Indeed, the observed sparsity over reasoner performances have prompted the organization

of several reasoner benchmarks [DCtTdK11, Abb12] and annual reasoner evaluation competitions,

such as the Ontology Reasoner Evaluation Workshop, ORE [GBJR+13, BGJ+14, DGG+15]. All of

them attempt to compare the advances in reasoning systems and examine their robustness facing real

world ontologies. The empirical results of these evaluations are often surprising the experts as reasoner

performances, may remarkably vary on different ontologies belonging to the same theoretical complexity

class. Furthermore, it is well-accepted that there is no reasoning engine that can outperform in all input

ontologies. From an empirical perspective, there is merely a general agreement [GTH06, WLL+07,

WP07, GPS12, GMPS13, LMPS15] that the most compiling issue when dealing with reasoners is the

performance variability phenomena. This issue have give raise to various new challenges to both the

ontology and reasoner respective communities. We will be discuss some of them in what follows.

14The second version of OWL, OWL 2 [Gro09], is a W3C recommendation since 2009
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Challenges

Despite the remarkable progress in optimizing reasoning algorithms, unpredictable behaviours of

reasoner systems is often observed in practice, particularly when dealing with real world ontologies.

We have delineated two main aspects that would depict the phenomena under examination: (i) the

variability of reasoners runtime across the ontologies; (ii) the sparsity of the computed inferences by

different reasoners over the same input ontology.

On the one hand, Gonçalves et al. [GPS12] have outlined the reasoner runtime variability by three

particular situations that a user might face when attempting to reason about an ontology: (i) For one

test case ontology, switching the reasoner can degrade reasoning time from seconds to none termination;

(ii) Ontologies with the same size and expressivity would spend wildly different ranges of computational

time on the same reasoner; (iii) An insignificant change to an OWL ontology would increase or probably

decrease reasoning time on one reasoner. As far as one of these situations happens, often no feedback

is returned to the user. Commonly, the latter one will keep shifting reasoners until finding the suitable

one. Others would try to adjust their ontology hoping for an improvement, but running the risk of

making the matters worse. Lee et al. [LMPS15] explained the variability of reasoner runtime by

the fact that modern reasoning systems have complex design architecture and tend to implement a

wide range of optimisation techniques that might interact and affect each other while processing some

particular ontologies. However, it is still not well understood which of the ontology characteristics are

badly affecting the reasoner optimisation tricks. By consequence, an ontology, which is a performance

bottleneck for some particular reasoner, is hardly predictable a priori.

Furthermore, Gardiner et al. [GTH06] and more recently Lee et al. [LMPS15] have shed light

on the disparity of the reasoning results derived by distinct reasoners from the same input ontology.

This disagreement across the reasoners over inferences or query answers would make it hard to provide

interoperability in the Semantic Web. Therefore, an empirical correctness checking method was added

to the ORE evaluation framework to examine the various reasoner results. The method described in

[GBJR+13] is a simple, majority voting procedure which has been put in place to resolve disagreements

and decide which inferences are likely to be the most consistent ones. By referring to this method, it

has been observed that there was no single reasoner, which correctly processed and outperformed on all

given inputs. Even the fastest reasoner has failed to derive accurate results for some ontologies, while

others less performing systems have succeed to correctly process them. Actually, while the formal basis

of the core reasoner procedures are well understood, many optimizations and most of the engineering

details are less explained and often reviewed only by the reasoner developer. Hence, it seems that even

the reliability of modern reasoner implementations is still a matter of investigation.
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Through this discussion, we would assert that the most desired qualities, i.e. result correctness and

time efficiency, are not empirically guaranteed by all the reasoners and for every ontology. A reasoner

could be optimized for some, but not all ontologies. These observations pinpoints the hardness of

understanding reasoner empirical behaviours even for experienced and skilled reasoner designers. As

previously argued by Wand and Parsia [WP07], the actual problem with DL reasoning is the lack of

theory and tool support helping both ontology novice and expert users to analyse the performances of

the reasoners and figure out which particular aspects in the ontology that are reasoner performances

degrading factors. This lack of knowledge are making the experts’ pre-established decision rules about

the appropriateness of a reasoner for a particular ontology less effective in practice, except for trivial

cases. One further consequence is the growing need to characterize the hard to manage ontologies and

gaining insights about their particular attributes.

Based of these findings, in our thesis, we will be developing and further investigating two basic

research questions, that we considerer to be the most relevant to an end user:

1. Which ontology features are likely to have impact on reasoner performances?

2. How feasible is it to reason over an ontology written in particular DL, using the best available

reasoners?

Our second research question could further be detailed. Indeed, a couple of finer grained interrogations

emerges from it: first, we would wonder whether is it possible to a priori predict the performances of

any reasoner over any ontology, and then, how could we assist the end users in the automatic selection

of the most "appropriate" reasoners for their ontologies?

Goals and Contributions

The main goal of this thesis is to bring solutions to cope with the reasoner performances variability

phenomena and hence, advance the state of the art in the empirical analysis of DL reasoners. We believe

that providing guidance over the empirical behaviours of reasoners could further improve reasoner

optimizations and enhance ontology design by avoiding reasoner performances degrading factors.

To provide solutions to our first research question, we carried out an investigation about existing

methods and tools that intended to identify potential correlation between reasoner empirical behaviour

and particular ontological features. We tried to give users an overall view of the state of art in this field.

The pioneering works were analysed and then broke down into categories. Our investigations have lead

us to believe that the design complexity of an ontology is the result of complicated combination of

various dimensional characteristics and can not be measured directly using a single metric. Therefore,
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we proposed a set of ontology features covering a broad range of structural and syntactic ontology

characteristics. We claim that these features would be key indicators of the ontology hardness level

against reasoning tasks.

Our second research question addresses two issues: (i) prediction of reasoner empirical behaviours

and (ii) automatic selection of adequate reasoner given an input ontology. Reasoner performance pre-

diction was also investigated by Gonçalves et al. [GPS12]. They suggested that one way to explain

why a reasoner performs poorly on some ontology is to predict whether the ontology contains some

computationally expensive components. Their main claim is that whenever the time required to clas-

sify an ontology by a particular reasoner is not linearly correlated to the size of its subsets, then the

ontology is said to be performance-heterogeneous for this reasoner. In this case, it is likely that some

ontology sub-parts, i.e. modules, are reasoner performance "hotspots". However, their experiments

have revealed that there is no precise co-relation between the reasoning time of a hotspot alone, and

the reduction in reasoning time when such hotspot is removed. They affirmed that more investigations

should be made about possible interactions between the hotspots and other ontology features. An-

other steam of works, mainly described in [KLK12, SSB14, KLK14], used supervised machine learning

(SML) techniques [Kot07] aiming at predicting the computational time of a reasoner over any onto-

logy. Their predictive models take advantage from a large set of pre-computed ontological metrics.

The rational behind this choice is to be able to automatically learn future reasoner behaviours based

on what was experienced in their past running. Reasoner performance prediction approaches are still

in their beginning but showed very promising results in different area of applications. For instance,

the respective authors of [KLK14, SSB14] have deployed their reasoner runtime predictive models to

identify the ontology hotspots. Furthermore, we should highlight that the idea of learning to predict an

algorithm runtime from empirical data is not new. Over almost a decade of intensive research, Brown

et al. [LBHHX14] have demonstrated that the runtime of solvers over NP-Complete SAT problems

can accurately be predicted based on easy to compute features and by employing SML techniques.

Hutter et al. [HXHLB14] have carried out a large scale survey summarizing all of the pioneering works

attempting to learn algorithm empirical performance models (EPMs). Motivated enough, we find that

machine learning based approaches are of great interest to meet the demand of tracking down the

reasoner performances variability phenomena. As a matter of fact, the learning methods are generic

ones, since they could handle any reasoner or any ontology, and have a broad scope of applications.

Nevertheless, the existing solutions of reasoner prediction are still limited ones, since all of them assess

only of the reasoner runtime. Yet, in our opinion, a reasoner that quickly but incorrectly processes

an ontology is of little use. In this thesis, we propose to advance the predictive modelling of reasoner

empirical behaviours by investigating further reasoner output qualities and by identifying those ontolo-
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gies which are likely to damage these qualities. More specifically, we will try to predict the correctness

of reasoners as well as their efficiency. To achieve this purpose, we will establish a detailed specific-

ation of a generic learning framework capable to accomplish several predictive modelling tasks about

ontology reasoning. The framework uses the proposed ontology feature suite and a large set of super-

vised machine learning algorithms coupled with multiple feature selection techniques. By employing

this framework, we will first train a model able to predict whether an ontology is empirically hard

with respect to a group of reasoners. Thus, performance unmanageable ontologies could be identified.

Seeking more finer grained analysis, we will try to portray the robustness of individual reasoner by

combining conditional predictive models of its correctness and its efficiency. This particular association

materialize our concept of a reasoner predictive robustness profile. We will show that based only on

simple easy-to-compute ontology features, highly accurate models of both the hardness of ontologies

and the robustness of reasoners could be learned by an intelligent exploration of the empirical data.

Finally, we will provide ways to interpret the different trained predictive models in order to uncover

new, simple relationships between ontology characteristics and reasoner qualities, and thereby cata-

lyse our understanding of the key ontology features likely to downgrade reasoner empirical robustness.

Our assumption is that the more effective are the features in describing the design complexity of the

ontologies, the more accurate will be the trained predictive models.

Our next interrogation is linked to the long-standing problem of algorithm selection, discussed

in the first place by John Rice [Ric76] in the mid-70s. This issue has been at the crossroads of

many problem fields, such as Machine Learning (ML) and Artificial Intelligence (AI). A common trait

among the proposed solutions is that they employ supervised machine learning techniques, regression

or ML classification15, to build an efficient predictor of the performances of candidate algorithms for

each problem instance. Hence, the most adequate one could be identified. Meta-learning [BGCSV08]

and algorithm portfolio [GS01] construction are the main fields where the Rice’s model of algorithm

selection was put into practice. While the meta-learning approaches basically aim to recommend

the best machine learning algorithm given an input dataset, the final goal of portfolio approaches is

to take advantage of the complementarity of the algorithms by combining them in order to obtain

improved performances in the average case. The idea of building reasoner portfolio have recently

seduced Kang et al. [KKL15]. The latter ones have employed their previously trained reasoner runtime

predictive models, to build R2O2 a kind of meta-reasoner, which combines existing reasoners and tries

to determine the most efficient one for a given ontology. Their results were remarkable, claiming that

R2O2 could outperform the most efficient state of art reasoner. However, no rigorous evaluation under

15It is important to notice that "DL classification" stands for a reasoning task aiming at inferring the subsumption

relations between the classes and the properties in given ontology, however the "ML classification" denotes the process

of training a predictive model from a labelled dataset.
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no idiosyncratic conditions have been conducted to confirm the Kang’s et al. assertions. In fact, the

time overheard due to the prediction steps was not discussed. In this thesis, we chose to address the

problem of ontology reasoner selection from a different perspective. We believe that to have reasoners

selected as being best suited from an input ontology is a kind of recommendation that would be made

for users seeking for guidance. The provided advice would be in its basic form, a ranking of reasoners,

in a most preferred order. As previously highlighted by [PdSL11], providing a ranking of candidate

algorithms is a more informative and flexible solution, than suggesting one single best algorithm. For

instance, a user may decide to continue using her/his favourite reasoner, if its performance is slightly

below the topmost one in the ranking. To achieve this purpose, we formulated a novel reasoner ranking

framework, which take into account information regarding the robustness of the candidate reasoners,

more specifically their correctness and efficiency level regarding an input ontology. We investigated

two distinct ranking approaches: a first ranking method based on single label prediction; and then,

a multi-label based method for ranking prediction. We experimentally and analytically proved the

worthiness of each proposed approach and put them into comparison. To the best of our knowledge,

we are the first to employ more than one criterion to rank the reasoners and we believe it is one

important step in the direction of multi-criteria ranking of ontology reasoners.

Beyond reasoner selection, we proposed another kind of advising for end-users seeking to gain more

insights about their ontologies. Indeed, whenever an ontology is recognized as a hard to manage one,

a user will look for assistance to gain insights about the potential causes of this hardness. In this case,

we suggest to provide her/him the possibility to extract those ontology sub-parts that are probably

the most computationally demanding ones. As described above, these sub-parts are commonly called

the ontology hotspots [GPS12]. Hotspots are performance bottlenecks for reasoning. An efficient

identification of these components is highly desirable since they represent re-factoring opportunities

for ontology designers. We revisited both the Gonçalves et al. [GPS12] and the Kang et al. [KLK14]

respective approaches of hotspot extraction. We suggested a new method which relies on atomic graph

representation of the ontology axioms. Our extraction takes advantage of the trained ontology overall

hardness model and is guided by those ontology features recognized as key ones. Our first experimental

results are encouraging ones, testifying the potential of this method.

Thesis Outline

To summarize, the main purpose of this thesis is to investigate means to cope with the reasoner

performances variability phenomena and ways to gain insights into the ontology primary features

likely to be reasoner performances degrading factors. Our final goal is to provide simple, efficiently
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computable guidelines to novice and expert users about, on the one hand the empirical hardness of

OWL ontologies, and on the other hand, the empirical robustness of modern DL reasoners. The

guidelines are basically a set of predictions about the expected behaviours of an individual reasoner or

a ranking of group of reasoners given an input ontology. We believe that delivering such indications for

novel user with little expertise in sophisticated reasoning algorithms, would be a worthwhile solution

saving her/him valuable time in research and analysis. But it is also a worthwhile starting point for

experts to conduct further in depth investigations about their ontologies or reasoners. To achieve this

purpose, we opted for the supervised learning as the kernel theory to guide the design of our solutions.

This dissertation is structured along the way the experimental study was carried out. In more

details, the subsequent chapters focus on the following subjects:

Chapter 1 lays the groundwork in terms of employed terminology and core background notions used

throughout the thesis. Our research questions are at the crossroads of two fields: the Semantic

Web [BLHL01] and the Machine Learning [Sam59]. That is why, we will be recalling some of their

basic notions. In particular, we focus on the three key notions: the ontology, the reasoner and the

supervised learning.

Chapter 2 scrutinizes our related works. We will first discuss the complexity levels of modelling

OWL ontologies and ways to characterize its design. Then, we will focus our study on the reasoner

performances variability phenomena. We will be putting into comparison methods and tools which

tried to detect and analyse it. The final section of this chapter will be dedicated to the advances in

addressing the algorithm selection problem. We will examine known approaches in meta-learning

and algorithm portfolio construction.

Chapter 3 gives a detailed description of our set of proposed ontology features. The latter ones

are arranged in four basic categories and cover a wide range structural and syntactic ontology

characteristics. We employed our features to describe OWL ontologies selected from a well known

corpus. Finally, we conducted a comparison about the computational cost of measuring our

features in order to identify the most efficiently computable ones.

Chapter 4 describes our reasoner learning methodology which relies on our rich set of advanced

ontology features. Owing to the benefits of this proposal, we modelled the robustness profile of

a reasoner, in terms of predictive models of its correctness and efficiency. To demonstrate the

worthiness of our proposals, we conducted a rigorous investigation about 6 well known reasoners

and over 2500 ontologies. We put into comparison various supervised learning algorithms and

feature selection techniques in order to train best reasoner predictive models. Our trained reasoner

predictive models showed to be highly accurate outperforming state-of-art solutions.
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Chapter 5 describes the two domain applications were the established predictive models could be in-

tegrated. Both of them are part of a generic system that we called ADSOR standing for "Advising

System Over Ontology Reasoners". The main purpose of this system is to provide guidance for

end-users for an easy selection of the most appropriate reasoner for their ontology based applica-

tions. Furthermore, the system help users to gain insights about the empirical hardness of their

ontologies. It suggests to predict the overall hardness of an input ontology and more interestingly,

it offers the possibility to extract its most computationally challenging sub-parts. The various

approaches that provide the basis for the core design of this system are detailed in this chapter.

The worthiness of each approach was experimentally proved and in depth analysed.

Finally, we concluded this dissertation by summarizing our main contributions and relevant results

and by pointing out some open questions and future directions.
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1.1 Introduction

This chapter lays the groundwork in terms of employed terminology and core background notions used

throughout the thesis. Our research questions are at the crossroads of two fields: the Semantic Web

[BLHL01] and the Machine Learning [Sam59]. That is why, we will be recalling some of their basic

notions. In particular, we focus on the three key notions of our thesis: the ontology, the reasoner and

the supervized learning. The term "ontology", in computer science, is used to refer to a representation

of knowledge as a set of terms, and relations between these terms. This thesis is focused on description

logic based ontologies written in the Web Ontology Language (OWL), which is discussed in Section 1.3

along its applications and profiles. Then in Section 1.4, we formally define logical inference problems

that correspond to standard reasoning services provided by DL systems. Furthermore, we will conduct

a meta-data study about modern DL reasoners and put into comparison their relevant functional

features. Finally in Section 1.5, we will briefly recap some basic notions of machine learning (ML) field

of research while putting more attention on supervized learning (SML) concepts. We will also give

an overview of the most common used SML techniques for data preprocessing and predictive model

training. These techniques will be considered throughout this thesis. Besides, we depicted the relevant

assessment metrics deployed in SML validation process.

1.2 Semantic Web

Today’s World Wide Web gives new opportunities for discipline called Knowledge Representation

(KR). Web resources needs to be better adopted for automatic processing by computer agents. That

is possible by more systematic and formal description mechanisms used for defining contents of the

pages. One of the most powerful feature of the World Wide Web is the possibility of interconnections

between knowledge sources. Interconnections are provided by linking mechanisms on pages. In other
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words, instead of copying information from external sources created by other people to our page, we just

provide links to such sources. More in valuable, the Uniform Resource Identifiers (URIs), which are the

naming scheme for web resources, allows KR systems to improve linking between semantic documents

by avoiding the ambiguities of natural language. Henceforth, new possibilities and challenges were

opened for knowledge representation assumptions [VLP08], which give rise to the Semantic Web.

The Semantic Web can be treated as an extension to the current web and the successor of Web

2.0. In recent Web 2.0 architecture, there is a lot of unstructured data. Information is represented

in various ways, incompatible witch each other. What Semantic Web offers is defined meaning of

information, machine-readable description of contents (meta-data), simplification of information ex-

change, classification and inference mechanisms, data processing and integration in machine-automated

manner.

"The Semantic Web is an extension of the current Web in which information is given well-defined

meaning, better enabling computers and people to work in cooperation."

Tim Berners-Lee [BLHL01]

"The goal of Semantic Web research is to transform the Web from a linked document repository into a

distributed knowledge base and application platform, thus allowing the vast range of available informa-

tion and services to be more effectively exploited."

Ian Horrocks [Hor07]

As it was said, the Semantic Web is a web that is able to provide information about things in the way

computers can understand. The human-understandable sentences which describe things, are going to

be intelligently processed in the Semantic Web. Statements appropriate for dedicated language are

built using syntax rules, which are defined by this language. In Semantic Web field statements are

built using rules provided by specific KR languages and such statements are semantic aware. Semantic

analysis of such statements allows to convert them to knowledge base queries. To search and access

the Semantic Web content, tools called Semantic Web Agents or Semantic Web Services are required.

It is because searching process in Semantic Web will be much different than today’s searching in free

text - complicated math algorithms are going to be provided to bring answers to these emerging needs.

"The Semantic Web provides a common framework that allows data to be shared and reused across

application, enterprise, and community boundaries."

World Wide Web Consortium [W3C]
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Figure 1.1: Semantic Web Stack [W3C]

The Semantic Web layered architecture recommended by the W3C (Figure 1.1) covers such techno-

logical aspects like application interfaces, security, rules and logic (SWRL, RIF), ontologies (RDFS,

OWL), meta-data (RDF), serialization (XML) and resource identification (URI). This layers are briefly

described below:

URI and Unicode : a uniform system of identifiers (URIs) is used to locate resources, or any other

thing on the Web. Otherwise, the URI uniquely identifies the Web resources. Unicode is the chosen

standard for computer character representation.

eXtensible Markup Language (XML) is a data format. XML plays an important role in exchan-

ging different types of data on the Web and in electronic publishing. It is meant to be a the standard

serialization format for the Semantic Web, thus information could be parsed appropriately when they

are transferred between machines.

RDF : Resource Description Framework is a data model. It allows for representing semantics of

information about resources on the Web in a machine-accessible way. RDF employs the URIs to

identify Web resources and to describe the relationships between them, using a labelled directed

graph model.

RDF-S : the Resource Description Framework Schema, is a lightweight, easy to use language for

defining RDF vocabularies (i.e. ontology). RDF-S is expressed in RDF and allows to reduce the

ambiguity of this latter one by defining some object-oriented concepts such as classes and properties.
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Using RDF-S some basic inference rules could be applied.

Ontology and OWL : an ontology is the center-piece of the Semantic Web. It provide a uniform

vocabulary with a precise meaning to describe the semantics of the data on the Web and hence,

enable exchange and interoperability between the different Semantic Web agents, i.e. humans and/or

machines. The Ontology Web Language (OWL) is another data modelling language used to describe

RDF vocabularies. It extends RDFS and have allow for more expressive description of knowledge.

OWL is based on description logics (DL) and thus allows automatic deduction and inference over the

ontology knowledge.

SPARQL : for querying RDF data as well as RDFS and OWL ontologies with knowledge bases, a

Simple Protocol and RDF Query Language (SPARQL) is designed. It is SQL-like language, but uses

RDF triples.

Logic and Proof : all the above data modelling languages are designed to provide structured know-

ledge about the Web resources, which follows some logic. Hence, the consistency of this knowledge

could be checked and inferred using deduction systems, called reasoners.

Trust : the final layer of the Semantic Web which concerns the trustworthiness of the information on

the Web in order to provide an assurance of its quality.

In the remainder of this chapter, we will focus our attention on two particular layers: the ontology

from a knowledge representation (KR) perspective and the logic/proof layer to get more insights about

the description logic and the automatic reasoning.

1.3 Ontology

T. R. Gruber [Gru93] defined an ontology as "formal, explicit specification of a shared conceptualiza-

tion". An ontology delineate a common vocabulary that users can share within a domain of knowledge.

Ontologies have become increasingly important with the global move towards the Semantic Web. They

have been used as conceptual models, for data integration, or to directly represent information in a

variety of domain areas. Ontologies are made available on the web to a multitude of machines, to

promote the exchange and sharing of knowledge. On these basis, many reasons would further motivate

the development of ontologies, for instance:

• to share common understanding of the structure of information among people or software agents;

• to enable reuse of domain knowledge;

• to make domain assumptions explicit;

• to separate domain knowledge from the operational knowledge;
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• to analyse domain knowledge.

The ontology potential of providing domains with an unambiguous vocabulary has attracted the interest

of many domain experts from diverse areas, such as medicine, bio-informatics and geography. Strong

efforts were put in modelling and maintaining ontologies. A notable example of this process is the

National Cancer Institute thesaurus1. NCI-t has been updated monthly since 2003, and many versions

of the NCI-t ontology are freely downloadable. Other important medical ontologies could also be

mentioned: Snomed Ct2, the Open Galen project3 and the FMA ontology4.

Ontologies are typically encoded in a Knowledge Representation language. A major class of on-

tology languages is based on the family of Description logics (DLs) [BCM+10], which generally are

decidable fragments of the First Order Logic (FOL). Hence, an ontology may be viewed as a set of

FOL formulae, called axioms, and it is therefore a logical theory. A notable example of an ontology

language based on DLs is the Web Ontology Language OWL [HPSV03], a World Wide Web Consor-

tium Standard which has been used both in academic and industrial environments since its first version

became a W3C recommendation in 2004. In this thesis, we put our focus on studying the ontology

expressivity at the KR language level and more in particular, the expressivity of the OWL language.

In the remainder of this section, we first recall the basics of the Description Logics and then, we remind

the main concepts of the OWL language.

1.3.1 Description Logics Foundation

Description Logics [BCM+10] are a well-investigated family of logic based knowledge representation

formalisms, which can be used to represent the conceptual knowledge of an application domain in a

structured and formally well-understood way. They are employed in various application domains, such

as natural language processing, configuration, and databases, but their most notable success so far is

the adoption of the DL-based language, OWL, as a standard ontology language for the Semantic Web

[HPSV03].

Roughly speaking, Description Logics (DLs) are subsets of the first-order predication logic (FOL)

[BCM+10]. A DL ontology O is composed of a set of asserted axioms, analogous to FOL formulae,

describing relationships between terms in a domain of interest. These terms are basically concept, role,

and individual names, organized respectively in three sets NC , NR, and NI . The union of these sets,

that is the set of all terms mentioned in O, is called the signature of O, and denoted Õ. We use the

1https://wiki.nci.nih.gov/display/VKC/NCI+Thesaurus+Terminology
2More details about Snomed Ct is available at http://www.ihtsdo.org/
3More details about Galen is available at http://www.opengalen.org/
4More details about FMA is available at http://sig.biostr.washington.edu/projects/fm/AboutFM.html

https://wiki.nci.nih.gov/display/VKC/NCI+Thesaurus+Terminology
http://www.ihtsdo.org/
http://www.opengalen.org/
http://sig.biostr.washington.edu/projects/fm/AboutFM.html
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term "signature" and associated notation for any set of terms mentioned in an ontology or an element

thereof; for example, the signature of an axiom α is denoted α̃, and of a concept C denoted by C̃. The

term "concept" is used for any (possibly complex) concept, while "atomic concept" is used to refer to

a concept name, and similarly "atomic role" stands for a role name. Commonly, A and B are used to

design named concepts, C and D are complex concept descriptions [BCM+03], R and S are role names

or descriptions and a, b and x are names for individuals. Complex concept descriptions are built based

on concept and role constructors, as well as names from NC , NR or NI .

In DL, an ontology is basically defined as a knowledge base K = 〈T ,R,A〉, where T denotes TBox,

which comprises terminological axioms describing concepts, R denotes RBox for axioms describing

roles, and A stands for ABox, which is the assertional part of knowledge base describing individuals.

The semantics of ontology is defined using interpretation I that consists of a tuple I = (4I , ·I), where

4I is a non-empty set of instances (the domain of interpretation) and ·I the interpretation function,

which assigns a set AI ⊆ 4I to every atomic concept A ∈ NC , a binary relation RI ⊆ 4I×4I to every

atomic role R ∈ NR and finally to each instance a ∈ NI an element of 4I . Table 1.3 summarizes the

basic forms of axioms and their syntax and semantics. Different families of Description Logic provide

Name Syntax Semantics

TBox > Top 4I

⊥ Bottom ∅
Concept Definition A ≡ C AI = CI

Concept Inclusion C v D AI v CI

RBox Role equivalence R ≡ R RI = SI

Role hierarchy R v S RI v SI

General role inclusion R1 ◦ . . . ◦R2 v S RI
1 ◦ . . . ◦RI

2 v SI where ◦ is
a binary composition of relation

Role functionality, transitivity, Func(R), Tra(R) RI is functional, transitive

symmetry, asymmetry Sym(R), Asy(R) symmetric, asymmetric,

reflexivity, irreflexivity Ref(R), Irr(R) reflexive and irreflexive

ABox class assertion C(a) aI ∈ CI

role assertion R(a, b) < aI , bI >∈ RI

Negative role assertion ¬R(a, b) < aI , bI >/∈ RI

Table 1.1: Basic axioms of TBox, RBox and ABox

different sets of concept and property constructors, besides of axiom types. One of the simplest DLs

is known as AL (Attributive Language). This DL supports concept conjunction (C u D), universal

quantification (∀R.C), limited existential quantification (∃R.>) and atomic negation (¬A). More

expressive DLs can be obtained from AL by adding further constructors. Each constructor is given a

specific letter which is used to derive a name for any particular DL. For instance, adding full negation
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(¬C) to AL produces the DL ALC, which also contains concept disjunction (CtD) and full existential

quantification (∃R.C). However, extending the logic ALC with transitive roles becomes the logic S.

Then, SH extends S with role hierarchies H. Adding nominals O, inverse properties I and number

restrictions N to SH produces SHOIN . SHOIQ extends SHOIN with qualified cardinality Q.

Finally, SROIQ extends SHOIQ by adding reflexive, irreflexive, complex chains and disjoint roles

definitions denoted by R. More DL families could be obtained by further combining the concept and

role constructors.

An interpretation I satisfies a SROIQ axiom α, denoted I |= α, from those axiom types mentioned

above as follows:

I |= C v D if CI ⊆ DI

I |= r v s if rI ⊆ sI

I |= r ◦ s v t if rI ◦ sI ⊆ tI

I |= C(a) if aI ∈ CI

I |= r(a, b) if 〈aI , bI〉 ∈ rI

If an interpretation I satisfies every axiom in an ontology O, I is called a model of O , denoted I |= O.

The restriction of an interpretation I to a signature Σ is denoted I |Σ. Two interpretations I and J

coincide on a signature Σ (denoted I |Σ = J |Σ) if 4I = 4J and tI = tJ for each t ∈ Σ.

1.3.2 Ontology Web Language (OWL)

A number of formalisms have been proposed for representing Semantic Web meta-data, in particular

RDF5, RDFS6 and OWL (previously known as DAML+OIL) [HPSV03]. The Resource Description

Framework (RDF) is a framework developed by the W3C (World Wide Web Consortium) for repres-

enting information in the World Wide Web. RDF inherits XML syntax and exploits URI to identify

resources. RDF Schema (RDFS) is used to specify the vocabularies in RDF. Whereas RDF merely

provides a syntax for representing assertions like "Book A is authored by person B", schema or ontology

languages such as RDFS and OWL allow one to state properties of the terms used in such assertions,

e.g. "no person can be a text" and thus building upon descriptions of resources and their schemas as

detailed in the architectural road map for the Semantic Web (Figure 1.1). In this thesis, we will focus

our study on OWL as it is the latest recommended language for the ontology authoring.

5https://www.w3.org/TR/rdf11-mt/
6https://www.w3.org/TR/rdf-schema/

https://www.w3.org/TR/rdf11-mt/
https://www.w3.org/TR/rdf-schema/
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1.3.2.1 OWL profiles

The Ontology Web Language, OWL, is one of the most widely used ontology languages. It has

excellent tool support in terms of editors and reasoning engines, thanks to its formally defined meaning.

OWL lays on top of RDF and RDFS and comes with a larger vocabulary and stronger syntax. In OWL

there are two kinds of axioms allowed: logical axioms and non-logical (annotation) axioms. The latter

are analogous, with respect to reasoning, to comments in programming languages. The former, i.e.

logical axioms, are statements that are asserted to be true under well defined semantics, which in turn

allow inferring new implicit axioms, so-called entailments, that can be deduced as true ones based

on the explicitly asserted axioms. Primarily developed for the Semantic Web, OWL became a W3C

recommendation in 2004, at the time, it was based on the description logic SHOIN (DL) [BCM+10]

and called OWL 1.0. The first iteration of OWL specified the three "species": OWL Lite, OWL DL

and OWL Full. The second iteration of OWL, the OWL 2 [Gro09], became a W3C recommendation

in 2009 and it is based on the expressinve DL, SROIQ(DL) [HKS06]. It also incorporates several

species, now called "profiles". The latter ones were described in details in [Krö12]. They are namely:

OWL EL, OWL RL and OWL QL, while the full profile is called OWL DL. The profiles are lightweight

sub-languages of OWL 2, restricting the available modelling features in order to simplify reasoning.

This has made them very attractive for ontology practitioners. Commonly, OWL EL is used to model

huge biomedical ontologies, OWL RL became the preferred approach for reasoning with Web data,

and OWL QL provides database applications with an ontological data access layer. Worth to note

that any OWL ontology can be written (and serialised) in several syntaxes: RDF/XML (the primary

exchange syntax), OWL/XML, Functional, Manchester, and Turtle. In the remainder of this thesis,

we will study in particular the OWL 2 ontologies and hence, by OWL we will mean OWL2.

1.3.2.2 OWL language components

Roughly speaking, a concept in DL is referred to as a class in OWL. A role in DL is a property in

OWL, which could be an Object Property (properties for which the value is an individual) or a Data

Property (properties for which the value is a data literal). Axioms and individuals have the same

meaning in DL and OWL. Owe to snugness connection between OWL and DLs, in this thesis, we will

make no distinction between ontologies (in OWL) and knowledge bases (in DL). OWL classes can be

created from basic classes or properties by variety of constructors. The constructors supported by

OWL, are shown in Table 1.2. Table 1.3 shows some types of OWL axioms belonging to different

categories, where A and B can be named concepts, C and D are complex concept descriptions, R and

S are role names or descriptions, and a, b and x are names for individuals.
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OWL Constructor DL Syntax Example

intersectionOf C1 u · · · u Cn Human uMale

unionOf C1 t · · · t Cn Doctor t Lawyer

complementOf ¬C ¬Male

oneOf {x1 · · ·x2} {john,mary}

allValuesFrom ∀P.C ∀hasChild .Doctor

someValuesFrom ∃r.C ∃hasChild .Lawyer

hasValue ∃r.{x} ∃citizensOf .{USA}

minCardinality (≥ nr) (≥ 2 hasChild)

maxCardinality (≤ nr) (≤ 2 hasChild)

inverseOf r− hasChild− (= childOf )

Table 1.2: Basic OWL constructors derived from [VLP08].

OWL Axiom DL Syntax Example

TBox equivalentClass A ≡ C Man ≡ Human u Male

subClassOf C v D Human v Animal u Biped

disjointWith C ≡ ¬D Male ≡ ¬Female

RBox equivalentProperty R ≡ S cost ≡ price

subPropertyOf R v S hasDaughter v hasChild

inverseOf R ≡ S− hasChild ≡ hasParent−

transitiveProperty R+ v R ancestor+ v ancestor

functionalProperty > v ≤ 1R > v ≤ 1 hasMother

inverseFunctionalProperty > v ≤ 1R− > v ≤ 1 isMotherOf−

ABox Concept assertion C(a) Human(Peter)

Role assertion R(a, b) hasMother(Peter, Mary)

sameIndividualAs {x1} ≡ {x2} President-Kennedy ≡ J-F-K

differentFrom {x1} ≡ ¬{x2} Peter ≡ ¬ John

Table 1.3: Basic OWL axioms from TBox, RBox and ABox, the knowledge base sub-parts derived

from [VLP08]
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In the other hand, OWL has different types of "roles", as well as further features which are not

originally found in DLs. These are mainly:

Annotations As of OWL 2, annotations can be added to terms (referred to as entities in the OWL

specification), axioms, and the ontology itself by means of so-called annotation properties. For

instance, the annotation property rdfs:label is commonly applied to terms, and used to change

the way OWL ontology interfaces render term names in an ontology: according to their label value

or URI.

Imports In OWL it is possible to import external ontologies (for reuse, for example) via

theowl:imports construct. Systems like reasoners that take ontologies as input will typically

take into account the entire imports closure when performing reasoning tasks.

Concrete domains OWL draws on advances in augmenting DLs with concrete domains to allow

describing concrete qualities of objects, such as weight, height, temperature, etc. To make use of

concrete domains, OWL features so-called data properties, which assign to a class or individual a

concrete value of some (data) type. The accepted "datatypes", as they are referred to in the OWL

specification, are taken from the set of XML Schema Datatypes7, the RDF specification8 and the

specification of plain literals9.

1.3.3 Ontology Engineering Tools

In this subsection, we overview of some the semantic web technologies that will be considered through-

out this thesis. In particular, we present the semantic APIs, ontology query languages and ontology

editors.

Semantic APIs (Jena and OWL API) Jena10 [McB02] is an ontology API to manage OWL

ontologies and RDF data in Java applications. Jena is appropriate to manage OWL 1 Full ontologies,

but support for OWL 2 is not available yet. However, it is much more used for the serialization of RDF

triples and the manipulation of RDF graphs. Jena can interact with semantic reasoners to discover

implicit knowledge. The latest versions of Jena are split into two packages, namely jena-fuseki (with

the Jena SPARQL server), and apache-jena (with APIs, SPARQL engine, RDF database, and other

tools). OWL API11 [HB11] is another API particularly designed to manage the ontologies written
7http://www.w3.org/TR/xmlschema11-2/
8http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
9http://www.w3.org/TR/rdf-plain-literal-1/

10http://jena.apache.org
11http://owlapi.sourceforge.net

http://www.w3.org/TR/xmlschema11-2/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/rdf-plain-literal-1/
http://jena.apache.org
http://owlapi.sourceforge.net
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with the OWL language, and to provide a common interface to interact with DL reasoners. It can

be considered as the current standard in ontology editing, as the most recent versions of most of the

semantics tools and reasoners use the OWL API to load and process OWL 1 & 2 ontologies. The

OWL API is able to process each of the OWL syntaxes defined in the W3C specification (functional,

RDF/XML, OWL/XML, Manchester, and Turtle) and to identify the OWL 2 profiles (OWL 2 DL,

OWL 2 EL, OWL 2 QL, and OWL 2 RL). The OWL API is less appropriate for the management of

RDF ontologies.

Query Languages (QLs) for Semantic Web ontologies as described by [BBFS09] can be classified

under two categories: RDF-based QLs and OWL-based QLs. RDF-based query QLs, such as RDQL3,

SeRQL4 and the W3C recommendation SPARQL12, are based on the notion of RDF triple patterns

and their semantics is based on matching triples with RDF graphs. SPARQL is the most common

used query language for RDF. It provide the possibility to express queries across diverse data sources,

whether the data is stored natively as RDF or viewed as RDF via middleware. Like SQL, SPARQL

selects data from the query data set by using a SELECT statement to determine which subset of the

selected data is returned. Also, SPARQL uses a WHERE clause to define graph patterns to find a

match for in the query data set. A graph pattern in a SPARQL WHERE clause consists of the subject,

predicate and object triple to find a match for in the data. However, the triple patterns in a query do

not necessarily map to well-formed OWL-DL constructs. In the following, an example of a SPARQL

query:

PREFIX sch−ont :<http :// educat ion . data . gov . uk/ de f / s choo l/>

SELECT ?name WHERE {

? schoo l a sch−ont : School .
? s choo l sch−ont : establishmentName ?name .

? s choo l sch−ont : d i s t r i c tAdm in i s t r a t i v e

<http :// s t a t i s t i c s . data . gov . uk/ id / l o c a l−author i ty−d i s t r i c t /00AA>.

}

ORDER BY ?name

OWL-based QLs are still in their infancy compared to those for RDF. OWL-QL is a well known

language for querying OWL data and is an updated version of the DAML Query. Unlike the RDF

query languages, it focuses on the querying of schema rather than instance data language. Other

languages exist such as the ASK queries of DIG protocol or nRQL queries of RacerPro system. They

12https://www.w3.org/TR/rdf-sparql-query/

https://www.w3.org/TR/rdf-sparql-query/
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have well-defined semantics based on the DL model theory. However, DIG queries are limited to atomic

(TBox or RBox or ABox) queries whereas nRQL supports only conjunctive ABox queries.

Ontology Editors are tools that allow users. to visually manipulate, inspect, browse, code ontolo-

gies, support the ontology development and maintenance task. Many ontology editors are available.

Protégé13 and Neon Toolkit14 are the most known and used ones. The first, Protégé (Stanford Univer-

sity School of Medicine, n.d.) is a free, open-source platform that provides a growing user community

with a suite of tools to construct domain models and knowledge-base applications with ontologies. It

implements a rich set of knowledge-modeling structures and action that support the creation, visual-

ization, interrogation and manipulation of ontologies in various representation formats. On the other

hand, Neon Toolkit is especially suited for heavy-weight projects like multi-modular ontologies, multi-

lingual, ontology integration, etc. Both editors can be extended by a plug-in architecture and Java

based application programming interface (API) for building knowledge-base tools and applications.

1.4 The DL Reasoner

A central aspect of logic-based knowledge representation formalisms is the ability to employ (efficient)

automated deduction systems. In DLs these systems, so-called reasoners, implement decision pro-

cedures (for instance, the Tableau algorithm [BS01], Hyper-Tableau [MSH09] and Consequence-Based

[SKH11]). They infer logical consequences from a set of explicitly asserted facts or axioms and typ-

ically provide automated support for reasoning tasks [BCM+03]. A brief description of main logical

reasoning services and a discussion of the functional features of the set of modern ontology reasoners

will by provided in the remainder of this section.

1.4.1 Standard Reasoning Services

Modern DL reasoners support a number of primary logical services such as consistency, classification,

instance checking and entailment checking, and secondary services such as explanation for entailments

and inconsistency, (semantic) module extraction and ontology based data access (OBDA). In this

subsection, we recall the standard logical services provided by ontology reasoners. They are namely:

Satisfiability A concept C is satisfiable with respect to O if it exists at least one model I of O where

CI 6= ∅. Otherwise, i.e. CI = ∅ in all models of O, C is unsatisfiable (thus O |= C v⊥). The

13http://protege.stanford.edu
14http://neon-toolkit.org/

 http://protege.stanford.edu
http://neon-toolkit.org/
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computational complexity of deciding satisfiability is N2ExpTime for the SROIQ DL, and PTime

for EL as it has been shown in [HKS06] and [BBM11]. If O contains one or more unsatisfiable atomic

concepts, it is said to be incoherent, otherwise O is coherent.

Consistency A ontology O is consistent if there exists an interpretation I that satisfies every axiom

in O, i.e. O has a model I |= O. Deciding consistency of an ontology written over a DL L is as

computationally complex as deciding satisfiability in L (as discussed below).

Entailment An axiom α is entailed by an ontology O, denoted O |= α, if in every model I of O

we have I |= α. Deciding entailment over a SROIQ (DL) is reducible to deciding satisfiability in

SROIQ [BCM+10]; checking if O |= A v B can be done by checking if A u ¬B is unsatisfiable with

respect to O.

Realisation Realising an ontology entails finding all atomic concepts each instance is a type of, i.e.,

testing entailments of the form O |= C(a), where a is an instance and C an atomic concept in Õ. In

the worst case, this task requires performing |NC | × |NA| entailment tests.

Classification Classification is the task of computing all subsumptions between atomic concepts (and

atomic roles), i.e., testing entailments of the form O |= A v B, where A, B are atomic concepts

(respectively, A v B, where r, s are atomic roles). In the worst case, this task requires performing a

quadratic number of entailment tests in the order of |Õ| restricted to atomic concepts (respectively,

atomic roles) only. The problem of computing role hierarchies can be reduced to a concept hierarchy

computation problem.

Note that, for DLs with negation, the first three problems are inter-reducible, and thus belong in the

same complexity class: verifying whether an axiom αA v B follows from O can be done by testing

whether A u ¬B is unsatisfiable (and vice versa). Similarly, consistency of an ontology O is reducible

to satisfiability, by verifying whether > is satisfiable, i.e., whether O |= > v⊥.

Among these tasks, classification is considered as the key reasoning task. It computes the full

concept and role hierarchies. Explicit and implicit subsumption will be derived to help users navigating

through the ontology towards mainly explanation and/or query answering respective tasks. Thus, it

is supported by all modern DL reasoners and its duration is often used as a performance indicator

to benchmark reasoning engines [Abb12]. From an application point of view, an ontology should be

classified regularly during its development and maintenance in order to detect undesired subsumptions

as soon as possible. To make this feasible, in particular for large ontologies, classification has to

be carried out as swiftly as possible. However, the increasing complexity of modern ontologies is an

actual hamper towards reaching such a goal. Reasoner designers are keeping optimizing their reasoning

algorithms to overcome the complexity and the intractability of the expressive DLs underpinning the

OWL language.
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1.4.2 Landscape of modern DL reasoners

A reasoner is a program that infers logical consequences from a set of explicitly asserted facts or ax-

ioms and typically provides automated support for reasoning tasks such as classification, debugging

and querying. Any reasoner could be distinguished according to an important set of functional attrib-

utes such as the inference algorithm, the supporting logic, the degree of completeness of reasoning,

the implementation language and others. In this subsection, we will try to draw up commonly ex-

hibited features of modern DL reasoners. Rather than comparing reasoner performances, we will be

discussing relevant functional characteristics of these implementations and try to classify them into

categories. According to the most recent survey about ontology reasoners established by Matentzoglu

et al. [MLH+15], there exist almost 35 known ontology reasoners most of them were developed during

the years between 2010 and 2015. These realisations could be categorized according to various criteria

that we discuss in the following.

1.4.2.1 Comparison Criteria of DL reasoners

Reasoner comparison criteria described in this subsection stem from a literature review about surveys

discussing modern reasoners, for instance the comparison of reasoners for large EL ontologies estab-

lished by Dentler et al. [DCtTdK11], the survey work conducted by S. Abburu [Abb12] and more

recently the reasoner meta-study set up by Matentzoglu et al. [MLH+15]. Our study covers most of

the dimensions they described. Literally, these criteria are:

Implementation features. This category describes basic characteristics which determines the us-

ability level of the reasoner implementation. This includes the reasoner programming language, the

access interface (Jena, OWL API or command line), the type of its licence and thus its availability

and finally editors that support integrating it.

Supported reasoning services. Most reasoners support the standard reasoning services related to

the TBox. However, fewer of them are asserted to support ABox related tasks, such as realisation,

conjunctive query answering and ABox consistency checking. Justification is a non standard reasoning

service, however providing it would be valuable for users. In fact, justification would allow to check

an ontology for inconsistent concepts (unsatisfiable) and generates an explanation for each reported

inconsistency.

Supported levels of expressivity. It indicates the logical fragments of OWL supported by the

reasoner. Besides, we will be checking reasoners against a minimal support for datatypes. Finally,
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the support of rule language, SWRL15, will be another indicator helping categorising the reasoners.

Reasoning Methodology. This covers the different primary calculus underlying a reasoner core reas-

oning service. According to Matentzoglu et al. [MLH+15], one can distinguish between four categories

of reasoning methodologies: I) Consequence-based (CB) [SKH11] which relies on adding logical con-

sequences (entailments) to a knowledge base (KB) without the need to check possible consequences

that are not entailed by the knowledge base; II) Model construction (MC) techniques are based on

constructing models based on the KB and then checking its consistency. This category includes those

reasoners relying on Tableau (T) [BS01] and Hyper-tableau (HT) [MSH09] algorithms; III) Rewriting

(RW) is a technique used to expand a KB by rewriting the facts of the KB, to be used for a specific

task, e.g. query answering, making the reasoner less reliant on the terminological aspect and more

involved in the data aspect; and finally V) Hybrid methodologies (HM) which include reasoners em-

ploying combined reasoning techniques, for example consequence-based techniques with tableau-style

techniques; and those reasoners making use of ontology modularity (MOD) in order to combine other

existing and well performing reasoners.

Reasoning algorithm completeness and soundness. An algorithm is sound if, any time it re-

turns an answer, that answer is true. An algorithm is complete if it guarantees to return a correct

answer for any arbitrary input (or, if no answer exists, it guarantees to return failure). Soundness is a

weak guarantee. It does not promise that the algorithm will terminate. Soundness and Completeness

are related concepts, since they are the logical converse of each other. Soundness would admit that

if an answer is returned that answer is true, whereas completeness says that an answer is true if it is

returned. Most of the underlying reasoning methodologies have been proven to be sound. However,

we can distinguish some particular categories of reasoners where completeness is not guaranteed for

all OWL profiles. To make it clear, we will be denoting by SC reasoners ensuring soundness/com-

pleteness, SI for the ones sound and incomplete, SC/Profile means that the reasoner is sound and

complete only for particular OWL profile(s). For instance, SC/OWL EL means sound and complete

for OWL 2 EL.

1.4.2.2 Overview of DL reasoners

In this section, we present an overview 8 DL reasoners that will be considered throughout this thesis.

For completeness sake, we will also reference other relevant DL reasoners in the literature. Finally, we

will draw a comparison of theses engines according to afore discussed functional criteria.

15https://www.w3.org/Submission/SWRL/

https://www.w3.org/Submission/SWRL/
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FacT++ and JFacT [TH06] are the successors of the Fact reasoner (FAst Classification of Ter-

minologies). They employ different architecture and a more efficient implementation. For instance,

FaCT++ is written in C++, whereas JFact16 is the Java port of FaCT++. The design of both reason-

ers matches very closely, except for the low level details where Java offers different ways of implementing

reasoning procedures. JFact provides an improved of the datatype support. Worth noting, JFact does

not include some parts of FaCT++ like the DIG interface and the command line support are absent.

Both Fact++ and JFact completely support OWL 2 and implement a tableau algorithm [BS01] with

several optimization techniques.

Pellet [SPG+07] supports full OWL 2 and DL safe rules. It also implements an optimized tableau

algorithm. It was the first reasoner fully supporting OWL 1 DL and its underpinning DL SHOIN (D)

and has been extended to OWL 2 (SROIQ(D)). Pellet handles the ontologies through Jena as well

as OWL API interfaces and supports the explanation of bugs.

TrOWL [TPR10] is implemented in Java and supports OWL 2, offering sound and complete reas-

oning for OWL 2 EL and OWL 2 QL, and approximate reasoning for OWL 2 DL. Inference services

include classification and conjunctive query answering. TrOWL includes an OWL 2 EL reasoner (REL)

to compute the classification and an OWL 2 QL reasoner (Quill) to answer conjunctive queries. Reas-

oning with OWL 2 DL ontologies is achieved by means of a syntactic approximation into OWL 2 EL

or a semantic approximation into OWL 2 QL, depending on the reasoning task. TrOWL can be used

through several interfaces, including OWL API.

ELK [KKS11] implemented in Java, is a Consequence-Based reasoner for a subset of OWL 2 EL.

ELK uses multiple cores/processors by parallelising multiple threads. It supports different reasoning

tasks, which include classification, consistency checking, subsumption, and realization. The classific-

ation procedure is different from other algorithms for OWL 2 EL. For instance, it includes several

optimizations such as concurrency of the inference rules. ELK can be used through several interfaces,

including OWL API.

HermiT [GHM+12] implements an Hyper-Tableau reasoning algorithm with several optimization

techniques. It supports OWL 2 and DL safe rules. Historically, it was the first DL reasoner that

was able to classify some large ontologies (such as GALEN-original) thanks to a novel and efficient

classification algorithm. HermiT is implemented in Java, and is accessible through several interfaces,

including the OWL API and a Protégé plug-in.
16http://jfact.sourceforge.net/

http://jfact.sourceforge.net/
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MORe [RGH12] is an OWL 2 meta-reasoner that exploits module extraction techniques to divide

complex reasoning tasks into simpler ones that can be solved using different reasoners. The modules

of the ontology in the OWL 2 EL profile are solved by the ELK reasoner, and the more expressive

ones are handled using HermiT, JFact or Pellet. MORe currently supports classification and concept

satisfiability. It is implemented in Java and accessible through the OWL API and using a Protégé

plug-in.

Konclude [SLG14] is a high-performance reasoner for the Description Logic SROIQ. It is written

in C++ and supports the full OWL 2 DL profile except datatypes. Konclude design is combination

between Consequence-Based techniques with an optimized Tableau-like algorithm. It also uses parallel

processing techniques to handle non-deterministic branches and the higher-level reasoning tasks, e.g.

satisfiability and subsumption tests. Unfortunately, there is no Protégé plugin to work with Konclude,

and some configurations are required to be able to use it with the OWL API.

Table 1.4 summarizes all of the above detailed functional features of the selected reasoners. The

comparison is set up according to the classification criteria introduced in the Subsection 1.4.2.1. In this

table, (OW) stands for the OWL API and (J) for the Jena API. By (PG), we referenced the Protégé

editor and by (NT) the Neon-Toolkit.

1.5 The Predictive Modelling

Predictive modelling [HTF01] is a name given to a collection of mathematical and statistical techniques

having in common the goal of finding hidden patterns in data and developing functions capable with

an acceptable level of reliability to forecast future outcomes and trends. In other words, predictive

modelling is the general concept of analysing current data in order to build models that are capable

of making future predictions about a domain of interest. Typically, such a model includes machine

learning algorithms.

Arthur Samuel in 1959 [Sam59] defined machine learning (ML) as the field of study that gives

computers the ability to learn without being explicitly programmed. The learning that is being done

is always based on some kinds of observations or data, commonly called a dataset. In general, a

machine learning is about learning to do better in the future based on what was experienced in the

past. A classic setting is the supervised learning, where the ML algorithm has access to a set of training

examples along with their labels and must learn a model that is able to accurately predict the label

of future (unseen) examples. On the other hand, an unsupervised learning algorithm has no access to

the labels of the training data. Clustering is a classic example of unsupervised ML task, aiming at
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Feature FacT++ JFacT Pellet TrOWL ELK HermiT MoRE Konclude

Category

Prog. Language C++ Java Java C++ Java Java Java C++

Prog. Interface OWL+Jena OWL OWL OWL+Jena OWL OWL OWL OWL+Jena

Editors Support PG PG+NT PG+NT PG PG PG+NT PG ∅

Open Source Yes Yes Yes No Yes Yes Yes Yes

ABox checking Yes Yes Yes Yes No Yes No Yes

Datatype Support limited limited Yes limited No Yes Yes Yes

Justification No No Yes No No No No No

Rule Support No No Yes No Yes Yes No Yes

Native Profile DL DL DL,EL Dl,EL EL DL DL,EL DL

Expressivity SROIQ SROIQ SROIQ SROIQ EL+ SROIQ SROIQ SROIQV

Methodology MC MC MC CB CB MC HM HM

(T) (T) (T) (HT) (MOD+MC) (CB+MC)

Soundness/ SC SC SC SC/ SC/ SC SC SC

Completeness (EL+QL) (EL)

Table 1.4: Comparing the DL reasoner functional attributes.

assigning data into similar groups. The generalization ability of the learned model (i.e., its performance

on unseen examples) can sometimes be guaranteed using arguments from statistical learning theory.

The general layout for machine learning process is described below, more details are given in

[Abb14]:

Data collection: the data related to domain of concern is extracted. The data will be raw and

unstructured format. Hence pre-processing measures must be adopted.

Data pre-processing: the initial dataset is subjected for pre-processing. Pre-processing is performed

to remove the outliers and redundant data. The missing values are replaced by normalization and

transformation.

Development of models: the pre-processed data is subjected to different machine learning al-

gorithms for development of models. The models are constructed based on classification, clus-

tering, pattern recognition and association rules.

Knowledge Extraction: the models are evaluated to represent the knowledge captured.
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Instance Feature1 Feature2 ... FeatureM Class

1 XX XX ... XX good

2 XX XX ... XX bad

...

N XX XX ... XX good

Table 1.5: Dataset example for supervised learning [Kot07]

The task of predictive modelling described above is of practical importance to many domains, ranging

from medicine and social sciences to various areas of engineering.

1.5.1 Problem formulation for the supervised learning

By referring to [Kot07], we will introduce some basic concepts of machine learning (ML). Explicitly,

every instance in any dataset used by machine learning algorithms is represented using the same set of

features. Then, each instance is an M -dimensional vector x(i) = [x1
(i), x2

(i), . . . , xM
(i)] called a feature

vector, where i referred to the i-th instance in the dataset, i ∈ [1 · · ·N ] with N the total number

of instances and M the total number of features. We would also use X to denote the feature set

containing N feature vectors, otherwise the space of input values. The features may be continuous,

categorical or binary. In this thesis, we are particularly interested in supervised learning. The

vector of all labels is denoted Y, where yi is the label of the i-th instance. Thus, the dataset could be

denoted by D = [XN,M | YT ]. An example of a dataset for a supervised learning is given in the Table

1.5. A supervised problem is called classification when the labels are qualitative ones (e.g. bad/good)

and regression in the case of quantitative values (e.g. temperature value). Here, it is important to

notice the difference between the "classification" task in machine learning and the afore described

"classification" in ontology reasoning (Section 1.4.1). To avoid any ambiguity, in the rest of this thesis,

we will refer to latter one as "DL classification" and the former one as "ML classification". When, the

label vector, Y, contains only two discrete labels, then the ML classification problem is called a binary

ML classification, otherwise it is a multi-class ML classification problem.

Given the training dataset D, a supervised learning task is the process of inferring a function

often referred to as a hypothesis or a model, F : X → Y, which "best" predicts the label y from the

feature vector x for any pair (x, y) drawn from D. The predictive functions would be a distribution

of probabilities, a neural network, a decision tree, etc. We will further describe different categories of

supervised learning algorithms in Section 1.5.2. After constructing the predictive model, when a new
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instance appears, x′, that does not belong to the dataset D but having the same type and described

with the same kind of features as the ones in D, then the task is to predict its exact label using the

trained model ỹ = F(x′).

1.5.2 Supervised machine learning Algorithms

Following [Kot07], the supervised learning algorithms can be divided or grouped as logical based

algorithms such as decision trees [Qui93], Artificial Neural Network (ANN) based techniques such as

multi-layered perceptron [RHW86], Statistical learning algorithms such as Bayesian Networks, Instance

based learning algorithms [AKA91] and Support vector machines [Pla99]. In the following, we recall

basic notions of each category:

1.5.2.1 Logic-based algorithms

The logic (symbolic) based category of learning algorithms is characterized by two main groups of

methods: decision trees and rule-based classifiers.

Decision Trees (DT) are trees that classify instances by sorting them based on feature values,

where each node in a decision tree represents a feature in an instance to be classified, and each branch

represents a value that the node can assume. Instances are classified starting at the root node and

sorted based on their feature values. The feature that best divides the training data would be the root

node of the tree. There are different methods to extract the features that best divides the training

data such as information gain and gini index. C4.5 algorithm proposed by J. R. Quinlan [Qui93] is one

of the most popular and the efficient method in decision tree-based approach. The algorithm creates

a tree model by using values of only one attribute at a time. According to [Kot07], the decision tree

induction, which was initially designed to solve classification problems, has been extended to deal with

single or multi-dimensional regression. The major benefits of decision trees are i) produce intensive

results, ii) easy to understand, iii) and holds well-organized knowledge structure. It is also possible

that decision trees can be translated into a set of rules by creating a separate rule for each path from

the root to a leaf in the tree. However, rules can also be directly induced from training data using a

variety of rule-based algorithms.

1.5.2.2 Bayesian-based algorithms

The Naive Bayes machine learning method [Ris01] is based on the so-called Bayesian theorem. This

method models the class posterior with the assumption that the attributes are conditionally independ-

ent in each class. The Naive Bayes classifier produces probability estimates rather than predictions.
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Figure 1.2: A sample training set (left) and its corresponding Decision Tree (right)

The probability estimate is the conditional probability distribution of the values of the class attribute

based on the values of other attributes:

p(x|y = k) =

attr∏
i=1

p(xi|y = k) (1.1)

In this way Naive Bayes classifier is just an alternative way of representing a conditional probability

distribution and can only represent simple distributions. But Bayesian Network is a theoretically

well-founded way of representing probability distributions concisely and comprehensibly in a graphical

manner. The structure of Bayesian Network (BN) is represented by a directed acyclic graph (DAG),

which is a network of nodes; represents attributes, connected by directed edges, expresses dependencies

between attributes, in such a way that there are no cycles.

1.5.2.3 Artificial Neural Network based algorithms

They are learning algorithms inspired from the neurons in human brain as firstly described [MP88].

The learning network comprises of interconnected neurons as a function of input data. Based on the

synapse received from input data, weights are generated to compute the output function. The networks

can either be feed forward or feed-back in nature depending upon the directed path of the output

function. The error in input function is minimized by subjecting the network for back-propagation

which optimizes the error rate. The network may also be computed from several layers of input

called as multilayer perceptron proposed by [RHW86]. Neural networks have immense applications in

pattern recognition, speech recognition and financial modelling. Neural networks can actually perform

a number of regression and/or classification tasks at once, although commonly each network performs

only one.
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1.5.2.4 Linear and logistic-based regression algorithms

It is a category of linear learning algorithms employed for both classification and regression tasks. They

are characterized by linear function that assigns a score to each possible category k by combining the

feature vector of an instance with a vector of weights, using a dot product. The predicted category is

the one with the highest score. This type of score function is known as a linear predictor function and

has the following general form:

score(Xi, k) = βk ×Xi,

where Xi is the feature vector for instance i, βk is the vector of weights corresponding to category

k, and score(Xi, k) is the score associated with assigning instance i to category k. Examples of

such algorithms are Logistic regression, Multinomial logistic regression, Probit regression and Linear

discriminant analysis. Further details about these algorithms is provided by [Fil08]. In this thesis, we

are particularly interested in Logistic regression algorithm introduced by [FHT98]. It is an approach

to learning functions of the form f : X → Y , or P (Y |X) in the case where Y is discrete-valued,

and X = 〈X1 . . . Xn〉 is any vector containing discrete or continuous variables. Logistic Regression

assumes a parametric form for the distribution P (Y |X), then directly estimates its parameters from

the training data. One highly convenient property of this form for P (Y |X) is that it leads to a simple

linear expression for classification.

1.5.2.5 Lazy algorithms

They are instance-based SML algorithms. The k-nearest neighbour [AKA91] is one of the most known

algorithms of this category. It is recognized as a simple machine learning algorithm capable to handle

ML regression and classification tasks. The k-nearest neighbour algorithm requires no model to be fit.

Given an observation x, the classifier finds the k-nearest samples in the training set according to a

distance measured and takes a majority vote among the classes of these samples. This is equivalent to

estimating the posterior probabilities p(y|x) by the proportions of the classes in the neighbourhood.

The best choice of k depends upon the data. Generally, larger values of k reduce the effect of noise on

the classification, but make boundaries between classes less distinct. The parameter k is determined

with cross-validation between 1 and
√
n.

1.5.2.6 Support Vector Machine

Support Vector Machine method is based on the idea of learning a linear hyperplane from the training

set that separates positive samples from negative samples. Basically, they are supervised learning

algorithms based on non-probabilistic classification of dataset into categories in high dimensional space.
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The algorithm was first proposed by Cortes and Vapnik [CV95]. The training dataset is assumed as a p-

dimensional vector which is to be classified using (p-1) dimensional hyperplane. The largest separation

achieved between data points is considered optimal. Support Vector Machines (SVMs) have been

used for classification, regression and outliers detection. There are number of benefits for using SVM

such as: i) it is effective is high dimensional space, ii) uses a subset of training points in the decision

function (called support vectors), hence it is also memory efficient, iii) it is versatile because holds

different kernel functions can be specified for the decision function. Common kernels are provided like

the linear, the polynomial, the radial basis function and the sigmoid but it is also possible to specify

custom kernels. More detailed discussion about kernels for SVM methods could be found in [Pla99].

1.5.2.7 Ensemble methods: Bagging, Boosting and Stacking

Strictly speaking, this is not a machine learning algorithm, and it is more like a kind of method

or a general strategy of optimization. Ensemble methods usually combine a number of simple weak

machine learning algorithm to make more reliable decisions. Bagging and Boosting empirically studied

in [MO97] are two widely known ensemble learning approaches. The first approach is based on an idea

of making various samples of the training set. A classifier is generated for each of these training set

samples by a selected machine learning algorithm. In this way, for k variations of the training set, we

get k particular classifiers. The result will be given as a combination of individual particular classifiers.

On the other hand, boosting performs experiments over training sets as well. This method works with

weights of training examples. Higher weights are assigned to incorrectly classified examples. That

means, that the importance of these examples is emphasized. After the weights of training sets are

updated, a new (particular) classifier is generated. A final classifier is calculated as a combination of

particular classifiers. In both bagging and boosting, the multiple models being combined are all the

same type. Stacking [MO97] is able to combine models built by different learning algorithms. For

example, we can combine a decision tree, a naive Bayes model, and a Bayesian network model trained

from the same data, in order to form a new ML classifier. Stacking relies a meta-learner17 to predict

which classifier is the most reliable one and to decide how best to combine the predictions of all the

base classifiers.

Random Forest proposed by L. Breiman [Bre01] is one of the well known learning algorithms based

on ensemble strategies. Breiman has combined two main approaches of ensemble learning, i.e. the sub-

sampling of the examples like in bagging and the sub-sampling of the features like in feature selection

methods. More in details, a Random Forest is an ensemble of decision trees constructed for building

the predictive model. It can be used for both classification and regression tasks.

17We will describe the meta-learner concept more in details in Chapter 2.
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1.5.3 Preprocessing and feature selection

The success of the supervised learning process is heavily dependent on the quality of the data provided

for the training. A learner has only the input to learn from. If the data is inadequate or irrelevant

then the concept descriptions will reflect this and misclassification will result when they are applied to

new data.

Feature Selection Feature selection and dimensionality reduction methods [AT16] are procedures

of finding a set of most compact and informative original features for the purpose of better prediction

of the output of the learning algorithm. For the classification problem, feature selection aims to

select subset of highly discriminant features. In other words, it selects features that are capable of

discriminating samples that belong to different classes. While having more features endows a learning

algorithm with a greater discriminating power, performance degradation often sets in when many

irrelevant or redundant features are included. The inclusion of irrelevant and redundant features also

increases the computational complexity of the learning algorithm. Besides, it is also known that feature

selection can potentially benefit data visualization and data understanding, data storage reduction and

the easy deployment of the learning algorithm. Consequently, feature selection has been an area of

much research effort in various learning tasks. Plenty of feature selection methods are available in

literature, making to choose a little bit confusion.

As previously explained in [AT16], feature selection methods can be categorized into supervised,

unsupervised and semi-supervised ones according to whether the training set is labelled or not. Su-

pervised feature selection methods can further be assorted into filter models, wrapper models and

embedded models. The filter model relies on measures of the general characteristics of the training

data such as distance, consistency, dependency, information, and correlation. Relief, Fisher score and

Information Gain based methods are among the most representative algorithms of this category. The

wrapper model uses the predictive accuracy of a predetermined learning algorithm to determine the

quality of selected features. These methods are prohibitively expensive to run for data with a large

number of features. Due to these shortcomings in each model, the embedded model was proposed to

bridge the gap between the filter and wrapper models. First, it incorporates the statistical criteria,

as filter model does, to select several candidate features subsets with a given cardinality. Second, it

chooses the subset with the highest classification accuracy. Thus, the embedded model usually achieves

both comparable accuracy to the wrapper and comparable efficiency to the filter model. The embedded

model performs feature selection in the training time.
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Discretization. Most classification tasks in machine learning involve learning to distinguish among

nominal class values, but may involve features that are ordinal or continuous as well as nominal. While

many machine learning algorithms have been developed to deal with mixed data of this kind, recent

research shows that common machine learning algorithms such as instance based learners and naive

Bayes benefit from treating all features in a uniform fashion. One of the most common methods

of accomplishing this, is the discretization method. Discretization [GLS+13] stands for the process

of transforming continuous valued attributes to nominal ones. This process could be supervised or

unsupervised one, global or local and static or dynamic. We are more interested in the supervised

discretization methods. The latter ones transform the continuous feature values into nominal ones by

considering the label class distribution of the target variable. Authors of [GLS+13] have previously

highlighted the good potential of these methods in enhancing the feature selection process. In practice,

one of the best general techniques for supervised discretization is the entropy-based method with the

MDL stopping rules proposed by Fayyad and Irani [FI93]. It uses a minimum entropy heuristic to

discretize numeric features. The algorithm relies on the class entropy of candidate partitions to select

a cut point for discretization. The method can then be applied recursively to the two intervals of the

previous split until some stopping conditions are satisfied.

1.5.4 Predictive models assessment measures

Before any predictive model can be used with confidence, adequate validation or assessment of the

magnitude of the errors that may result from their use should be performed. Model validation, in its

simplest form, is a comparison between simulated and observed values. In research or experimentation,

to measure the performance achieved by a trained model, a test set consisting of examples with known

labels is needed. The predictive model is constructed based on the training set, and then applied to

the test set, in order to measure the performance of the model by comparing the predicted labels with

the true labels (which were not available to the training algorithm). These performances could be

assessed with different metrics according to the nature of the learning task under examination, i.e. ML

classification or ML regression. In our experiments, we often had a fixed database of labelled examples

available. Thus, we were faced with a dilemma: we would like to use all the examples for training,

but we would also like to use many examples as an independent test set. That is why, we deployed

a cross-validation procedure for overcoming this dilemma. The different assessment measurements as

well as the cross validation procedure are described in the following:
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Predicted Labels

Positive Negative Total

Actual Labels
Positive True Positive (TP) False Negative (FN) P = TP + FN

Negative False Positive (FP) True Negative (TN) N = FP + TN

Table 1.6: Confusion matrix of a binary ML classification task

1.5.4.1 Assessment measures of ML classification models

In machine learning, the performance of a predictive model for ML classification task is basically

evaluated by a confusion matrix (also called contingency table) [KP98]. The confusion matrix is a

square matrix, |Y |×|Y |, where |Y | is the number of labels to be predicted. It shows how the predictions

are made by the model. The rows correspond to the known labels of the data. The columns correspond

to the predictions made by the model. Each cell (i, j) of the matrix contains the number of instances

from the dataset that actually have the label i and were predicted as with label j. A perfect prediction

model would have its confusion matrix with all elements on the diagonal. In case of a common binary

(positive/negative) ML classification problem, confusion matrix represents the relationship between

actual class outcome and predicted class outcome based on four estimates measures given in Table 5.3.

The acronym TP, FN, FP, and TN of the confusion matrix cells refers to the following:

• TP = true positive, the number of positive cases that are correctly identified as positive;

• FN = false negative, the number of positive cases that are misclassified as negative cases;

• FP = false positive, the number of negative cases that are incorrectly identified as positive;

• TN = true negative, the number of negative cases that are correctly identified as negative.

It is worth noting that confusion matrix could be easy generalized to the problem of multi-class ML

classification. A variety of assessment measures of ML classification algorithms are defined based on

the confusion matrix. We recall the common ones computed for a binary ML classification problem:

Accuracy and Error rate Accuracy, the most common metric for ML classifier evaluation, assesses

the overall effectiveness of the algorithm by estimating the probability of the true value of the class

label. On the other hand, the error rate is an estimation of misclassification probability according to

model prediction.

Accuracy =
TP + TN

P +N
, Error-rate = 1−Accuracy =

FP + FN

P +N
(1.2)

Precision, Recall , and F1-Score These are common measures of model effectiveness. Precision

is a measure of how many errors we make in predicting instances as being of some label l. On the other
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hand, Recall assesses how good we are in not leaving out instances that should have been predicted

with the label l.

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(1.3)

In a binary problem, a perfect model will capture all positive examples (Recall = 1), and score as

only the examples that are in fact (Precision = 1); from an analytical point of view, it is desirable to

increase recall without sacrificing accuracy. That is why, both measures are misleading when considered

separated. Usually, we rather employ the F1-Score (F1), also known as the F-Measure, to assess the

model. This score combines both Precision and Recall into a single value. The F1 values vary within

the unit interval. High values close to 1 would indicate a good predictive model.

F1-Score =
2×Recall × Precision
Recall + Precision

(1.4)

ROC and AUC Sometimes we would like to compare several competing models rather than estimate

their performance independently. In order to do that, we use a technique developed in the 1950s

for analysis of noisy signals: the Receiver Operating Characteristic (ROC) Curve. A ROC curve

characterizes the relation between the benefits, which stand for the correct detection rate or the true

positive rate and cost which stand for false detection or the false positive rate. The true positive rate

is the same as the recall and the false positive rate is equal to the ratio between the number of false

positive and the total number of negative instances. A ROC curve gives indication if a trained model

is superior to another model over a wide range of operating points. On the other hand, the area under

the curve (AUC) computed based on the ROC curve is often used to summarize the performance of the

predictive model into a single metric. The larger the AUC is, the better are the model performances.

Imbalanced data problem and assessment measures In case of multi-class ML classification

where the size of the label vector is superior to 2, we are very often concerned with the issue of the

imbalanced dataset. In the latter one, a class stands for the collection of observations sharing the same

label. According to Bao-Gang et al. [HD14], a dataset is considered imbalanced if at least one of

the classes (minority class(es)) contains much smaller number of samples than the remaining classes

(majority classes). In this case, supervised machine learning algorithms can have good accuracy on the

majority class but very poor accuracy on the minority class(es). Besides, usual model quality metrics

such as Precision, Recall, F1-Score and even AUC could be misleading. Therefore, we retained from

[HD14], two further assessment measures known for their resistance to the problem of data imbalance.

Namely, this is the Kappa coefficient (κ) and the Matthews correlation coefficient (MCC).

Kappa coefficient (κ): also known as the Cohen’s kappa. It measures the agreement of prediction

with the true class. The value of Kappa lies between −1 and 1, where 0 represents agreement
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Kappa value Level of Agreement

0 Absence

(0, 0.20] Minimal

(0.20, 0.40] Weak

(0.40, 0.060] Moderate

(0.60, 0.80] Strong

(0.80, 1] Almost perfect

Table 1.7: Interpretation of Kappa values

due to chance. The value 1 represents a complete agreement between both values. In rare cases,

Kappa can be negative. Formally, Kappa is computed as follows:

Kappa =
Po − Pc
1− Pc

(1.5)

where Po is the observed proportion of the agreement, otherwise the probability of success in the

classification and the Pc is the proportion or the probability of success expected by chance. Table

1.7 illustrates in more details how we would interpret the Kappa values.

Matthews correlation coefficient (MCC): it is performance measure barely influenced by imbal-

anced test sets since it considers mutually accuracies and error rates on all labels. Therefore, it

involves all values of the confusion matrix. MCC values range from 1 for a perfect prediction to

−1 for the worst possible prediction. A value of MCC close to 0 indicates a model that performs

randomly. Formally, MCC is computed as follows based on the confusion matrix in case of binary

classification problem. This formula is also generalised in case of multi-class classification problem:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(1.6)

1.5.4.2 Assessment measures of ML regression models

In regression models, the target class to be predicted has continuous values making the estimation

process much harder. The famous Bayesian statistician George Box, said: "All Models are wrong,

but some are useful". The goal of analysing the results of a linear or nonlinear regression model

is to estimate how "closely enough" for the model to be useful in practice, otherwise to measure

the distance between the estimated output from the actual output. The evaluation process has four

common components: to determine how well the model fits the data (goodness of fit), if the model fits

the data better than an alternative model and if the equation fits this data differently for a different

set of data.
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There is a rich plethora of criteria by which they can be evaluated and compared the regression

models. We recall the most commonly used ones. More details about these metrics are available in

[Abb14].

RMSE The Root Mean Square Error (also called the root mean square deviation, RMSD) is a

frequently used measure of the difference between values predicted by a model and the values actually

observed from the environment that is being modelled. These individual differences are also called

residuals, and the RMSE serves to aggregate them into a single measure showing the predictive power

of the model. Let Xobs is the actual observed values, Xpred is the predicted values at time/place i and

n the size of the sample, then RMSE is computed as follows:

RMSE =

√∑n
i=1(Xobs,i −Xpred,i)2

n
(1.7)

Since the errors are squared before they are averaged, the RMSE gives a relatively high weight to

large errors. This means the RMSE is most useful when large errors are particularly undesirable. The

calculated RMSE values will have units, and RMSE for phosphorus concentrations can for this reason

not be directly compared to RMSE values for chlorophyll concentrations, etc. RMSE values can be

used to compare the individual model performance to that of other predictive models. It values range

from 0 to +∞ and have a negatively-oriented score, therefore lower values are better.

MAE Mean Absolute Error measures the average magnitude of the errors in a set of predicted

values, without considering their direction. MAE has the same unit as the original data, and it can

only be compared between models whose errors are measured in the same units. It is usually similar

in magnitude to RMSE, but slightly smaller. Let Xobs is the actual observed values, Xpred is the

predicted values at time/place i and n the size of the sample, then MAE is computed as follows:

MAE =

∑n
i=1 |Xobs,i −Xpred,i|

n
(1.8)

Like the RMSE, MAE can range from 0 to +∞. It is a negatively-oriented score, therefore lower values

are better.

R-Squared (R2) The coefficient of determination (R2) summarizes the explanatory power of the

regression model and is computed from the sums-of-squares terms. Formally, R2 is measured as follows:

R2 = 1− SSR

SST
(1.9)

where SSR is the sum of square of the residuals (the value that is minimized by the regression procedure)

and SST =
∑

(Xobs −Xpred)
2 (the sum of the squared differences between the data points and the
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average of the data points). It can be seen that if the value for SSR is minimized, the value for R2

will approach 1. Thus, the closer R2 is to 1, the better the model is at fitting the data. We should

highlight that R2 has no unit and orders from 0 to 1 while the model has healthy predictive ability

when it is near to 1 and is not analysing whatever when it is near to 0.

1.5.4.3 Cross Validation

Cross-validation is a widespread strategy to evaluate the robustness of the classifier because of its

simplicity and its (apparent) universality. K-fold cross validation is typically used to provide an

estimate for the mean performance of an algorithm on a held-out test set.

In ten fold cross validation, the training set is equally divided into 10 different subsets. Nine out

of ten of the training subsets are used to train the learner and the tenth subset is used as the test set.

The procedure is repeated ten times, with a different subset being used as the test set. The splitting of

dataset during the cross validation is usually associated to stratification. The latter one ensures that

the class distribution from the whole dataset is preserved in the training and test sets. Stratification

has been shown to help reduce the variance of the estimated accuracy especially for datasets with

many classes. The output of any k-fold cross-validation is a confusion matrix based on using each

labelled example as a test example exactly once. Worth noting that cross-validation does not produce

any single final classifier, and the confusion matrix it provides is not the performance of any specific

single classifier. Instead, this matrix is an estimate of the average performance of a classifier learned

from a training set of size (k − 1)n/k where n is the size of dataset. The common procedure is to

create a final classifier by training on all of dataset, and then to use the confusion matrix obtained

from cross-validation as an informal estimate of the performance of this classifier.

1.5.5 Machine learning working environement

Over the last decades many general-purpose machine learning frameworks and libraries emerged from

both academia and industry. A detailed comparison of these realisation was established by D. Pop and

G. Iuhasz [PI11]. Throughout this thesis, we will be mainly working with the Weka toolkit [HFH+09].

In particular, we have used the Java API of Weka18 as base tool to implement our automatic learning

prototypes. The rational behind this choice is twofold: i) Weka is a rich toolkit covering a huge plethora

of ML and data mining algorithms; ii) its API is written in Java which is the same development

language as the OWL API, which makes it possible to integrate the both APIs in one single system.

In that system, we are intending to integrate both Semantic Web and Machine learning technologies

18The Weka API is available for download at www.cs.waikato.ac.nz/ml/weka/downloading.html

www.cs.waikato.ac.nz/ml/weka/downloading.html
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for a better collaboration over our ontology reasoning learning problems. In the following, we give a

brief description of the Weka toolkit.

WEKA [HFH+09] is an assembly of tools for machine learning applications. The main strength

of WEKA is that the toolkit is freely available under GNU General Public Licence, very portable

because it used Java Programming Language that can run in almost all modern platform, contains

a large number of data preprocessing and modelling technique, and easy to use by beginner thanks

to its interactive graphical user interface. Weka supports several standard data mining tasks, more

specifically, data preprocessing, clustering, classification, regression, visualization, and feature selection.

All of Weka techniques are predicated on the assumption that the data is available as a single flat file

or relation, where each data point is described by a fixed number of attributes (normally, numeric or

nominal attributes, but some other attribute types are also supported). Weka provides access to SQL

databases using Java Database Connectivity and can process the result returned by a database query.

The WEKA tool incorporates the four applications within it: 1) Weka Explorer, 2) Weka Experiment,

3) Weka Knowledge Flow and 4) Simple CLI. Weka Explorer incorporates the following features:

• Preprocess: it is used to process the input data. For this purpose the filters are used that can

transform the data from one form to another form. Basically two types of filters are used i.e.

supervised and unsupervised.

• Classify: its corresponding tab is used for the classification purpose. A large number of classifiers

are used in weka such as bayes, function, rule, tree and meta etc. Four type of test option are

mentioned within it.

• Cluster: it is used for the clustering of the data.

• Associate: establish the association rules for the data.

• Select attributes: it is used to select the most relevant attributes in the data.

• Visualize: view an interactive 2D plot of the data.

1.6 Conclusion

In this chapter, we review concepts from the related areas to our research questions. These concepts

are being introduced partly to make the thesis more self-contained and, more importantly, to set up

the formal notations that will be used throughout this thesis.

We first presented the basic notions of the Semantic Web; then we put our focus on studying the

ontologies from a knowledge representation perspective. Hence, we recalled the main features of the

ontology authoring language: OWL. In particular, we studied the description logics (DL) from which
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OWL has been derived. DL are particularly well suited for the representation of ontologies and they

are relevant for the Semantic Web as they have precise semantics and allow for automatic reasoning.

DL offer rich expressive features and different levels of logics. However, a trade-off between the DL

expressivity and the complexity of reasoning should be provided. Indeed, various reasoning engines

were introduced in the literature to process the ontologies in the most reliable and efficient way. We

put into comparison their main functional attributes. Hence for now, we have a general idea of the

coverage and directions of current reasoner development trends. We would assert that modern DL

reasoners vary significantly with regard to all the examined attributes. Therefore, a critical empirical

evaluation of their performances over real world ontologies is needed before selecting a reasoner for a

real-life applications.

In the second part of this chapter, we reviewed the basic notions of the machine learning field.

We remind that we intend to use the supervized learning approach to cope with reasoner performance

variability phenomena. To meet this requirement, we recalled the common formal notations. Then

we depicted the general steps in any learning process. Later on, we reviewed the main features of the

most commonly used supervized machine learning algorithms. We finally outlined the ways to assess

the quality of the trained predictive models. On the basis of this short review, we would admit that

choosing the appropriate learning techniques is a real issue given the rich and large plethora of existing

realisations. We will rely on some background knowledge in order to select the most powerful learning

techniques and then empirically examine how well they would fit to our study context.
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2.1 Introduction

The aim of this chapter is to portray the general context of this dissertation and to position our

work in the current state of the art. Thus, this chapter includes both a literature overview, and the

introduction of novel ideas, presented in an intertwined manner.

Our work asks the question most relevant to an end user: "How feasible is it to reason over an

ontology written in particular DL, using the best available reasoners?". To bring response to this

interrogation, we will start discussing this feasibility from a theoretical perspective by recalling the

main computational complexity classes of the ontology language, i.e. OWL, and its underpinning

DLs. Then, we will study the feasibility from an empirical perspective. Hence, we will outline the

practical complexity of the reasoning algorithms. We will depict some of the challenges facing both

the designers and the users of modern DL reasoners. More specifically, we will shed light on the

reasoner performance variability phenomena, since it is the most compelling issue in the practical use

of reasoners. Our purpose is to scrutinize the research efforts which have addressed this issue and

discuss the usefulness of their proposals. Hence, we will put into comparison methods and tools which

tried to detect and analyse this phenomena. Then, we will tackle the issue from a broader perspective

by investigating solutions proposed in different problem fields, such as machine learning (ML) and

artificial intelligence (AI). More specifically, we will examine the advances in addressing the empirical

hardness and the algorithm selection problems. Hence, approaches in meta-learning and algorithm

portfolio construction will be reviewed. All of this investigation effort is put forward in order to depict

the lessons that could be learned from these fields and highlight the ones transferable to our study

context, i.e. DL based ontology reasoning.

2.2 Complexity of Ontology Reasoning

The complexity of ontology reasoning refers to two different concepts in the literature:i) complexity

of the language which also may be referred to as theoretical complexity, and ii) complexity of the

algorithm which is also referred to as practical complexity. In this section, we will discuss each of these

concepts after recalling some basic notions about the theory of computational complexity.

2.2.1 Preliminaries on computational complexity

We assume that the reader is familiar with the theory of computational complexity, as defined in

standard textbooks such as [GJ90, Pap03]. To avoid any ambiguity, we will recall some basic notions

of this theory, which we will use throughout this thesis.
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Informally, a problem is a general question to be answered, usually having several parameters.

Thus, an instance of a problem is obtained by specifying particular values for all of its parameters.

Standard complexity theory deals with decision problems, i.e. problems that admit a yes/no answer. In

computer science, to solve a problem means to find an algorithm that solves all instances of the problem

(assuming enough time, space, and other resources are provided). We must specify that an algorithm is

a general, mechanical procedures that can be followed step-by-step to solve a problem. When there is

only one possible action each step, then the algorithm is said to be deterministic, otherwise, when there

is a finite many actions in each step, then the algorithm is called non-deterministic. The complexity

(difficulty) of an algorithm is measured in terms of the amount of resources (time, space) required to

solve the problem. On the other hand, the intrinsic complexity of a computational problem is measured

by the worst-case complexity of the best algorithm that has been found to solve it so far. Hence, a

problem is considered as tractable if there exists a polynomial algorithm to solve it. In contrast, a

problem is intractable if it is so hard that no polynomial algorithm can possibly solve it. We can also

distinguish some problem complexity classes as follows:

• LogSpace and NLogSpace: set of problems solvable in logarithmic space by a non-deterministic

algorithm.

• PTime: set of problems solvable in polynomial time by a deterministic algorithms. These problems

are considered tractable, i.e., solvable for large inputs.

• NP: set of problems solvable in polynomial time by a non-deterministic algorithm. These problems

are believed intractable, i.e., unsolvable for large inputs. The best known algorithms actually require

exponential time.

• PSpace: set of problems solvable in polynomial space by a deterministic algorithm. Polynomial

space is "not really easy", since these problems may require exponential time.

• ExpTime set of problems solvable in exponential time by a deterministic algorithm. This is the

first provably intractable complexity class.

• NExpTime: set of problems solvable in exponential time by a non-deterministic algorithm.

N2ExpTime are just the problems that are solvable in double exponential time with respect to

size of the input and by a non-deterministic algorithm. These problems are considered to be intract-

able and very hard.

We can also depict the general known relationships between the above described complexity classes

as follows:

LogSpace ⊆ NLogSpace ⊆ PTime ⊆ NP ⊆ PSpace ⊆ ExpTime ⊆ NExpTime ⊆

N2ExpTime
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Given all these notions, the analytic analysis of algorithms could be established to study from a

theoretical perspective the amount of resources that an algorithm would require to solve the com-

putational problems, known that these problems are classified according to their intrinsic computing

difficulty.

2.2.2 Theoretical complexity: complexity of the ontology language

In our context of research, ontologies would be regarded as instances of inference problems1, and

reasoners as the algorithms proposed to solve these instances. Extensive research has been carried

out, aiming to establish the complexity class of reasoning over ontologies encoded in a certain DL.

Actually, the DL languages vary in the complexity class they belong to, from low expressive languages

whose standard reasoning tasks can be performed in polynomial time, such as the AL [BBM11], to

highly expressive DLs, such as SROIQ, whose the complexity class at the worst case is N2ExpTime

[HKS06]. We could track more in details the complexity of the ontology language by looking into the

different OWL profiles (c.f. Chapter 1, Subsection 1.3.2) and their underpinning DLs.

In the first iteration of OWL, three sub-languages were designed:

• OWL 1 DL: is based on the SHOIN (DL), whose key inference services have an NExpTime worst

case complexity.

• OWL Lite: is based on the SHIF (DL), which benefits from "more tractable" inference services,

the worst case complexity is being ExpTime.

• OWL Full: is a syntactic and semantic extension of RDF and RDF Schema (RDFS) and a superset

of OWL DL for which inference services are undecidable. An ontology is in OWL Full if certain

constraints usually imposed on axioms in order to retain the decidability property in OWL DL, are

not met.

The second iteration of OWL, the OWL 2 [Gro09], also incorporates several profiles with distinct

classes of complexity:

• OWL 2 DL: based on the SROIQ(DL), with a worst case complexity of N2ExpTime for key

inference services [HKS06].

• OWL 2 EL: based on the EL+ + (DL), for which the key reasoning tasks have a PTime worst

case [BBM11].

• OWL 2 RL: a subset of OWL 2 DL and an extension of RDFS, the RL profile is motivated by

1An inference problem could be reduced to a decidable one, for instance DL classification is combination of a consec-

utive checking of concept satisfiability.
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Description Logic Programs (DLP), and designed to allow for scalable reasoning based on rules. The

standard reasoning in OWL 2 RL are PTime-complete.

• OWL 2 QL: based on the DL − Lite family of logics, in particular DL− LiteR , it is meant to

provide efficient query answering with a worst case complexity of NLogSPace and even LogSPace

with respect to the size of the ABox.

It is obvious that the standard reasoning with ontologies written in EL, QL or RL is tractable and could

be achieved in polynomial time. These restricted profiles remarkably simplify the reasoning complexity

with OWL 2 ontologies and allow for scalable and fast implementations. However, we should note that

any union of any two of the profiles is no longer light-weight, i.e. QL+RL, QL+EL, RL+EL are all

ExpTime-hard [Krö12]. Figure 2.4 summarizes in an ascendant order the complexity classes of the

main DLs and their corresponding OWL versions.

All of these inspection highlight the existing trade-off between the expressivity of the ontology

language and the complexity of the standard reasoning services: the more expressive the ontology

is, the more complex would be the reasoning. In overall, we would admit that from a theoretical

perspective and with respect to the worst-case analysis, the ontology reasoning is highly complex for

expressive DLs. Hence, we would wonder if in practice, it is possible to efficiently infer ontologies

written in these DLs? and which would be the impact of the non-deterministic nature of DL based

languages on the performances of the reasoning engines?

2.2.3 Empirical complexity: complexity of the reasoning engines

In a theoretical analysis, there is no need to introduce an effective procedure which solves an inference

problem. The complexity classes are established by just analysing the description of the algorithms

Figure 2.1: Summary of the theoretical complexity of some DL languages
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and the generic features of the input instances without any actual running. In contrast, in a practical

analysis, we determine the time and space complexity of a particular algorithm proposed to implement

a proposed inference task. In fact, the theoretical complexity of a language is independent from the

algorithm which decides it and assumes that the algorithm knows which branch will survive in the case

of non-determinism. Hence, all the provided analytical results remains theoretical ones and can easily

be disproved by experimental analysis. For this reason, we turned to the empirical, rather than the

analytic, analysis. Indeed, various works [MRW11, Abb12] have settled that, in general, reasoning is

feasible in practice and is far less complex than the established theoretical complexity. Interestingly

enough, even with fairly expressive fragments of OWL 2, acceptable reasoning performances could

be achieved. This would be owing to the considerable research and engineering efforts that have

been devoted to design sophisticated reasoning algorithms with highly optimized implementations. In

Chapter 1, we carried out a review scrutinizing these efforts. We described the most known reasoners

and put into comparison their functional attributes. Nevertheless, the respective authors of [WLL+07,

GPS12] have outlined that often in practice, reasoners tend to exhibit unpredictable behaviours when

dealing with real world ontologies and their performances dramatically vary across the ontologies, even

when the size or the expressivity of the latter ones are held constant. We have delineated two main

aspects that would depict the variability phenomenon of reasoner performances: (i) the variability of

reasoners runtime across the ontologies; (ii) the sparsity of reasoners computed inferences over the

same input ontology. In the following, each of these issues are discussed more in details.

a. the variability of reasoners runtimes Gonçalves et al. [GPS12] have outlined three particular

situations that a user could face when attempting to reason about an ontology: (i) for one test case

ontology, switching the reasoner can degrade reasoning time from seconds to none termination; (ii)

ontologies with the same size and expressivity would spend wildly different ranges of computational

time on the same reasoner; (iii) a minimal change to an OWL ontology would increase or probably

decrease reasoning time on one reasoner. As far as one of these situations happens, often no feedback

is returned back to the user. Commonly, the latter one will keep shifting reasoners until finding the

suitable one. Others would try to adjust their ontology hoping for an improvement, but running the

risk of making the matters worse. In overall, it is well-accepted that there is no reasoning system

that can outperform the other ones for all input ontologies. This could be observed by examining

the reported results from the annual reasoners evaluation challenges, such as the ORE Evaluation

Workshop [GBJR+13, BGJ+14, DGG+15]. Figure 2.2 depicts two test cases, that we have extracted

from the publicly available results of the ORE 2014 DL classification challenge2. In each case, an

ontology has been classified by various reasoners. The processing time was recorded, known that
2The ORE 2014 results are available at https://zenodo.org/record/11142/

https://zenodo.org/record/11142/
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Figure 2.2: Motivating example about the variability of reasoner runtime, extracted from the ORE

2014 ontology classification results [BGJ+14]. The time is in milliseconds.

the time limit is fixed to 3 minutes. When looking to these results, we would remark that the two

ontologies have the same OWL profile, belong to the same DL family and their sizes are in the same

bin, however the examined reasoners exhibited quiet distinct behaviours on these inputs. From a

theoretical perspective, we would expect that the reasoning over these ontologies will not terminate in

reasonable time, since the class complexity of SHOIN is N-ExpTime. However, the results proved

the opposite particularly in the second case. Nevertheless, the runtime of these reasoners is quite

variable for the same input ontology, e.g. in the second case a scatter up to 10 order of magnitude

between the Konclude and the TrOWL respective runtime. We can also remark that, in the two test

cases, TrOWL was the only reasoner to terminate the classification task within the time limit. This

would suggest that this reasoner is the most performing one across the examined list. Nevertheless,

TrOWL was the slowest one in the second test case, known that the two ontologies are similar ones.

Hence, our first suggestion is refuted.

b. The sparsity of reasoners results Far less works have discussed this phenomena. This is

because the formal basis of the core reasoner procedures are well understood and designers often provide

theoretically proof of the soundness and the completeness of their reasoning algorithms. However,

Gardiner et al[GTH06] and more recently Lee et al. [LMPS15] have pinpointed that reasoners could

deliver quite distinct inferences or query answers, from one input ontology. They highlighted that this

issue could hamper the development and seriously threaten the interoperability on the Semantic Web.

Therefore, the reasoners computed inferences during the ORE evaluations were compared to each other,

in order to identify the cases of disagreement and decide which reasoner results are likely to be the

correct ones. Figure 2.3 depicts another snippet from the ORE 2014 DL classification results. Here,

we checked the agreement level between the 5 reasoners that we previously listed in Figure 2.2. By

agreement, we mean that the reasoners have delivered the same classification results when processing

the test ontology. By inspecting Figure 2.3, we would remark that the level of agreement was different

across the two ontologies, despite the fact that they belong to the same size and expressivity bins.
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Figure 2.3: Motivating example about the sparsity of reasoner computed inferences, based on the ORE

2014 ontology classification challenge [BGJ+14].

Indeed in the first case, only 3 out of the 5 reasoners derived the same inferences, however in the

second case all of the reasoners have computed the same results. Gardiner et al. [GTH06] argued

that the disagreement may be due to the approximation mechanism that some reasoner designers

would use to handle particular hard to handle DL constructors. Actually, reasoner designers often do

not communicate further details about their approximation techniques to deal with such constructors.

Lee et al. [LMPS15] also outlined this point. They highlighted that few details about many of the

reasoning optimisations and engineering tricks are provided, and in common case, these tricks are only

inspected by the developers. Given these findings, we would admit that the reliability of reasoner

implementations is still a matter of investigations.

2.2.4 Discussion

Based this review, we can assert that although reasoning in practice is far less complex than the estab-

lished theoretical computational complexity, reasoner empirical behaviours are still hardly predictable

a priori due to the unexpected variability across the ontologies. Hence, new compiling challenges are

raised, such as how would it be possible to anticipate this variability and explain its causes. In overall,

we can notice that ontologies belonging to the same theoretical complexity class are not all equally

hard. Obviously, it exists some ontology characteristics other than just size and expressivity which are

likely to have an impact on reasoner performances. Hence, a reasoner implementation that exploits

some particular features of the OWL language can perform on the corresponding class of ontologies

better than the worst-case scenario. Indeed, several authors [GTH06, GPS12, LMPS15] explained the

variability of reasoner performances by the fact that modern reasoning systems have complex design

architecture and tend to implement a wide range of optimisation techniques that might interact and

affect each other while processing some particular ontologies. Hence, a reasoner could be optimised

for some, but not all the ontologies. On these basis, we would admit that a better understanding of

ontology complexity factors that may trigger difficulties to reasoners is of a compelling need.
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In our opinion, pointing out what makes reasoning hard in practice can guide the modelling process

of ontologies as to avoid the reasoning performance degrading factors. Furthermore, existing ontologies

may be revised towards efficient reasoning by detecting, and even repairing their critical components.

On the other hand, when such knowledge is made available, the automatic selection of adequate

reasoner of an input ontology could be achieved more easily and without any need for excessive trials

and experimentations. In remainder of this chapter, we will review and discuss the existing solutions

which have addressed the practical complexity of DL reasoners and provided solution to manage it.

2.3 Reasoner performance analysis: landscape of existing works

In this section, we tried to draw out the landscape of the state of art works, which addressed the issues

related to reasoner performance variability phenomena and attempted to characterise the ontology

hardness key features. These works are categorized according to the scope of their investigations and

the nature of their solutions. We distinguished between two main categories: works that empirically

evaluate the reasoner performances; and works that try to predict these performances. Below is a

general description of these works and a consolidation of some of our comments and remarks.

2.3.1 Evaluation and profiling of reasoner empirical performances

We start our discussion by reviewing state-of-art works that assess the empirical performances of DL

reasoners. We identified three groups of works, described in what follows:

A. Empirical evaluation and comparison Reasoner benchmarks [DCtTdK11, Abb12] and com-

petitions [GBJR+13, BGJ+14, DGG+15] are annually held to compare the latest innovations in the

field of semantic reasoning. The performances of ontology reasoners against well selected ontologies

are evaluated mainly considering the computational runtime. The final purpose of these studies is to

compare the reasoners in order to identify at average the most performing ones. Reasoners unpredict-

able behaviours and performance variability is often reported during these events, but no efforts were

deployed to try to explain them. Commonly, the performances are recorded and made available to

practitioners as a starting point for further analysis.

B. Reasoner profiling tools The variability of reasoner performances has motivated the develop-

ment of various reasoner efficiency analysis tools like Tweezers [WP07], Pellint [LS08] and the OCT

tool [Cha10]. They employ software profiling techniques to help inspecting the reasoner processing

mode and to identify its potential pitfalls. To fulfil this task, Tweezers and OCT tool report particular
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performance statistics like the time required to accomplish a particular concept satisfiability test and

the memory greediness. Tweezers provides further statistics such as the size of the completion graph

constructed by a tableau based algorithm [BS01] and the number of iteration exhibited until finding a

clash [Hor03]. On the other hand, Pellint inspects the ontology design without running the reasoner.

This tool reports and even repairs some ontology modelling pitfalls, so-called ontology anti-patterns

[RZ13]. The latter ones are suspected to brook down the reasoner efficiency and prevent it from scaling

up. Unfortunately, both Tweezers and Pellint were designed with respect to one particular reasoner,

i.e. Pellet [SPG+07]. Furthermore, the OCT tool was implemented to particularly check how reasoners

could handle one particular ontology, i.e. the GlycO ontology3. This tool was not applied to other

ontologies. Given these findings, it is obvious that the usability of the above described tools is limited.

Generalizing their results could not be significant, since each of these tools was designed to handle a

specific context (particular reasoner or ontology). Besides, the reasoning methodologies, programming

languages and implementation details vary from one reasoner to another (c.f Chapter 1, Subsection

1.4.2), which makes it difficult to design a generic profiling tool that could analyse all the available

reasoners and capture all of their pitfalls.

C. Reasoner correctness checking methods Another aspect of reasoner performance evaluation

is to check the correctness of its results. A manual inspection of the computed inferences or query

answers would be relatively easy for small ontologies, but usually infeasible for real world ones. On the

other hand, there is no analytical assessment method of result correctness since both the completeness

and the soundness of reasoning algorithms are often formally proven even before the reasoner is made

available. Gardiner et al. [GTH06] claimed that the most straightforward way to automatically

determine the correctness is by comparing answers derived by different reasoners for the same ontology.

Consistency across multiple answers would imply a high probability of correctness, since the reasoners

have been designed and implemented independently and using different algorithms. Accordingly, they

proposed an automated reasoner empirical correctness checking method where reasoners outputs were

assessed by a majority vote, i.e. the result returned by the most reasoners was considered as correct.

This methods is part of the ORE evaluation framework [GBJR+13]. A more elaborated reasoner

correctness checking method with a logical foundation was introduced by Lee et al. [LMPS15]. They

also compare the various derived results by different reasoners for the same ontology in order to detect

the disagreement. Then, they identify the axioms behind this disagreement and analyse them by

computing their justifications. Their purpose is to check whether some implementation bug is causing

the disagreement. The method partially relies on expert judgement when it is hard to decide which of

the reasoners is the correct one. Although, authors admitted that even if their solution is more reliable
3http://cobweb.cs.uga.edu/~jam/glyco/GlycO_v0_95.owl

http://cobweb.cs.uga.edu/~jam/glyco/GlycO_v0_95.owl
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in assessing the reasoner correctness, they are still unable to recognize the source of each error in every

reasoner evaluation. In the both solutions, the correctness of a reasoner given an input ontology is

not anticipated or checked independently from the other reasoners. This is because, it is still not well

understood how to decide that a computed class hierarchy or query answer is incorrect. Furthermore,

it is yet not clear which of the reasoner optimisation or approximation techniques are badly affected

by particular characteristics of the OWL ontologies.

2.3.2 Prediction of reasoner empirical performances

All the related works within this second category try to predict the reasoner performances to avoid the

excessive cost of the empirical evaluations. However, they chose to employ quite distinct prediction

approaches. We identified two main groups of these approaches, each of them is discussed in the

upcoming paragraphs.

A. Heterogeneity based prediction Gonçalves et al. [GPS12] argued that it will be cost-efficient

to predict whether an ontology is a reasoner performance bottleneck before performing any potentially

expensive search for the ontology pitfalls that might not exist at the first place. They suggested that

there are ontologies which are performance homogeneous and others performance heterogeneous ones.

Their main claim is that whenever the measured runtime of some reasoner over reduced subsets of an

ontology is proportional to the reported runtime over the whole input, then the ontology is performance

homogeneous for that reasoner; otherwise it said to be performance heterogeneous. Gonçalves et al.

asserted that reasoners would perform poorly on performance heterogeneous ontologies. They assumed

that in the latter ontologies, it exist some sub-parts, i.e. modules, that are hard to manage by the

reasoner. They called them the ontology "hotspots". Authors explained that these hotspots are due

to some combined effects of particular entanglements between axioms in the ontology. They also

proposed a method to extract these hotspots, starting from those classes which are usually more time-

consuming with respect to satisfiability test (SAT). However, their experiments have revealed that

there is no precise co-relation between the reasoning time of a hotspot alone, and the reduction in

reasoning time when such hotspot is removed. They affirmed that more investigations should be made

about possible interactions between the hotspots and other ontology features.

B. Machine learning based prediction Another steam of works, basically described in [KLK12,

SSB14, KLK14], used supervised machine learning (SML) techniques [Kot07] aiming at a priori predict-

ing the computational time of a reasoner for a given ontology. Their predictive models take advantage

from a large set of pre-computed ontological metrics. Kang et al. [KLK12] were the first to apply ma-
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chine learning techniques to predict the ontology classification computational time carried by a specific

reasoner. 27 metrics were computed for each ontology. These metrics were previously proposed by a

work stressing on ontology design complexity [ZLT10]. The labels to be predicted were time intervals

predefined by the authors. They carried out a comparison of the most efficient learning algorithms,

then they selected Random Forest as the base learner. Runtime predictive models were trained for

several state of art reasoners and showed good accuracy. Furthermore, they proposed an algorithm

to compute the impact factors of the ontology metrics according to their effectiveness in the reasoner

prediction process. Kang et al. have improved their approach, in a more recent work [KLK14]. They

replaced time interval labels by concrete values of reasoner classification runtime and proposed addi-

tional metrics. Hence, they trained regression models using Random Forest. They also demonstrated

the strengths of their predictive models by applying them to the problem of ontology Hotspots ex-

traction. On the other hand, Sazonau et al. [SSB14] claimed that Kang’s metrics based on graph

translation of OWL ontologies are not effective. Thus, they proposed a different set of metrics and

used Principal Component analysis (PCA) to reduce the dimensionality of the ontology feature vectors.

Sazonau et al. have basically proposed a local prediction approach. The ontology corpus needed for

the training is replaced by a set of ontology modules extracted from one single input ontology. Hence,

a predictive model is built in for each couple (ontology, reasoner). The authors argued that their

local approach is more suitable to anticipate the computational time of a reasoner over an ontology.

However, we would wonder how practical is this approach given the rapid growth in the number of

ontologies and reasoners. Lately, Kang et al. [KKL15] have investigated a further application of their

reasoner runtime prediction models. They proposed to build a kind of meta-reasoner which assembles

a set of state-of-art reasoners and automatically selects the most efficient one to handle an input onto-

logy. The reported results are promising ones, however no intrinsic assessment have been carried out

to prove the efficiency of this meta-reasoner. In particular, the computational cost of the prediction

steps were not reported. Therefore, it is difficult to admit that a meta-reasoner which applies various

prediction operations to choose a suitable reasoner then runs this selected one, could be faster than

any single reasoner. Table 2.1 summarizes the main features of the afore described works.

2.3.3 Discussion

Based on this review of state, we assert that in overall there is a real lack of theory and tool support

for both ontology novice and expert users helping analysing reasoner behaviours against case study

ontologies. Indeed, the existing reasoner profiling tools are still in their first steps, needing more im-

provements to be able to handle all the available reasoners. On the other hand, we agree with Gonçalves

et al. [GPS12], that ontologies making the reasoning particularly arduous, should be predicted be-
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Work Target

Class

Ontology Features Dimensionality Re-

duction

Practical use of

models

[KLK12] Time Bins

(discrete)

27 metrics (Graph based) 6 feature selection

Methods

ontology feature im-

pact factor

[KLK14] Runtime

(continuous)

91 features (Graph and

OWL based)

Inter-correlation re-

moval

ontology hotspot ex-

traction

[SSB14] Time Bins

(discrete)

57 features OWL based Principal Component

analysis

ontology hardness

prediction

[KKL15] Runtime

(continuous)

91 features (Graph and

OWL based)

Inter-correlation re-

moval

meta-reasoner

Table 2.1: Summary of previous works about predicting ontology reasoners

fore investing any substantial resources in reasoner pitfall inspections. However, we do not approve

their prediction method. We think that it would be more reasonable to rely on well-founded machine

learning prediction solutions. We have outlined that the latter ones have witnessed their utility, when

applied to reasoner runtime prediction. Indeed, we find that machine learning based approaches are of

great interest to meet the demand of tracking down the reasoner performances variability phenomena.

As a matter of fact, the learning methods are generic ones, they could handle any reasoner or any

ontology. Besides, the predictive models have a broad scope of applications, previously enumerated in

Table 2.1. These applications meet the goals that we fixed for this thesis. In particular, using machine

learning techniques, we can:

• effectively predict the computing time of any reasoner over any ontology and thus, we can anticipate

the variability of reasoner performances and pinpoint the ontologies that cause it;

• select the most efficient reasoner for any given ontology without being required to have expertise in

DL reasoning or to carry costly evaluations each time we need to choose a suitable reasoner;

• ontology features which may have impact on reasoner performance could be pointed out.

Nevertheless, the existing ML based solutions for reasoner performance prediction should further be

extended. More reasoner qualities must be examined, in particular the correctness of the reasoner. Yet,

a reasoner that quickly but incorrectly processes an ontology is of little use. Moreover, we think that the

learning could be engaged from a different perspective. Actually, it would be worthwhile to be able to

predict how hard is an ontology instead of predicting how performing is a reasoner. Based on our study,

we also noted that the potential success of the ML based solutions for reasoner prediction is closely
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depending on the quality of the employed ontology features. Unfortunately, our review of state of art

confirmed that there is no known, automatic way of constructing suitable ontology feature sets. Hence,

we believe that existing ontology features, those employed in the above discussed machine learning

methods, must be revisited and extended. Integrating properties from distinct domain knowledge that

appear likely to provide useful information about the design complexity of an ontology is one way

to improve the existing feature sets. Finally, we should highlight that none of the above prediction

methods was made available for use. The described techniques and the reported prediction results are

still experimental ones. Authors of the ML based solutions for reasoner performance prediction didn’t

suggest any tool or discussed how their results would be put into practice to help experienced or novel

ontology/reasoner users.

Motivated enough, we are convinced that machine learning based approaches could bring response

to our research questions. However, existing reasoner prediction works need to be revisited and exten-

ded to meet all of our requirements. Though, we must admit that all of the discussed works are very

recent ones and mainly carried out by one research group, i.e. Kang et al. [KLK12, KLK14, KKL15].

Hence, one may argue that there is not enough proof that machine learning solutions could be effective

to cope with the issues derived from the reasoner performance variability phenomenon. For this reason,

we decided to explore further research areas where algorithm performance prediction have known a

success. In our opinion, this would provide us with a more in depth understanding of these tech-

niques and open to us new perspectives for potential improvements of reasoner prediction solutions.

In remainder of this section, we will scrutinize the learned lessons about the automatic performance

prediction and selection of algorithms.

2.4 Algorithm empirical analysis

Over the years, a myriad of algorithms and heuristics have been developed to solve various problems

and tasks. As a consequence, it becomes important for researchers and practitioners to discover and

implement mechanisms that may determine which algorithm perform best on which problem instance.

The No Free Lunch (NFL) Theorem established by Wolpert and Macready [WM97] states that it

is impossible to build an algorithm that performs optimally in all cases. Different algorithms often

perform better on different classes of problem instances. This issue has been pivotal in many domains,

such as Machine Learning (ML) and Artificial Intelligence (AI), and known as the algorithm prediction

and selection problem.
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2.4.1 Empirical hardness and selection problems

Recently there has been a growth interest in experimental analysis of algorithms [McG12]. This is

because more and more researchers have realized that theoretical results alone cannot fully charac-

terize the algorithm performances and in particular, its empirical behaviours. This is specifically the

case with randomized, non-deterministic and heuristic algorithms which are too complex for a detailed

mathematical analysis [GJ90]. Yet, there exist a solid science of experimental algorithmics. Generally

speaking, any algorithmic experiments involve running some algorithms on some problem instances,

collecting the data, and analysing the results. Besides, any experiments have in advance some hypo-

theses or questions to test and ask. Indeed, the respective authors of [LBHHX14, HXHLB14] have

concluded over a decade of research about the empirical hardness of NP-complete problems. They

asserted that one of the main advantages of experimental algorithmic analysis is that it allows to in-

vestigate how the algorithm performances statistically depends on problem characteristics. This was

the central hypothesis behind automatic algorithm selection, as it was originally designed by J. Rice

[Ric76] in mid-1970s. He presented a formal abstract model made up from four essential components.

The abstract model is reproduced in Figure 2.4. We would distinguish the following components:

1. the problem space P represents the set of instances of a problem class;

2. the feature space F contains measurable characteristics of the instances generated by a computa-

tional feature extraction process applied to P ;

3. the algorithm space A is the set of all considered algorithms for tackling the problem;

4. the performance space Y represents the mapping of each algorithm to a set of performance metrics.

Formally, given a problem instance x ∈ P, with features f(x) ∈ F , find the selection mapping S(f(x))

into algorithm space A, such that the selected algorithm α ∈ A maximizes the performance mapping

y(α(x)) ∈ Y. Of course, the choice of features depends very much on the problem domain as well as the

chosen algorithms. Features must be selected, so that the varying complexities of the problem instances

are exposed, any known structural properties of the problems are captured, and any known advantages

and limitations of the different algorithms are covered. Clearly, it is very challenging and complex

matter to design suitable features for a given problem domain, and this has likely been a significant

obstacle to the widespread application of the Rice’s model. Rice has also outlined the hardness of

approximating the selection mapping function S. He discussed several methods, including linear,

piece-wise linear, and polynomial approximations. He concluded, however, that "the determination of

the proper non-linear form is still somewhat of an art and there is no algorithm for making the choice"

[Ric76]. In fact, the choice of the best algorithm for selecting the mapping function S is, ironically,

another algorithm selection problem.
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Figure 2.4: Schematic diagram of the [Ric76]’s algorithm selection problem. The objective is to

determine the selection mapping S that returns the best algorithm α

2.4.2 ML based approaches for algorithm analysis and selection

In the last decades and in different areas such as ML and AI, the Rice’s model was put into practice

by employing supervised machine learning methods as the mapping function, S, between the features

of problem instances and the performance of an algorithm. Hence, by using the S function of each

candidate algorithm, the performances of these ones could be predicted on unseen instances allowing

best algorithm selection. This approach was undertook in different ways and to achieve other purposes

than automatic algorithm selection. In the following, we will review the pioneering works which have

opted for this approach. Then, we will discuss the lessons that could be learned from them and

highlight the ones transferable to our class of problems, i.e. DL based ontology reasoning.

2.4.2.1 The meta-learning approach

In the last 20 years, machine learning research was faced with an increasing number of available learning

algorithms including a multitude of parametrisation, preprocessing and post-processing approaches

[Abb14]. In Chapter 1, we have already reviewed some of the ML classification algorithms and listed

their most known categories. Of course, these algorithms are not equally performing in terms of

prediction accuracy and confidence level across the training datasets. Hence, the selection of the

most adequate one for a new problem is a critical and difficult task to achieve in particular for non-

expert user. Meta-learning [BGCSV08] is a specialized form of machine learning that is able to learn

about the learning process itself to increase the quality of the predictive results. Meta Learning has

emerged from the need to support data mining automation in issues related to algorithm and parameter

selection. Recently, Lemke et al. [LBG15] have conducted a survey about the current trends in the

meta-learning research field. The authors assert that meta-learning can provide an invaluable help
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Figure 2.5: Notions and components of a Meta-learning system according to Lemke et al. [LBG15]

avoiding extensive trial and error procedures for algorithm selection, and brute force searches for

suitable parametrisation. The performances of a learning algorithm could stand for the prediction

quality of its derived model, or the runtime required to build this model or even a combination of

both of them. Roughly speaking in meta-learning, the Rice’s mapping function is acquired from meta-

examples that store: i) the features describing the datasets (problems) and ii) performance information

obtained by executing candidate learning algorithms on datasets. After generation of meta-examples,

a meta-learner (a particular supervised learning algorithm) is applied to acquire knowledge that relates

performance of candidate algorithms to the features of the datasets (problems). Meta-learning can be

employed in a variety of settings. Figure 2.5 depicts most of these settings and the basic traits of a

meta-learning system as it was seen by Lemke et al. [LBG15]. These authors suggested that ensemble

learning methods and combinations of base-learners such as bagging, boosting and stacking, which we

have briefly describe in Chapter 1, Subsection 1.5.2.7, are kinds of meta-learning. Another interesting

application is the selection of the optimal parameter values of an algorithm. In this special case,

versions of the same algorithm with different parameter settings are considered as different candidate

algorithms and hence, the meta-learner will try to predict which version is the most efficient with

respect to the input dataset. However from an end-user perspective, algorithm recommendation is one

of the most interesting application of meta-learning, with the final goal of providing advise about the

utmost promising learning algorithms to handle a user dataset. Recommendations are suggested in the

form of algorithm ranking. The latter one could be acquired by sorting the predicted performances of

individual algorithms or directly computed using an established ranking model training by preference

learning algorithms [SP13].
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2.4.2.2 The algorithm portfolios approach

NP-Complet problems [Coo71] such as propositional satisfiability (SAT), travelling salesperson (TSP),

mixed integer programming (MIP) and combinatorial problems (CP) are at the core of the artificial

intelligence. The AI community has achieved great success in designing high-performance algorithms

capable to solve these hard problems, despite their worst-case complexity. However, it was observed

that in practice these algorithms often exhibit extreme runtime variation across problem instances,

even when the problem size is held constant. Gomes et al. [GSCK00] have established that one solver

could perform better at tackling some problem instances from a given class, but is substantially worse

on other instances. They have also admitted that there is little theoretical explanation of this variation.

Hence, practitioners are faced with a challenging algorithm selection problem.

Measuring different algorithms’ performances on a given problem distribution and then using only

the algorithm that had the lowest average runtime has been a popular answer to this issue. This

approach is commonly known as the "winner-take-all". However, it has resulted in the neglect of many

interesting algorithms that, while uncompetitive on average, offer excellent performance on particular

classes of problem instances. Later on, it has been shown that we can exploit the complementarity

of the solvers by combining them into an algorithm portfolio [GS01]. This latter term was used by

C. P Gomes and B. Selman [GS01] to describe a strategy for running a set of algorithms in parallel.

Algorithm portfolio has since also been employed to describe any strategy that combines multiple,

independent algorithms to solve a single problem instance. Such portfolio may include methods that

pick a single solver for each problem instance [OHH+08, XHHLB08], methods that makes online

decisions to switch between solvers [SM07], and methods that execute multiple solvers independently

per instance, either in parallel, sequentially, or partly sequential/parallel [GS01]. The main purpose

is that the portfolio should outperform all the single algorithms it is made from. A prime example of

algorithm portfolio for SAT problems is SATZilla [XHHLB08]. This system has won several annual

SAT competitions by employing empirical hardness predictive models [LBHHX14] to be able to decide

the most efficient solver to apply. Indeed, a common trait among the proposed portfolio strategies

is that they employ ML regression or classification methods to build an efficient predictor of a solver

performances. More recently, Oentaryo et al. [OHL15] claimed that, while showing successes to

some extent, the contemporary regression- or classification-based algorithm selection methods are not

designed to directly capture the notion of preferability among different solvers for a given problem

instance. Therefore, they suggested to pose the algorithm selection problem as a ranking issue. Their

main purpose is to predict the appropriate (unique) top K best ordering of solvers for a given problem

instance, while employing a unique predictive model, called the ranker. To realize this, Oentaryo et

al. proposed a Ranking-based Algorithm Selection (RAS) methodology, following preference learning
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Purpose Criteria ML Techniques Practical use

Meta-

learning

- Runtime

- Prediction quality

- Combined criteria

- Classification

- Regression

- Preference learning

- Algorithm recommendation

- Algorithm parameter tuning.

- Ensemble learning.

- Dynamic bias selection.

Algorithm

portfolio

- Runtime - Classification

- Regression

- Preference learning

- Algorithm portfolio construction.

- Algorithm parameter tuning.

- Generation of benchmarks of hard

instances.

- Identify the hardness key features

of the problem instances.

Table 2.2: Attribute summary of the machine learning based approaches for algorithm analysis and

selection.

principals [FH10].

2.4.3 Discussion

Table 2.2 summarizes the basic functional attributes and the practical use of the above described

approaches. Through this review, it seems clearly that by employing statistical methods and more

specifically supervised machine learning methods, we could benefit from a more nuanced understanding

of algorithm empirical behaviours than by analytic, worst-case analysis. This confirms our previous

conclusions when studying the ontology reasoners. We argued that the empirical analysis of reasoners

is more informative that the theoretical one and we particularly highlighted the valuable benefit of

applying supervised machine learning to the problem of reasoner performance analysis. Indeed, thanks

to the ML solutions, it has been shown that the performances of algorithms from different nature (ML

or AI ones) could be predicted at a high degree of confidence based on easy to compute features of

problem instances. Hence, various practical algorithmic problems such as automatic algorithm selection

or recommendation or optimal parameter tuning have efficiently been solved. This makes the machine

learning based approach for algorithm analysis and selection important even for theoretically inclined

computer scientists who prefer proofs to experimental findings.

All of these inspections strengthens our conviction that employing machine learning based ap-

proaches for algorithm performances prediction and selection would bring response to our research

questions. Some lessons could be drawn from this literature review, that in our opinion, are of major
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importance to achieve a successful prediction and selection of ontology reasoners.

• One of the biggest practical challenges in any algorithmic experiments is assembling the required

test instances. The best test instances are probably those real world instances that are taken from

real world applications. This is also the case when assessing the performances of reasoners. A

representative population of ontologies should be carefully selected, to avoid that a reasoner would

process only ontologies, it is particularly optimized for;

• The selection of ontology features relies heavily on domain knowledge. Our review of related works

showed that there is no agreement about the sources of the ontology hardness against the reasoning

tasks and no common definition of a good ontology feature. In overall, a feature should be easy to

compute (usually negligible compared to the reasoning time) and most relevant to the performance

of a particular reasoner or a particular class of ontologies;

• Running time and solution quality are two most common measures of algorithm performance. In our

case, we will try to predict the reasoning runtime and the correctness of the derived results. However,

some experimental constraints should be fixed to ensure the to ensure reproducibility of the results.

Moreover, a particular reasoning task, e.g. ontology classification or consistency checking should be

fixed as the main subject of performance prediction;

• There is no best supervised machine learning algorithm for the prediction purpose. Hence, different

learning algorithms should be investigated, to identify the one capable to train highly accurate

models given the available data about the reasoner performances.

• In general, any reasoner can be used as a candidate for a selection or recommendation task. But

in practice, we can use domain knowledge to wipe out reasoners that are obviously inferior to other

ones;

• The choice of the reasoner selection techniques is closely depending on the final purpose and the

general application context. Some techniques are time-sensitive ones, which make them appropriate

to be applied in algorithm portfolios. Others are more informative and would be suitable for end-user

advising system.

2.5 Discussion Summary

We recall that we are looking to provide solutions to end-users to gain a better understanding of

reasoner empirical behaviours, and ontology hardness factors. Thanks to this review, we draw some

important conclusions that we can list as follows:

• Although the analytical analysis methods provide the basis to characterize the complexity of onto-
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logies and the amount of resources needed by the reasoners, it is of little use to meet the demand of

tracking down the empirical behaviours of reasoners and to automatically select the best available

one for any given ontology. This is because the theoretical worst case complexity does not necessarily

unveil reasoner real-world performances.

• The most challenging problem when dealing with reasoners is the variability of their performances

across the ontologies. This variability could affect the reasoner efficiency as well as the correctness of

its results. This phenomena is largely due to the uncertainty over reasoner implementation factors

and the potential interaction between optimisation techniques and some particular ontology features.

• There is a real lack of theory and tool support helping both ontology novice and expert users to

figure out which particular aspects in the ontology that are damaging the reasoners performances.

In overall, it is obvious that performance analysis of reasoners against ontologies is still a fastidious,

time consuming task mainly based on manual checks.

• Machine learning-based techniques applied to empirical data describing reasoner past running can be

used to accurately predict its runtime over any ontology. Thus, it would make it possible to cope with

the reasoner performances variability phenomena. The techniques can also help to build systems to

automatically select the most suitable reasoner according to the characteristics of the input ontology.

Given its various benefits, we chose supervised machine learning as the kernel theory to guide the

design of our solutions.

• Machine learning approaches of algorithm performance prediction and selection have known a great

success when applied to hard problems in different fields such as AI and ML. They can track dif-

ferent performance criterion and can help gaining insights over the instance key hardness features.

Algorithm predictive models are employable in various practical applications. Hence, different les-

sons could be learnt from these works, most of them are transferable to our research context.

Given these findings, we can set up the main stages that we will follow to achieve the goals of this

thesis:

1. We will start our research work by studying the ontology attributes that we can employ as input

features to train predictive models of reasoner performances. Existing features will be examined,

revisited and potentially extended.

2. We are willing to advance state-of-art works in reasoner performance prediction. Our purpose is

not only to predict the reasoner runtime, but also its correctness. We are also planning to introduce

a new prediction task which aims to adjudge whether a given ontology is hard to manage by

reasoners. To achieve these goals, we will introduce a generic learning framework that can train

distinct predictive models related to the ontology reasoning context.

3. We will approach the issue of the automatic selection of ontology reasoners. In contrast to the
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related work where a reasoner portfolio was proposed [KKL15], we are willing to employ meta-

learning to introduce an automatic ranking method of reasoners. In our opinion, recommending a

set of reasoners ranked according to their expected performances over a given ontology is a more

informative solution for users seeking assistance.

4. We will try to help an end user to gain insights about the hardness factors in its ontology: first, by

highlighting the key ontology features likely to be reasoner performance degrading factors; then, by

helping him extracting the ontology subsets that are potentially the most compelling ones for the

reasoning tasks.

As previously highlighted in the introduction of this thesis, our solutions are meant to be useful

for end-users whether they are experienced or not, regarding the ontology reasoning. Therefore, one

important goal of this thesis is to provide an interactive tool which allow users to benefit from our

proposals.

2.6 Conclusion

In this chapter, we have reviewed researches in various areas that are closely related to our research

issues. We recall that we are looking to provide solutions to end-users to gain a better understanding

of reasoner empirical behaviours, and more specifically, to gain insights about its ontology hardness

factors. We showed that formal complexity analysis of reasoner performances seems hopeless in bringing

solutions to our research interrogation. For this reason, we turned to empirical, rather than analytic,

analysis. Based on our review, we argued that from an empirical perspective, the most arduous problem

with DL reasoners is the performance variability phenomenon. We examined related works which has

introduced solutions to cope with this challenging issue. We came to the conclusion that machine

learning and data mining techniques can help us gain more insights and knowledge on algorithm’s

empirical behaviour which analytical methods can not provide. Thus, we chose these techniques as

the kernel theory to guide the design of our solutions. At the end of this chapter, we set up the key

elements in this thesis roadmap and the contribution we are willing to achieve.

In the next chapter, we will start establishing our machine learning based approach for reasoner

performance prediction, by introducing a novel collection of ontology features.
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3.1 Introduction

The main goal of this thesis is to track down to variability of DL reasoner empirical performances

through a rigorous application of the supervized learning approach. The latter one entails learning

a mapping between a set of features describing the reasoner input, i.e. the ontology, and an output

variable representing the reasoner performance to be predicted. Obviously, choosing good features

is crucial to the construction of good predictive models. In chapter 2, we highlighted the lack of

automatic way of constructing good feature sets to outline the computational complexity of OWL

ontologies. Indeed, researchers must use domain knowledge to identify properties of the instance that

appear likely to provide useful information.

Given these findings in this chapter, we will be looking to determine the primary features that

would reveal the design complexity of OWL ontologies regarding the reasoning tasks. To accomplish

this purpose, we conducted a large investigation about existing works proposing metrics to evaluate

the design quality of an ontology [GCCL06, TAM+05, LNJ+10, ZLT10] or discussing the sources of

reasoning complexity in Description Logics [Don03, THPS07, BCM+10]. Our focus was on the ontology

expressivity richness from a knowledge representation perspective. Our investigations have lead us to

propose a novel collection comprising 116 ontology features. The latter ones are in their basic form,

qualitative and quantitative statistics outlining a broad range of structural and syntactic ontology

design attributes.

In the remainder of this chapter, we introduce our ontology feature suite. Then, we describe the

ontology corpus selected for the different scheduled experiments throughout this thesis. Finally, we put

into discuss the computational cost of the main sets of features, thus the most efficiently computable

ones could be outlined.

3.2 Modelling the Ontology Design Complexity

The first step in our research work aims to identify domain independent relevant features, likely to

outline the empirical hardness of an ontology against the reasoning tasks. To achieve this purpose, we

are planning to profile the design complexity of an ontology using easy to understand and efficiently

computable metrics. Our focus will be on OWL ontologies. Therefore, the modelling of our features

is mainly guided by the specification of the OWL language, previously provided in Chapter 1, Section

1.3. More specifically, we established a meta-model of this language in order to ease the understanding

of its internal structure and to highlight the primary components of its grammar. This meta-model

is depicted in Figure 3.1. Throughout this figure, we can distinguish the main entities of the OWL
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Figure 3.1: Meta Description of The OWL Language

language and their interdependencies. We can also identify some concepts of the Description Logics

terminology highlighted in dashed boxes, together with their corresponding OWL entities.

We designed 116 ontology features that cover different structural and syntactic attributes of an

OWL ontology. We should highlight that some of them are already widely recognized ontology quality

evaluation metrics. In overall, we organized our ontology features suite into 4 main categories described

in the following:

1. Ontology size description is a group of metrics characterizing the size of the ontology considering

both the amount of its terms and axioms.

2. Ontology expressivity description is based on two main features, namely the OWL profile1 and

the DL family name.

1For further details about OWL 2 profiles, the reader is kindly referred to http://www.w3.org/TR/owl2-profiles/.

http://www.w3.org/TR/owl2-profiles/
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Figure 3.2: The Taxonomy of the Ontology Feature Suite

3. Ontology structural description gathers various metrics commonly used by the ontology quality

evaluation community [LNJ+10] to characterize the taxonomic structure of an ontology.

4. Ontology syntactic description is a set of metrics that we proposed in order to quantify some

of the general theoretical knowledge about DL complexity sources [BCM+10].

We further refined these categories by splitting them up into more explicit sub-categories. One

or more set of features are within each sub-category. The full taxonomy of the proposed features is

depicted in Figure 3.3, where the leaf boxes (coloured in dark blue) stand for the final features. The

direct ancestors of these boxes represent the different feature sets (purple color), which in turn belong

to the sub-categories (green color). It is important to note that we avoided the translation of the OWL

ontology into any specific graph representation, except for its initially defined hierarchies of named

classed or named properties. The latter ones have native tree-like structure. The rational behind this



CHAPTER 3. ONTOLOGY PROFILING 116

choice is twofold: i) as previously asserted by Sazonau et al. [SSB14], there is no general agreement

about the way an OWL ontology should be translated into graph; ii) the translation operation is time

and memory consuming one, in particular for large scale ontologies. As consequence, we discarded

state-of-art ontology evaluation metrics which are graph based ones and we reformulated others so

that it could be directly computed from the OWL representation of the ontology.

In the remainder of this chapter, we will provide a formal description of each proposed ontology

feature and expose the rational behind its proposal. The upcoming descriptions were partly introduced

in our previous work [AYL15b].

3.2.1 Ontology Size Description

Features in this category are intended to characterize the size of the ontology.

Definition 1 (Class Size) Given an OWL ontology signature Õ = 〈NC , NR, NI〉, the class size,

denoted by SC, stands the number of names nci, which uniquely identify classes in the ontology, nci ∈

NC and SC=|NC |.

Analogously to Definition 1, we propose to compute the number of user-defined object and data

property names, respectively denoted by SOP and and SDP. Similarly, we suggest to record SI,

which stands for the size of the ontology in terms of named individuals. Finally, SDT represents the

number of data types2. The set of features made up from SC, SOP, SDP, SI and SDT is denoted by

SSIGN which depicts the size of the ontology signature.

Rationale Using the above features, the amount of terms defined in a given ontology is quantified.

It is worth noting that not all of the modern DL reasoners have support for data types. An increasing

number of the latter ones would compromise their performances and even causes their crash while

processing the ontology.

Definition 2 (Axiom Size) The ontology size in terms of axioms is characterized by two values: the

number of OWL axioms qualified as logical ones, designed by OLA; and the total number of axioms,

denoted by OA. Hence, we will be denoting by OAS the set made up from OLA and OA.

Definition 3 (KB Size) The size of the knowledge base, denoted by KBS, is a sub-set of features

intended to characterize the amount of axioms in each knowledge base sub-part. Thus, KBS includes

STBx, SRBx and SABx, which stand respectively to the number of axioms belonging either to TBox,
2These are RDF literals or simple types defined in accordance with XML Schema datatypes.
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RBox or ABox. Furthermore, KBS involves RTBx, RRBx and RABx, as the respective size ratio of

each KB sub-part w.r.t. the total number of logical axioms (OLA).

Rationale Commonly known, reasoners only deal with axioms belonging to the KB’s sub-parts

TBox, RBox or ABox. Annotations are simply ignored when processing an ontology for a reasoning

task. Furthermore, it is well accepted that some reasoners are particularly optimised to operate on the

concept level (TBox, RBox), while others are more efficient in managing the ontology assertional sub-

part (ABox). Therefore, it is important to capture the knowledge size of each of these KB components

in order to anticipate the computational cost of the reasoning services.

3.2.2 Ontology Expressivity Description

The term expressivity could be confusing in the ontology field. In fact, it has different meaning

depending on the context of its use [OAC+07]. For instance, expressivity in the field of ontology

quality assessment is used to describe the ontology knowledge richness w.r.t. the domain under

conceptualization. However, expressivity at the knowledge representation (KR) field is often used

to characterize the grammar richness of the KR language according to which the ontology has been

formulated. In this subsection, we put our focus on the second definition of the ontology expressivity.

We retained two main qualitative features commonly used to represent the expressivity of the ontology

authoring language.

Definition 4 (Ontology Expressivity Profile (OEP)) is a set which includes the OWL profile

name of the ontology, denoted by OPR and the Description Logic family name underpinning the

ontology language grammar, denoted by DFN.

There are four formal OWL 2 profiles3 namely DL, EL, QL and RL. However, in some particular cases,

the language constructs used in the ontology may violate rules of each of these profiles. In this case,

we denote by PNAN the profile of the ontology. On the other hand, we tag by PFULL the ontology

that matches all the OWL profiles.

Rationale OWL 2 and more precisely OWL 2 DL is a highly expressive language. Key reasoning

tasks like consistency checking have an extremely high worst case complexity: N2ExpTime-Complete

[HKS06], i.e., intractable. However, this complexity could be tractable with less expressive fragments

of OWL 2, i.e. EL, QL and RL profiles. Nevertheless, not all the reasoners are intended to support

3For further details about OWL 2 profiles, the reader is kindly referred to http://www.w3.org/TR/owl2-profiles/.
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the entirety of OWL 2 DL. Some of them, such as ELK4, are very efficient in handling the OWL 2 EL

profile and less performing with OWL 2 DL profile. Therefore, the OWL profile name (OPR) is another

important feature that would allow us to discriminate the ability of the reasoners. On the other hand,

the DL family name (DFN) is a more explicit denomination of the ontology DL constructs set. For

instance, an ontology could be AL or SH or SHOIN , etc. Typically, the theoretical computational

complexity of the reasoning tasks is defined with respect to the DL category (DFN) of the ontology

language (c.f. Chapter 2, Section 2.2) .

3.2.3 Ontology Structural Description

Particular attention was paid to the characterization of the taxonomic structure of an ontology, also

known as the inheritance hierarchy. The latter has a tree like shape and is built from subsumption

relationships between named classes A v B or named properties R v S. We remind that when

classifying an ontology, the reasoner intends to infer implicit subsumption from the explicitly defined

ones. Hence, a reasoner will try to scan most of the explicit subsumption relations in an efficient

way. Therefore, the more the inheritance hierarchy is complex, the more computational time would

be required. In this category, we gathered various features that have been previously introduced in

literature by the ontology quality evaluation community [GCCL06, TAM+05, LNJ+10] and introduced

new ones. The following three subcategories describe the essence of the retained features.

3.2.3.1 Hierarchical features

We build both concept hierarchy denoted by HC and property hierarchy denoted by HP. Then for

each hierarchy, we measured the following features:

Definition 5 (Inheritance depth) The maximal depth of the class hierarchy (HC_MHD) stands

for the longest path between a named class C and the root of the class inheritance hierarchy.

Worth noting, we consider a unique root corresponding to owl:Thing in any class hierarchy. If more

than one already exist in the ontology, a fake root will be added joining the actual ones. Following

Definition 5, we propose to compute the maximal depth of the property hierarchy (HP_MHD).

Rationale The inheritance depth (HC_MHD) was identified by LePendu et al. [LNJ+10] as a

possible reasoning complexity source. It was also proposed by Zhang et al. [ZLT10] as an ontology

design complexity metric and called DIT. The rationale is that great values of HC_MHD would indicate

4The reasoner is available at https://www.cs.ox.ac.uk/isg/tools/ELK/

https://www.cs.ox.ac.uk/isg/tools/ELK/
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more computational cost will be required to process classes at the bottom of the inheritance tree. This

is because such classes will be affected by changes in any of their ancestors.

Definition 6 (Direct descendant) It is characterized by two values: the maximal number of direct

subclasses, denoted by HC_MSB; and the average number of direct subclasses, denoted by HC_ASB.

Similarly, we propose to compute HP_MSB and HP_ASB, respectively the maximal and the

average sub-properties in the inheritance property hierarchy.

Rationale The value of the direct descendant HC_MSB represents the utmost case where a given

named class C is used by other classes. A change to C will induce consequential impact to all the

dependent classes. HC_ASB was also used by Tartir et al. [TAM+05] and called the Inheritance

Richness of the ontology. The authors claimed that low values of this feature would indicate that the

ontology is a vertical one with high degree of knowledge specification. However, lower values would

describe a shallow horizontal ontology having less detailed knowledge.

Definition 7 (Direct ancestors) It is known as the tangledness of the class hierarchy and matches

the number of named classes having more than one direct ancestor. By HC_TG we will be denoting

this number. Furthermore, by HC_MTG we will be denoting the maximal reported number of direct

ancestors among the HC classes.

Analogously, we suggest to characterize the tangledness of the property hierarchy by respectively

measuring HP_TG and HP_MTG.

Rationale The tangledness concept was introduced by Gangemi et al. [GCCL06] in order to outline

the impact of working with the multiple inheritance design pattern when modelling the class hierarchy

in an ontology. Tangledness was also called tree impurity by Zhang et al. [ZLT10]. They tried to

outline the impact of deviating from the tree-like structure of the HC design.

Seeking a closer inspection of the class inheritance design structure, we suggest to compute the

Freeman’s graph centralisation measure based on node degree [Fre78]. The latter one is a measure of

common use in graph and semantic network analysis. We recall that the degree of a graph node is equal

to number of edges incident to this node. In the case of class hierarchy, a node could be viewed as a

named class and its degree is equal to the sum of its direct ancestors and direct descendants. According

to this specification and the Freeman’s definition, we can suggest to compute the class hierarchy degree

centralisation as follows:
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Definition 8 (HC Degree Centralisation) Let Cd be the function computing the degree centrality

of any class in HC such as ∀ci ∈ HC, Cd(ci) = degree(ci) and let c∗ be the class having the highest

degree centrality in HC, thus the class hierarchy degree centralisation denoted by HCDC is equal to:

HCDC =

∑N
i=1(Cd(c

∗)− Cd(ci))
(N − 1)(N − 2)

(3.1)

where N is the number of classes in the inheritance hierarchy, i.e. N = |HC|.

The HCDC index ranges between 0 and 1. In a similar way, we suggest to compute the property

hierarchy degree centralisation, that we denote by HPDC

Rationale HCDC is intended to show at what extent is there a small number of highly central classes

in HC. This index reaches its maximum value of 1 when one single class is semantically connected

with all of the remaining (N − 1) classes, while the other classes are connected only with this central

class. On that ground, we believe that in highly centralized HC, reasoning procedures affecting central

classes, will have impact on larger number of classes than expected to be. Thus, these procedures would

require much more computing time.

3.2.3.2 Cohesion features

The literature provides a plethora of various metrics to design the cohesion in the ontology. These

metrics helps to determine the degree of relatedness between the ontology classes or properties. To

apprehend this feature, we opted for the cohesion metrics introduced by Faezeh et al. [FW10]. The

latter authors have proposed four measures of cohesion, covering different levels of knowledge in the

ontology. For the seek of brevity, we did not report the different formulas of these metrics, yet a short

description of each of them is given in the following:

• the class and property cohesion, respectively designed by CCOH and PCOH. These are fractions

computed based on the number of direct and indirect hierarchical links joining one node, i.e. named

class or property, and all of its descendants.

• the object property cohesion denoted by OPCOH. This feature is computed using the number of

classes which have been associated through the particular object property domain and range.

• the ontology cohesion denoted by OCOH. It is simply a weighted aggregation of the previously

defined cohesion metrics, i.e. CCOH, PCOH and the OPCOH.
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3.2.3.3 Schema richness features

We further improved the ontology structural category by two additional features. The latter are well

known for the ontology evaluation community, since they are part of the OntoQA tool [TAM+05].

• the ontology relationship richness (RRich). This feature outlines the diversity of relations in on-

tology. Formally, it is the ratio of the number of relations between classes that are not hierarchical

w.r.t. total number of different types of the ontology relationships. We slightly modified the ini-

tial formula of this metric described in [TAM+05], in order to be able to compute it without any

translation of the ontology into a graph.

• the ontology attribute richness (ARich). It is defined as the average number of attributes per class.

To compute this metric, we considered a named OWL data property as an attribute relative to the

named classes specified in its rdfs:domain.

3.2.4 Ontology Syntactic Description

Features within this category are intended to quantify some of the general theoretical knowledge about

the complexity sources in description logics [Don03]. To accomplish this purpose, we conducted an

investigation about main reasoning algorithms [BS01, MSH09] and the most known reasoning optim-

ization techniques [Hor03, THPS07]. According to the respective authors of [HB91, Don03], we would

distinguish three basic sources of inefficiency in reasoning with Description Logics. Namely, these are

(i) the high degree of non-determinism introduced by the use of GCIs and more specifically disjunction

(t) constructor, or negation associated to conjunction (u) (ii) the construction of large models due to

the existential restriction (∃), or (iii) interactions from different natures between these constructors.

More in details, the authors suggested that the worst case might occurs when nominals interact with

inverse roles and quantified number restriction, in particular, the max cardinality restriction. Actually,

there is a general agreement that each of the above mentioned class constructor, alone, is challenging

to reason with and needs special optimization techniques.

All of the above explanations are general ones, lacking precise definitions of the nature of the

interactions, or the specification of boundaries to be respected when using the hard DLs constructors

in the ontology knowledge modelling. Therefore, we will be looking to translate these inspections into

quantitative metrics that could be computed and empirically analysed. We proposed 6 sub-categories

of features, each covering specific aspects of some of the OWL entities. Detailed description of these

features are provided in the upcoming subsections.
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3.2.4.1 Axiom level features

Features within this subcategory attempt to characterize the relevance of particular OWL axioms.

Definition 9 (Axiom type frequencies) It is a set, denoted by ATF, where each element is equal

to the ratio between the occurrences of one particular type of OWL axioms and the total number of the

logical axioms in the ontology.

Rationale Values within the ATF set capture statistical information about every OWL axiom type5

in order to examine whether the high frequency of some axiom types would increase the computational

cost of the reasoning.

Definition 10 (Axiom nesting) The parsing depth of an axiom is equal to the number of levels of

nested expressions constructing this axiom. The axiom nesting of an ontology is characterized using

two values: the highest and the average value of parsing depth of all of its logical axioms, respectively

designed by AMD and AAD.

Rationale AMD and AAD are features of common use, adopted also by Sazonau et al [KLK14].

The nesting nature of axioms is likely to increase the probability of entanglements across the axioms

and thus it would raise the ontology reasoning computational cost. AAD gives insights about the

worst case, where an axiom is nested. However, AMD would indicate at average how the axioms in

the ontology are nested. As an example of a nesting axiom, we can take the next expression which has

already been listed in [BCM+10]: C ≡ Personu (≤ 1hasChildt (≥ 3hasChildu∃hasChild.Female))

3.2.4.2 Constructor level features

In previous reasoner prediction works [KLK12, KLK14], authors simply counted axioms that involve

potentially complex class constructors. However, they missed that one constructor could be involved

more than once in the same axiom. Moreover, we believe that we can categorize the ontologies according

to how often constructs are employed to express complex classes and by characterizing the concept of

ontology construct density. In order to achieve this purpose, we suggest three features that we describe

in the following:

Definition 11 (Class Constructor Frequency) Denoted by CCF, it is a set of 22 values, where

5ATF is computed for each of the 28 OWL logical axiom specified in http://www.w3.org/TR/owl2-syntax/

http://www.w3.org/TR/owl2-syntax/
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each element stands for the frequency of a specific class constructor6, by considering its occurrences in

a single axiom than across all the ontology axioms.

Formally, given a constructor cci belonging to the set of all DL constructors (cci ∈ CC), the

Frequency(cci) stands for the ratio of the cci total occurrences in each TBox axiom, i.e. ∀ATj ∈ T ,

to the sum of all constructors occurrences. The Frequency(cci) value ranges within the unit interval.

Frequency(cci) =

∑|T |
j=1Count(cci, A

T
j )∑|CC|

i=1

∑|T |
j=1Count(cci, Atxj )

(3.2)

Rationale The expressiveness of an ontology language is often defined in terms of the class and

property constructors admitted in this language. In the remainder about DL basic notions (Chapter 1,

Section1.3.1), we explained that different combinations of constructors can give rise to DL languages

with different computational properties. For instance, in Tableau algorithm [BS01], a different expan-

sion rule corresponds to each kind of constructs with a different computational cost. Therefore, using

the CCF feature we could outline how often we are using any of the class constructors and hence, the

ones having the highest impact on the reasoning time could be identified.

Furthermore, we proposed to characterize the ontologies that are dense in terms of class construct-

ors, otherwise, having their number of employed constructors close to the maximal possible number.

Definition 12 (Ontology Class Constructors Density) Denoted by OCCD, it stands for the ra-

tio of the sum of occurrences of all the existing constructors, to the maximal possible number of con-

structors in the ontology. The latter is defined as the multiplication result of the total number of TBox

axioms |T |, by the maximal counted number of constructors in a single TBox axiom.

Let AMC be the maximal possible number of constructors in the ontology, then the ontology class

constructors density (OCCD) is computed as follows:

AMC = max(

|CC|∑
j=1

Count(ccj , A
T
j ), ∀ATj ∈ T )

OCCD =

∑|T |
i=1

∑|CC|
j=1 Count(ccj , A

T
j )

|T | ×AMC
. (3.3)

6Here we refer to all of the available class constructors in OWL 2 DL such as conjunction (∪), disjunction (∩), negation

(¬), quantification (∃, ∀), etc.
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Rationale The value of OCCD index ranges within the unit interval [0, 1]. OCCD reaches its max-

imum when all TBox axioms have the same number of constructors whatever are their types. We

believe that dense ontologies in terms of class constructors are likely to have larger number of entan-

glements amongst the axioms which would increase its reasoning time. Both OCCD and AMC will be

computed for every ontology.

More invaluable, we suggest to examine the interactions between constructors within single axioms.

This would be achieved by tracking down some constructor combinations commonly used to model

complex descriptions of classes. We called these combinations the constructors coupling patterns and

denoted them by CCP. The set of patterns within CCP are described in the following. We will be

recording the occurrences of each pattern.

Definition 13 (Constructors Coupling Patterns) Denoted by CCP, it is a set of three modelling

patterns characterizing particular interaction of class constructors within single axioms. Namely, the

patterns are IU, EUvI and CUvI defined as follows:

• IU (Intersection, union Pattern): is reported when a conjunction (owl:intersectionOf) of class

expressions in an axiom is part of a disjunction (owl:unionOf) of class expressions in the same

axiom, and vice versa. This pattern can manifest in one of the following forms:

u (. . . ,t(C1, C2, . . .), . . .) (3.4)

t (. . . ,u(C1, C2, . . .), . . .) (3.5)

• EUvI (Existential, universal having intersection Pattern): is defined by a conjunction of class

expressions, that concurrently contains an existential restriction and a universal restriction asso-

ciated to the same role r. This pattern can be manifested by one of the following forms:

u (. . . ,∃r.C, ∀r.D, . . .) (3.6)

C1 v ∃r.C and C1 v ∀r.D (3.7)

• CUvI (Cardinality, universal having intersection Pattern): is a particular case of the EUvI pat-

tern, where existential restriction is replaced by some cardinality restriction form (≤ nr.C, ≥ nr.C,

= nr.C).

Rationale The motivation behind this proposition comes from lectures about ontology anti-patterns

[RZ13]. The anti-patterns were put forward to highlight the bad practices in ontology modelling. In

our case, we focused on those anti-patterns that would increase the computational cost of reasoning
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when Tableau-like [BS01] algorithms are employed. Actually, while checking a satisfiability of a concept

by the later algorithm, expansion rules are recursively applied in order to build a completion graph,

called the model. Each class constructor has its own expansion rule. Applied in a specific order, the

rules may lead to a sharp increase in the size of the Tableau algorithm completion graph, and hence

the reasoning cost. The above specified patterns are intended to describe some fragments of axioms

where the order and the interaction between constructs would be hard to handle.

3.2.4.3 Class level features

Classes in the ontology could be named or specified via complex expressions. In this subcategory, we

will highlight different methods to define classes and track their impact in the ontology TBox part.

According to [Hor03], concept definition axioms are primitive ones PCD of the form A v D, or non

primitive ones NPCD of the form A ≡ D , where A is an atomic concept name. However, real-

world KBs commonly contain general definition axioms GCI. These axioms are of the form C v D or

C ≡ D, where both C and D are complex class descriptions involving class constructors. GCI axioms

are known to be costly to reason with, due to the high degree of non-determinism that they introduce.

Thus, optimization techniques, mainly Absorption, is commonly used to reduce the number of GCI

in the ontology. Absorption is widely implemented in DL reasoners, and designers are often looking to

increase its optimization power by employing different approaches. Motivated enough, we propose to

compute the following values:

Definition 14 (Class Definition Features) It is a set of values, denoted by CDF, which intend to

characterize the dominant form of class definition in the ontology. CDF includes SPCD, SNPCD and

SGCI, which stand respectively to the number of axiom being either PCD, NPCD or GCI. Similarly,

CDF involves RPCD, RNPCD and RGCI, which respectively denote the ratio of SPCD, SNPCD and

SGCI, w.r.t the total number of logical axioms in the ontology.

In DL, a cyclic definition axiom is the one that references the same (or equivalent) classes (or

properties) on both sides of the subsumption relation (i.e. ∃R.C v C, or R ◦R v R). Such an axiom

may be explicit of inferred by a reasoner. We only computed the explicit ones by implementing the

method described by Baader et al. [BBM11].

Definition 15 (Cyclic Class Features) It is a set, denoted by CCYC, which involves two values:

the number of cyclic class definitions, designed by SCYC and the ratio of these definitions w.r.t. total

number of named classes, designed by RCYC .
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Rationale A naïve application of the Tableau rules [BS01] does not terminate if the TBox contains

cycles. To ensure termination is such cases, various reasoning optimization techniques were proposed

such as the blocking technique [Hor03, THPS07]. The CCYC features were suggested in order to

characterize to which extent applying these techniques is required.

Definition 16 (Class Disjointness Feature) This is the ratio of named classes declared as disjoin

ones, w.r.t. the total number of classes. By CDIJ, we will be denoting this feature.

Rationale Our motivation to compute this feature is based on stated observations by Wang et al.

[WP07]. The latter ones highlighted that class disjointness can greatly reduce or eventually increase the

reasoning computational time. This would depend on the "right amount" of disjointness statements

to be put in an ontology. However, we still ignore how to set out this value. The class disjointness is

also examined by the Pellint tool [LS08], and reported as a bottleneck when the number of statements

exceeds some predefined threshold.

3.2.4.4 Property level features

In this subsection, we propose some features relative to the ontology object properties (OP). In

OWL, an OP could be defined as transitive, reflexive, functional, etc., using a single axiom from

the RBox. For instance, when specifying an object property as transitive, we only need to use the

(owl:TransitiveObjectProperty) axiom. However, this object property could be repeatedly involved

in many other TBox axioms and even more than once in one axiom. Consequently, reasoning tech-

niques dealing with transitivity would be applied as far as this transitive object property is used. Given

this finding, we propose to outline the frequency of each particular object property characteristic.

Definition 17 The object property characteristic frequency (OPCF) is a set of 9 values, each of

them is recording the frequency of particular object property characteristic.

Let OPC be the set of all object property characteristics. The frequency of every element in OPC

is computed within two stages. First, we start by collecting all the named object properties defined

with the particular characteristic Copi ∈ OPC. We designed the latter set as S(Copi ) = {OPj , j ≥ 0}.

Then, we sum up the occurrences of each OPj ∈ S(Copi ) and denoted it OPCO(Copi ). Thus, the

frequency of Copi is equal to the fraction of OPCO(Copi ) by the sum of OPCO values computed for

every characteristic Copi ∈ OPC.

OPCO(COPi ) =

|S(Cop
i )|∑

j=1

|T |∑
k=1

Count(OPj , Atxk) (3.8)
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Frequency(COPi ) =
OPCO(COPi )∑|OPC|

j=1 OPCO(COPj )
(3.9)

The Frequency(COPi ) is ranging in the unit interval [0, 1].

Rationale The respective authors of [Hor03, THPS07] have emphasized on the hardness of managing

some of object property characteristics, since they damage the effectiveness of reasoning optimization

techniques7. By computing the OPCF set of values, we would be able to identify the thresholds from

which the presence of some OP characteristics would limit the reasoner performances. Furthermore, it

would allow to flag out which of the characteristic have the highest impact on the reasoning procedure.

Furthermore, we suggest to inspect the effect of using high values when defining object properties

number restrictions. Otherwise, we are interested in the upper bound of values used in the qualified

number restrictions: at-least, at-most and exact. For instance, taking a restriction of the form ≥ nR.C,

we will be recording max(n) of all restrictions having the same form. Accordingly, we define the

following sub feature set:

Definition 18 (Number Restriction Features) Denoted by NRF, it is a set composed of the

biggest cardinality values employed in qualified number restrictions, i.e. BMAX, BMIN, BEXT,

and the average value of all the numbers occurring amongst the different types of cardinality restric-

tions, denoted by (AVC).

Rationale The qualified number restrictions are expressive DL constructors which equips the lan-

guage with the ability of counting. However, they can dramatically increase the complexity of the

standard reasoning algorithms. In [HB91], authors admitted that the complexity of reasoning is evid-

ently a function of the numbers occurring in the qualified number restrictions, i.e. m, n in (≤ mR.C),

(≥ nR.C) or (= nR.C). By increasing m or/and n, the size of the completion graph and the number

of non-deterministic choices computed by a Tableau-like algorithm would grows tremendously. The

NRF feature is designed in order to characterize the impact of this increase.

3.2.4.5 Individual level features

In this subcategory, we specify some of the interesting characteristics of named individuals that would

be declared in the ontology. When recalling the basic notion of DLs (Chapter 1, Subsection 1.3.1), we

mentioned that named individuals used in TBox axioms to define new classes are called nominals.

7For instance, Internalisation and Caching are less effective at the presence of inverse properties in the ontology
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Definition 19 (Nominal Frequency Features) Denoted by NFF, it is a set of two scores. The

first score records the ratio of nominals w.r.t. the individuals size (SI) and denoted by NomTB.

However, the second score indicates the ratio of axioms having nominals w.r.t. the TBox size and it is

designed by TBNom.

Rationale Modelling with nominals would come at a price. As previously pinpointed by Tsarkov et

al [THPS07], nominals break the advantageous tree model property of TBoxes and tableau algorithms

can no longer decide a TBox consistency test by constructing a tree-like model. Thus, more time-

consuming reasoning procedures are deployed to handle the nominal semantics. However, we ignore

from which threshold using the nominals would damage the reasoner performances. Features within

the NFF set are designed to capture this impact, so that the exact thresholds would be figured out.

Analogously to the above defined CDIJ feature, we propose to examine the effect of missing or

probably over specifying the similarities/dissimilarity across the named individuals.

Definition 20 (Individual Similarity Features) Denoted by ISF, it is a two feature set composed

of IDIFF, the ratio of named individuals specified as different ones, and ISAM, the ratio of named

individuals declared as equal ones (owl:sameAS).

3.3 Computational Cost of the Ontology Features

To facilitate the automated computation of the proposed features, we have developed a Java metric

tool, we called the ontology profiler. The latter one is mainly based on the OWL API (see Chapter

1, Subsection 1.3.3). It traverses each ontology, collects and stores the calculated metrics. Worth to

note, we also wrote SPARQL queries in order to compute the constructors coupling patterns (CCP)

(Subsection 3.2.4.2). Hence, we employed the Jena API in order to query the ontologies looking for

these patterns.

In the remainder of this section, we describe the ontology corpus we will be using throughout this

thesis, some ontologies will be profiled using our tool, then we discuss to computational cost of each

proposed ontology feature in order to identify the most efficiently computable ones.

3.3.1 Description of the ontology corpus

We remind that the main goal of this thesis is to learn to predict DL reasoner empirical behaviours

in order to provide assistance to novice and expert users when looking for guidance. Our predictive
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Figure 3.3: Description summary of the introduced ontology feature suite
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approach is mainly based on modelling the empirical hardness of ontologies using efficiently computable

features. Therefore, to ensure the good quality of the predictive results, special attention should be

paid to the identification and selection of an ontology population, suitably large and representative

of DL problems that are likely to occur in real word Semantic Web applications. Thus, ontologies

would be treated as random factors when conducting the learning process. As previously highlighted

by Sazonau et al. [SSB14] predictions trained from a biased ontology corpus, towards easy to compute

ontologies would cause misleading generalizations. Hence, our primary requirement at this stage of the

study is to assemble an ontology corpus, which is highly diversified in terms of ontology characteristics,

in order to reduce the probability for a given reasoner to encounter only problems it is particularly

optimised for. To accomplish this purpose, we chose to work with ORE Corpora [MBP13] that we

describe in the following:

ORE corpora The Ontology Reasoner Evaluation Workshop, ORE [GBJR+13, BGJ+14, DGG+15],

is an annually organized event. The latter one includes a competition in which OWL reasoners are

faced with different reasoning tasks: classification, consistency checking, and realization over OWL EL

and OWL DL ontologies. The tasks are performed on several large corpora of real-life OWL ontologies,

obtained from the web, as well as user-submitted ontologies which were found to be challenging for

reasoners. In overall, the ORE 2014 ontology corpora contains 16,555 unique ontologies8. The set

comprises:

• the MOWLCorp9 (Manchester OWL Corpus) which was obtained through a Web Crawl and user

submitted ontologies;

• the Oxford Ontology Library10;

• a BioPortal11 Snapshot (June 2014);

• user submitted ontologies such as BioKB, DMOP, FHKB, USDA, DPC, genomic-CDS, City-Bench,

and so on (detail in [MBP13]).

Local ontology corpus We chose 2500 ontologies from the ORE corpora. This selection stands for

our local sampling of OWL ontologies, denoted by C(O) = {O1, . . . , On}. Within the latter set, almost

167 distinct DL families are covered, ontologies fall into various OWL 2 profiles and were binned

according to their sizes12. We can distinguish between small (0, 100], medium (1000, 10000], large

8The full set of ORE ontologies is available at http://zenodo.org/record/10791
9The MOWLCorp is available at http://mowlrepo.cs.manchester.ac.uk/datasets/mowlcorp/

10The library is available at http://www.cs.ox.ac.uk/isg/ontologies/
11BioPortal is accessible via https://bioportal.bioontology.org/
12The size is computed in terms of the number of the logical axioms

http://zenodo.org/record/10791
http:// mowlrepo.cs.manchester.ac.uk/datasets/mowlcorp/
http://www.cs.ox.ac.uk/isg/ontologies/
https://bioportal.bioontology.org/
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Figure 3.4: Ontology distribution over size bins, OWL 2 profiles and the most represented DL families.

Figure 3.5: Ontology distribution over axiom bins within TBox, RBox and ABox
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(10000, 100000] and very large > 100000 ontologies, knowing that the largest ontology in the corpus

includes 3 182 261 logical axioms. Figure 3.4 depicts the ontology distribution over the size bins, then

over OWL 2 profiles13. It also illustrates the number of ontologies within the most represented DL

families, i.e. the ones characterizing more than 7 ontologies in the corpus. Figure 3.5 gives a more

detailed description of ontologies, where the number of axioms falling in TBox, RBox and ABox are

depicted. Throughout these figures, we would observe that our ontology sampling is representative of

the different ranges of OWL ontologies and it is richly diversified in size and expressivity.

3.3.2 Discussing the computational cost

Throughout this chapter, we described our ontology feature. Figure 3.3 summarizes this work and

highlights the general taxonomy according to which the 116 proposed features are organized. Hereafter,

we assume that it is important to get an idea about the computational cost to get values of each of these

features. We remind that our final purpose is to employ them in prediction system about DL reasoners.

More specifically, given an input ontology, its feature values must be computed in the first place, then

provided to the system in order to get prediction about the performances likely to be exhibited by

a reasoner when attempting to process this ontology. Hence, we expect that the time required to

compute the features is shorter than the one a reasoner would take to process the ontology. At the

current stage of the study, we did not yet specified the reasoner(s) to examine, neither determined

which are the performance to anticipate. Therefore, we will adjudge a feature to be computationally

expensive, whenever the time required to get its value exceeds the one spent to load the ontology.

Nevertheless, we are attempting to study a whole ontology corpus rather than one single ontology.

We assume that feature value computational time would significantly vary across the corpus members,

since the selected ontologies belong to quite distinct size bins. Thus, we decided that all the comparison

will be carried out by considering the variation of the runtime achieved across all the ontologies.

To meet this requirement, we stated by partitioning our feature suite into sets, S1, . . . , Sl, made

up from computationally related features. Actually, we tried to arrange the features according to

our assumption about their levels of computational complexity. Table 3.1 describes the built in sets.

Later on, for each ontology in the above described corpus, we recorded the time spent to load it into

memory. Then, we measured its feature values and saved the time consumed over each feature set.

All the reported times are summarized in Figure 3.6 using a multiple box-and-whiskers plot. In this

figure, the y-axis corresponds to the logarithmic of the recorded computing time, initially measured

in milliseconds. Box-and-whiskers plot provide an excellent visual summary of the variation in the

reported runtimes through 5 statistical measures: minimum runtime value (MIN), lower quartile (Q1),

13Here, the profiles description follows the specification we made in Subsection 3.2.2
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Name Set members (the features)

S1 The ontology expressivity features (DFN, OPR).

S2 The ontology size features (SSIGN, OA, OLA, KBS).

S3 The class hierarchy (HC) features depending on Breadth-First traversal of the

class inheritance tree, i.e. the depth of the class hierarchy and its cohesion,

respectively HC_MHD and HC_COH, in addition to the cohesion of the on-

tology O_COH.

S4 All the HC structural features except those in S3.

S5 The property hierarchy (HP) features depending on Breadth-First traversal of

the property inheritance tree, i.e. the depth of the property hierarchy and its

cohesion, respectively HP_MHD and HP_COH.

S6 All the HP structural features except those in S5.

S7 The RCYC and SCYC features since uncovering the cycles within class defin-

itions requires a structural transformation of the axioms.

S8 The CCP feature as patterns are computed based on SPARQL queries.

S9 All of the syntactic features except those in S8 and S7.

Table 3.1: The ontology feature distribution over the built in sets.

Figure 3.6: Comparing the ontology loading time to the computational time of the ontology feature

sets recorded across the selected corpus.
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Figure 3.7: Outlining the efficiently computable ontology features

median, upper quartile (Q3), maximum time value (MAX). The ends of the vertical line, called the

whiskers, indicate the MIN and MAX reported runtime across all the ontologies, whereas the line inside

the box indicates the mean runtime value. The divergence in the loading time amongst the ontologies

is highlighted in the first yellow box. Each of the remaining boxes describes the time variation of

a specific feature set. The red dashed horizontal line outlines the maximal reported loading time,

however the green dashed line corresponds to the third quartile. Feature sets having their upper

whisker significantly above this line are considered to be computationally expensive ones. On these

basis, we would remark that S3, S7 and S8 are at the worst case the most time consuming feature

sets. We would also notice that the upper whisker corresponding to the S4 box is slightly above the

red line, however its third quartile is below the green line. Therefore, we did not tag this feature

set as a computationally expensive one. The remaining sets stands for the computational efficient

features comparing to the loading time. More precisely, we would observe that the structural features

characterizing the property hierarchy, within the S5 and S6 sets, have the lowest computing cost.

Typically, a property inheritance hierarchy is far less developed than the class inheritance hierarchy.

This is a common ontology modelling practice. Hence, HP feature values are often measured within a

short cut-off time.

Figure 4.2 summarizes our inspections. We mainly distinguished between two groups of features

according to their empirically provided computational cost, with respect to the overall ontologies

loading times: the low cost features and the high cost ones. Luckily, the values of the major part of

our feature suite, 108 out of the 116 features, could be computed within a time which is reasonably

acceptable comparing to the one required for the loading. This observation is available for any ontology

within the selected corpus. We should highlight that our ontology profiling tool could be further

optimized in order to reduce the computational cost of the S4, S7 and S8 features. For instance, we
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would considerer approximating the depth of the HC inheritance tree, using the Knuth’s estimate of

search tree size [Knu74], rather than measuring its exact value with BFS. We would also look for

different formulation to measure the hierarchy cohesion, to avoid the traversal search of HC. Besides,

the SPARQL queries we used to detect the patterns could be replaced by OWL API based methods.

However, at the current moment of the study, we are not sure whether the computationally expensive

features are important or not for the prediction of the reasoner performances. Hence, any further

optimization could be postponed to a later stage.

3.4 Conclusion

In this chapter, we introduced a novel ontology feature suite made up from qualitative and quantit-

ative easy to compute metrics, capable to unveil the internal design complexity of OWL ontologies.

We organized our features within four categories covering a broad range of structural and syntactic

ontology design attributes. We assume that using these features, ontology engineers could achieve a

better understanding of the overall complexity of their modelled ontologies. For instance, they could

characterize its size, expressivity level and how regular or potentially irregular its class and property

inheritance tree. Furthermore, they could inspect how rich the ontology is in terms of axioms types,

how often are used the DL constructors to express more complex classes and whether some commonly

known DL complexity sources appears in its vocabulary. Later on, we described the ontology corpus

that we will consider throughout this thesis. The computing time of the feature values was inspected

and compared to the loading time of the ontology under examination. This comparison was carried

over each ontology within the selected corpus. As result, we identified the set of the most efficiently

computable features and highlighted the potentially time consuming ones. In the remainder of the

thesis, we will describe how these features are applied to the development of a predictive learning

system about ontology reasoners.
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4.1 Introduction

The main purpose of this thesis is to provide support for users looking to cope with the DL reasoner

performances variability phenomena. The empirical behaviours of these systems will be tracked down

by intelligent exploration of data describing their past running. Indeed, we will be employing su-

pervized machine learning (SML) techniques to uncover the relationships between the ontology design

complexity and the reasoner performances. Thus, generic models could be trained to predict the future

reasoner behaviours over any input ontology. More specifically, we are aiming to learn a predictive

model able to anticipate whether a given ontology is empirically hard regarding a group of reasoners.

Then, we will conduct a finer-grained analysis of individual reasoners in order to assemble for each

of them, a predictive robustness profile (PRP). All of these inspections will be carried out under a

specific usage scenario. To help accomplish these purposes, we designed a generic learning framework

employing a rich set of SML techniques. Description details of this framework as well as its empirical

evaluation will be depicted throughout this chapter. Owing to this proposal, we succeeded to prove

the utility of our proposed ontology feature suite, in predicting the robustness of 6 state-of-art DL

reasoners.

We organized this chapter as follows: Section 4.2 specifies the examined ontology reasoning pre-

dictive problems and outlines the design of our generic learning framework. The various supervized

learning techniques employed in this framework are depicted in Section 4.3. The DL reasoners and

their ontology classification results are detailed in Section 4.4. This data collection is provided to

our learning framework in order to train a first predictive model about the hardness of ontologies.

Assessment details of this study case are provided in Section 4.5. Then, in Section 4.6, the built in

reasoner predictive robustness profiles are depicted and analytically discussed. In Section 4.7, the vari-

ous trained predictive models are put into examination in order to unveil the key ontology features.

Finally, our concluding remarks are sketched in Section 5.7.

4.2 Predictive Modelling of the Ontology Reasoning

We start this chapter by clarifying the concepts of ontology hardness and reasoner robustness, then we

will set up a formal definition of the reasoner predictive robustness profile, PRP. Later on, a description
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of our generic learning framework will be provided.

4.2.1 Robustness and Hardness judgement constraints

V. Mikolàs̃ek [Mik09] defined the robustness in the software field as the capability of the system to deliver

its functions and to avoid service failures under unforeseen conditions. Gonçalves et al. [GMPS13] have

relied on this definition in order to conduct an empirical study about the robustness of DL reasoners.

The authors have underlined the need to specify some particular computational constraints before

assessing the reasoners. These constraints would describe a specific reasoner usage scenario, under

which a reasoner may be considered either as robust or non-robust. We extended the Gonçalves et al.

recommendations by designing the RJC set as follows:

Definition 21 (RJC set) RJC stands for the reasoner robustness judgement constraints. It is a

finite set of variables representing functional (FC) and non-functional (NFC) requirements relative

to a particular DL reasoning scenario. RJC includes both FC={ time-limit, memory-limit, ontology-

range} and NFC={ reasoning-task, success-state, failure-state}, i.e. RJC = FC ∪NFC.

In our study, we chose to examine an online reasoning scenario. Under this context, the provided

time frames are likely to be tight ones, commonly restricted to few minutes, while the memory usage

might be less constrained since reasoners would be running on powerful server machines. Any range

of ontologies should be supported by the reasoners. On the other hand, we decided to inspect the DL

classification task given its earlier discussed importance (see Chapter 1, Subsection 1.4.1). This yields

to the following definitions of success and failure states: the success is reported when the reasoner

terminates the ontology classification task within the fixed time-limit and delivers correct results; the

failure means either a reasoner crashes when processing the ontology, or exceeds the time limit or

eventually delivers unexpected results. On these basis, we would define the robustness of a single

reasoner with respect to a particular RJC set as follows:

Definition 22 (Reasoner Robustness) The robustness of a reasoner stands for its ability to suc-

cessfully terminate a reasoning task under specific computational resource constraints, for any given

ontology.

We believe that our definition of reasoner robustness would cover both of the desired efficiency and

the correctness qualities. Thus by tracking down this property, we would provide ways to understand

and to cope with the reasoner performances variability phenomena, previously inspected. Definition

22 can be further extended to specify the most robust reasoner with respect to an ontology corpus and

a particular group of candidate reasoners.
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Definition 23 (Most Robust Reasoner) Given a fixed set of RJC, the most robust reasoner over

an ontology corpus is the one satisfying the success requirement for the highest number of ontologies

while maintaining the shortest computational time.

Considering the previous definitions, we can now settle the concept of an ontology overall empirical

hardness (OOH) as follows:

Definition 24 (Ontology Overall Hardness) Given a fixed set of RJC, a hard ontology regarding

a homogeneous group of reasoners is the one causing the failure of at least one of them.

Obviously, a rule must be set to be able to adjudge a group of reasoners as a homogeneous one. In our

study, we chose the reasoning methodology as the main criterion to construct the reasoner groups.

4.2.2 Ontology and Reasoner profiles from a predictive perspective

Our first learning problem is about predicting an ontology overall hardness (OOH) with respect to

its feature description. We recall that the features are metrics characterizing the ontology design

complexity, and belong to some feature space Fd, where d stands for the space dimension. Thus, any

ontology O would be represented by a d-dimensional vector X(O) = [x1, x2, . . . , xd] called a feature

vector, where xi with i ∈ [1, d] is a feature value. We design the learning of OOH as a binary ML

classification task [KZP06] where exactly two labels are to be predicted. Given a set of observations

about a collection of ontologies provided with their reasoning results, the OOH predictive model,

denoted byM(OOH), would be trained to categorize any ontology either as "Hard" or "Safe". Formally,

MOOH maps the ontology feature vector, i.e. X(O), into one label value, i.e. l̂, of the target variable

{Hard, Safe}. It is worth noting that the term "Safe" would only imply that, with a certain degree

of confidence, all the inspected reasoners are able to successfully achieve the reasoning task over the

examined ontology while operating under specified RJC constraints.

In our second learning problem, we chose to investigate means to cope with the variability of

reasoner empirical robustness across the ontologies. Given a suitably large and diversified population

of ontologies and a fixed set of RJC, we assume that the output quality of a reasoner is closely

depending on the quality of the input, i.e. the ontology. Such quality would be depicted using our

proposed ontology features suite and formally represented via a feature vector, X(O) ∈ Fs. On the

other hand, the quality measure of the output may be any characteristic of the result that we find

significant in the description of the reasoner robustness. We design by Qs, the space of reasoner

output quality attributes, where s stands for the space dimension. Henceforth, our problem is about

characterizing the correlation between Fd and Qs. Our main claim is that such correlation could be
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materialized using a reasoner robustness profile. The latter one is a composition of predictive models,

such that every model maps the quality of the input to an expected output quality attribute. We call

this composition, the predictive robustness profile (PRP) of an individual reasoner. A generic formal

definition of PRP is provided as follows:

Definition 25 (Predictive robustness profile) Given a finite set of RJC, an ontology quality fea-

tures space Fd and a reasoner output quality attributes space Qs, the predictive robustness profile of a

particular reasoner R, denoted by PRPR, is a s-dimensional vector, such that each of its elements is a

predictive model relative to a particular output quality attribute, i.e. PRPR = (M(Q1|R), . . . ,M(Qs|R)),

where ∀i ∈ [1, s], M(Qi|R) stands for the learned model, able to map the feature vector of an ontology

O, denoted by X(O) ∈ Fd, to one particular value of the quality output of a reasoner R according to

the attribute Qi.

PRP
RJC)
R : Fd 7→ Qs (4.1)

With respect to our above described reasoning scenario, we selected two main reasoner output

quality attributes. The first one stands for the nature of the termination state, denoted by S. Whereas,

the second attribute, designed by T , outlines the exact time spent by the reasoner to get this state.

The T attribute would allow for reasoner efficiency inspection and comparison versus other systems.

Hereafter, we will need to train the models corresponding to each attribute from our output quality

space Qs = {S, T}. The main purpose of predicting of a reasoner termination state is to have a model

capable to discriminate between the success state and the different forms of a reasoner failure for any

unforeseen ontology. Hence, we could list four possible labels: "Success", "Unexpected", "Timeout"

and "Halt". According to above specification of RJC constraints, the Unexpected state is notified when

the reasoning task is achieved in time, however the delivered inferences are adjudged as unexpected

with respect to the employed reasoner correctness checking method. Timeout stands for the case where

the task does not terminate within the time limit and Halt indicates a sudden stop of the reasoner

owing to some execution error. Considering this description, the learning task represents a multi-class

ML problem [Kot07]. A class stands for those ontologies sharing the same label. We denote by M(S|R)

such a model. The second quality attribute would rather require the training of a regression model

since the target variable is a quantitative value, i.e the runtime. We denote by M(T |R), the underlying

model. Intuitively, one would be interested in checking the reasoner runtime only in case of reasoner

success, which entails the correctness of the results. Therefore, M(T |R) is conditionally depending on

M(S|R). Literally, M(T |R) would estimate the reasoner computational time only when the success is

predicted.
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To train the above described predictive models, we need to provide empirical data describing the

past running of a reasoner over a rich collection of ontologies. This data would indicate the reasoner

runtime and termination state. One major obstacle we faced when looking to achieve this purpose was

about how automatically check the correctness of a reasoner results. In chapter 2, we already reviewed

the state-of-art solutions, and we highlighted that no existing method can handle a reasoner on its

own and adjudge the correctness of its results without any comparison with other reasoners. In this

thesis, we chose to work with Gardiner et al. [GTH06] reasoner correctness checking method. This is

because it is a fully automated solution, i.e. no expert or any human intervention is required. The

reasoner output are checked for correctness by a majority vote, i.e. the result returned by the most

reasoners are considered to be correct. Certainly, this is not a faultless method. Improving it would

be advantageous for our study, however this issue is out of the scope of this thesis.

4.2.3 Description of the learning framework

All of the previously specified learning problems are supervised ML tasks. M(OOH) andM(S|R) are ML

classification models, while M(T |R) is a regression model. Nevertheless, these models have a common

design structure. Actually, all of them try to map some feature vector describing an ontology, to some

label value from the target variable. Obviously, this target is close to the nature of the prediction

problem. Despite this difference, we can design a generic learning framework capable to accomplish

all the needed training steps for each of the designed models. Description details of this framework is

provided in the following. We abbreviated by P , any learning problem about ontology reasoning. In

our context, P would be either (OOH), or (S|R) or (T |R). It is important to note that this framework

is a more improved and basically generalized version of the learning methodology, we first established

in [AYL15a].

In any standard machine learning process, every instance in a training dataset is represented using

the same set of features. In our case, the instances are ontologies belonging to some corpus C(O) =

{O1, . . . , ON}, with N denoting the size of the corpus n =| C(O) |. Every ontology Oi ∈ C(O) is

represented by a d-dimensional feature vector X(Oi) ∈ Fs. The ontologies are provided with a known

label. The vector of all ontologies labels is specific to one particular learning problem P and denoted

by LP = [l(O1), l(O2), . . . , l(On)], where l(Oi) is the label of the i-th ontology. P belongs to our

problem space P = {OOH, (S|R), (T |R)}. By gathering the pairs (feature vectors, labels), a dataset

is built in and designed by DP = {(X(Oi), lR(Oi)}, i ∈ [1, N ]. Afterwards, the DP is provided to a

supervised machine learning (SML) algorithm in order to train its data, uncover the hidden patterns

and establish the predictive model about the examined problem, i.e. the MP model. The latter one

can have different forms: mathematical function, a graph or a probability distribution, etc. The form
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of the model depends on the employed supervised ML algorithm. When a new ontology, which does

not belong to the dataset, is introduced, then the task is to compute its features and then predict its

exact label l̂P (X(O)), using the already trainedMP .

MP : X ∈ Fd 7→ l̂P (X) ∈ LP (4.2)

We remind that we are aiming to uncover which of the ontology features have the highest impact

on reasoner empirical robustness. A simple approach is to force models to contain fewer uncorrelated

features. Indeed, the performances of the SML algorithms are very sensitive to the quality of the

employed features. Uninformative or highly inter-correlated ones could deteriorate the accuracy of

the learned models. Therefore, feature selection methods [CS14] are employed in order to remove

irrelevant and redundant features. A rich plethora of this kind of methods is available in the dedicated

literature. We selected the most known ones, and we put them in a specific set, that we denoted by FS.

The application of those methods will involve the creation of new dataset variants, called the featured

datasets. The latter ones are characterized by an eventually reduced subset of features. Similarly, we

will investigate several kinds of SML algorithms, gathered in a finite set denoted by SA. Worth noting,

the FS set contains the ∅ element, which means no feature pruning to apply. This configuration allows

us to maintain the initial dataset, denoted by RAWD, and thus compare between models trained from

RAWD and those trained from the featured datasets. The training steps will be repeated as far as the

number of the computed datasets for a given problem and the number of available SML algorithms.

Then, the established models will be evaluated against a bunch of assessment measures, denoted by

AM. Furthermore, we will provide methods to compare the predictive models, in order to uncover

their "best" one regarding the employed assessment measures.

We put forward these various inspections in order to identify the most effective combination (learn-

ing algorithm, feature selection method), which yields to the most accurate model given the available

data. In our learning framework, all of deployed SML techniques are gathered in one SML techniques

base, denoted by T Bsml. Roughly speaking, T Bsml stands for the triplet < FS,SA,AM >. Elements

within T Bsml are arranged in a way that indicates whether they would be applied to ML classification

or regression problems.

Algorithm 2 illustrates the previously described main steps in the training process given a specific

learning problem P . It starts by building the dataset according to the input data which include

computing the ontology features, clearing and normalizing the different values. Then, by referring

to the provided labels in the vector LP , the problem nature is identified and accordingly the SML

techniques base T Bsml is loaded (Algorithm 2, Line 3). In each nested iteration, M (F,A) stands for the

predictive model trained by a particular SML algorithm A ∈ SA from a featured dataset computed
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Algorithm 2: The Surpervized Learning Framework
Input : C(O) = {O1, . . . , On} the set of the training ontologies, LP = [l(O1), . . . , l(On)] the

labels vector relative to the problem P .

Output: MBest
P best learned model given the problem P .

1 [X(O1), . . . , X(ON )] ← computeTheFeatureVectors(S(O));

2 DP ← buildTheRawDataSet([X(O1), . . . , X(ON )], LP ) ;

3 T Bsml ← getSMLTechniquesBase(LP ) ;

4 foreach F ∈ FS do

5 DFP ← buildTheFeaturedDataSet(F , DP );

6 foreach A ∈ SA do

7 < M (F,A), π(F,A) > ← trainAndAssess(A, DFP , AM) ;

8 MF ← MF ∪ {< M (F,A), π(F,A) >} ;

9 end

10 < M (F,best), π(F,best) > ← bestModelFromADataSet(MF ) ;

11 MBest ← MBest ∪ {< M (F,best), π(F,best) >} ;

12 end

13 MBest
P ← bestModelAccrossDataSets(MBest) ;

14 return MBest
P ;

using a feature selection method F ∈ FS. Within trainAndAssess function (Algorithm 2, Line 7),

we utilize the standard stratified 10-fold cross-validation technique (see Chapter 1, Subsection 1.5.4.3)

for the evaluation of the trained models. For the sake of simplicity, we only retain the average values

of the computed assessment measures over all the cross-validation iterations. Then, we calculate an

overall quality assessment score for each trained M (F,A) model, that denote by π(F,A). Based on this

score, the "best" model given a specific dataset variant is selected, then the "best" one across all the

datasets will be decided. Worth to note, the comparison of models across the datasets (Algorithm 2,

Line 13) takes into account the number of the employed ontology features as well as the value of the

quality score. More precisely, the model having the lowest features dimension while approximating the

highest computed value of the π(F,A) score, will be picked as the final MBest
P . In Section 4.3, we will

provide a nominative description of the T Bsml elements and more details about the selection modes.

Obviously, the above described learning framework is a time consuming one. This would be due to

the high complexity of the employed learning techniques and the cost of the iterative cross-validation

process. Fortunately, this kind of study is often established offline, with enough computational re-

sources. As a result, a kind of meta-knowledge base characterizing the examined problems in terms of



CHAPTER 4. LEARNING THE EMPIRICAL ROBUSTNESS OF ONTOLOGY
REASONERS 144

predictive models would be built in. On the other hand, the predictions using priorly learned models

and can efficiently be computed online.

4.3 Learning Methods and Materials

All of the learning steps described in Algorithm 2 are written with the Java language in one single

prototype. Our techniques base T Bsml is basically composed from SML techniques provided within

the widely accepted Weka [HFH+09] tool-kit (cf. Chapter 1, Subsection 1.5.5). More specifically, we

made use of the Weka Java API1 in order to automate the learning process. In this section, we provide

a brief description of the employed SML techniques respectively arranged within FS, SA and AM

sets. For a more comprehensive description, please refer to Chapter 1, Section 1.5.

4.3.1 Feature selection methods (FS)

The feature selection is one important step in dataset preprocessing for training purpose. It aims at

selecting the most relevant features, by weeding out the useless ones. In previous works, Kang et al.

[KLK12] have compared 6 feature selection methods. Whereas, Sazonau et al. [SSB14] have deeply

investigated the inter-correlation between ontology features, using the Principal Component Analysis

(PCA). In our study, we are more interested in tracking out the subset of features, which correlate

the most with the performances of a given reasoner. We therefore advocate including all features

that show some promise of being predictive, and relying on feature selection methods to identify

the most useful ones. To achieve this task, we chose two well known feature subset selection methods,

described and compared in [AT16]: first, the Relief method (RLF), an instance-based attribute ranking

algorithm2; then, the Correlation-based feature subset selection method (CFS), which looks for subsets

of features that are highly correlated with the target variable while having low inter-correlations.

Both methods could be applied to ML classification or regression problems. Furthermore, we chose to

investigate the utility of employing supervised discretization [GLS+13] as a feature selection method for

ML classification problems. Basically, this technique stands for the transformation task of continuous

data into discrete bins while considering the distribution of the target labels. When no bins are

identified for a given feature, this latter one is considered useless and could be safely removed from

the dataset. As an application method, we opted for the well known Fayyad & Irani’s supervised

discretization technique (MDL) [GLS+13]. Furthermore, some observations we made throughout our

previous experiments [AYL15a] have motivated us to propose two additional selection methods, namely

1The Weka API is available at www.cs.waikato.ac.nz/ml/weka/downloading.html
2RLF will be used with a ranking threshold equal to 0.01.

www.cs.waikato.ac.nz/ml/weka/downloading.html
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RLF_MDL and CFS_MDL. Actually, we noted that MDL improves the predictive power of some

SML algorithms, however it does not significantly reduce the dimensionality of our features space.

On the other hand, RLF and CFS produces more compact feature vectors, but with little or even no

increase in the models accuracy. Therefore, we decided to propose a further feature selection procedure

operating within two steps: first, a base FS method, i.e. RLF or CFS is employed, then MDL is

applied over the achieved results. In overall, the FS set is made up from {RAWD(∅), MDL, CFS,

RLF, RLF_MDL, CFS_MDL }.

4.3.2 Supervised machine learning algorithms (SA).

We chose representative algorithms from distinct categories of the supervised learning approaches (cf.

Chapter 1, Section 1.5.2). Then, we arranged the SA set according to the nature the learning problem.

Table 4.1 lists the various algorithms deployed within the SA set and gives a brief description of their

main features. It is important to note that all the used implementations were applied with the default

parameters of the Weka Toolkit. Further details and description about these algorithms can be found

in [Abb14].

4.3.3 Assessment measures (AM)

Evaluating the quality of a model is one of the core stages in machine learning. It indicates how

successful are the predictions made by a trained model. In Subsection 1.5.4 of Chapter 1, we listed

various assessment measures and distinguished between those evaluating the accuracy of ML classi-

fication models and those checking the goodness of fit of the regression models. In the following, we

briefly recall the measures that will be considering in our learning framework.

Assessing binary ML models In a binary ML classification scenario, the target variable has only

two possible outcomes, such as {Hard, Safe} in the case of OOH prediction problem. Usually, we refer

to these class of labels as positive or negative. The positive and negative instances that a model predicts

correctly are called respectively true positives (TP) and true negatives (TN). Similarly, the incorrectly

classified instances are called false positives (FP) and false negatives (FN). These four values compose

the confusion matrix [Abb14, Kot07] of the model. A rich variety of model quality scores could be

derived from this matrix. Our focus was put on the F1-Score (F1) to summarize the quality of a

model. This measure combines both Precision and Recall into a single value. The F1 score ranges

from 0 to 1 and it is a positively-oriented score, i.e. the higher is the F1, the more accurate the model

is.
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Algorithm Category ML Task Description

Random Forest (RF) Logic Classification+

Regression

A combination of C4.5 decision tree predictors.

Simple Logistic (SL) Logistic Classification A linear logistic regression algorithm, using

LogitBoost with simple regression function.

Multilayer Perceptron

(MP)

ANN Classification A back propagation algorithm to build an Ar-

tificial Neural Network model to classify the

instances.

Sequential minimal op-

timization (SMO)

SVM Classification+

Regression

An implementation of the Support Vector Ma-

chine with polynomial kernel.

L2-regularized SVM

(L2SVM)

SVM Classification+

Regression

Another implementation of SVM with a linear

kernel.

K-Nearest-Neighbour

(IBk)

Lazy Classification+

Regression

An instance-based algorithm running with a

normalized euclidean distance.

Averaged N-Dependence

Estimators (A1DE)

Naive-

Bayes

Classification An algorithm averaging over a small space of

alternative naive-Bayes-like models.

Linear regression (LR) Linear Regression An algorithm of common use which tries to fit

the data to a linear curve.

Table 4.1: Description of the supervised learning algorithms.

Assessing ML multi-class models In case of ML multi-class problem, we are very often concerned

with the imbalanced dataset issue. According to Bao-Gang et al. [HD14], a dataset is considered imbal-

anced if at least one of the classes (minority class(-es)) contains much smaller number of samples than

the remaining classes (majority classes). In previous works [KLK12, SSB14], the accuracy standing

for the fraction of the correct predicted labels out of the total number of the dataset samples, was

adopted as main evaluation metric for assessing the multi-class models. However, accuracy would be

misleading in the case of imbalanced datasets as it places more weight on the majority class(es) than

the minority one(s). Consequently, high accuracy rates would be reported, even if the predictive model

is not necessarily a good one.

Therefore, based on the comparative study conducted by Bao-Gang et al. [HD14], we chose to

measure the Cohen’s Kappa Coefficient (Kappa) and the Matthews Correlation Coefficient

(MCC). Both of them try to quantify the degree of agreement between the predicted and the real

labels by considering all values composing the generalized confusion matrix. We already provided the



CHAPTER 4. LEARNING THE EMPIRICAL ROBUSTNESS OF ONTOLOGY
REASONERS 147

formal definition of these scores in Chapter 1, Subsection 1.5.4. Kappa and the MCC values vary

between −1 and 1, where 0 represents agreement due to chance. In rare cases, negative values of MCC

or Kappa are reported, whereas values relying between 0.6 and 0.8 indicate a good predictive model.

Assessing ML regression problems The predictive accuracy of the trained runtime models will

be inspected using two well established indices, the Root Mean Squared Error (RMSE) and the

Coefficients of determination (R2) also known as the R-square. Both measures are described in [Abb14].

RMSE squares, then aggregates the difference between values predicted by the model and the real

observed values. Thus, the computed RMSE score will have the same unit as the target variable, i.e.

the time unit in our case. RMSE values range from 0 up to +∞ and it is a negatively-oriented score,

so lower values are better. On the other hand, R2 is a coefficient ranging from 0.0 to 1.0 with no units.

A model has healthy predictive ability when its R2 is near to 1.

4.3.4 Best predictive model selection modes

Given a specific predictive problem and a variety of learning techniques available within the T Bsml
base, our framework compares the trained predictive models and automatically adjudges the best

one on the basis of some decision rules stored in the system. By "best", we are denoting the model

producing prediction with the highest degree of confidence, while employing the fewest possible number

of ontology features. The ranking of models is decided according to their quality score, i.e. the π score

(Algorithm 2, Line 10). The computing mode of the latter one is close to the nature of the learning

problem. Hence, we suggest three problem oriented specialization of the π score: F1TP , MKS and

RRS. These scores are respectively proposed to check the quality of binary ML models, multi-class

ML models and regression models. The computing details are described in the following:

Selection of Best Binary ML classification model Commonly in binary ML problem, we are

more likely to focus on either one of the label classes, i.e. the one considered particularly interesting

for the learning. We refer to this latter one as the positive class. Hence, we would be looking for the

model maximizing the TP value (true positive). However, this does not mean that quality prediction

of the negative class is unimportant. In our opinion, a good ML binary model is the one showing an

optimal trade-off between the TP value and the F1-Score value. We have expressed this preference

rule in the form of a model quality score, that we denote by F1TP. The latter one combines the above

discussed measures as follows:

F1TP (M
(F,A)
P ) = F1(M

(F,A)
P )× TP (M

(F,A)
P ) (4.3)
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where M (F,A)
P is the binary model trained from the dataset F using the SML algorithm A. We recall

that F1 is a coefficient positively varying within the unit interval [0, 1] and TP is an integer which

takes values in [0, pos], where pos stands for the number of the dataset instances having the positive

label. Hence, the F1TP score is a float positively varying within [0, pos]. A perfect binary ML model

will have its F1TP equal to pos. Henceforth, the best binary ML model derived from F is the one

maximizing the F1TP score.

Selection of Best Multi-class ML classification model We suggest to compute the Matthews

Kappa Score, denoted by MKS . As the acronym would suggest, MKS is a weighted aggregation of the

MCC and the Kappa values, which would summarize how the model is resisting to the imbalance of

the dataset:

MKS(M
(F,A)
P ) =

α ∗MCC(M
(F,A)
P ) + β ∗Kappa(M

(F,A)
P )

α+ β
(4.4)

such that (α + β) = 1 and M (F,A)
P is the model trained from the dataset F using the SML algorithm

A. Our aggregation is coherent, since both MCC and Kappa are positively oriented scores ranging

in [−1, 1]. Hereafter, the best multi-class ML model derived from F is the one maximizing the MKS

score.

Selection of Best ML regression model A good regression model will have a low RMSE value

and a high R2 close to 1. Accordingly, we suggest to summarize the quality of a regression model by

combining the above measures, into a single value that we design by RRS. The latter ones is computed

as:

RRS(M
(F,A)
P ) = (1−R2(M

(F,A)
P ))×RMSE(M

(F,A)
P ) (4.5)

where M (F,A)
P is the model trained from the dataset F using the SML algorithm A. We remind that

R2 is a coefficient positively varying within [0, 1]. Thus, (1-R2) makes it possible to increase RMSE

values when the R2 decreases. On this basis, we can assert that RRS is a negatively oriented score

and have the same unit as the RMSE score. Hereafter, the best regression model derived from F is the

one minimizing the RRS score.

4.4 Data Collection for the Learning Process

To bring response to the above specified learning problems, we need to provide enough data describing

previous running of reasoners over a selection of ontologies. Definitely, these running should be con-

ducted under the same robustness judgement constraints (RJC). We remind that we have chosen to

examine the online classification of OWL ontologies. Seeking for result reliability, we have chosen to
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work with the same evaluation tools employed in the latest ORE competitions [BGJ+14, DGG+15].

This includes the evaluation Framework3 [GBJR+13] and the ontology corpora4 [MBP13]. The mo-

tivation behind our choice is multi-fold: first, the ORE event is widely recognized by the Semantic

Web community; the ontology corpora is very large, e.g. includes 16k ontologies, and well diversi-

fied throughout easy and hard cases; and finally the Framework checks both the efficiency and the

correctness of reasoners.

In Chapter 2, Subsection 3.3.1, we depicted the main characteristic of the ontology corpus that

we will use through this thesis. We recall that this corpus is composed from 2500 distinct ontologies,

selected from the ORE corpora. Hence, using the ORE evaluation framework, we carried out a new

ontology classification challenge gathering 6 DL reasoners. The latter ones were put into comparison

when attempting to classify the 2500 ontologies. In the remaining of this section, we describe the

examined reasoners and illustrate the evaluation results.

Reasoners. We selected a representative subset of popular reasoners to carry out our predictive

learning study. Reasoner predictive robustness profiles will be constructed for each one in this selec-

tion. More precisely, we picked up the 6 best ranked reasoners5 in both the DL and EL classification

challenges during the latest ORE competitions series, i.e. 2014 and 2015. They are namely Konclude

[SLG14], MORe [RGH12], HermiT [GHM+12], TrOWL [TPR10], FaCT++ [TH06] and JFact .

We excluded ELK [KKS11] despite its good results and high rank, as far as it does not support

the classification of ontologies within the OWL 2 DL profile. Besides, we were enable to include the

Pellet [SPG+07] reasoner in our study, as the needed plugin to integrate it into the ORE Framework

was not made available. We have previously characterized the functional attributes of the selected

reasoners (cf. Chapter 1, Section 1.4) and discussed their main features. We would assert that this

selection is a very diversified one covering different reasoning methodologies, programming languages

and expressivity levels.

Result summary of reasoner evaluations. We run the ORE Framework in the sequential mode

on a machine equipped with an Intel Core I7, CPU running at 3.4GHz and having 32GB RAM, where

12GB were made available for each reasoner. We set the condition of 3 minutes time limit to classify

an ontology by a reasoner. This tight schedule would be consistent with the chosen scenario, i.e. the

online DL classification of an ontology. Table 4.2 summarizes the results of the carried out ontology

3The ORE Framework is available at https://github.com/andreas-steigmiller/ore-2014-competition-framework/
4The full corpus is available at http://zenodo.org/record/10791
5All ORE’2014 reasoners are available at https://zenodo.org/record/11145/

http://zenodo.org/record/10791
https://zenodo.org/record/11145/
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Figure 4.1: Comparison of reasoner average runtime over the correctly classified ontologies.

Reasoner #Success #Failure

Unexpected Timeout Halt

Konclude 2408 44 2 6

MORe 2182 71 241 6

HermiT 2167 3 312 18

TrOWL 2149 257 74 20

FaCT++ 1968 18 419 95

JFact 1679 41 636 144

Table 4.2: Summary of reasoner evaluation results.

classification challenge6. It illustrates for each reasoner the number of ontologies classified with success;

otherwise processed in time with correct derived inferences. The number of cases where the reasoner

is flagged with failure are also reported in Table 4.2 and split up according to the nature of the failure.

The reasoners are listed in Table 4.2 in decreasing order by their success rate; otherwise the most robust

reasoner over the ontology corpus is the one at the top of the list (Definition 23). Furthermore, Figure

4.1 depicts the average runtime exhibited by each reasoner over the correctly classified ontologies,

i.e. the success cases. We can easily notice that Konclude is the most robust reasoner, however this

system failed to deliver correct results for 44 ontologies. On the other hand, TrOWL is the least reliable

reasoner with 257 cases of unexpected results, this would be due to its incompleteness for some OWL

profiles. Nevertheless, TrOWL has the second shortest average runtime over the correct cases. We

would also remark that despite the ability of HermiT to deliver correct results, i.e. only 3 unexpected

cases, its average runtime over correct cases is very high. Hence, it might be difficult to deploy this

reasoner in online applications. All of these facts would outline the hardship to decide an absolute
6Results of our evaluations are available at https://github.com/Alaya2016/OntoClassification-Results2016/.

https://github.com/Alaya2016/OntoClassification-Results2016/
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appropriate reasoner for all the ontologies. Obviously, a reasoner should be chosen according to its

performances for a particular input ontology. However, such a task is a time and effort consuming

one since it requires a lot of experimentation. That is why, learning to automatically predict the

performances of a reasoner stands as a promising solution. Based on the above described reasoner

evaluation results, training datasets will be built for each of the previously specified problems.

4.5 Predicting the Ontology Overall Hardness

Our first learning problem, P , is about training a model able to predict the overall empirical hardness

of any given ontology. Specification of this problem has been formulated in Subsection 4.2.2. In the

following, we will detail the training steps and illustrate the results of the conducted evaluations.

4.5.1 Training the OOH model

We started this study by compiling the label vector, L(OOH), based on the DL classification results

described in Section 4.4. L(OOH) indicates for each test case ontology, i.e. O ∈ C(O), whether it is

"Hard" or "Safe" with respect to 4 selected reasoners, namely: HermiT, MORe, FacT++ and JFacT.

All of these reasoners implement Tableau-based algorithms [BS01] (c.f. Chapter 1, Section 1.4) and

hence, could be considered as homogeneous group. We remind that an ontology is labelled as "Hard",

whenever one of the studied reasoners fails to correctly classify it within the fixed time limit. Given

this rule, we counted 958 hard ontologies out of the C(O) corpus, i.e. 38.32% of the tested ontologies.

Figure 4.2 outlines the distribution of ontologies over the size and the hardness bins. We would remark

that even for relatively small ontologies (≤ 1000 logical axiom), hard ontologies could be reported. This

would sketch out that the size is not the only cause of the ontology hardness. Whereas, the hardness

is absolutely more frequent for large ontologies (≥ 10 000 logical axiom). Henceforth, our task is to

transform these empirical observations, into a generic model, thus that computationally troublesome

ontologies could be figured out without any further experimentations. To reach this purpose, the

L(OOH) vector and the C(O) corpus are provided to our learning framework (Subsection 4.2.3) in order

to train the M(OOH) model.

4.5.2 Assessing the OOH model

In this subsection, we discuss steps carried out by our learning framework towards identifying the

optimal M(OOH) model7, that could be derived from the available data and using the above described

7Here by optimal, we mean the one having the highest F1TP score.
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Figure 4.2: Distributions of ontologies over size and hardness bins

SML techniques (Section 4.3). To the best of our knowledge, we are the first to conduct such kind of

study, thus it is not possible to make any comparison with existing works. We put special attention in

inspecting how successful is the model in predicting the hard cases. Thus, we considered the latter class

of labels as the positive one. Consequently, the TP value stands for the number of ontologies correctly

predicted as hard ones. On these basis, we will be computing the F1TP score (Subsection 4.3.4)

of any M(OOH) model trained by our framework. In fact, by shifting the feature selection methods,

i.e. FS={RAWD(∅), MDL, CFS, RLF, RLF_MDL, CFS_MDL} and the SML algorithms,

i.e. SA={RF, SL, MP, SMO, L2SVM, IBK, A1DE}, the framework builds a set of candidate models

M(OOH), then decides the best one in terms of F1TP score. Figure 4.3 depicts the variation of this

score amongst the candidate models using boxplots. The latter ones provide a good visual summary

of the computed values. Each box corresponds to the sorted F1TP values computed for every model

being trained from a particular dataset variant. Hence, it shows the spread of the estimated accuracies

for the different employed SML algorithms and how they are related to the employed feature selection

method. The ends of the vertical lines, called the "whiskers", indicate the minimum and the maximum

reported F1TP values. The name of the SML algorithm whose the corresponding model has reached

these ends is also displayed in this figure. Thus, by looking to the upper whiskers, we can characterize

the best trained model from each dataset, i.e the M (F,Best
(OOH) (Algorithm 2, Line 10). Before further

discussing Figure 4.3, we should highlight that the number ontology features varies across the OOH

datasets. In fact, initially the RAWD dataset contains 116 features. This number was reduced to

53 using RLF, only 18 in the case of both CFS and CFS_MDL, 51 with RLF_MDL and finally

by applying MDL, we got the highest feature dimension, i.e. 103. Further important observations

can be made from Figure 4.3. First, we would remark that the height of the boxes, which represent

the disparity in F1TP scores amongst the trained models, is remarkably scaled down in cases where
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Figure 4.3: Comparison in terms of the F1TP score of the trained M(OOH) models.

the discretization (MDL) is employed. Hence, we would admit that preprocessing the data with

MDL would enhance the predictive performances of some SML algorithms. For instance, we shall

notice that the linear SVM (L2SVM) models have showed poor accuracies when trained from datasets

featured by CFS or RLF, i.e. L2SVM is at the lower whiskers. However, models derived by this

algorithm have outperformed all the other ones when MDL and RLF_MDL is employed. It is also

interesting to note that the quality of the Random Forest (RF) models seems to be the less sensitive

to the employed feature selection method. In fact, RF have exhibit good predictive performances even

when the training is made from the raw data (RAWD). This would be owing to its internal feature

selection mechanism. Furthermore, we can assert that maintaining too few features in the dataset it

is just not unconditionally advantageous for the learning. This could be checked out by examining

the assessment of models trained from the CFS dataset, which has the lowest number of ontology

features. Actually, these models are at average the least performing ones in terms of F1TP . On the

other hand, the topmost accurate models in terms of F1TP score are the ones derived by L2SVM

from the MDL and the RLF_MDL dataset variants. The average F1 scores achieved across the

10-fold cross validation of respectively the M (MDL,Best)
(OOH) and M

(RLF_MDL,Best)
(OOH) models are equal to

0.946 and 0.947. Besides, their respective F1TP scores are about 847.122 and 844.182. These values

indicates that the trained models are highly accurate, with almost 95% correctly predict cases. More

specifically, the MDL based model is slightly better in predicting the hard ontologies. However, this

model employs about twice the number of features that exists in the RLF_MDL-based model. On
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the basis of the previously set up selection rules (Subsection 4.3.4), our learning framework would

output the M (RLF_MDL,Best)
(OOH) model trained by L2SVM, as the final best model over the (OOH)

problem. Hereafter, by referring to this model and without any further extensive experimentations,

any user would be able to inspect whether its ontology is manageable in online applications by the

examined reasoners.

4.6 Learning the Reasoners Predictive Robustness Profiles

As earlier specified, the primary purpose of this stage of study is to build meta-knowledge about a

set of candidate reasoners. These are Konclude, MORe, HermiT, TrOWL, FacT++ and JFact. The

meta-knowledge is coded in the form of reasoner predictive robustness profiles (PRPs) (Definition 25).

The latter ones will be acquired from data describing the reasoners empirical behaviours (Section 4.4)

and using our learning framework (Subsection 4.2.3). Roughly speaking, a reasoner profile is made

up of two predictive models: a multi-class model predicting the reasoner success, i.e. M(S|R), and a

regression model estimating the runtime required by the reasoner to achieve this success, i.e. M(T |R).

In the following, we will describe the various experiments that we put forward towards identifying the

most accurate models to include in the reasoners predictive robustness profiles8.

4.6.1 Training the reasoners’ success models

Hereby, the learning problem P stands for (S|R), i.e. learning to predict the termination state of

reasoner R over any input ontology O. According to the specification made in Subsection 4.2.2, this

means learning a multi-class predictive model, M(S|R), capable to discriminate between cases where a

particular reasoner R would succeed to achieve a DL classification task and situations where R would

fail. The different forms of failure were depicted in Section 4.4. Based on the evaluation results of the

examined reasoners summarized on Table 4.2, a label vector L(S|R) is assembled and provided to our

learning framework together with the ontology corpus. These steps are repeated as far as the number

of the examined reasoners.

We would like to highlight that the reasoners datasets subject of this stage of the study are imbal-

anced ones. This would be attested by inspecting Table 4.2. For instance when checking the Konclude

results, we can easily notice the large difference between the number of success cases, otherwise the

ontologies that will be labelled with "Success" (the majority class) and those that will get one of

the failure labels (the minority classes). Its obvious that predicting the minor cases is much more
8Evaluation results including reasoner datasets, the assessment values and the learned models are available at https:

//github.com/Alaya2016/Learning-Results2016/

https://github.com/Alaya2016/Learning-Results2016/
https://github.com/Alaya2016/Learning-Results2016/
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Reasoner RLF CFS MDL RLF_MDL CFS_MDL

Konclude 68 11 70 53 11

MORe 72 14 97 65 14

HermiT 70 14 95 67 14

TrOWL 55 12 98 55 11

FaCT++ 63 12 98 63 11

JFact 60 20 105 60 20

Table 4.3: Result summary of ontology features selection for all the reasoners datasets

interesting for both ontology and reasoner designers, since they would pinpoint a bottleneck situation.

However, the learning from imbalanced datasets is considered as one of the most challenging issue in

machine learning [HD14]. This aspect will be taken in considered by our framework, thus the best

trained MBest
(S|R) model will be adjudged according to the MKS score (Subsection 4.3.4).

4.6.2 Assessing the reasoners success models

Our learning framework have trained various candidate M(S|R) models for every examined reasoner.

We start the result analysis by looking into the dimensionality reduction achieved over each reasoners

datasets using the feature selection methods available within FS={CFS, CFS_MDL, MDL, RLF,

RLF_MDL, RAWD}. Table 4.3 summarizes the results. Similar remarks to those reported in the

previous case study could be drawn from this table. For all the reasoners datasets, we would observe

that CFS minimizes the ontology feature dimension in the most noticeable way, MDL keeps the

dimension close to its initial size and RLF maintains almost the half of the features. MDL associated

to CFS does not decrease the number of features any further; however when put together with RLF

some more fewer features are removed. For the 6 reasoners, the MKS score distributions over the

trained models from each dataset variant are depicted in Figure 4.4 using boxplots. Given a reasoner

R and one dataset variant, the box shows the amount of variation in the MKS score amongst the

predictive models being trained from this dataset using different SML algorithms. Like in Subsection

4.5.2, we can characterize the best trained model from each reasoner dataset variant by looking to the

top of the whiskers. Observations drawn from Figure 4.4 about the predictive performances of the

employed SML algorithms are in accordance with those reported in Subsection 4.5.2. In overall, we

would notice that when discretization (MDL) is employed the difference in MKS score between the

candidate models becomes significantly lower. Once again, the potential of this method in enhancing

the prediction quality of the SML algorithms is asserted. Except for the Konclude’s datasets, it is
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Figure 4.4: The MKS distribution over SML algorithms and across the dataset variants for all the

reasoners.
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Reasoner FS SA MKS F1-Score #F

Konclude RLF_MDL L2SVM 0.653 0.974 53

MORe RLF_MDL MP 0.827 0.960 65

HermiT RLF_MDL SL 0.889 0.972 67

TrOWL RLF_MDL RF 0.787 0.951 55

FaCT++ RLF_MDL L2SVM 0.881 0.956 63

JFact RLF_MDL RF 0.904 0.952 60

Table 4.4: Assessment summary of the final MBest
(S|R) models

remarkable that, in the most cases, the best models in terms of the MKS score are the ones trained

by the Random Forest (RF). As previously highlighted, RF is the most stable SML algorithm which

has yielded to good predictive models in all the study cases. Across the dataset variants and for all

the reasoners, the scores of the models at the upper whiskers are fairly close to each others, even when

the training is made from the raw dataset. This would witness that regardless of the fact that the

dataset is featured or not, our initial ontology feature suite is rich enough and well representative of

the ontologies’ computational complexity which makes it possible to train highly accurate predictive

models. However for all the reasoners, the topmost accurate models are the ones trained from MDL

and MDL_RLF respective datasets. Similar to the OOH problem, the framework will prefer theMBest
(S|)

trained from the MDL_RLF based dataset as its feature dimension is lower than the MDL based one.

Table 4.4 illustrates the main attributes of the finally chosen MBest
(S|R) models. For every reasoner, the

feature selection method (FS) and the learning algorithm (SA) which have induced the model are

outlined. Table 4.4 also reports the model assessment values in terms of MKS and F1-Score averaged

over 10 fold cross validation. The last column of table (#F) recalls the number of features within the

corresponding reasoner dataset. A number of important observations can be made from this Table

4.4. In overall, we would remark that the learned reasoners best predictive models showed to be highly

accurate, achieving in all cases, and over to 0.95F1 value. In addition, they are well resisting to the

problem of minor classes, since in all cases except for Konclude, the respective MKS scores were over

0.78. Konclude initial dataset is the most imbalanced one with little number of ontologies in minor

classes. Under this constraint, an MKS about 0.65 is an acceptable value witnessing that the failure

of Konclude could fairly be predicted. On the other hand, the MKS of the JFact best predictive

model is above 0.90, indicating almost a perfect predictive model. All of these findings shed light on

the high generalizability of the learned model as well as its effectiveness in predicting reasoner state of

termination over online ontology classification tasks. It would also be observed that the size of feature
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vectors of the MBest
(S|R) models varies from 53 in the case of Konclude going to 67 in the case of HermiT.

This is quite the half of the initially computed features. Such observation would further assert our

assumption that there is some particular subset of the ontology features that are more correlated to

the reasoner performances that the other ones. Besides, these key ontology features are close to the

reasoner under study. Furthermore, we can notice that different learning algorithms are in the final

selection. This would further highlight that the nature of the correlation between the ontology feature

and the reasoner termination state is close to this particular reasoner. Indeed, L2SVM and SL would

model the correlation using linear functions, however MP and RF employ sophisticated graph-based

representation of the dependency. Hence, we would admit that the termination state of Konclude,

Hermit and Fact++ could be explained and anticipated using easy to understand linear models which

require relatively manageable number of ontology features. On the other hand, more complex models

are required to predict MORe, TrOWL and JFacT.

4.6.3 Training the reasoners runtime models

In this subsection, the learning problem P is reduced to (T |R). According to the specification provided

in Subsection 4.2.2, the reasoner runtime regression model M(T |R) is conditionally related to M(S|R)

model. Runtime will be estimated only when success of R over the input ontology is predicted. Given

this requirement, for each reasoner, we removed from C(O) those ontologies which have induced its

failure. Henceforth, let S(T |R)(O) ⊂ C(O) be the ontology training set specific to the reasoner R and

the (T |R) learning problem. Every ontology within S(O) will be labelled with the logarithm of the R’s

runtime. The log transformation was first proposed by Lin et al. [XHHLB08], whom found it to be

of paramount importance to improve the overall accuracy of regression models. Thus, the label vector

given a reasoner R would stand for L(T |R) = [log(t(O1)), . . . , log(t(Os))], where t(Oi) represents the

processing time spent by R to classify Oi. Hence, we will be learning to approximate, t̂i, the logarithm

of R’ runtime. For each investigated reasoner its corresponding L(T |R) vector and S(T |R)(O) corpus

will be provided to our learning framework, thus the best M(T |R) model could be established.

4.6.4 Assessing the reasoners’ runtime models

Table 4.5 illustrated for every reasoner, the results of the first stage selection of its runtime predictive

model; otherwise, its most accurate model derived from a featured dataset. More specifically, given a

reasoner R and a feature selection method, Table 4.5 shows the name of the SML algorithm (column

SA) which have derived the predictive model having the lowest RRS score. The reported R2 and

RMSE values are the average across the 10 folds cross-validation. The column #F shows the number
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Reasoner RAWD (∅) CFS RLF

SA R2 RMSE RRS #F SA R2 RMSE RRS #F SA R2 RMSE RRS #F

Konclude RF 0.984 0.388 0.006 116 RF 0.987 0.334 0.004 20 RF 0.983 0.385 0.006 27

MORe RF 0.962 0.218 0.010 116 RF 0.963 0.251 0.009 28 RF 0.959 0.267 0.011 30

HermiT RF 0.969 0.382 0.012 116 RF 0.968 0.383 0.012 16 RF 0.967 0.389 0.013 36

TrOWL RF 0.972 0.316 0.009 116 RF 0.975 0.291 0.007 16 RF 0.972 0.312 0.009 29

FaCT++ RF 0.944 0.460 0.026 116 RF 0.944 0.455 0.026 22 RF 0.944 0.457 0.025 31

JFact RF 0.967 0.417 0.014 116 RF 0.971 0.386 0.011 13 RF 0.968 0.412 0.013 36

Table 4.5: Comparison and selection of reasoner best trained runtime models across the different

datasets

of the ontology features within the dataset. Based on these assessments, the second selection stage is

conducted to outline the final reasoners best predictive models across all the datasets, i.e. MBest
(T |R). In

Table 4.5, the latter ones are outlined in the gray color.

Important observations could be drawn from Table 4.5. First, we would highlight that the assess-

ment values reported in Table 4.5 are very remarkable ones. Indeed, all of the indicated R2 values are

ranging over 0.944 and going up to 0.987. We should point out that the R2 values on the regression

models of the meta-reasoner R2O2 [KKL15] are below our values and vary from 0.73 up to 0.91. This

would obviously provide an insight into how well our regression models for the 6 reasoners are fitting

the data. This observation would further be confirmed by analysing the RMSE values. We recall that

the smaller the RMSE value is, the more accurate the prediction model is. In our case, the RMSE

was low on all the MBest
(T |R) models. More in details, the lowest reported RMSE is about 0.251 in the

case of MORe, which means an average a mis-prediction of a factor of 100.251 < 2, whereas the largest

RMSE is 0.455 in the case of FaCT++, i.e. a factor of 100.455 < 3. Worth of cite, the RMSE val-

ues on the regression models deployed in the portfolio-based algorithm selector SATzilla9 [XHHLB08]

were ranging in [0.49, 1.01], and this was sufficient to enable SATzilla to win various medals in SAT

competitions. Our RMSE values are far below those of SATzilla, and this is a valuable proof of the ef-

fectiveness of our runtime regression models. Throughout, it must be noted that for now our goal is not

to outperform neither R2O2 nor SATZilla, but only to demonstrate that our reasoner runtime regres-

sion models could reach levels of confidence which are sufficiently satisfactory. The above inspections

assert that the trained runtime predictive models can be used to accurately predict a given reasoner

online classification time for a wide spectrum of OWL ontologies. Other valuable remarks about the

9SATZilla automatically selects the most efficient SAT solver by predicting its runtime for a given problem instance,

using regression models.
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SML techniques could be derived from Table 4.5. For all the reasoners and across all the employed

feature selection methods, we can notice that Random Forest (RF) have dominated all of the evaluated

regression algorithms, i.e Logistic Regression (LR), IBK and the SVM’s (SMO and L2SVM). RF as-

sociated to CFS have delivered the reasoners topmost accurate runtime regression models, MBest
(T |R) for

5 out of the 6 reasoners. Only for FaCT++, the best model is the one trained by RF from the RLF

based dataset. Furthermore, we would observe that in the case of HermiT, the best models trained

respectively from RAWD and CFS based datasets have equal RRS scores. Here, the framework have

prioritized the CFS based model since it employs only 16 out of the 116 ontology features. Indeed,

we would remark that for all the reasoners, it exists a very tight difference, i.e. only in the second or

the third decimal place, in the assessment values computed for the models across the dataset variants.

This would suggest that the reduction of the ontology features space does not remarkably improve

the accuracy of the regression models. However, we would recall that RF always prunes the feature

dimension, regardless of whether the initial dataset is featured or not. Nevertheless, the little accuracy

boosting obtained thanks to RLF and CFS methods is certainly worthwhile. Besides, when looking

to the number of features employed in the final MBest
(T |R) models, we would remark the considerable

reduction in the features space produced by these methods. Actually, at most only 31 features out

of the 116 initial ones were held for the learning. The number of features required to train reasoners

runtime regression models are far less than those needed for M(OOH) or M(S|R) models. Henceforth,

thanks to such compact dimensions, we would gain more useful insights about those core ontology

features imperatively required for the prediction of runtime.

Furthermore with a small number of ontology features to be measured, we assume that the time

required to compute the prediction a particular reasoner over any ontology would also be reduced.

However, this should be inspected more in details by examining the computational cost of each em-

ployed ontology feature. Figure 4.5 shows a scatter-plot of predicted log10 runtime vs. actual log10

runtime computed for each reasoner using its Random Forest M(T |R) model. We can see from these

figures that the time required to classify most ontologies are predicted very accurately, and few cases

are dramatically mis-predicted. In our opinion, it would be interesting to examine the mis-predicted

cases across the reasoners. They might be the same ontologies, so by looking deeper into their charac-

teristics, it would possible to gain more insights to their particular characteristics that we potentially

did not cover by our feature suite. Such inspection would make it possible to incrementally improve

our work. This is one of our future improvement plans.
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Figure 4.5: Scatterplots for Actual vs. Predicted log10 runtime of each examined reasoner.
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∩ Features MOOH {M(S|Ri) } {M(T |Ri) }

MOOH 51 36 2

{M(S|Ri) } 36 39 2

{M(T |Ri)} 2 2 2

Table 4.6: The number of shared features across the different trained models.

4.7 The Key Ontology Features For the Predictive Modelling

Our main idea to identify the key ontology features is to consider simultaneously multiple prediction

problems about ontology reasoning and then examine their shared features. At the intuitive level, when

we observe that particular features are identified as relevant predictors for different problems, we shall

suggest that these features form a core group of good indicators of the ontology hardness against the

reasoning tasks. Thus by focusing on these features the reasoner performances variability phenomena

could further be tracked down. As a result of our learning process, 13 predictive models were approved

and stored as meta-knowledge about the empirical robustness of the 6 examined reasoners for online

ontology classification scenario. All of these models were trained from featured datasets. Within the

latter ones, the ontology feature dimension was reduced to keep only the most relevant features and

the least inter-correlated ones. In the previous Sections 4.5 and 4.6, we reported the number of the

identified features for each approved model and highlighted that this value is close to the problem

under examination. In the remainder of this section we will examine the distributions of these features

and discuss some of them.

4.7.1 Ontology feature distribution across the models

We started our investigations by collecting some statistics in order to picture how the features are

distributed over the inspected problems. In overall, 89 distinct features were used at least once in

the approved models. Henceforth, 28 elements could be deleted from our feature space as they are

found to be irrelevant for the examined problems. On the other hand, only 2 features were shared

by all the 13 trained models. These are namely: the number of axioms within the ontology, i.e. the

OA feature, and the number of the named classes, i.e. the SC feature. Hence, we would assert that

for online scenario, the first indicator of the hardness of the ontology is the amount of knowledge

it contains, otherwise its size. Seeking for further details, we computed the number of the shared

features across specific combination of models. Table 4.6 summarized these inspections. {M(S|Ri)}

and {M(T |Ri)} respectively stands for the set of all the trained models about reasoner termination

state and runtime. We would observe that it exists 36 common indicators amongst models predicting
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the ontology hardness and the ones predicting the success of the 6 examined reasoners. However,

these indicators are quite distinct from those employed to anticipate the reasoner efficiency. Actually,

only two features are in common, those previously depicted, the SC and the OA. The latter ones

are also the uniquely shared features across the different {M(T |Ri
} models. Indeed, the examined

reasoners follow different reasoning methodologies and implement different optimization techniques to

overcome particular ontology complexity sources and thus, indicators of their efficiency would also

vary. Nevertheless, thanks to our learned models, these indicators are no more unknown. One can

identify them by looking into the local features, those employed in each reasoner M(T |R) predictive

model. We remind that the local features were leveraged by feature selection methods as the most

correlated ones with the runtime of the corresponding reasoner. In total, we listed 63 distinct features

within the M(T |Ri
} models.

To gain further insights, we designed a scale of feature frequency across the final models. Let o be

the number of occurrences of the feature f in the set of the 13 models. f has high frequency if o ≥ 9,

medium one if 8 ≤ o ≤ 5, low in case 4 ≤ o ≤ 1 and otherwise it is not used. In overall, we identified

13 highly frequent features, 50 were medium ones and 26 had low frequencies. As we can not list the

frequencies of each of the 89 deployed features, we choose to report the distribution of the main feature

groups, over the frequency bins. The groups are the ones previously introduced in Chapter 3, Section

3.2. Figure 4.6 illustrates the size of each group jointly with its name, and depicts in different colors the

percentage of its elements that are part of each frequency bin. Then, Figure 4.7 enumerates the most

frequent features together with the number of models were they has been deployed with respect to the

problem nature. Our focus is put on this latter figure. We would observe that features characterizing

the overall size of the ontology in terms of axioms, i.e. OA and OLA, then in terms of named classes

SC are at the top of the frequent indicators. Indeed, they would pinpoint whether a reasoner would

scales well or poorly regarding the growing size of the ontology. Equally important, we would remark

that the number of classes with multiple direct ancestors, that we called the tangledness (HC_TG) of

the class inheritance is a relevant feature for 12 out the 13 models. We should highlight that Kang et

al. [KLK12] have also found that tangledness is a feature with high impact factor on reasoner runtime

prediction. HC_MSB is another highly frequent structural feature indicating the maximal number

of direct descendants in the class inheritance. This confirms the assumption we previously made in

Subsection 3.2.3, which states that HC_MSB suggests the presence of highly central class and any

change to this one will induce consequential impact to all the dependent classes which would alter the

reasoner performances. The AAD feature records the average nesting of the TBox axioms. Sazonau

et al. [SSB14] have already argued that this feature is a good indicator of the axiom entanglements.

The SABx, STBx, RRBx and RABx are part of the KBS set and attended to characterize the size of
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(a) Distribution of feature sets over the frequency bins

(b) Composition of the frequency bins in terms of feature sets

Figure 4.6: Discreption summary of the recorded frequency of each feature set by considering all the

trained models.
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Figure 4.7: The set of the most frequent features distribution over the trained models.

the KB sub-parts. We would observe that both the size of the assertional part (SABx) and the ratio

of its axioms are important features. This would further outline the general assumption that reasoner

performances are sensitive to the ABox size. The remaining features are syntactic ones. AMC records

the maximal number of the class constructors in one axiom. We should outline that the class constructor

density, OCCD, is also a frequent indicator which has been used in 8 out of the 13 models. Finally, the

OPCF of two particular object property characteristic, Transitive and Hierarchical are part of these

highly used features. All of these findings agree with subsequent observations established in previous

works about the significance of these particular features (cf. Section 3.2). However, we must stress

that we are not concluding that the low frequent features are unimportant for the reasoners. Quite the

contrary, these features could be highly specific to a particular reasoner and thus a strong indicator of

its empirical behaviour.

Further inspections could be drawn from the reported results. We just provided one first step

towards understanding the empirical behaviours of reasoners and ways to track down their robustness

based on particular ontology features. Indeed, we would recommend the set of the highly frequent

features as a starting point to conduct further improvement in ontology modelling as well as reasoning

optimization. Nevertheless, it is important to point out that each reasoner has its particular ontology

key features, likely to have the strongest impact on its performances. The latter ones could be retrieved

from the reasoner predictive robustness profiles which henceforth, will be stored in a dedicated reasoner

meta-knowledge base.
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Feature Frequency List of models

HC_MHD 8 M(OOH), M(S|R){Konclude, MORe, HermiT, TrOWL, FacT++,

JFacT}, M(T |R){Konclude}

HC_COH 7 M(S|R){MORe, HermiT}, M(T |R){Konclude, MORe, HermiT,

TrOWL, JFacT}

Onto_COH 0 -

RCYC 4 M(OOH), M(S|R){MORe}, M(T |R){MoRE, HermiT}

SCYC 1 M(T |R){MORe}

UI (CCP) 1 M(T |R){MORe}

EUvI, CUvI (CCP) 0 -

Table 4.7: Distribution of computationally expensive features over the trained models.

4.7.2 Distribution of the computationally expensive features

It is worth to note, throughout this analysis, we did not distinguish between the computationally

expensive features and the efficiently computable ones. This is because our study would be conducted

offline with sufficient computational resources in order to acquire enough knowledge about reasoner

empirical behaviours, in the the most reliable way. Hence, we are still not constrained by time and

mostly, we did not yet designed the time-sensitive system where the trained predictive models could be

employed. When such requirement is imposed, we can examine the trained models and check whether

is possible to remove or to set as missing values the computationally expensive features, without any

lost in the model accuracy. To get a precise idea whether such a scenario might take place, we listed the

models where the computationally expensive features are involved. Table 4.7 summarizes the results.

In overall, 5 out the 8 expensive features were employed in the final predictive models with different

degree of frequency. We would remark that the depth of class inheritance (HC_MDH) is shared by

all the models predicting the success of the examined reasoners and relevant to predict the runtime of

Konclude. On the other hand, the cohesion of the class hierarchy seems to be important feature to

runtime prediction of 5 out the 6 examined reasoners. Besides, the ratio of cyclic class is correlated to

MORe and HermiT runtime.

We also examined the omission cost of the expensive features. More specifically, for each learning

problem, we removed from the initial dataset (RAWD) those features known to be expensive ones, then

we trained a new predictive model using the previously approved best combination (feature selection

method, supervised learning algorithm). Hence, by comparing the values of the quality scores, i.e. the

old versus. the new ones, we can characterize the impact of the omitting these features.
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M(S|R) M(T |R)

#F F1 MKS #F R2 RMSE

Reasoner old new old new old new old new old new old new

Konclude 53 53 0.974 0.973 .653 0.644 20 18 0.987 0.987 0.334 0.336

MORe 65 62 0.960 0.958 0.827 0.820 28 24 0.963 0.963 0.251 0.250

HermiT 67 66 0.972 0.966 0.889 0.866 16 14 0.968 0.967 0.383 0.386

TrOWL 55 54 0.948 0.949 0.787 0.793 16 29 0.975 0.972 0.291 0.310

FaCT++ 63 62 0.952 0.955 0.881 0.878 31 31 0.944 0.944 0.457 0.457

JFact 60 58 0.952 0.950 0.904 0.901 13 15 0.971 0.972 0.386 0.382

Table 4.8: Examining the impact of omitting the expensive features on reasoner models.

#F F1 TP (hard)

Model old new old new old new

M(OOH) 51 50 0.947 0.944 891 889

Table 4.9: Examining the impact of omitting the expensive features on the quality of M(OOH).

Table 4.8 illustrates the results computed over the reasoner robustness models. It recalls the

previously reported quality assessment values of the predictive models achieved when the full set of

features is considered (e.g. designed by old in Table 4.8), then the new computed values when only

the cheap features are maintained. Table 4.8 also reports the old, then the new feature dimension

(e.g. the #F column). Similarly, Table 4.9 shows the impact of omitting the expensive features on

the predictive quality of the ontology overall hardness model, M(OOH). In both tables, cases where the

assessment values have known a decrease are highlighted in bold face. It is important to note that the

RMSE is negatively oriented score, hence an increase in its values would indicate a loss in the quality

of the trained model. Interestingly, we noticed a gain in the quality of some models, according to one

or to all the assessment measures. These cases are outlined in the gray color. Indeed, the features are

correlated in complex ways, hence there will often be other very different sets of features that would

achieve similar performances or even better ones. Throughout the reported values, we would assert

that, in overall, omitting the expensive features are not dramatically damaging the predictive quality of

the various trained models about the success or the runtime of reasoners. In most cases, slight decrease

is been noted affecting only the third or second decimal place of the assessment scores. By examining

Table 4.9, we can remark the decrease in the number of the correctly predicted hard ontologies. This

would suggest that the removed features, i.e. the depth of the class hierarchy HC_MHD and the ratio

of cyclic classes RCYC are important indicators of the empirical hardness of the ontologies.
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4.8 Conclusion

The research questions, we discussed throughout this chapter are at the crossroad of two fields: the

Semantic Web and the Machine Learning. Our main purpose was to employ supervized machine learn-

ing techniques to be able to track down the variability of DL reasoner empirical performances. We put

our focus on two learning problems: first, predicting the overall hardness of OWL ontologies regarding

a group of reasoners; and then, anticipating a single reasoner robustness when inferring ontologies

under some online usage constraints. To fulfill this goal, we established a generic supervized learning

framework, which integrates the ontology features we previously proposed in Chapter 3. The frame-

work is able to carry different predictive tasks about the ontology reasoners. Owing to this solution,

we succeeded to establish highly accurate predictive models about the overall empirical hardness of

ontologies, as well as the empirical correctness and efficiency of DL reasoners. Hence, we composed

predictive robustness profile for each examined reasoner. To the best of our knowledge, we are the

first to attempt to learn more than one reasoner evaluation criterion. We believe that our assembled

reasoner profiles and ontology overall hardness models are the first steps towards building a concise

knowledge base pooling data related to existing modern DL reasoners and OWL ontologies. We trust

that this kind of knowledge would provide assistance for reasoner and ontology designers for better

and more easier inspection of their realisations. Further improvement of our framework could be con-

sidered to get better predictive models in less training time. For instance, we would investigate more

recent discretization techniques. It would also be interesting to examine more state-of-art solutions

to handle the dataset imbalance issue, such as over/under sampling of instances or the cost-sensitive

learning. On the other hand, we assume that reducing the overall training time would require more

meta-knowledge about the learning algorithms. Indeed, we can consider that our seek to identify the

most appropriate learning techniques with respect to our training datasets, is a kind of algorithm

selection problem. Hence, examining the meta-learning solutions [BGCSV08] is certainly an appealing

possibility. However, it should not be overestimated, since we are not sure that the existing techniques

would fit to our various particular requirements and without any additional computing cost.

In the remaining of this thesis, we will introduce two area of applications were the established

predictive models. First, we will be extending our learning steps by a ranking stage where reasoners

could be compared based on their predicted robustness. Such ranking would made it possible to

recommend the most robust reasoner for any given ontology. Then, we will introduce an extraction

approach of the most computationally demanding sub-parts, from an ontology predicted to be hard.
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5.1 Introduction

The main goal of this thesis is to bring solutions to cope with the reasoner performances variability

phenomena and hence, advance the state of the art in the empirical analysis of DL reasoners. Our final

goal is to provide simple, efficiently computable guidelines to novice and expert users about, on the one

hand the empirical hardness of OWL ontologies, and on the other hand, the empirical robustness of

modern DL reasoners. The guidelines are basically a set of predictions about the expected behaviours

of an individual reasoner or a ranking of group of reasoners given an input ontology.

To achieve these purposes, we suggest to develop an intelligent system to provide user support

when looking for guidance over ontology reasoners. We called this system, ADSOR, standing for

"Advising System Over the Ontology Reasoners". ADSOR provides two types of support for an end-

user: (i) it suggests a ranking of reasoners according to their predicted performances over the user

input ontology. This ranking is provided in order to help user selecting the most adequate reasoner to

their ontology based application; and (ii) it performs an extraction of the most challenging sub-parts

from an empirically hard ontology. These sub-parts are starting points provided to the user to help

him conduct more focussed analysis about its ontology hardness factors.

A detailed description of the main component of ADSOR, together with a rigorous experimental

analysis of their respective performances are provided in this chapter. In Section 5.2, we start by
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depicting the overall conceptual architecture of ADSOR. Then in Section 5.3, we address the issue

of automated reasoner selection and we introduce a novel framework of supervised ranking of DL

reasoners. More specifically, we will analytically and empirically study two ranking strategies and put

then into comparison. Finally in Section 5.6, we will describe our ontology hard modules extraction

approach and its empirical evaluations.

5.2 Overall Description of the ADSOR System

In this section, we describe the general architecture of the ADSOR system and we shortly outline

the prime features of its basic components. ADSOR follows a meta-learning approach (cf. Chapter

2) to provide relevant support for end-users in the field of ontology reasoning. K. A. Smith-Miles

argued in [SM09] that meta-learning techniques, which were primary designed to track the behaviours

of machine learning algorithms, can easily be generalized to a broad range of disciplines. The author

asserted that this generalization could be achieved provided that the following four requirements are

fulfilled: (i) supplying a large amount of problem instances of diverse complexities; (ii) assembling

a rich set of existing algorithms with diverse behaviours; (iii) introducing clear metrics of algorithm

performance; and (iv) employing effective features of instances that can be calculated and that correlate

with hardness/complexity of these instances. In chapter 4, we have already satisfied these requirements

and proved that we can predict at a high degree of confidence the empirical robustness of DL reasoners.

By now, we are aiming to extend this preceding work to solve the problem of automatic selection of DL

reasoners for online classification of OWL ontologies. Furthermore, we are determined to go beyond the

selection purpose and find ways to apply the learning techniques to gain insights about the ontology

hardness factors by extracting its computationally challenging sub-parts.

As it is common in the architectures of meta-learning systems [Van11], ADSOR operates within

two periods: (I) an offline stage for knowledge acquisition about a set of reasoners and ontologies; and

(II) an online stage which offers advising for a user seeking support to achieve a robust reasoning over

an OWL ontology. Figure 5.2 depicts the main conceptual components of the ADSOR system and

illustrates their organisation as well as their various interactions within each operating stage.

Offline stage: the knowledge acquisition mode. The main purpose of this stage is to train

predictive models about various learning problems around the ontology reasoning. The models are

acquired by an intelligent exploration of data describing reasoner empirical performances over a large

set of ontologies. Hence, collecting these empirical data is the first step in the knowledge acquisition

stage. ADSOR employs the publicly available ORE evaluation framework [GBJR+13] to carry on
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Figure 5.1: The general architecture of the ADSOR system.

regular evaluations about modern DL reasoners, and thus delivers the needed data on which to base

the learning process. The latter one is triggered following the request of an expert user and achieved

by our learning system. In Chapter 4, we have introduced some of the functional characteristics of this

system. Further details about its operating mode will be provided in the remainder of this chapter.

Another equally important components is the ontology profiler, which we have established in Chapter

3. It characterizes the design complexity of the studied ontologies using a rich collection of efficiently

computable features. Some of the trained models produced by the learning stage were previously

described in Chapter 4 such as the reasoner predictive robustness profiles and the ontology overall

hardness models. According to the respective authors of [SM09, Van11], combining the features with

the performance metrics across a large number of ontologies inferred by different reasoners creates
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a comprehensive set of meta-data about reasoner empirical performances. These meta-data together

with the trained predictive models represent the prior (background) knowledge on the involved DL

reasoners. The learned expertise is stored in machine-interpretable format within a specific database,

commonly called the Meta-Knowledge Base.

Online stage: the advisory mode. ADSOR proposes two kinds of computed advices based on

the acquired knowledge about the empirical robustness of DL reasoners and the empirical hardness of

OWL ontologies. The advices are requested by an end-user about an input ontology. In the following,

we briefly describe the main online components of ADSOR, together with the advices they respectively

provide:

RakSOR: Ranking of Ontology Reasoners. This component advices the potential users regard-

ing the best available reasoners according to the nature and the design characteristics of their

ontologies. The provided advices are in their basic form, i.e. a ranking of reasoners in the most

preferred order. Reasoner robustness is the main ranking criterion. To put these proposals into

application, we formulated a novel supervised ranking framework of ontology reasoners. We in-

vestigated two distinct ranking strategies: a first ranking method based on single label prediction

per candidate reasoner, and a multi-label based method which predicts the full reasoner ranking.

ExOH: Extraction of Ontology Hard Modules. This component helps users to gain insights

about the empirical hardness of their ontologies. Indeed, whenever an ontology is predicted as a

hard to manage with respect to a group of reasoners, a user will be looking for explanation about

the potential causes of this hardness. In this case, we suggest to provide her/him the possibility to

extract those ontology sub-parts that are potentially the most computationally demanding ones.

These sub-parts are commonly called as the ontology hotspots [GPS12]. Our approach mainly

relies on the graph representation of the ontology atoms [DPSS11]. It employs the locality based

technique [GHKS08] to extract the ontology modules. The identification of the hard ones is guided

by our predictive model of the ontology overall hardness.

In the remainder of this chapter, we will describe more in details the design at the base level of the

ranking and the extraction respective components.

5.3 RakSOR: Ranking and Selection of Ontology Reasoners

In this section, a detailed depiction of the core design of the RakSOR component will be drawn up.

We will start by setting up the issue of reasoner ranking. Then, we will specify the preference rules
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according to which the ranking will be computed. Later, we will separately introduce two supervised

ranking strategies and empirically put them into comparison.

5.3.1 Problem formulation

Over the last decade, several ontology reasoners have been proposed to overcome the computational

complexity of inference tasks on expressive ontology languages such as OWL 2 DL. Nevertheless, it is

well-accepted that there is no outstanding reasoner that can outperform in all input ontologies. Thus,

an algorithm selection problem [Ric76] have emerged in this field of study. Indeed, deciding the most

suitable reasoner for an ontology based application is still a time and effort consuming task. In Chapter

2, we established a review on existing works, which have discussed the issue of algorithm selection in

different disciplines. We have distinguished two main approaches: (i) build an algorithm portfolio and

learn to select the best performing algorithm for any input problem; (ii) provide a ranking of the most

suitable algorithms to solve an input problem and allow the user to make the selection. While the first

approach is an optimisation solution to build more performing systems, the second approach is a user

oriented one aiming to provide a decision support in the task of algorithm selection. In this thesis, we

chose to work with the second interpretation of the algorithm selection problem. Our main purpose is

to automatically rank a set of reasoners in a most-preferred order for any input ontology, and by relying

on predicted performances. Afterwards, a user may decide or not to follow the advice exactly as given.

Indeed, a user may choose to continue using her/his favourite reasoner, if its performance is slightly

below the topmost one in the ranking. We should recall that our main goal is to provide the user

with basic information about the expect behaviours of the existing reasoners regarding its ontology.

Hence, we will advise him about what reasoner to choose and what to avoid. By consequence, even

those reasoners expected to fail the reasoning task are included in the ranking. In our opinion, such

a configuration would be advantageous to reasoner designers. Indeed, it pinpoints the unsuccessful

reasoners and provides a starting material, i.e. the input ontology, to carry further investigations

about the causes of this failure. This would enhance more improvements in the design of reasoners.

Given this description, we can establish some mandatory requirements to be fulfilled when designing

our ranking solution. They are listed in what follows:

1. The reasoner ranking method should consider the particular features of the user input ontology.

2. The reasoner ranking method should be a supervised one based on prediction.

3. The ranking is computed over all the available reasoners whether they can handle or not the input

ontology. However, the system must pinpoint the successful ones.

4. The ranking is computed with respect to the reasoner robustness judgement constraints previously
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established in Chapter 4, Section 4.2. These constraints sketch an online usage scenario where DL

reasoners are requested to classify OWL ontologies.

5. Reasoner robustness is the main ranking criterion. This entails that the ranking should consider

both the correctness and the efficiency of the reasoners.

6. No user preferences are to be taken into account in the ranking process.

Formally, a ranking represents a preference function over a set of alternatives (item, objects, etc.).

In our context, the alternatives are some set of DL reasoners, recognized as promising candidates.

Hence, given a particular set of alternative reasoners, denoted by R = {R1, . . . , Rm}, a ranking is

defined as a vector σ = (σ1, σ2, . . . , σm), where σi is the rank of reasoner Ri and lower ranks are

interpreted as preferable ones. Depending on the chosen preference rules, the ranking may either rep-

resents a total or a partial order [Pri02]. Roughly speaking, a total strict order is a binary, asymmetric,

transitive and complete relation, denoted by ≺, which states that for every pair Ri, Rj ∈ R with i 6= j,

either Ri is preferred to Rj , denoted Ri ≺ Rj , or Rj is preferred to Ri. Besides, if Ri is preferred to Rj

and Rj is preferred to Rk with k 6= j, then Ri must be preferred to Rk. On the other hand, a partial

strict order is a generalization of the total strict order. However, it does not stick to the completeness

property. More specifically, if for two alternatives Ri and Rj , neither Ri ≺ Rj nor Rj ≺ Ri, then these

alternatives are said to be incomparable, i.e. Ri ≺� Rj . The preference rules are closely depending on

the approved ranking criteria. For instance, when the reasoners are ranked according to their runtime

then it is obvious that reasoners achieving shorter computational time are the preferred ones and the

ordering is a strict total one. However in our case, we chose to rank the reasoners according to a

couple of criteria: the correctness and the efficiency. Thus, an interrogation would raise about how to

combine these criteria and which would be the nature of the produced order?

Choosing the surprised ranking method is an equally important point in the design process of our

solution. Based on the literature review scrutinized in Chapter 2, we can assert that there is two main

ranking strategies which employs supervised learning techniques:

1. Ranking based on single label prediction: after computing the features of the input problem instance,

the performances of each alternative algorithm is predicted separately using its corresponding pre-

established predictive model and according to these features. Hence, a single target value (continu-

ous variable or discrete label) is predicted per algorithm and then the total set of collected values

are compared in order to produce the final ranking. This strategy has successfully been applied to

rank SAT solvers for portfolio construction [XHHLB08]. It has also been employed in meta-learning

systems in order to produce recommendations of machine learning algorithms. A rigorous survey of

this kind of works is provided in [PdSL11].



CHAPTER 5. ADSOR: ADVISING SYSTEM OVER THE ONTOLOGY REASONERS 176

2. Ranking based on multi-label prediction: the main purpose of this strategy is to train a model,

called a ranker, capable to predict the complete ranking of the alternatives, based on the feature

description of the input instance. This kind of learning is a special case of multi-target prediction,

known as label ranking or more generally multi-label ranking. A large body of literature related to

this field of study exists and is scrutinized in [FH10]. Label ranking has been applied to improve

meta-learning [Sun14] and more recently employed in SAT solver portfolios [OHL15].

Each of the above described strategies has known a success across different disciplines. However, there

is no agreement about which one is the most adequate or the most performing strategy. Adjudging

them is closely depending on the problem nature and the context of the learning. Hence, we decided

to investigate both of them and to compare their performances analytically and empirically.

Based on this discussion, it is obvious that to implement the RakSOR component, one has to

consider two important questions: which preference rules to apply in order to take into account the

information regarding the reasoner correctness and efficiency? and which supervised ranking strategy

which will best satisfy our requirements? In the remainder of this section, we will consecutively bring

response to each of these questions.

5.3.2 Ranking criteria and preference order

In Chapter 4, we discussed at length the ways to adjudge the robustness of DL reasoners. We shall

recall that a reasoner is assessed according to the correctness of its derived results and the time, it

spent to compute them. However, the correctness is not numerically quantified. A reasoner result

would be correct or not and computed in time or not. Hence, we specified a first ordinal criterion

which would categorize the reasoners into four groups according to their termination state. To gain

more insights, we added a second criterion which track the exact time spent by a reasoner to derive

correct results. Henceforth, a ranking of reasoners with respect to an input ontology should respect

this specification.

Rich plethora of approaches and algorithms were introduced in the literature to handle multiple

criteria when ranking items or objects. When the criteria are attributes describing the alternatives, then

the ranking task could be reduced to a Multiple Criteria Decision Making (MCDM) problem [GEJ16].

The main goal in this field of study is to build a preference relation which takes into consideration

the multiple attributes of the alternatives. Hence, the ranking are made on the basis of preferences

expresses on each attribute and eventually "inter-attribute". Our reasoner ranking problem could be

seen as one MCDM problem. Therefore, we studied some of the prime works in this field of research,

and examined how well they could fit our requirements. The Outranking algorithms and the Utility
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Theory based techniques (MAUT) are the two main MCDM approaches. A detailed survey about these

works is provided in [GEJ16]. We first discarded the outranking techniques since they are heavily based

on user preferences and not adapted to problems which have few ranking criteria, like in our case. The

MAUT approaches mainly employ aggregation operators like the addition or the multiplication to

combine the multiple criteria into a single utility function. The specification of the aggregation may

rely on the user preferences. Despite, the simplification that an aggregation function would brought to

our ranking problem, defining a proper function that would handle our criteria is a quite complex task

since our criteria have different units. Actually, our first criterion is a discrete variable while the second

one has continuous values. Besides, this latter one is conditionally depending on the first criterion.

One further possibility to remedy to the reasoner ranking problem is to apply the methodology of

partial order ranking and its graphical representation (Hasse diagrams) [BCLS06]. Partial ordering is

a parameter free, transparent methodology and quite adapted to ranking problems where the criteria

does not exclude each other. Indeed, in our opinion, a total order of the reasoners can be misleading.

This is because some alternatives could be incomparable with respect to the input ontology. For

instance, reasoners predicted to fail in processing the ontology and share the same cause of failure are

incomparable. More specifically, we choose to work with a special case of partial orders: the bucket

order rules [FKM+06]. Before describing how these rules will be interpreted and applied in our study

context, some basic notions will be recalled.

5.3.2.1 Preliminaries on bucket order

Following Fagin et al. [FKM+06], a bucket order is a special case of partial order. It could be seen as

a total order over a set of buckets (groups) in such a way that objects are tied (equally ranked) within

the buckets. Formally, let B={B1, . . . ,Bt} be a set of non empty buckets that forms a partition of a

set A of alternatives1, i.e.
⋃t
i=1 Bi = A and Bi ∩Bj = ∅ if i 6= j, and let ≺ be a strict total order on B,

i.e. B1 ≺ . . . ≺ Bt, we say (B, ≺) forms a bucket order on A. ≺ is a transitive, strict binary relation

such that for any x, y ∈ A, x precedes y denoted by x < y, if and only if there are i, j with i 6= j such

that x ∈ Bi, y ∈ Bj and Bi ≺ Bj . If x and y are in the same bucket, then x and y are incomparable

and said to be "tied". A totally ordered set is a special case of a bucket ordered set in which every

bucket is of size 1.

Ranking with ties. A ranking σ with ties over A is associated with a bucket order (B, ≺) over A as

σ = B1 ≺ . . . ≺ Bt, where i is the rank of x ∈ A, i.e. σ(x) = i, if and only if x ∈ Bi. ∀x′ ∈ Bi ∧ x 6= x′,

then x, x′ are equally ranked σ(x) = σ(x′) = i and hence a tie. When x precedes y, i.e. σ(x) < σ(y),

1The alternatives are the objects, or elements to be ranked.



CHAPTER 5. ADSOR: ADVISING SYSTEM OVER THE ONTOLOGY REASONERS 178

this means a preference for x over y.

Pair ordered matrix Pandit et al. [PKK11] have further specified that given a bucket order (B,

≺), a pair ordered matrix capturing the pairwise preferences over the elements of A could be set up.

The latter one is designed by CB. It is a |A| × |A| matrix such for each xi, xj ∈ A, CB(i, j) = 1 if

xi < xj . Besides, CB(i, j) = 0.5 if xi and xj belongs to the same bucket and CB(i, j) = 0 if xj < xi.

By convention, CB(i, i) = 0.5 and CB(i, j) satisfies that CB(i, j) + CB(j, i) = 1.

5.3.2.2 Applying the bucket order rules to reasoner ranking problem

According to the termination state (real or predicted state) of each examined reasoner, four possible

reasoner groups could be identified: "Success" (S), "Unexpected" (U), "Timeout" (T), "Halt" (H)

(Chapter 4, Subsection 4.2.2). These groups are disjoint ones since a reasoning task would have a

unique termination state when achieved by a particular reasoner over a given ontology. By consequence,

the union of the above mentioned groups is equal to the whole set of reasoners, i.e. R. Therefore,

we can assert that these groups form a partition of R. On these basis, we defines the buckets set

{BS ,BU ,BT ,BH}, which respectively matches {S,U, T,H} groups. In addition, a precedence order

relation ≺ over the described buckets can easily be specified. In our opinion, the most straightforward

order is BS ≺ BU ≺ BT ≺ BH . Intuitively, reasoners belonging to BS are the most preferred ones

as they can derive correct results within the fixed time limit. The reasoners of BU could achieve

the reasoning task within the time limit but the correctness of their results was not approved by our

correctness checking method. Therefore, we think that they are much preferred than reasoners falling

in the BT bucket, which would not deliver any result to be assessed. Of course, the worse reasoners

are in BH bucket, as they are not even capable to process the ontology.

Given this specification, two particular cases would emerge. First when |BS | = 0, this means no

reasoner has been identified as robust over the input ontology, consequently no effective reasoner could

be suggested to the user. Despite this fact, reasoners within the remaining ordered buckets could

still be provided to the user as an indication that their ontology might be hard to manage w.r.t the

available reasoners. Furthermore, the reasoners will be listed according to the nature of their failure

which would be a valuable information for users looking to process additional inspections. Another

interesting case is when |BS | > 1. Here more than one alternative reasoner, eventually all of them, are

found to be robust2 over the input ontology and could be suggested to the user. Nevertheless, we think

that the latter one would rather prefer to get informed about the most adequate reasoner amongst the

2We recall that a robust reasoner over an input ontology is the one which have achieved the classification task within

the time limit and delivered correct results.
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set of the robust ones. To achieve this purpose, we need to break the tie at the top of the ranking list

by referring to our second ranking criteria: the runtime of a correctly achieved ontology classification

task. On the basis of the reported (or predicted) computational time, the reasoners belonging to BS
bucket could be linearly ordered by a simple decreasing sort over their runtimes: the more efficient a

robust reasoner is, the smaller would be its rank value. Henceforth, BS will be partitioned such that

every successful reasoner will have its own corresponding bucket. Given m alternative reasoners, of

which k reasoners were found to be robust w.r.t an ontology O, i.e k =| Bs |, then the bucket order

over this set of alternatives could be modelled as follows:

BS︷ ︸︸ ︷
B1 ≺ . . . ≺ Bk ≺ BU ≺ BT ≺ BH (5.1)

where |Bi| = 1 such that 1 ≤ i ≤ k are the single element buckets corresponding to the successful3

reasoners. By consequence, we can assert that |BU | + |BT | + |BH | = (m − k). Furthermore, the rank

value of reasoners within the buckets, BU ,BT ,BH , will be be updated according to the size of the Bs.

For instance, let k =| Bs | and BU 6= ∅, then the ranks are updated as follows: ∀Ru ∈ BU , σ(Ru) = k+1

and so on. To meet the aforementioned requirements, the reasoner ranking with ties according to the

bucket order principals and with respect to their classification performances over an ontology O is

defined in what follows. It is to be noted that CT (Ri,O) denotes the computational time achieved by

the reasoner Ri.

Definition 26 (Reasoners ranking with ties) Given a set of alternative reasoners R =

{R1, . . . , Rm} and an ordered bucket partition over R, i.e. B = BS ≺ BU ≺ BT ≺ BH , a reasoner

Ri precedes a reasoner Rj, i.e. σ(Ri) < σ(Rj), if and only if, Ri ∈ Bi and Rj ∈ Bj, such that

Bi ≺ Bj or Bi = Bj = BS and CT (Ri,O) < CT (Rj ,O). On the other hand, Ri and Rj are tied, i.e.

σ(Ri) = σ(Rj) , if and only if, Bi = Bj 6= BS.

Based of the preference rules established in Definition 26, the pair ordered matrix CB over the

alternative reasoners could be encoded following the description made in Subsection 5.3.2.1. We should

highlight that the above preference rules could be applied to data, describing the real reasoners’

performances, or the predicted ones. In the next sections, we will describe how to predict the rank of

reasoners according to the established rules and for any input ontology. In the forthcoming sections,

we will investigate two distinct rank prediction approaches and describe their respective experimental

evaluations.

3Otherwise, the robust ones.
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5.4 Reasoner Ranking based on single label prediction approach

In Chapter 4, we already established the concept of reasoner predictive robustness profile and specified

ways to assemble it from empirical data. Roughly speaking, a profile is made up from a couple of

predictive models: a multi-class model predicting the termination state of the reasoner with respect

to given ontology, and a regression model estimating the runtime of this reasoning task when the

correctness of the results is granted. In the remainder of this section, we will describe how these

profiles would be put forward in order to compute a ranking with ties of DL reasoners by applying the

bucket order principals.

5.4.1 Design description of the ranking method

Once a user introduces her/his ontology Ou, RaKSOR, the reasoner ranking component, computes the

feature vector of this ontology, X(Ou), and loads the stored reasoner profiles from the meta-knowledge

base. Then, the system predicts the output quality of each reasoner against this ontology. Afterwards,

the alternative reasoners are ranked according to these predictions. The ranking steps are carried out

by applying Algorithm 3. The main purpose of this algorithm is to partition the set of alternative

reasoners into ordered buckets BS ≺ BU ≺ BT ≺ BH by considering their predicted performances and

accordingly encode the reasoner pair order matrix CB (|P| × |P| matrix). The algorithm outputs

the ranking of reasoners together with their respective predicted performances, i.e. the termination

state and potentially the exact estimated runtime. Hence, the ranking could be explained and justified.

Different output formats could be provided: a simple string list or an advanced Hasse Diagram [Ros91].

To achieve this purpose, we first defined a vector, denoted by B and of size |P|, recording for each

reasoner the bucket it belongs to. For instance, whenever the success of a reasoner Ri in classifying

the ontology Ou is predicted, then B[i]← ’S’. At the beginning of the ranking process, the buckets of

the reasoners are unknown. This is why, the B vector is initialized by a sequence of ’F’ (Algorithm 3,

Line 3). More specifically, ’F’ stands for the full bucket, i.e. BF , which gathers all the alternatives.

Hence, we can ensure that all the reasoners are initially tied within BF and share the same rank.

By consequence, all the pairs of the CB matrix are initially set to 0.5. We should highlight that BF
is placed at the bottom of the ordered buckets, i.e. BS ≺ BU ≺ BT ≺ BH ≺ BF . Reasoners are

ranked according to their success state as well as to their computational time. Hence, we defined a

further vector denoted by T. The latter one is of size |P| and records for each reasoner its predicted

runtime. Initially, all the T values are equal to +∞, which stands for the maximal possible computing

time (Algorithm 3, Line 5). Afterwards, the CB matrix, B and T vectors are progressively updated

while iterating over the reasoner set and according to the computed predictions. It is important to
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note that only the reasoners belonging to BS will have their corresponding T value lower than +∞.

As previously argued, the tie will be broken particularly for these reasoners since their robustness is

predicted. Such configuration would guarantee that reasoners within the other buckets, will always

be tied at the bottom of the reasoner ranking list according to the time criterion. A step by step

Algorithm 3: The Reasoner Ranking with ties
Input : The user input ontology Ou.

Output: Pr formatted representation of the predicted ranking, termination state and runtime

of the reasoners.

1 X(Ou) ← computeTheFeatureVector(Ou);

2 P← loadTheReasonerProfiles() ;

3 B← [F, F, . . . , F ]; // B is of size m

4 Initialize the pairs of the CB matrix with 0.5 ;

5 T← [+∞,+∞, . . . ,+∞] ; // T is of size m

6 for i← 1 to |P| do

7 B[i]← predictTerminationState(P[i], X(Ou));

8 if B[i] = ’S’ then // the reasoner is robust

9 T[i]← predictTheRuntime(P[i], X(Ou));

10 end

11 for j ← 1 to |P| do

12 if (B[i] ≺ B[j]) or (B[i] = B[j] =’S’ and T[i] < T[j]) then

13 CB[i][j]← 1 ;

14 else if (B[i] = B[j] 6=’S’) then

15 CB[i][j]← 0.5 ;

16 end

17 CB[j][i]← 1−CB[i][j] ;

18 end

19 end

20 Pr ← formatThePredictedOutputs(CB,B, T);

21 return Pr;

running example of Algorithm 3 is given in Figure 5.2. Given a user ontology Ou and five alternative

reasoners with their already established profiles P = [P (R1), P (R2), P (R3), P (R4), P (R5)], Figure 5.2

depicts the different iterations processed in order to encode the CB matrix as well as the B and T

vectors. In each iteration, we show the reasoner Ri predicted label and eventually its predicted runtime.



CHAPTER 5. ADSOR: ADVISING SYSTEM OVER THE ONTOLOGY REASONERS 182

Figure 5.2: Running example of reasoner ranking algorithm.

Figure 5.3: Formatted ranking according to the string and to Hass diagram respective representation.

Then, we outline the subsequent changes over the data structures, i.e. B,T and CB. The changes are

highlighted in bold face or in red color. The computed reasoner pair order matrix could be illustrated

using the well known Hasse Diagram or by a simple string representation. The final computed ranking

is depicted in Figure 5.3. Given the description of the above algorithm and its resulting ranking, we

would assert that our solution have satisfied all the functional requirements listed in Subsection 5.3.1

and have complied with the preference order established in Subsection 5.3.2. In the remainder of this

section, we will assess the quality of the produced rankings given a large set of test ontologies.
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5.4.2 Experimental setup

In this section, we describe the results of the empirical evaluation of our first reasoner ranking approach.

We will begin by describing the test data. Then, we will list the assessment measures that we will

employ to assess the quality of the computed rankings. Afterwards, we will report and discuss the

results of the conducted experiments.

5.4.2.1 Experimental data

Our starting meta-knowledge base is mainly made up from the reasoner profiles that we have described

in Chapter 4. Hence, {Konclude, MoRE, HermiT, TrOWL, FaCT++, JFact} is our set of alternative

reasoners, which will try to automatically rank given any input ontology. Our ranking evaluations

are based on a holdout method, where the data is separated into two sets, called the training set and

the testing set. When training the reasoner predictive models, we have already used 2500 distinct

ontologies (cf. Chapter 3, Subsection 3.3.1). Ontologies within this initial corpus, C(O), together

with their computed feature vectors are counted as the training examples. Therefore, we selected

further 500 ontologies from the original ORE corpora, to create the ranking test set, i.e. the CT (O)

corpus. Ontologies within the latter one are different from those in C(O), but have similar overall

distribution proportions over the size and expressivity bins. Thus, CT (O) stands for the set of the

unforeseen ontologies to evaluate the supervised ranking method. Later by following the specification

we made in Chapter 4, Subsection 4.4, we carried out new ontology classification evaluations using

the six alternative reasoners and over the CT (O) ontologies. Table 5.1 summarizes the results. The

reasoners are listed in a decreasing order with respect to their success rate; otherwise, the most robust

reasoner over the ontology test corpus is the one at the top of the list (cf. Chapter 4, Definition 23).

These evaluations were put forward in order to record the real performances of the examined

reasoners over the test ontologies. Indeed, given a test ontology, the predicted ranking of reasoners

will be compared to the ideal one. An ideal ranking, also called the target ranking, should represent

as accurately as possible the correct ordering of the reasoners given the ontology at hand. In our case,

it is built by applying rules from Definition 26 on the basis of the real reasoner performances reported

during the above described evaluations. Once the ideal and the predicted ranking is computed for each

test ontology, the agreement between both of them is measured using known state-of-the-art metrics.

Intuitively, high agreement with the ideal ranking would witness the effectiveness of our approach. In

the remainder of this chapter, by recommended ranking, we will refer to the one computed based on

the reasoner predicted performances. Besides computing the agreement with the ideal ranking, we

need to compare the quality of our recommendations versus a baseline method. The latter one is a
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Reasoner #S #U #T #H Runtime

Min Max Mean

Konclude 482 8 9 1 0.04 182.75 3.37

MORe 435 19 44 2 1.09 150.68 8.03

HermiT 432 1 62 5 0.59 150.12 16.83

TrOWL 429 53 15 3 0.47 173.26 10.54

FaCT++ 393 7 81 19 0.47 157.50 7.50

JFact 339 6 128 26 0.63 141.44 14.3

Table 5.1: Classification results over the test ontologies. The time is given in seconds. #S, #U, #T

and #H stand respectively for the number of ontologies labelled by Success, Unexpected, Timeout or

Halt.

trivial solution commonly called the default ranking. According to this method, the ranking remains

the same regardless of the ontology under examination. The default ranking is decided on the basis of

the reasoner evaluation results described in Table 5.1. This means the overall success rate of reasoners

achieved over the ontologies of CT (O). Thus, our default ranking starting from the best reasoner

is: Konclude ≺ MoRE ≺ HermiT ≺ TrOWL ≺ FaCT++ ≺ JFact. A ranking method is interesting,

whenever it performs significantly better than the default method. Besides being a trivial solution,

the default method could be seen as an instance of the brute force approach commonly applied in

practice for reasoner selection. Indeed, it is often the case that an inexperienced user selects a reasoner

for her/his ontology based application, by referring to rankings published following a recent reasoner

benchmark or competition. Hence, this ranking computed based on average overall performances is

considered as a default valid one for any ontology and whatever is the application and the usage

constraints. Obviously, this is a misleading solution since reasoner performances are closely depending

on the nature of the examined ontology and varies according to the provided computational resources.

In our experiments, we will show that our introduced reasoner ranking method, which consider the

distinctive characteristics of the examined ontology, is more relevant and capable to deliver more

effective results than the default method.

5.4.2.2 Assessment methods

In short, for each test ontology Ot ∈ CT (O), we do the following: 1) build and save an ideal ranking

of reasoners, denoted by iσ(Ot) = (iσ1, iσ2, . . . , iσm); 2) get the sorted list of the recommended

reasoners by applying our ranking with ties method, denoted by rσ(Ot) = (rσ1, rσ2, . . . , rσm); 3) get
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the default list of ranking, denoted by dσ = (dσ1, dσ2, . . . , dσm) and 4) compute the agreement between

iσ and respectively rσ and dσ using an appropriate assessment measure. The agreement between our

recommended rankings (resp. the default ones) and the ideal rankings is qualified according to five

quality measures falling into two categories describes in what follows.

Correlation metrics. To assess the agreement on the full computed rankings, we choose to compute

two well known correlation metrics: the Kendall Tau [EM02] and the Spearman Rho [CC97]. We pay

particular attention to choose only the metrics that can handle ties in ranking. First, we will be

measuring the generalized Kendall Tau correlation coefficient for ranking with ties, denoted by τx and

proposed by Emond and Mason [EM02]. The latter authors have noted a problem with the classical

Kendall distance in case of partial ranking, i.e. the one having ties. Hence, they defined new correlation

coefficient as:

KendallTauX = 1− 2d(Rs, Rt)

m(m− 1)
(5.2)

where Rs, Rt are any two rankings and d(Rs, Rt) is the Kemeny distance. Known that the number of

alternative reasoners is m, the Kemeny distance is computed as follows:

d(Rs, Rt) =
1

2

m∑
i=1

m∑
j=1

|x(s)ij − x(t)ij | (5.3)

where x(s)ij (resp. x(t)ij) is defined as equal to 1 if the reasoner i is preferred to reasoner j in the

ranking s, otherwise -1 and equal to 0 if the two reasoners are tied.

Furthermore, the accuracy of our recommended ranking is assessed using the Spearman rank correl-

ation coefficient known as the Spearman’s rho [CC97]. In the latter metric, tied reasoners are assigned

a rank equal to the average of their positions in the ascending order of the values. For instance, a

recommended ranking rσ = (2, 1, 3, 3, 4) is transformed into rσ′ = (2, 1, 3.5, 3.5, 5). Formally, the

Spearman’s rho is defined as follows, where rσk and iσk are the recommended and ideal ranks of

reasoner k respectively:

SpearmanRHO = 1−
6
∑m

k=1(rσk − iσk)2

m3 −m
(5.4)

According to the above described correlation measures, a value of 1 represents perfect agreement,

whereas −1 stands for a perfect disagreement. A correlation of 0 means that the rankings are not

related.

Information retrieval (IR) based metrics [BYRN99]. By following the evaluation style of

search engines, we will examine how well we are ranking the reasoners at the top of the list. Although

these metrics do not take into consideration ties within the ranking, we choose to apply them since
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Method Kendall TauX Spearman Rho MAP@1 MAP@3 MAP@6

Recommended 0.68 (± 0.25) 0.76 (± 0.25) 0.92 (± 0.27) 0.70 (± 0.25) 0.62 (± 0.23)

Default 0.32 (± 0.23) 0.41 (± 0.27) 0.91 (± 0.29) 0.59 (± 0.19) 0.41 (± 0.14)

Gain 111.71% 87.43% 1.32% 19.73% 44.94%

Table 5.2: Evaluation summary of reasoner ranking methods over ontologies of CT (O)

they are easy to interpret metrics and widely recognized by the IR and the ML respective communities.

In overall, for each ranking list provided for a test ontology Ot, we measure the Precision at position

K, denoted as P@K(Ot), which stands for the percentage of correctly predicted ranking of reasoners

at that position K. Then, we compute the Average of Precision at position K, denoted as AP@K (i.e.

AP@K =
∑K

i=1 P@i(Ot)
K )4. To obtain an overall idea of precision considering the whole test set, we

compute the Mean Average Precision, denoted as MAP@K (i.e. MAP@K =
∑l

j=1 AP@K(Oj)

M , where

l = |CT (O)|). More specifically, we put our focus on three possible values of the K index. We recall

that we are examining six reasoners, thus, we record for each test ontology: (i) the AP@1 as it reflects

how well we are predicting the most performing reasoner; (ii) the AP@3 since the top 3 of a ranked

list are the most likely to be examined by a user; and(iii) the AP@6 which stands for the full rank of

the alternatives. Finally to sum up the evaluations, we compute MAP@1, MAP@3 and MAP@6.

5.4.3 Experimental results

Table 5.2 illustrates the mean values of correlation coefficient computed over the different rankings

across the test ontologies. The table also reports the mean average precision at three different positions.

Each assessment value is put together with its corresponding standard deviation. This gives a general

idea about the ranking accuracy across the different test set ontologies and makes it possible to compare

the overall quality of our recommended ranking to the quality of the default method.

As it can be noticed, the rankings generated by our method, i.e. the recommended, are more

correlated to the ideal rankings according to both Spearman’s Rho and Kendall’s Tau X. The difference

with the values of the default ranking is significantly high, witnessing the good quality of our provided

rankings. This would further be asserted by looking at the value of MAP@1. The latter one indicates

that in 92% of the test cases, our method have succeeded to predict and to correctly rank the topmost

performing reasoner. Our value is even better than the MAP@1 achieved by the ranking algorithms

deployed in the meta-reasoner R2O2 [KKL15]. The authors reported a MAP@1 varying between 88.7%

and 90.6%. On the other hand, the values of the mean average precision at position 3 and 6, respectively

4It is to be noted that when K = 1, P@1 is equal to AP@1.
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MAP@3 and MAP@6, are less good than MAP@1, revealing in some way troubles in ranking reasoners

at positions higher than the first place. However, our MAP@3 and MAP@6 remain sufficiently higher

than those computed for the default rankings. An overview about how much improvements our ranking

with ties method can achieve over the default method is provided in the last line of Table 5.2, which

reports the gain percentage according to each assessment measure. The improvement is remarkable

according to Kendall Tau X, Spearman’ RHO and MAP@6. However, it seems unimportant in terms

of MAP@1. It is important to note that in the default ranking, the best reasoner is Konclude. The

latter one is the dominant reasoner in our evaluations over the test set ontologies. Indeed, it is the

best one in the ranking of 90.6% of the cases, which would explain the high value of MAP@1 achieved

by the default method. Therefore, an improvement of 1.32% is not as bad as it seems to be, since the

maximal possible improvement would be equal to 9.4%.

Furthermore, to ensure that the observed difference in the ranking quality is not likely to be due

to chance, we applied the well known paired Student’s t-test [SAC07]. The comparison between the

recommended and the default method was carried out according to each aforementioned assessment

measure. Hence, five distinct t-tests were computed respectively examining the difference in Kendall

Tau X, Spearman’s RHO, AP@1, AP@3 and AP@6. In each test case, the null hypothesis assumes

that there is no difference in the mean average value of the assessment measure, while the alternative

hypothesis asserts that at average the recommending method is better performing. In all cases, the

achieved p-values were < 2.2e−16, which means that the null hypothesis is rejected. These results

show that, at the 95% confidence level, the performance of the proposed ranking with ties method is

significantly better than the default method according to the different assessment measures. All of these

findings approve our starting assumption that a ranking of reasoners based on predicted robustness is

a better alternative to any manual or default selection. It is also important to highlight that in the

previous work about reasoner ranking conducted by Kang et al. [KKL15], the produced rankings were

not compared to any other ones even the default rankings and P@1 was the only reported assessment

measure. Therefore, we would assert that our evaluations are more reliable and informative ones.

Despite the convincing good ranking accuracy achieved by our method, we were curious about

its behaviour at the individual level of the testing ontologies. To get more insights, we plotted per

ontology the assessment values achieved by each ranking method. Figure 5.4 scrutinizes the compar-

ison established according to the aforementioned assessment measures and having as counterparts our

recommended rankings (highlighted in blue) and the default ones (outlined in red). From the differ-

ent plots illustrated in Figure 5.4, it can easily be observed that in major cases our curve is higher

than the one of the default method showing better accuracy according to all the assessment measures.

However for some ontologies, we did not succeed to outperform the default ranking in terms of the
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(a)

(b) (c)

(d)

Figure 5.4: Per ontology comparison between the recommended rankings (in blue) and the default ones

(in red)
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correlation with the ideal ranking. The advantage of this kind of analysis is that it enables us to mark

off the hard ontologies, which have yield to inaccuracies. Hence, our investigations would be better

focussed towards more targeted improvements. Indeed by examining these ontologies, it might be

possible to characterize further relevant ontology features and thus, enhance our initial feature suite.

We should also assert that our ranking approach is closely depending on the quality of the predictive

models included in the reasoners profiles. More specifically, the accumulated prediction errors across

the reasoner models can have an important impact on the overall ranking accuracy. For instance, we

observed that the misdeed of some rankings was due to the margin errors in the predicting of reasoner

runtimes. Indeed, the computational time of some of the examined reasoners, in particular HermiT

and MoRE, are in general very close to each other. Hence, a minor gap between the predicted and

the real runtime of one of these reasoners might alter the full ranking. Furthermore, we admit that

although the suggested ranking with ties method could efficiently be applied online to compute the

rankings, it requires a lot of training time in order to produce the reasoner profiles.

Seeking better performances in reasoner ranking with less training efforts have motivate us to

inspect different ranking strategies like the one that we will describe in the next section.

5.5 Reasoner Ranking based on multi-label prediction approach

Similarly to the conventional supervised learning, in multi-target learning [FH10, TKV10, ZZ14], each

input instance is characterized by a d -dimensional feature vector X(i) = (xi1, x
i
2, . . . , x

i
d), but it is

associated with a set of output labels rather than one single label. These outputs could be real-

valued, binary, ordinal, categorical or even of mixed types. Let X be the domain of the input features,

also called the predictor variables space and let Y be the domain of the output labels, also called

the target variables space. The task of multi-target learning is to train a model, in fact a function

h : X → Y, which is capable to predict the proper output label vector Ŷ = (ŷ1, ŷ2, . . . , ŷm), given the

feature vector X = (x1, x2, . . . , xd) of an unseen input instance. The model is learned from a dataset

D = {(X(1), Y (1)), . . . , (X(n), Y (n))}, which assembles n training examples.

X = (x1, x2, . . . , xd)
h(X)−→ Ŷ = (ŷ1, ŷ2, . . . , ŷm), X ∈ X and Ŷ ∈ Y (5.5)

It has been proven in the related literature [TKV10, ZZ14] that the multi-target models have a

number of benefits over single-target models specially when the different targets are related. Indeed,

they could lead to more accurate models due to their ability to exploit potential dependencies among

the target variables. Besides, they are faster to learn and could lead to faster prediction times. In

ranking prediction, the target variables stand for the alternatives to be sorted. Given this kind of



CHAPTER 5. ADSOR: ADVISING SYSTEM OVER THE ONTOLOGY REASONERS 190

dependency between the alternatives, the multi-target learning is said to be more suitable for ranking

prediction. Motivated enough, we chose to examine how to employ this particular kind of models to

meet our demand in ranking the ontology reasoners. Our solution should mostly comply with the

requirements listed in Subsection 5.3.1 and respect the preference order specified in Subsection 5.3.2.

In the remainder of this section, we will first discuss the existing works, then introduce our new

ranking method. Later, we will establish an empirical study to assess the quality of our solution and

compare it to our previously established reasoner ranking method.

5.5.1 Multi-label learning techniques

By varying the nature of the target variables, i.e. ordinal, binary or real-value, different forms of

the multi-target learning task have emerged, such as the multi-label classification (MLC), the label

ranking (LR), the multi-label ranking (MLR) and the multi-target regression (MTR). Rigorous surveys

scrutinizing state-of-art works falling under each of these categories are established in [FH10, TKV10,

ZZ14]. We briefly recall some of their basic notions:

Multi-label classification (MLC) [ISTV10]: it is concerned with learning a model that outputs

a bipartition of the output labels into relevant label set Px and irrelevant label set Nx, where

Px ∩Nx = ∅ and Px ∪Nx = Y. Formally, the output space has the form Y = {0, 1}m and thus

the learning function is reduced to h : X → {0, 1}m, with 0 means irrelevant and 1 otherwise.

For instance, Y = (1, 1, 0, 0) ∈ Y is the output vector, Y = h(X), associated with some X ∈ X .

In this case, 1 indicates that the label yi is relevant for the input instance and by consequence

yi ∈ Px. Similarly, 0 indicates that yj is irrelevant and thus yj ∈ Nx.

Label Ranking (LR) [FH10]: it is concerned with learning a model that outputs an ordering of

the labels according to their relevance to the input instance. Hence, the h function maps every

instance X ∈ X to a total strict order, ≺, over the set of the output labels. A ranking over Y can

conveniently be represented by a permutation σ of the set of indices {1, . . . ,m}, where σ(i) stands

for the position of label yi in the ranking associated with X, i.e. its rank value. For instance

given an input instance X and 5 target outputs, the LR model often called a ranker, produces an

output vector of the form (2, 3, 5, 1, 4), which stands for (σ(1), σ(2), σ(3), σ(4)) the ranking of the

output labels.

Multi-label Ranking (MLR) [FHLMB08, ZZ14]: is a generalisation of MLC and LR. Thus, the

problem of multi-label ranking involves two equally important subsequent goals. The first is to

produce the bipartition of Y into relevant label set Px (positives) and irrelevant label set Nx
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(negatives). The second is a ranking ≺ over Y. Specially, ≺ should be consistent, meaning that

there should be no irrelevant labels ranked higher than relevant ones and vice versa. Formally,

whenever ∀yi ∈ Px and ∀yj ∈ Nx, then yi ≺ yj . In other words, yi is preferred to yj and it is

ranked lower σ(i) < σ(j).

Multi-target Regression (MTR) [STGV16]: it is also known as the multivariate or multi-output

regression task. Techniques falling in this category aim at predicting multiple real-valued target

variables instead of binary ones (the MLC case) or permutations (the LR case). Literally given

an instance X ∈ X , the MTR model, i.e. h(), maps X to the output vector Y ∈ Y, such as

Y ≡ Rm. Hence, all the multi-label learning forms could be seen as special cases of the multi-

target regression problem. Training MTR model is a less popular task, but still arises in several

interesting domains.

Multi-label based methods falling in each of the above described categories could be further categorized

into two different groups: (i) problem transformation methods, which transform the multi-label learning

task into one or more single-label classification or regression tasks; and (ii) algorithm adaptation

methods, which extend specific learning algorithms in order to handle multi-label data directly. Further

details about these groups are provided in [TKV10, ZZ14].

5.5.2 Multi-label based solutions for the algorithm selection problem

We investigated the works which have employed some multi-label learning technique to solve the

algorithm selection problem. The main purpose of our analysis is to examine whether the requirements

we have listed in Subsection 5.2 and the preference rules we have established in Subsection 5.3.2 could

be satisfied using the existing solutions. Hence, we will focus on three main points: (i) whether a

ranking of the alternatives is computed; (ii) if partial orders are considered and ties are allowed; (iii)

how informative is the method. The investigated works fall into two major categories, both of them

are discussed in the following:

MLC based solutions. Olmo et al. [ORGV15] have recently proposed a meta-learning approach

based on multi-label classification. They applied their approach to a repository of educational data-

sets in order to recommend the most suitable ML classification algorithms to carry a learning. In

this context, the instances are feature vectors describing datasets and the target variables match the

examined ML algorithms. A model is trained which predicts whether an algorithm is relevant or not

given an input dataset. A relevant algorithm means it is capable to train the dataset and to deliver

a model having an accuracy higher than some fixed threshold. The proposed system lists the relev-
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ant algorithms as the recommended ones without any ranking or further details about their expected

performances. Hence, we would assert that such approach does not meet our requirements.

LR based solutions. The label ranking models have been deployed in meta-leaning systems [SP13],

in SAT solver portfolios [OHL15] and in the meta ontology reasoner, R2O2 [KKL15]. In these systems,

the employed models produce strict total orders with high confidence levels. No further indications

about the expected performances of the examined alternatives are provided. Furthermore, there is

a common assumption among these works which entails that all of the alternatives are relevant ones

and a ranking is an indication about what to choose at first. This is a quite different specification

from what we need to fulfil. Indeed, we are interested in ranking relevant reasoners, i.e. the robust

ones, as well as the irrelevant ones, those which would potentially fail to handle the ontology. This

is because our main concern is to be as informative as possible (see Subsection 5.3.1). Unsuccessful

reasoners could further be categorized with respect to the failure nature and then partially ranked (see

Subsection 5.3.2). Learning rankers of partial orders is another issue in label ranking. Very few works

have addressed this problem. For instance, Cheng et al. [CHWW12] have proposed to allow their LR

model to abstain from setting a preference between two compared alternatives, if the model is not sure

about what to choose. Hence, a couple of alternatives could be incomparable and by consequence a

ranking is said to be a partial order. In this case, abstention is just an option, put forward to reduce the

ranking errors. Furthermore, to the best of our knowledge, learning to predict bucket orders according

to the rules we have established has not been investigated.

Given these findings, we would assert that the LR techniques are interesting ones: they simplify the

ranking process, i.e. just one predictive model to invoke; and they are known to be highly accurate.

Nevertheless, they cannot satisfy all of our requirements. Actually when a ranked list of reasoners

is provided to a user, the latter one will not be able to distinguish the reasoners to avoid. Let

(2, 1, 3, 4, 4, 6) be the ranking of 6 reasoners according to our preference rules. Here, we can deduce

that reasoners ranked as 4 and the one in the 6th position are unsuccessful ones. This is because

ties are only allowed among reasoners within one of the failure buckets {U, T,H}. Reasoners ranked

higher than a tied alternatives are also unsuccessful ones, since the buckets are linearly sorted in an

increasing order. However, we cannot decide whether the reasoner at the 3rd position is a successful

one or not. Indeed, any bucket can have a single element and at most 3 failure buckets might appear in

a ranked list. In our example, we have already identified 2 of these buckets, hence the third bucket may

exist. If this is the case, the bucket would be ranked lower than the other ones, otherwise in the 3rd

position. When, we designed our first reasoner ranking method, we paid special attention to avoid such

ambiguity. Actually, our single label based method provides two equally important outputs: the rank
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of each reasoner and the bucket to which it belongs. Thus, the ranking could be better understood. In

overall, the irrelevant reasoners are tied within at most 3 buckets and the remaining are relevant ones.

Based on these inspections, we think that the multi-label ranking (MLR) approach is the closest to

meet our requirements. As a matter of fact, methods applying this approach provide a ranking as well

as a bipartite partitioning of the output labels into relevant Px and irrelevant Nx subsets. Motivated

enough, we decided to examine more in details some of the methods falling in this category. We should

highlight that to the best of our knowledge, there is no previous work which have attempted to solve

the algorithm selection or ranking problem using the MLR techniques.

MLR based solutions. The calibrated label ranking (CLR) introduced by J. Fürnkranz et al.

[FHLMB08] is the most wide spread solution of the multi-label ranking problem. The basic idea of

this method is to extend the label space Y by introducing one additional virtual label, y0, known as

the calibration label. It represents the splitting point between the relevant and the irrelevant labels.

Hence, every label yi known to be relevant for an instance X, i.e. yi ∈ Px, should be ranked higher

than the virtual label, y0. Similarly, any irrelevant label yj ∈ Nx must be ranked lower than y0.

y1 ≺ y2 ≺ . . . ≺ yi−1︸ ︷︷ ︸
Px (the relevant)

≺ y0 ≺ yi ≺ yi+1 ≺ . . . ≺ ym︸ ︷︷ ︸
Nx (the irrelevant)

(5.6)

Following this configuration, a calibrated label ranking dataset can then be trained by any conventional

label ranking (LR) algorithm over the extended label space, i.e Y ′ = Y ∪ {y0}. Authors have chosen

to work with ranking by pairwise comparison, the RPC algorithm [ZZ14]. Roughly speaking, RPC

transforms a dataset with m target labels into m(m−1)
2 binary datasets, one for each label pair (yj , yk),

such that (1 6 j < k 6 m). Afterwards, a binary model is trained for each transformed dataset in

order to decide where yi is preferred to yj . Given a new instance, all the binary models are invoked and

a ranking is computed based on the obtained votes for each label. In the case of calibrated ranking, m

binary datasets are added corresponding to the pairs (yi, y0), ∀i ∈ {1, ..,m}. In overall, the complexity

of the CLR method is quadratic with respect to the number of the required binary models, which

is a relatively high complexity. On the other hand, regarding our ranking requirements, the major

drawback of the above described method is the fact that no ties are allowed within the computed

rankings. Indeed, a strict total order is produced over each of the two partitions Px and Nx. Hence

using the CLR method, we cannot delineate all of our buckets and we can no more allow two or more

reasoners to be equally ranked. However, we can at least distinguish between the relevant and the

irrelevant reasoners in a ranked list.

Inspired from the various multi-label learning approaches, we designed a novel multi-label ranking

method which tries to avoid the aforementioned drawbacks and to satisfy most of our requirements.
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Details are outlined in the forthcoming subsections.

5.5.3 Design description of the novel multi-label ranking method

At this stage of our research work, we are willing to employ multi-label learning techniques to predict

the ranking of reasoners for any given input ontology. Known that the reasoners are ranked according to

the preference rules established in Subsection 5.3.2.2, we argued that providing only the reasoner ranks

might be misleading for the users. This is because the ranked list might include or be made up from

reasoners expected to fail in handling the input ontology. Hence, it is important not only to predict the

ranks but also to identify the reasoners respective buckets, i.e. BS ,BU ,BT ,BH . Nevertheless, we choose

not to outline all of the possible buckets, but only to distinguish between the successful/unsuccessful

ones. Giving up some of our requirements was decided in order to achieve an effective solution of

reasoner ranking using multi-label ranking (MLR) techniques.

5.5.3.1 Modelling the Extended Multi-label Ranking (EMLR) method

In our learning context, by relevant reasoner we mean a successful one with respect to the classification

task of an input ontology. More specifically, we define the bipartite partition over a label set of ranked

reasoners as follows:

Definition 27 (Bipartite partition over reasoner label set) Let R = {R1, . . . , Rm} be the set

of labels matching the m alternative reasoners and let B = B1 ≺ . . . ≺ Bk ≺ BU ≺ BT ≺ BH be the

ordered bucket partition over R, where |Bi| = 1 for ∀i ∈ [1, k], while |BU | + |BT | + |BH | = (m − k).

The bipartite partition of R is defined such that Px = (B1∪ . . .∪Bk) is the subset of relevant reasoners

and Nx = (BU ∪ BT ∪ BH) is the subset of the irrelevant reasoners, known that Px ∪ Nx = R and

Px ∩ Nx = ∅. The bipartite partition of R is said to be consistent with the ranking associated to the

bucket order B, whenever ∀Ri ∈ Px and ∀Rj ∈ Nx, then the reasoner Ri is preferred to Rj and ranked

lower, i.e. σ(i) < σ(j).

Based on these specifications, our reasoner ranking problem could be approached as a multi-label

ranking (MLR) problem. Unlike the CLR method which combines the ranking and the relevance

prediction tasks within the same model, we choose to tackle the multi-label ranking of reasoners by

transforming it into other well-established multi-label learning scenarios. Indeed, the key idea of our

solution is to learn a separate multi-label model for each of the above sub-problems: (i) a model to

predict the ranking with ties of the alternative reasoners, denoted by hr();(ii) a model to predict the

relevance of each reasoner hb(). At prediction time, the results obtained given an input ontology must
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be synchronized to grant their consistency. More specifically, the predicted ranking will be checked

and corrected whenever a contradiction regarding the predicted relevance is being caught. A further

issue to be overcome is about predicting a ranking with ties using multi-label learning techniques.

We previously highlighted the lack of solutions when the ranking involves ties. Hence, we decided to

address this problem from a larger perspective and tackle it using the multi-target regression (MTR)

techniques. The latter ones can handle different kinds of learning problems provided that the domain

of the output variable is within Rm. Our learning context satisfies this requirement since the rank

position of each reasoner takes value in R. Hence, the ranks of all the alternative could be considered

as the targets in the multi-target regression setting. The advantage of this solution is very simple,

no restriction about the relation among the target variables is been made. In other words, no matter

whether the target values are ordered or have ties, the MTR model will try to predict the closest values

to the real ones.

We call our approach the Extended Multi-Label Ranking (EMLR) solution applied to the

problem of automatic ranking of ontology reasoners. We start outlining the main characteristics of

our solution by specifying the novel hypothesis space underlying its framework. Let m be the number

of alternative reasoners to be ranked. Each reasoner is referred to using an output label. Hence, the

EMLR model could be defined as follows:

Definition 28 (EMLR model) The extended multi-label ranking model, EMLR, is a function

mapping an input feature vector X belonging to some d-dimensional vector space Fd, to an output

matrix Y of size (m × 2) having elements in R and built over the set of output labels {R1, . . . , Rm}.

Y is set up such that ∀i ∈ [1,m], Y[i, 1] = b̂i is the predicted relevance of the label Ri, i.e. b̂i ∈ {0, 1},

and Y[i, 2] = σ̂(i) stands for the predicted rank of the same label.

hemlr : Fd →Mm×2(R) (5.7)

5.5.3.2 Learning and prediction steps

In the forthcoming paragraphs, we outline the required steps to train the EMLR model and those

related to the prediction stage. Still, it appears appropriate to begin by describing the main feature

of our training dataset and how it could be assembled.

Dataset assembling. On the basis of Definition 28, our training dataset D is made up from n

training examples and has the following form: D = ((X(1), Y (1)), . . . , (X(n), Y (n))), where Xi =

(x1, . . . , xd) ∈ Fd refers to an ontology feature vector and Y i = ((y11, . . . , ym1)(y12, . . . , ym2)) ∈

Mm×2(R) stands for the output matrix encoding respectively the relevance and the rank of each of
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the m alternative reasoners. The output matrix of each example is set up using our ranking with ties

algorithm (see Subsection 5.4.1) applied on real data resulting from the reasoner empirical evaluations.

Besides, the reasoner relevance is computing following Definition 27.

Training time. As explained above, the extended multi-label ranking model hemlr is comprised of

2 models: a multi-label classification (MLC) model, hb : Fd → {0, 1}m, which predicts the relevance

of the output labels, and a multi-target regression (MTR) model, hr : Fd → Rm, which predicts the

ranking with ties of these labels. Each of these models is learned independently from a reduced dataset,

respectively Db and Dr. The latter ones share the same input vectors, however only the required output

labels are maintained. On these basis, we can distinguish two main learning subtasks which could be

performed in a parallel timed manner:

Learning the bipartite partitioning model (hb()): it is achieved by employing a multi-label clas-

sification (MLC) algorithm to train the reduced dataset Db. The latter is made up from the n

input vectors, X(i), from the original dataset D such that each X(i) is associated to the 1st column

from its corresponding output matrix Y(i). No previous work have employed any MLC algorithm

to solve the problem of automatic selection of ontology reasoners. This is why we carried out

an empirical evaluation of the most valuable MLC algorithms, likely to deliver accurate bipartite

decomposition of our output labels. The results of our investigation will be described in Subsec-

tion 5.5.5.1. The MLC algorithm to be incorporated in our method will be decided based on the

assessment results.

Learning the ranking model (hr()) : it is achieved by employing a multi-label classification (MLC)

algorithm to train the reduced dataset Dr. The latter is set up in the same way as Db, however

each X(i) is associated to the 2nd column from its corresponding output matrix Y(i). Similarly,

the MTR algorithm to be incorporated in our method will be picked up from a set of existing

ones, after assessing their ranking quality when training our dataset.

Prediction time. During this online stage, to compute the ranking for a new introduced ontology,

our system operates in three steps. All of these steps are performed in a sequentially timed manner,

after computing the feature values of the introduced ontology:

Step 1. Relevance prediction: the MLC model is applied on the ontology feature vector to get the

predicted relevance of each output label: (b1, . . . , bm) = hb(X(O)).

Step 2. Ranking prediction: similarly, the MTR model is applied on the ontology feature vector

to get the predicted rank of each output label, (σ1, . . . , σm) = hr(X(O)).



CHAPTER 5. ADSOR: ADVISING SYSTEM OVER THE ONTOLOGY REASONERS 197

Figure 5.5: Main steps to achieve the reasoner automatic ranking according to the Extended Multi-

Label Ranking approach (EMLR).

Step 3. Consistency checking at this stage, a checking method is run in order to examine the

consistency of the predicted ranking and potentially to edit its values. Despite the fact that

both of the materials, the bipartition and the ranking, are predicted ones and expected to show

some degree of error, we choose to rely on the predicted bipartite partition as the "baseline"

knowledge that the predicted ranking must agree with. Our assumption is that the multi-label

classification models (MLC) which employ binary classification techniques are more likely to show

higher performances than other types of models. Indeed, the supervised bipartite partitioning

problem is a less challenging learning task than the ranking problem. Details about the operating

mode of our ranking checking method are provided in the upcoming subsection.

Figure 5.5.3.2 sums up the above description. It depicts all the required training and prediction

steps under the EMLR framework.
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5.5.3.3 Ranking consistency checking method

Based on Definition 27, the ranking checking method must ensure that: 1) the rank values of the

relevant labels form a strict totally ordered set of natural numbers; and 2) no relevant reasoner is

ranked higher than an irrelevant one. If one of these rules is broken, then the ranking is corrected

and accordingly updated. Algorithm 4 shows the steps that the function rankingCheckingMethod()

achieves in order to satisfy these rules. The procedure takes as input the matrix Ŷ, which encodes

the computed predictions. We design by maxPx
σ the maximal rank value of the relevant output labels.

Known that the ranks take values in N∗ and they are expected to be linearly sorted in an increasing

strict order, then we can assert that maxPx
σ = |Px|. Through the first loop of Algorithm 4, the maxPx

σ

value is computed and the rank values corresponding to the relevant labels are stored in the Rx array.

The cells of this array which correspond to the irrelevant labels are set to 0. The resulting Rx array

Algorithm 4: The ranking consistancy checking method

1 Function rankingCheckingMethod(Ŷ ∈Mm×2(R))

2 Rx ← [0, . . . , 0] ; // Rx is of size m

3 maxPx
σ ← 0 ;

4 for i← 1 to |Ŷ| do

5 if Ŷ[i][1] = 1 then

6 Rx[i]← Ŷ[i][2] ;

7 maxPx
σ ← maxPx

σ + 1 ;

8 end

9 end

10 Rx ← rankOrderTransformation(Rx) ;

11 for i← 1 to |Ŷ| do

12 if Ŷ[i][1] <> 0 then // Relevant label, update the rank

13 Ŷ[i][2]← Rx[i] ;

14 else if Ŷ[i][2] ≤ maxPx
σ then // Irrelevant label, Inconsistency case

15 Ŷ[i][2]← maxPx
σ + 1 ;

16 end

17 end

18 return Ŷ ;

is then handled by rankOrderTransformation(). The main role of this function is to apply our 1st

consistency rule. The ranks in the Rx array are treated as any numerical scores. Hence, it computes
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the strict total order to these scores. It is built around the Freeman’s algorithm [Fre70]. Ties observed

in the initial Rx array5 are arbitrary broken. For instance, let [1, 3, 3, 3, 5, 4] be a predicted ranking of

6 alternatives and [1, 0, 1, 1, 1, 0] their corresponding predicted relevance. In this case, the Rx array is

equal to [1, 0, 3, 3, 5, 0], which is obviously a non consistent6 ranking over the Px subset. After being

edited by rankOrderTransformation(), the Rx array will have the following value [1, 0, 2, 3, 4, 0]. We

should highlight that the rank transformation is computed in polynomial time with respect to the size

of the output label set. Afterwards, the inconsistencies w.r.t. the second rule are caught by simply

verifying whether an irrelevant label has a rank lower than maxPx
σ (see Algorithm 4, Line 14). In this

case, the rank value is set to (maxPx
σ + 1), thus the irrelevant label is no more ranked lower than any

relevant label. Actually, we do not have any further indication about the missed correct rank of this

irrelevant label. Hence, we choose to apply an intuitive and inexpensive solution aiming at least to fix

the inconsistency. As a matter of fact, in our opinion, the exact ranking of the irrelevant reasoners is

less important for the user. Based on this description, we can outline 2 more inconsistencies among

the irrelevant labels of the above example. Hence, by pursuing the execution of the checking method,

the final edited ranking corresponding to this example will be equal to [1, 5, 2, 3, 4, 5].

5.5.4 Experimental setup

In this subsection, we will describe the data and the assessment measurements that we will employ to

conduct the different evaluations.

5.5.4.1 Assessment methods

To train our new multi-label ranking model, we will use the ontology corpus described in Chapter 3

and the reasoner evaluation results employed in Chapter 4 to train the robustness predictive profiles.

Similarly, the assessments of the ranking quality will be conducted using the ontology test set and its

corresponding reasoner evaluations employed in Subsection 5.4.2.

The quality of the multi-label ranking methods will be assessed from two different perspectives.

First, we will examine the quality of the produced rankings by using some of the metrics employed

in Subsection 5.4.2. More precisely, we will compute the average Kendall TauX, the MAP@1 and the

MAP@6. In addition, we will examine how accurate are the deployed MLC models in distinguishing

between the relevant reasoners and the irrelevant ones given any input ontology. Hence, any usual

assessment metric of binary ML classification models can be used, such as the precision, recall and the

5The ties over values higher than 0.
6The ranking contains ties and is not linear.
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Predicted Labels

Relevant Irrelevant Total

Actual Labels
Relevant TP=|Px ∩ P̂x| FN=|Px ∩ N̂x| |Px|
Irrelevant FP=|Nx ∩ P̂x| TN=|Nx ∩ N̂x| |Nx|
Total |P̂x| |N̂x| |Y|

Table 5.3: Confusion matrix of a bipartition task.

F1-score7. More in details, let P̂x and N̂x be the set of labels8, respectively predicted as relevant and

irrelevant. Thus, we can, for each individual test ontology pictured by its feature vector X, compute

a two-by-two confusion matrix, Cx, of actual vs. predicted relevant and irrelevant labels. Table 5.3

illustrates such a matrix: Based of the Cx matrix of each test ontology, we will derive the F1-Score value

corresponding to the computed bipartition. Then, we will averaged the F1-Score across all the testing

ontologies. Besides the metrics derived from the confusion matrix, we will compute the Hamming

loss (HM-Loss) score. The latter one is a metric of common use in the assessing of MLC models.

Given a bipartition computed over an ontology X, HM-Loss computes the percentage of labels that

are misclassified: H − Loss = 1
|Y| |P̂x 4 Px|. Here, 4 stands for the symmetric difference between

two sets. H-Loss will be averaged across all the test cases. A good MLC model should maximize its

F1-Score value, while minimizing its HM-Loss value.

5.5.4.2 Candidate Multi-label learners

Our main concern at this stage of study is to decide which base MTR and MLC algorithms to embody

in our method. It is clear that these learners are required to be as effective as possible in training our

ontology reasoner dataset. Therefore, we selected some potentially powerful MTR and MLC algorithms

and then compared their prediction performances. In the following, we outline the main functional

features of the considered algorithms.

a) The multi-target regression algorithms All of the investigated MTR algorithms were origin-

ally introduced in [STGV16]. Specifically, we will put into comparison 3 MTR algorithms listed in the

following. We should highlight that all of these algorithms apply problem transformation techniques.

Thus, they require a base single label regression algorithm. In our experimentations, we will use the

Random Forest9 as the base learner.
7All of these metrics were previously described in Chapter 1
8Each label corresponds to one alternative reasoner
9Random Forest was described in Chapter 4 and it showed high performances when employed in reasoner runtime

prediction.
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• ST: the Simple Target is the baseline approach of multi-target regression. According to this

method, target variables can be predicted independently. Hence, the multi-target model h is

composed of m elementary models hj . Each of these models is trained separately from a reduced

dataset, Dj . Within the latter one, each instance is associated with a single value from one target

variable, Yj . Thus, the elementary model has the following form: hj : X → R.

• MTRS: the Multi-Target Regressor Stacking is based on the idea of stacking the single tar-

get (ST) models. The training of MTRS is achieved within two stages: first, m ST mod-

els, {h1, . . . , hm}, are trained for each target variable; then, a further set of m meta-models

{h′1, . . . , h′m} are also learned. The latter models are trained from transformed datasets where the

target variables and the prediction of their values are included in the feature space.

• ERC: the Ensemble of Regressor Chains is based on the idea of chaining single target (ST)

models. A random chain (permutation) of the set of target variables is selected and then a

separate regression model for each target is trained. However, the dataset would not be same for

every target. Indeed, the feature space of the training dataset for the target Yi will be extended

by those target variables which appear in the selected chain at a position lower than i.

b) The multi-label classification algorithms A rich plethora of MLC algorithms exists in the

related literature. We chose to examine some of the most commonly used ones. All the investigated

algorithms are described in [ISTV10] and can produce a bipartite partition of the alternative labels.

A brief description of the examined MLC algorithms is provided in what follows:

• BR: the Binary Relevance approach is the baseline in the multi-label classification. Like the

ST approach, BR learns a separate binary classification model for each label in order to pre-

dict whether it is relevant or not. Hence, it requires a base ML single label classifier. In our

experimentation, we will use the decision tree J48 algorithm as the base classifier.

• ML-KNN: the multi-label KNN is an instance based lazy approach derived from the popular

k-Nearest Neighbour (kNN) algorithm. For an input instance X, the algorithm first retrieves its

k nearest neighbours from the dataset according to some distance measure. Then, the maximum

a posteriori principle is applied to identify the label set for this instance based on the label sets

of its neighbours.

• BP-MLL: is a neural network approach for the multi-label classification task based on the popular

back-propagation algorithm. BP-MLL extends the latter algorithm through replacing its error

function with a new function defined to capture the characteristics of multi-label learning and the

dependencies between the individual labels.
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Algorithm Kendall TauX MAP@1 MAP@6

ST 0.894 (± 0.19) 0.940 (± 0.24) 0.857 (± 0.22)

MTRS 0.897 (± 0.19) 0.946 (± 0.23) 0.870 (± 0.22)

ERC 0.895 (± 0.19) 0.948 (± 0.24) 0.866 (± 0.22)

Table 5.4: Evaluation summary of MLR learning algorithms

• RAKEL: the Random K -Labelsets10 method constructs an ensemble of label powerset (LP)

classifiers. The latter ones consider each unique set of labels as one class. Hence, the problem is

reduced to multi-class single label classification. However, this approach is expensive and must

deal with the problem of data imbalance. RAKEL manages to take label correlations into account,

while avoiding the LP’s problems. Indeed, it constructs the LP ensemble where each LP classifier

is trained using a different small random subset of the set of labels.

Furthermore, the quality of the final ranking computed using our extended multi-label ranking

(EMLR) method will be compared to the results of our first method, which is based on single label

learning. We will also assess state-of-art ranking method when training our ontology reasoner dataset.

The upcoming subsection depicts the results of our different experimentations.

5.5.5 Experimental results

In the following, we start by discussing the assessment results of the investigated multi-label learning

algorithms. The purpose of this investigation is to help us to select one MLC and one MTR algorithm

that works well on the studied dataset. These algorithms will be incorporated in our method and used

in subsequent experiments. Afterwards, the quality of the EMLR rankings as well as the achieved

bipartite partitioning will be compared to those established by other different methods.

5.5.5.1 Selection results of the base learners

All of the above described MLC and MLR algorithms are already implemented within a Java library,

designed for the multi-label learning. The library is called Mulan11 [TSXVV11]. We have evaluated

these algorithms using their default parameters. Results are discussed in what follows.

The reduced training dataset, Dr, which includes 2500 ontology feature vectors associated with

their respective vector of the reasoner ranking, was trained by the above described MTR algorithms.

10Any subset of the label space Y is called a labelset.
11Mulan is available for download from http://mulan.sourceforge.net/download.html

http://mulan.sourceforge.net/download.html
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Measure BR ML-KNN BP-MLL RAKEL

F1-Score 0.956 (± 0.15) 0.937 (± 0.14) 0.849 (± 0.16) 0.953 (± 0.15)

HM-Loss 0.038 (± 0.10) 0.067 (± 0.13) 0.212(± 0.16) 0.039 (± 0.11)

Table 5.5: Evaluation summary of the MLC learning algorithms

Then, the quality of the learned models were checked against the testing dataset which includes 500

ontologies. Table 5.4 depicts the results of this assessment. The overall quality of the predicted rankings

produced by the listed MTR models was assessed according to the Kendall TauX, the MAP@1 and

the MAP@6 respective measurements. The table illustrates the average value of these measurements

together with their respective standard deviation computed across all the testing samples. We can

notice that the MTRS model have outperformed both ST and ERC models according to the Kendall

TauX and the MAP@6 values. However, the ERC showed better performances in predicting the top

of the ranked list, otherwise the most performing reasoner. Here, a choice must be made whether to

pick the MTRS or the ERC algorithm. Obviously, if we were about to build a meta-reasoner like the

R2O2 [KKL15], then we would preferred the ERC algorithm. However, our main goal is to provide

insights about all of the examined reasoners. Hence, it is important for us to grant the quality of the

full ranking. That is why we choose to carry on with the MTRS algorithm. It is also important to

notice that all of the above reported assessment values exceed those achieved with our first reasoner

ranking method, over the same testing dataset. For instance, the average Kendall TauX of our first

method reported in Table 5.2, Subsection 5.4.2 is about 0.68, while it is over 0.895 using the MTR

algorithms. The difference is remarkable and promising one. However, we must outline that at this

stage of the study the computed rankings are still not consistent ones. They still need to be checked

and eventually modified to match the predicted relevance of the reasoners. Therefore, we will later

inspect whether the remarked improvement in the ranking quality is maintained.

Similar to our first set of experiments, we learned MLC models from our second reduced training

dataset, which includes 2500 ontology feature vectors associated with their respective vector of reasoner

relevance. Then, the quality of the learned models were checked against the testing dataset. Table 5.5

sums up the assessment results. The predictive power of the examined models was checked in terms

of the F1-Score and the Hamming Loss score. Table 5.5 reports the average value together with the

standard deviation of each measurement. According to these values, we can state that the BR and

the RAKEL models can better distinguish between the relevant/irrelevant reasoners than the other

models. Moreover, the BR model showed the highest F1-Score while maintaining the lowest Hamming

Loss Score. Hence, we will rely on this algorithm to build in our multi-label ranking method of ontology

reasoners.
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To sum up, we selected the Multi-Target Regressor Stacking (MTRS) algorithm as our base MTR

learner. It will be employed to train our ranking model, hr(). On the other hand, we selected the

Binary Relevance (BR) algorithm as our base MLC learner. Henceforth, it will be used to derive our

bipartite partitioning model, hb().

5.5.5.2 Comparative study of the reasoner ranking methods

The purpose of this section is to provide an empirical evaluation of the extending multi-label ranking

(EMLR) method when all the prediction steps are applied. Furthermore, we intend to demonstrate

that the EMLR method yields to better results than those achieved by our first single label based

method. In order to ease the discussing, we will denote by SLR the latter method. The rankings

predicted by the EMLR and by the SLR respective methods are comparable ones. Indeed, the

assessment results of the SLR predicted rankings over our testing dataset was already reported in

Subsection 5.4.3. Nevertheless, the SLR method produces a multi-class partitioning12 of the output

label set, rather than a bipartite one. The partitions stand for the buckets BS , BU ,BT and BU . Hence

to be able to set up the comparison, we rearranged the SLR predicted partitions according to the rules

of Definition 27.

On the other hand, we want to prove that our method is competitive with other state-of-art multi-

label ranking solutions. The closest existing work is the calibrated label ranking (CLR) method.

According to [FHLMB08], the CLR method and more specifically, the calibrated ranking by pairwise

comparison, denoted by CRPC, can predict both the ranking and the bipartite partitioning of the

output label set. However, the only available implementation of this method, which is part of the

Mulan library, is exclusively designed to produce a bipartite partitioning. Actually, the method can

only process datasets having an output space of the form {0, 1}m. Hence, we will denote by CLRmulan

this implementation version. The quality of our predicted bi-partitioning will be compared to those

produced by CLRmulan and SLR. In order to expand our study, we will compare the quality of our

rankings to those produced by existing label ranking (LR) solutions. The ranking models of three

algorithms will be assessed: (1) the nearest neighbor-based approach for ranking (LR-KNN); (2) the

predictive clustering trees for ranking (PCTR); and (3) the label ranking trees (LRT). Details about

these algorithms can be found in [SP13]. The rational behind selecting these algorithms is two-folded:

first, they are the building blocks of R2O2 [KKL15], the ontology meta-reasoner13, which employs the

label ranking techniques; then, these algorithms could be slightly adjusted so they could produce a

12The predicted partitions are those stored in the B vector encoded by Algorithm 3.
13We should highlight that we did not get access to R2O2 executable. Then, we were enable to establish any comparison

with this system.
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Measure EMLR SLR CLRmulan

F1-Score 0.956 (± 0.15) 0.958 (± 0.13) 0.955 (± 0.15)

HM-Loss 0.038 (± 0.10) 0.040 (± 0.10) 0.038 (± 0.10)

Table 5.6: Summary of the bipartite partitioning quality achieved by the examined methods

ranking with ties. It is to be noted that these algorithms are restricted to rank the labels and do not

separate them into relevant and irrelevant ones.

All the examined learning models were derived from our training dataset that we have already used

in our different experimentations. The dataset was adapted to the learning process of each examined

method. Then, the predictions about reasoner ranking and relevance were computed for every ontology

in our testing dataset. We start the discussion by examining the quality of the predicted bipartite

partitioning, then the predicted the ranking.

Bi-partitioning quality Table 5.6 illustrates the assessment results of the achieved bipartite par-

titioning by those methods capable to produce such a prediction. We can notice, at a glance, that

the values of the assessment measures of the three methods are very close to each other. In overall,

our proposed methods EMLR and SLR showed very good prediction capabilities in terms of F1-score

and the Hamming Loss (HM-Loss) score. Actually, our F1-scores are even better than those achieved

by the well recognized calibrated method (CLRmulan). The gain can seem modest, but nonetheless

it witnesses the effectiveness of our proposals and proves their competitiveness comparing to exist-

ing MLC solutions. Surprisingly, when the purpose is to win F1-Score, our single label method SLR

outperforms the other multi-label based method. It showed a slightly higher14 HM-Loss comparing

to EMLR and CLRmulan, but the value remains good. Actually, the classification according to the

relevance obtained by the EMLR method corresponds to those of Binary Relevance (BR) algorithm.

We recall that the latter one treats each output label independently and trains a binary to predict

their respective relevance. The decision tree algorithm (J48) is the base single label learner. The

design of the SLR method is very similar to the BR, since that one predictive model is trained for each

output label (this is the multi-class model part of a reasoner profile). The main difference is that SLR

employs different base learners, one for each output label. These learners were selected after excessive

experimentation to grant that they are the most performing ones given the data under training.

Ranking quality. Table 5.7 shows the assessment results of the ranking quality achieved by the six

listed methods. Several interesting observations can be drawn from our experimental results.
14We recall that HM-Loss should be minimized
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Measure EMLR MTRS SLR LR-KNN PCTR LRT

Kendall-TauX 0.899 (± 0.20) 0.897(± 0.19) 0.680 (± 0.25) 0.825 (± 0.24) 0.730 (± 0.26) 0.821 (± 0.23)

MAP@1 0.954 (± 0.21) 0.946 (± 0.23) 0.920 (± 0.27) 0.918 (± 0.27) 0.860 (± 0.34) 0.908 (± 0.28)

MAP@6 0.874 (± 0.22) 0.870 (± 0.22) 0.620(± 0.23) 0.773 (± 0.28) 0.688 (± 0.29) 0.758 (± 0.27)

Table 5.7: Summary of the ranking quality achieved by the examined methods

First, we should highlight that the goal behind comparing the EMLR ranking results to those of

the MTRS (previously reported in Table 5.4) is to examine the impact of the ranking correction step.

We can notice that EMLR improves the overall quality of the predicted rankings comparing to MTRS.

Indeed, the EMLR’s Kendall TauX and MAP@6 scores are higher than those of MTRS. These seemingly

small improvements are statistically highly significant (p� 0.0001) according to the paired t-test. On

the other hand, the hypothesis that MTRS outperforms EMLR w.r.t. the MAP@1 score was rejected

by the same statistical test. Based on these findings, we can assert that our proposed procedure,

which checks and corrects the consistency of a predicted ranking, is effective and can contribute to the

improvement of the quality of this ranking.

Another interesting conclusion is that our multi-label based method, EMLR, remarkably increases

in the quality of reasoner ranking compared to our single label based method (SLR). The achieved

gain is significant according to the paired t-test with p � 0.0001. It is around 23.88% and 28.74%

respectively in Kendall TauX and in MAP@6 scores. This means that with EMLR model we are

better ranking the full set of alternatives and we are more capable to predict the ties. Similarly, the

improvement in predicting the top most robust reasoner is about 3.77% w.r.t. SLR and about 4.61%

comparing to the default method. The improvement may be due to the fact that EMLR explores the

dependency across the output label values, otherwise the rank values corresponding to the different

reasoners. The SLR method does not handle such information. The performances of each reasoner are

independently predicted and then ranked.

More interestingly, EMLR method have outperformed all of its counterparts, LR-KNN, PCTR and

LRT, w.r.t. the all assessments measures. This result is important since these are well recognized

algorithms in the field of label ranking. Besides, they are part of R2O2, the only existing reasoner

ranking system in our related literature. The empirical results could be explained by the fact that

none of the above methods is originally designed to predict a ranking which includes ties. Even that

they can handle such ranking, they are not particularly optimized for. Once again, these findings show

that our proposed EMLR method adds good multi-label ranking abilities to the already strong existing

solutions. Hence, we would assert that it was worthwhile to investigate time and effort in exploring the
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multi-label techniques and in accommodating them to the problem of automatic ranking of ontology

reasoners.

5.5.6 Complexity analysis

In this section, we discuss the time complexity of all methods capable to produce both the ranking and

the relevance based partitioning of a set of alternative reasoners: SLR, EMLR and the original CLR

[FHLMB08]. All of these methods depend on at least one base single label learner (e.g. the Random

Forest, the Decision Tree, etc.). Therefore, the computational complexity of each of these methods is

approximated as a function of the computational complexity of the base learner(s) it employs.

We suppose that for a dataset of n ontologies, each described by d features, the training complexity

of a single label learner is O(Gtr(n, d)) and the prediction complexity is O(GPr(n, d)). Worth noting,

the training complexity varies from one single label algorithm to another. However, for most algorithms

(e.g. Random Forest), the computational cost of making predictions for n examples is much smaller

than the cost of training on n other examples. We should also highlight that the same set of compu-

tationally cheap ontology features (cf. Chapter 3, Subsection 3.3.2) were deployed in all the assessed

reasoner ranking methods. Let m be the number of the alternative reasoners to be ranked, which

stands for the number of the output labels in a multi-label learning model. Then, the computational

complexity of the assessed ranking methods is detailed in what follows:

SLR : the training complexity of our single label based method applied to the reasoner ranking

problem (SLR) is about O(2.m.Gtr(n, d)). This is because for each reasoner 2 single label models

(multi-class model, regression model) are trained and stored in the robustness profile. However, differ-

ent single label learning algorithms were employed to train these models with different computational

complexity. This is why, the O(Gtr(n, d)) stands for the upper bound of the training complexity

achieved across all of these algorithms. Similarly, the O(GPr(n, d)) is their corresponding upper

bound prediction complexity. We recall that at the prediction time, a reasoner regression model15

would not be invoked unless the success of this reasoner, it has been predicted. Let t be the number

of regression models called at the prediction time, obviously, t takes values in [0,m]. On the other

hand, them reasoner multi-class models will be used. Hence, the prediction complexity using the SLR

method is about O((m+ t).GPr(n, d)). We should highlight that the processing operations relative to

the ranking computation as established in Algorithm 3 could be achieved in a polynomial time w.r.t.

the size of the output labels set, i.e. the m value.

EMLR : the extended multi-label ranking method of ontology reasoners involves training of two sep-

15This models estimate the reasoner runtime.
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arate models: the MTRS multi-target regression model and the BR multi-label classification model.

The training and prediction complexities of the BR method are O(m.G′tr(n, d)) and O(m.G′Pr(n, d))

respectively, as it involves training and querying m independent single-label binary models. The

O(G′tr(n, d)) corresponds to the training complexity of the decision tree (J48) algorithm employed

by BR as the base single label learner. On the other hand, according to [STGV16], the train-

ing and prediction complexities of the MTRS algorithm are O(m.(G′′tr(n, d) + G′′tr(n, d + m))) and

O(m.(G′′Pr(n, d) + G′′Pr(n, d + m))) respectively. Nevertheless in most cases, including our learning

dataset, the number of the output labels is much smaller than the number of the input features, i.e.

m � d. Hence, the effective training and prediction complexities of MTRS become O(m.G′′tr(n, d))

and O(m.G′′Pr(n, d)) respectively. In our experimentation, the base single label learner employed by

MTRS is the Random Forest. Given these analysis, we can assert that the training complexity of the

EMLR method is equal to the sum of the above complexities, this means O(2.m.Gtr(n, d)) such that

O(Gtr(n, d)) is the upper bound complexity of both O(G′tr(n, d)) and O(G′′tr(n, d)). At the prediction

time, EMLR applies a correction step in addition to the prediction operations. As it could be observed

from Algorithm 4, all the required operations could be achieved in a polynomial time w.r.t. the size

of the output labels set.

CRPC : in [ZZ14], the authors have established that at the training time the computational com-

plexity of the calibrated label ranking method is equal to O(m2.Gtr(n, d)), known that this method

employs the ranking by pairwise comparison, i.e. the RPC algorithm. Indeed, RPC trains and stores

a quadratic number of single label binary models. The O(Gtr(n, d)) is the training complexity of

the base learner employed to train these models. In our experimentation, we set this learner to the

decision tree (J48) algorithm. Hence, the computational complexity at the prediction time using a

CRPC model is equal to m2.O(GPr(n, d)).

Based on these findings, we can assert that training EMLR or SLR models require less computa-

tional cost than the CRPC model. This is also true when computing the predictions. This result is

very interesting one, since we have already showed that EMLR model could achieve better prediction

quality than the CRPC model. Hence, our learning method could improved the prediction capabilities

of the multi-label ranking system without any additional cost. It is worth noting that the training

complexity of EMLR and SLR methods is almost the same. However, the SLR method could be used

to compute the predictions with slightly lower computational cost. Actually, the difference in the

prediction complexity is occasional and depends on the data.
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5.6 ExOH: Extracting the Empirically Hard Ontology Modules

Under our advising system ADSOR, the empirical hardness of an ontology is adjudged with respect

to a set of reasoners using predictive modelling techniques (c.f Chapter 4, Definition 24). An ontology

predicted not to be hard entails that all of the examined reasoners can correctly classify it within the

fixed time limit. Hence, a user could safely select any of these reasoners to employ it in its application.

However, when the ontology is expected to be a hard one, a user would probably look to gain further

insights about the causes of this hardness. One possible assistance that our system could offer is to

pinpoint the ontology subsets which are the most computationally demanding ones. These subsets

are commonly called the ontology hotspots [GPS12]. Hotspots are ontology modules, identified as

performance bottlenecks for reasoning. An efficient identification of these modules is highly desirable,

since they represent re-factoring opportunities for both the ontology and the reasoner designers. We

revisited both the Gonçalves et al. [GPS12] and the Kang et al. [KLK14] respective approaches

of hotspot identification. We suggested a novel method to extract this particular kind of ontology

modules, which takes into account the specificity of our study context. Before providing more details

about our extraction approach, we recall some relevant notions in the ontology modularization field of

research [SPS09].

5.6.1 Basic notions of ontology modularization

Ontology modularization has an important part of the ontology engineering field. It aims at reducing

the complexity and the size of an ontology, either by breaking it down to all its constituent sub-parts

(i.e. ontology partitioning) or by extracting only a small part of the ontology ( i.e. module extraction).

A rich plethora of ontology modularization approaches and techniques exist in the related literature,

some of them were consolidated in the Stuckenschmidt et al.’s book [SPS09]. In this section, we will

provide some basic notions of the ontology modularization, which are relevant to our research work.

More precisely, we will explain the concepts of ontology module and the ontology atomic decomposition

and we will briefly describe some of the well known ontology module extraction methods.

Ontology module and the syntactic locality extraction. In the related literature, there are

many sorts of "logically founded" definitions of ontology modules, most of them are based on deductive

conservative extensions [SPS09]. Roughly speaking, a module is a subset of an ontology that includes

all the axioms required to define some subset of its knowledge. By referring to [GHKS08], an ontology

module could be formally defined as follows:



CHAPTER 5. ADSOR: ADVISING SYSTEM OVER THE ONTOLOGY REASONERS 210

Definition 29 (Module) Let O be an ontology and Σ be a signature16. A subset M of O is said to

be a module w.r.t. Σ if for every axiom α with the signature α̃ ⊆ Σ,M |= α⇔ O |= α.

In other words, M preserves all the entailments formulated using only the symbols defined within a

signature Σ. Extracting minimal modules is computationally expensive task. Looking to overcome

this issue, Grau et al. [GHKS08] have introduced the concept of syntactic locality based module. This

is an approximation about how a minimal module would be. An axiom is called (⊥-) local w.r.t. a

signature Σ if replacing all symbols not in Σ with ⊥ makes the axiom a tautology. Thus, we can testify

that this axiom is not in relation with symbols in Σ. Otherwise, we would not run the risk of altering

the meaning of the Σ terms when adding this axiom to the ontology module defining over Σ. Hence,

the locality based module w.r.t. Σ is made up from axioms that are non local to Σ. The checking of

axiom locality is processed without involving a reasoner. It is rather accomplished by examining the

syntactic structure of an axiom and by matching it to some generic patterns. In this thesis, we restrict

our attention to modules based on syntactic locality, because they are logically sound, work for all of

OWL and often behave well in practice.

The idea of extraction syntactic locality modules was recently revisited by Martín-Recuerda and

Walther [MRW14]. Authors have introduced the notion of an axiom dependency hypergraph (ADH), a

novel graph based representation of OWL ontologies. Briefly, an hypergraph [GLPN93] is a generaliza-

tion of a simple graph where edges, called hyperedges, can connect more than two vertices. Accordingly,

the ADH of an OWL ontology is a directed hypergraph where vertices are axioms and each directed

hyperedge connects one or more vertices. The latter ones are arranged in the tail of the hyperedge

with only one vertex placed at the head of the hyperedge. The locality concept described above is

encoded within these hyperedges. More specifically, let α be the axiom placed at the head of a directed

hyperedge he. α is non-local with respect to the signature Σ made up from terms used in the minimal

axiom set placed at the tail of this hyperedge he. Given this representation, authors proposed a novel

algorithm for computing locality-based modules. Roughly speaking, a module of an ontology corres-

ponds to a set of connected vertices in the axiom dependency hypergraph. Experimental results of the

ADH based method have shown a significant improvement in the time needed to extract locality-based

modules comparing to state-of-the-art implementations of the Grau et al.’s method.

Atomic decomposition. According to Grau et al. [GHKS08], the number of all possible modules

of an ontology can be exponential w.r.t. its size, otherwise the number of its terms or axioms. Hence,

the Atomic Decomposition (AD) was introduced by Del Vescovo et al. [DPSS11] in order to scrutinize

the modular structure of an ontology. Indeed, the atomic decomposition gathers in a compact way all
16A signature stands for a set of terms.
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the modules of an ontology. Roughly speaking, an ontology atom is a subset of an ontology, whose

axioms always co-occur in modules. Formally, an atom is defined as follows:

Definition 30 (Atom) An atom a is a maximal set of axioms of an ontology O such that for every

moduleM of O either a ∩M = a or a ∩M = ∅.

A dependency between atoms exists and mirrors the subsequent relation across the corresponding

modules. This dependency is formally defined as follows:

Definition 31 (Atoms Dependency Relation) An atom b depends on an atom a in an ontology

O (written a <O b) if b occurs in every module of O containing a: ∀ module M, if a ⊆ M, then

b ⊆M.

Based on the above definitions, an Atomic Decomposition of an ontology O is a graph G =

〈AtomsxO,<O〉 where AtomsxO is the set of all atoms of O.

Del Vescovo et al. [DPSS11] have defined a tractable algorithm for computing the atomic decom-

position for the locality-based modules of Grau et al. [GHKS08]. First, the module for a signature

of every axiom is built, then axioms with equivalent modules are combined into a single atom. After

the set of atoms is known, their modules are explored to derive dependencies among the atoms. The

runtime of this algorithm was significantly improved by Martín-Recuerda and Walther [MRW14], who

have introduced the hypergraph based representation of axiom dependency. In fact, they have em-

ployed this representation to efficiently compute the locality based modules, then extended their work

to compute the full atomic decomposition of the ontology. In their approach, atoms of an ontology

correspond to strongly connected components of the axiom dependency hypergraph.

5.6.2 Study of ontology hotspot extraction solutions

According to Gonçalves et al. [GPS12] whenever an ontology is predicted to be performance hetero-

geneous (c.f. Chapter 2), then this ontology may include some small subsets of logical axioms whose

interaction with the remainder is performance-degrading. They called them the ontology Hotspots.

Authors suggested that it is possible to find them. They also highlighted that the removal of a hotspot

could improves or degrades the reasoner performance. They focussed on those which the removal could

decrease reasoning time for the remaining ontology. Let |O| denotes the size of an ontology O and

RT (O, R) denotes the reasoning time for an ontology O using a reasoner R. An ontology hotspot is

formally defined in [GPS12] as follows:

Definition 32 (Hotspot) Given an ontology O and reasoner R, a subset M ( O is a hotspot of O

for reasoner R, if |M| � |O| while RT (O \M, R)� RT (O, R).
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The hotspot identification algorithm suggested by Gonçalves et al. [GPS12] takes as input an ontology

O and a reasoner R. It starts by collecting the satisfiability checking time (SAT) for all atomic concepts

in O using R. The concept C with the highest runtime is picked. Then, a signature Σ ⊆ Ô which

includes all the terms co-occuring with C is collected. Afterwards, a locality based module MΣ for

this signature is extracted from O. The module MΣ is identified as a Hotspot, if |MΣ| � |O| while

RT (O\MΣ, R)� RT (O, R). The algorithm repeats these steps with a newly selected concept, until a

prescribed number of hotspots is found (e.g., 3) or a prescribed max number of concepts is reached (e.g.,

1000). Recently, Kang et al. [KLK14] argued that this algorithm may be very time-consuming, as the

sub-ontologies (O \MΣ) need to be classified repeatedly for already large and difficult ontologies, and

satisfiability needs to be checked for all classes in the ontology. Hence, they proposed to optimize it by

replacing the exact reasoning time RT (O \MΣ, R) by a predicted one, computed using their reasoner

runtime regression model. Henceforth, the locality model is extracted for each class in the ontology,

without prior checking of its satisfiability. Only the modules with a size lower than some predefined

threshold are accepted as a candidate modules for the hotspot identification procedure. This procedure

operates with two steps. First, the features of the module are computed then, the classification time

of the reasoner R over this candidate module is predicted. Finally, the k candidates with the highest

predicted classification time are returned as potential hotspots. In the empirical evaluations of Kang

et al., a retrieved potential hotspot module,Mc, is flagged to be an actual one, whenever it includes

at most 10% from the original axiom set, and the actual reasoning time of its corresponding residual

ontology, O \Mc, is lower by 30% from that of the original ontology. Using these rules, Kang’s et al.

succeeded to uncover more hotspots than those identified by Gonçalves et al. for the same examined

ontology, reasoner couples.

We can assert that the Kang’s et al. improvements of the hotspot extraction algorithm is interesting

in the sense that it proves the benefits of the predictive models when applied to ontology engineering

tasks. However, we find that the major drawback of both the above described algorithms lies in the

way the signatures were collected to extract the modules. Indeed, there is no proof that choosing

the concepts and their co-occurring terms as staring points for module extraction may entail the

identification of all of the ontology modules. Indeed, we have previously recalled that the number of

the extractable locality modules is exponential w.r.t the size of the ontology. Nevertheless, the atomic

decomposition of an ontology offers a condensed representation of all of these modules. Hence, we are

convinced that it would be worthwhile to choose the ontology atoms as starting points to recover the

modules. Furthermore, Del Vescovo et al. [DPSS11] have asserted that by definition locality modules

can highly overlap with each other. Such property was not took into consideration in neither Gonçalves

et al., nor Kang et al. respective algorithms. Actually, limiting the total number of extracted modules
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or restricting their sizes does not guarantee that these modules are not highly overlapping. All of

these findings will be considered when designing our novel approach of extracting the ontology hard

modules.

5.6.3 Design description of hard modules extraction approach

The main purpose of this section is to introduce our design ideas about a novel approach of hard modules

extraction from OWL ontologies. We start by establishing the problem definition, then providing an

overview of our solutions together with a justification of our modelling choices. Afterwards, we detail

the description of our approach by outlining its main algorithm. It is to be noted that all the terms

related to graph theory employed in this section are defined in Annexe A.

5.6.3.1 Specification of the extraction solution

Under our study context, the main goal behind trying to identify the ontology hotspots is to provide

users with some guidelines whenever their ontology is predicted to be a hard one. Given this specific

situation, it was clear that we have to review the definition of an ontology hotspot in order to adjust

it to fit our requirements. Two primary modification will be put forward:

1. a hotspot will be identified with respect to a set of reasoners, rather than a single one.

2. hotspot is not just an ontology subset which requires more classification time than its complement,

but the one which would alter the robustness of at least one reasoner from a given set.

The concept of reasoner robustness was previously introduced in Chapter 4, Definition 22. It entails

that a reasoner must be efficient and correct when classifying an ontology under some robustness

judgement constraints. Hence, an ontology which induces the failure (timeout, execution error or

unexpected results) of a reasoner is said to be hard. Our main assumption is that such ontology may

include one or more reduced subsets that are hard regarding the reasoning tasks. The formal definition

of these subsets is provided in the following. In the remaining of this thesis, we called them the hard

locality modules .

Definition 33 (Hard locality module) Given an empirically hard ontology O w.r.t of reasoner set

R, a locality moduleM ( O is said to be hard for R, if |M| � |O| and at least one reasoner from R

is not robust overM.

We should highlight that we are not asserting that any ontology would have at least one hard

module. In our opinion, some ontologies may be hard when handled as a whole. We believe that to
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Figure 5.6: Example of the atomic decomposition graph with sinks highlighted in light blue. The graph

is originally represented in [DPSS11].

achieve our purpose of extracting the hard locality modules, we should bring respond to the following

couple of research questions:

1. How to extract enough modules which covers most of the ontology knowledge?

2. How to identify a hard locality module?

Our solution ideas to the above issues are described in what follows:

Locality module extraction mechanism When discussing the related works, we argued that it is

more reasonable to choose the signature of the axiom atoms as the starting point to extract the locality

modules. Actually, the atomic decomposition of an ontology can be viewed as a compact representation

of all the modules in it. However, the number of these atoms can also be as high as the number of the

logical axioms in the ontology [DPSS11]. Hence, we need to establish a selection rule of those atoms

to be prioritized to achieve the module extraction task. To achieve this purpose, we examined the

properties of the atomic graph (Definition 31) and put our focus in a particular one. This property

asserts that if an atom b depends on an atom a, then ∀ module M, if a ⊆ M, then b ⊆ M. Hence,

we think that it suffices to extract the module corresponding to the a, to get the b covered. Given

that the atoms’ dependency relation is transitive [DPSS11] and all the related atoms are arranged as

a directed graph, we choose to extract the locality modules only from the sink atoms in this graph.

We recall that by definition a sink vertex in a directed graph, v, is the one having incident vertex, i.e.

indegree(v) > 0, and one outgoing edges, i.e. outdegree(v) = 0. Figure 5.6 depicts an example of the

atomic decomposition graph, which was originally illustrated in [DPSS11]. We highlighted with light

blue the sink atoms of this graph.
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This exploration strategy of the atomic decomposition graph seems to be sound, intuitive and could

be efficiently processed. Whereas, there is no proof that the modules extracted based on the signatures

of the sink atoms are hard ones. Hence, we proposed a back up strategy that will be applied whenever

the first search round have not lead to the identification of a hard module. The hypothesis behind

our second exploration strategy states that extracting modules based on the signature of an ensemble

of interconnected atoms may yield to the identification of the hard modules. More specifically, an

ensemble of atoms represents a connected component in the ontology atomic graph. Retrieving these

components could easily be achieved, whenever the ontology atomic graph is a disconnected one. In

case of a connected atomic graph, we will apply a standard graph decomposition algorithm [Hol92]

to compute the components. Afterwards, the signature corresponding to the set of atoms within a

connected component will be used for locality module extraction.

Hard locality module identification mechanism Inspired by the Kang et al. work [KLK14],

we propose to employ our binary classification model for ontology overall hardness prediction17, to

adjudge whether an extracted locality module is potentially a hard one. Modules will be considered

as entirely standalone ontologies. Hence, their features could be computed and submitted to the

ML classification model to get the predictions. As we showed in Chapter 4, by referring only to

the computationally inexpensive features highly accurate predictions about the ontology hardness

could be achieved. These features are computed in a polynomial time with respect to the size of the

ontology (resp. the locality module). Furthermore, our a binary classification module was trained by

L2SVM, which is a linear supervised machine learning algorithm. The prediction step using this kind

of ML models takes constant time. Hence, the overall complexity of predicting the hardness of is still

polynomial w.r.t the size of the ontology module. Given these findings, we can assert that iteratively

predicting the hardness of each extracted locality module won’t yields to dramatical increase in the

computing time.

5.6.3.2 Description of the extraction algorithm

Our hard locality module finding techniques are described in Algorithm 5. This is the main algorithm

in the ExOH component of the ADSOR system. We should highlight that we decided to work

with the Martín-Recuerda and Walther [MRW14] locality module extraction and ontology atomic

decomposition methods. Their solutions are highly efficient and more scalable comparing to the other

state-of-art solution. The algorithms of Martín-Recuerda and Walther are accessible from their Java

17The ML model is called MOOH and was described in Chapter 4, Section 4.5.
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tool, Hys18. These algorithms will be treated as black box tools to compute the required atoms and

modules from an ontology under examination. Algorithm 5 takes as input a user ontology, O and

Algorithm 5: Hard modules identification algorithm
Input : Ontology file O, the minimum tolerated overlap minov.

Output: Predicted hardness status hO and the set of the candidate hard modules MH
O .

1 MH
O ← ∅ ;

2 hO ← predictTheEmpiricalHardness(O) ;

3 if hO= true then // Hard ontology

4 ADHO ← computeAxiomDependancyGraph(O) ;

5 AtomsxO ← computeTheAtomicDecomposition(O, ADHO ) ;

6 foreach a ∈ AtomsxO do

7 if outDegree(a,AtomsxO)=0 and inDegree(a,AtomsxO)≥ 1 and

notIncludedAtom(a,MH
O ) then

8 Ma ← extractLocalityModule(a, ADHO) ;

9 hMa ← predictTheEmpiricalHardness(Ma) ;

10 if hMa = true then // Hard module

11 VMa ← computeTheOverLap(MH
O ,Ma);

12 if VMa ≤ minov then // Acceptable overlap percentage

13 MH
O ←MH

O ∪ {Ma} ;

14 end

15 end

16 end

17 end

18 if MH
O = ∅ then // No hard modules

19 MH
O ← extractFromADGraphSubComponents(MH

O , AtomsxO) ;

20 end

21 end

22 return (hO,MH
O );

a threshold value, minov. The latter one stands for the amount of the tailored overlap across the

extracted modules. The minov value is a system parameter which varies from one ontology to another

and it is set after preliminary experimentations. The algorithm starts by predicting the empirical

hardness of the introduced ontology. This entails computing its features and then applying our binary

18The tool is available at http://lat.inf.tu-dresden.de/~dwalther/software/hys/

http://lat.inf.tu-dresden.de/~dwalther/software/hys/
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ML classification model. The prediction status computed by this model, hO, will be returned by the

algorithm, together with the identified set of the locality hard modules, MH
O . Initially, MH

O is an

empty set. Whenever, O is predicted to be hard, Algorithm 5 begins the identification steps of the

hard locality modules. Hence, the axiom dependency hypergraph, ADHO, is computed at first. Then,

the atomic decomposition is performed by invoking the HyS tool. Afterwards, all the atoms arranged

in the atomic decomposition graph AtomsxO are processed iteratively. As explained above, the locality

modules will be extracted only from the signature of sink atoms. To ensure that an atom is a sink

one, the algorithm compute its indegree and outdegree values given the atomic graph AtomsxO. The

algorithm also checks that no previously extracted hard module contains this atom. This condition

was put forward to reduce the overlap across the modules. Afterwards, the locality module, Ma is

extracted based on the signature of the atom a and using function extractLocalityModule(). IfMa is

predicted to be hard and its overlap with the existing hard modules is below the threshold, minov, then

this modules is added to the set of the potential hard modules MH
O . Algorithm 5 repeats these steps

until all the atoms are explored. Unlike the state-of-art ontology hotspot identification methods, we did

not restrict the number of extracted modules nor limit their sizes. Indeed, our main goal is to find at

least one hard locality module, even if it is a relatively large one. Whenever MH
O remains empty at the

end of the first loop of this algorithm, then the second graph exploration strategy is applied. Function

extractFromADGraphSubComponents achieves the steps of this strategy. The connected components of

the atomic decomposition graph are first computed. Then, similar steps to those described in Lines 8 to

15 of Algorithm 5 will be iteratively applied to each connected component. The main difference is that

the modules will be extracted based on the signature of all the atoms within a connected component.

More specifically, function extractLocalityModule() (Algorithm 5, Line 8) will take as input a set

of atoms rather than a single one.

5.6.4 Evaluations and discussion

The purpose of this section is to provide an empirical evaluation to prove the effectiveness of the

proposed hard module extraction algorithm. We start by listing our evaluation methods and the data

to be used. Afterwards, the achieved results are illustrated and discussed. We must highlight that we

couldn’t compare our results to those of the existing methods. On the one hand, the above discussed

state-of-art algorithms of hotspot identification are not available for use. On the other hand, our

definition of hard ontology module is quite different from the definition of ontology hotspot. We don’t

share neither the same properties, nor the identification mode. Hence, it would be quite absurd to try

to establish any comparison.
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5.6.4.1 Evaluation methods

To carry on the empirical evaluation of the ExOH system, the selected 11 distinct OWL ontologies,

which varies in size, constructs being used as well as in complexity. Table 5.8 resumes the description of

the considered ontologies. Some of these are already sub-parts extracted from the same initial ontology.

This is the case of Sweet-P1 and Sweet-P2 which are modules retrieved from the Semantic Web for

Earth and Environmental terminology (SWEET). All the test case ontologies have been predicted by

our system as empirically hard with respect to the 6 reasoners of our study (Konclude, HermiT, MoRE,

TrOWL, JFacT, FacT++). Then, these ontologies were processed by the ExOH system, and thus a

set of potential hard modules were identified for each of them.

The validation process of the identified hard modules involves classifying them by the above listed

reasoners in order to assess whether our predictions match the real empirical hardness of these modules.

To achieve this purpose, we will conduct a new DL/EL classification challenge using the ORE Frame-

work. The potential hard modules extracted from the different ontologies form the ontology corpus

to be processed and the above listed reasoners are the challenge counterparts. Using this Framework,

we can check both the correctness and the efficiency of these reasoners when classifying the modules.

Finally, by referring to the reasoner evaluation results, the empirical hardness of the identified modules

could be concretely adjudged. Using this method, we can outline the number of the potentially hard

modules which were really found to be hard ones. A high number would obviously witness the more

effectiveness of our extraction method.

5.6.4.2 Results and discussion

The experimental results of the hard module identification process and then, the validation results

of these modules are all listed and discussed in this section. We start our inspections by depicting

some of statistics that we have collected while trying to identify the hard modules of the 11 test case

ontologies. Table 5.9 sketches some of the characteristics of the computed atomic decomposition (AD)

graph of each of the testing ontologies. The number of the atoms (#Atoms) are listed together with

some statistics relative to their sizes and degree of connectivity. The table reports also the number of

the sink atoms. We recall that the locality modules will be extracted only from the signature of this

kind of atoms. The number of the isolated atoms, (degree(atom)=0), is also put in evidence in this

table. This is because these atoms will be ignored in the extraction process. The final column of Table

5.9 reports the connectivity of the AD graph (D: disconnect, C: connected), when the isolated atoms

are discarded.

Throughout our experimentations, we observed that the average size of the isolated atoms is of 1,
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Ontology Expressivity Profile #A #C #P #I

Chebi http://www.ontobee.org/ontology/CHEBI ALER EL 129642 89926 191 28023

Galen (CO-ODE) http://owl.cs.manchester.ac.uk/

research/co-ode/

ALEHIF+ DL 37696 23136 950 0

Uberon http://www.ontobee.org/ontology/UBERON S DL 32362 11786 5 0

Zebrafish http://www.ontobee.org/ontology/ZFA ALERIF+ DL 16414 6132 10 0

Digital Camera (DCO) http://db-tom.cs.

uwaterloo.ca/

ALCIF(D) DL 55020 1920 94 280023

Phenotypic quality (PQO) http://www.ontobee.

org/ontology/PATO

SHF(D) DL 172644 81111 32 3717

AEO (Anatomical Entity Ontology)http://www.ontobee.

org/ontology/AEO

SRIQ DL 130460 58193 209 0

NCBI http://www.ontobee.org/ontology/NCBITaxon SHI DL 144659 63981 30 0

Sweet-P1 https://sweet.jpl.nasa.gov/download SHOIN (D) DL 6444 3022 533 1152

Sweet-P2 SHOIN (D) DL 6672 2991 533 1152

Gene Ontology (GO) http://www.obofoundry.org/

ontology/go.html

SHIF DL 126796 18672 95 7

Table 5.8: Test ontology description for the empirical validation of ExOH (A= Axioms, C= Concepts,

P= Properties, I= Individuals)

i.e. contains a unique axiom. Furthermore, their number is relatively high in some ontology cases,

like the GO ontology with 83% of isolated atoms. This would entail the sparsity of its AD graph of

the GO ontology. While in other ontologies such as Zebrafish, Galen and Uberon , very fewer isolated

atoms were found, which would suggest that their AD graphs are dense ones. We can also notice the

remarkably high percentage (99%) of the sink atoms in the AD graph of the DCO ontology. Based on

this value and the value of average degree of atoms (2), we would assume that this is a star graph,

where probably all the atoms are connected to one centric atom. Further interesting observations could

be retrieved from this table. However, studying the attributes of the AD graphs is not one of our goals.

Nevertheless, we will try to correlate some of the relevant observations about the structure of these

graphs to the hard module identification results.

Table 5.10 and Table 5.11 respectively summarizes the achieved results of the hard module identi-

fication process. The former table illustrates the main characteristics of the modules extracted using

our first exploration strategy, otherwise by relying on the sink atoms. This strategy have succeeded

to unveil the hard modules for 7 out the 11 examined ontologies. The identification results using our

http://www.ontobee.org/ontology/CHEBI
http://owl.cs.manchester.ac.uk/research/co-ode/
http://owl.cs.manchester.ac.uk/research/co-ode/
http://www.ontobee.org/ontology/UBERON
http://www.ontobee.org/ontology/ZFA
http://db-tom.cs.uwaterloo.ca/
http://db-tom.cs.uwaterloo.ca/
http://www.ontobee.org/ontology/PATO
http://www.ontobee.org/ontology/PATO
http://www.ontobee.org/ontology/AEO
http://www.ontobee.org/ontology/AEO
http://www.ontobee.org/ontology/NCBITaxon
https://sweet.jpl.nasa.gov/download
http://www.obofoundry.org/ontology/go.html
http://www.obofoundry.org/ontology/go.html


CHAPTER 5. ADSOR: ADVISING SYSTEM OVER THE ONTOLOGY REASONERS 220

Ontology #Atoms Size Degree Sink Isolated Connectivity

Min Max Avg Min Max Avg (%) (%)

Chebi 70103 1 41 1.85 1 4706 2.86 24.32 46.67 D

Galen 15211 1 13064 2.48 2476 5.33 59.81 0.01 D

Uberon 11351 1 61 2.85 1 974 5.14 58.92 0.03 D

Zebrafish 3073 1 19 5.34 1 3072 6.12 58.48 0 C

DCO 55001 1 15 1 1 14372 2 99.81 0.17 C

PQO 129150 1 100 1.34 1 17921 2.36 36.89 37.28 D

AEO 54740 1 1044 2.38 1 18851 5.52 53.14 2.99 D

NCBI 38531 1 12 3.75 1 29991 4.82 80.76 17.36 D

Sweet-P1 5129 1 13 1.26 1 90 2.26 66.74 1.59 D

Sweet-P2 5368 1 13 1.24 1 92 2.24 68.22 10.26 D

GO 108035 1 7 1.77 1 3917 0.80 7.72 83.25 D

Table 5.9: Result summary of the atomic decomposition.

second strategy, which was applied to the remaining 4 test case ontologies are illustrated in Table 5.11.

We start by discussing the results in Table 5.10. We have reported the number of the identified hard

modules (#Hard) and their size distribution. Two configurations were considered: with no module

overlap control, and then with overlap control. First when no overlap control is applied, we can notice

that the number of the potentially hard modules varies from 1 module (DCO ontology) up to 3651

modules (Uberon ontology). These values have known an important decrease when we have restricted

the amount of the overlap. We can particularly remark that the number of Galen’s potential hard

modules have dropped from 2207 to only 1 unique module. Indeed, we have observed that the overlap

percentage of the initially identified hard modules is at average about 95% of the module size. This is

because Galen have one huge locality module (15564 axioms) which incorporate most of the remaining

modules. Furthermore, Galen holds the biggest extracted atom (13064 axioms, Table 5.9), which may

explain the emergence of a big module. The DCO ontology is another module centric ontology. Al-

though the very small size of the DCO atoms (1 axiom at average), the unique extracted hard module

from this ontology is of size 55020 axioms, which represents 98% of original ontology size. This finding

confirms our previous assumption that the AD graph of the DCO ontology has a star shape. All of

its atoms are directly related to 1 atom, which later have yielded to the extraction of this huge hard

module.

Another bunch of interesting observations could be made from Table 5.11, where the results of our
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Ontology #Mod Without Overlap control With Overlap Control

#Hard Size #Hard Size DL EL

Min Max Avg Min Max Avg (%) (%)

Galen 8508 2207 15336 16162 15408.74 1 15564 - - 100 0

Uberon 6590 3651 116 1551 217.91 2909 116 1140 914.4 99.89 0.10

DCO 54896 1 57033 - - 1 57033 - - 100 0

PQO 47638 786 25 1245 22.10 18 25 2346 281.38 0 100

AEO 28699 1822 704 5228 1397.6 1111 704 7323 1627.40 100 0

Sweet-P1 3201 154 6 2293 33.12 61 6 2293 93.75 39.34 60.65

Sweet-P2 1971 260 6 2572 1055.06 164 13 2572 1178.72 79.26 20.72

Table 5.10: Results summary of hard module identification process based on the exploration of the

AD sink atoms

Ontology #CC #Mod #HardMod Size DL(%) EL(%)

Min Max Avg

Chebi 4 4 1 96895 - - 0 100

Zebrafish 3 3 2 16410 16412 16411 100 0

NCBI 6 6 1 137739 - - 0 100

GO 6 6 0 - - - - -

Table 5.11: Results summary of hard module identification process based on the exploration of the

AD connected components

second exploration strategy are illustrated. We can observe that few connected components were com-

posing the AD graphs of the listed ontologies. By consequence, few number of modules were extracted

and notably, almost a unique big hard locality module was identified per ontology. Surprisingly, our

algorithm did not find any locality hard module in the GO ontology, neither by the first nor by the

second search strategy. By referring to Table 5.9, we can observe that the AD graph of the GO ontology

has uncommon treats comparing to the other graphs. As previously highlighted, this graph is a very

sparse one with 83% isolated atoms and an average degree lower than 1. Yet, we can not provide a

sound explanation about the nature of the correlation between these characteristics and the fact that

we were enable to identify any hard locality module in this ontology.

Further conclusions could be retrieved from the previous tables. However at this stage of the study,
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Ontology Expressivity Profile #Hard Corr-Hard #IncorrHard

(%) #DL #EL

Chebi ALER EL 1 100 0 0

Galen ALEHIF+ DL 1 100 0 0

Uberon S DL 2906 99.96 0 1

Zebrafish ALERIF+ DL 2 100 0 0

DCO ALCIF(D) DL 1 100 0 0

PQO SHF(D) DL 18 100 0 0

AEO SRIQ DL 1111 100 0 0

NCBI SHI DL 1 100 0 0

Sweet-P1 SHOIN (D) DL 61 54.09 8 20

Sweet-P2 SHOIN (D) DL 164 17.68 115 20

GO SHIF DL 0 0 0 0

Table 5.12: Results of the validation process of the identified hard modules

we need first to check that the identified modules are really hard ones. Table 5.12 depicts the results

of the validation process of the potentially hard modules. The four first column of the table recall,

for each examined ontology, its expressivity, OWL profile and the total number of the retrieved hard

locality modules. Then, the percentage of the correctly identified hard modules is reported in column

Corr-Hard. The last column of the table outline the distribution of the incorrectly identified modules

over the OWL profiles. The percentage of the correctly identified hard modules is computed based

on the evaluation results of the 6 different reasoners. We recall that a module is flagged as a hard

one if at least one of these reasoners terminates the classification task of this module with a failure

status. We can observe that all the identified hard modules of 8 out of 10 ontologies were found to be

concretely hard ones. Only one hard module from Uberon was not approved. This is a EL module,

while the initial ontology is DL. The reduction in the module expressivity may explain this result.

On the other hand, the ExOH results were relatively poor regarding the modules extracted from the

SWEET based ontologies. Although these are very similar ontologies, we have identified more correctly

hard module from Sweet-P1, than from Sweet-P2. This is an interesting case from which we can start

further investigations.

In overall, the achieved results are very encouraging ones, witnessing the effectiveness of our initial

assumptions and proves the utility of the predictive modelling when applied to the ontology engineering

problems of hard module extraction. More analysis of the collected data must be planned, to gain

further insights about the possible correlation between the characteristics of the AD graphs and the
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hardness of the corresponding ontologies. In our opinion, there is some frequent graph patterns that

when they appear in the AD graph, the ontology become hard to manage by DL reasoners.

5.7 Conclusion

In this chapter, we described our design ideas of an advising system, which offers guidance to users will-

ing to select a reasoner for ontology based application. We called it, the "Advisor System over Ontology

Reasoners" (ADSOR). It is composed from two main components: RakSOR, the ranking system of

the ontology reasoners; and ExOH the extraction system of the empirically hard ontology modules.

We should highlight that the implementation details of the ADSOR system and some screenshots of

its corresponding Web application could be found in Annexe B.

We can point out four distinct contributions introduced in this chapter. First, we provided a novel

framework which model the problem of automatic ranking of reasoners according to their expected

robustness when classifying OWL ontologies under online execution environment. Indeed, both the

correctness and the efficiency of a reasoner are considered in the ranking process. Our framework

follows a meta-learning approach and applies bucket order rules. To the best of our knowledge, we

are the first to consider more than one criteria in the reasoner ranking. Moreover, we succeeded to

model and to put into practice two distinct supervised ranking methods which apply our reasoner

preference rules: (1) a single label prediction based method; and (2) the extended multi-label ranking

(EMLR) method. Our first method showed good ranking quality comparing to the default method.

This quality was remarkably improved using our second method. The latter one has also outperformed

well recognized state of art multi-label based solutions. However, the gain in the prediction precision

and by consequence, in the ranking quality came at a price. Actually, our multi-label based solution

provides less detailed information about the expected behaviours of the examined reasoners. It allows

to predict the ranking and to distinguish between the successful/unsuccessful reasoners, while our first

method further indicates the estimated reasoner runtime and the expected nature of failure. Both

methods have approximately the same training and prediction computational complexity. For all of

these reasons, it was hard to decide which method to embody in the RakSOR system. Finally, we chose

the multi-label ranking (EMLR) method, since it provides more reliable predictions. Of course, we

can still enrich the EMLR solution by using the established reasoner robutsness predictive profiles to

get more finer grained predictions about the reasoners empirical behaviours. We should also highlight

that techniques employed in the EMLR method are generic enough, which would suggest that it could

be applied to the ranking problem of other kinds of systems or algorithms. Nevertheless, the feature

space we employed to describe the input instances will no more be adequate. Furthermore, the ranking
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preference rules must also be reviewed and accommodated according to the functional characteristics

of the new examined alternatives. Investigating the abilities of the EMLR method in other fields is

next on our research agenda.

We also examined the feasibility of employing the ontology hardness predictive model to help

extracting the ontology hard modules. We were looking to identify those ontology sub-parts that are the

most computationally compelling ones. The solution relies on both the ontology atomic decomposition

and locality module extraction techniques. Once the ontology atoms are computed and transformed

into modules, the hardness of the latter ones is predicted using our trained model. We obtained primary

encouraging results, which would testify the potential benefits of our solution. We also pinpointed

some pitfalls in the ontology design structure which are probably causing its hardness. Nevertheless,

we have observed that our algorithm was enable to identify the hard modules in some ontology test

cases. Hence, we are intending to conduct a larger scale experimentations, in order to ensure whether

this is an isolated case or a frequent one. Furthermore, we are planning to conduct some in depth

investigations to figure out what distinguishes these ontologies from the ones where our algorithm have

known a success. A further issue to be examined is the way to fix the amount of the tailored overlap.

We have noticed, in various cases, that the extracted locality modules dramatically overlap with each

others. Hence, we tried to restrict this undesirable side effect. As consequence, the number of the

extracted hard modules have greatly dropped down. As a matter of fact, it still remains difficult to

decide whether it is preferable to maintain a high number of relatively small sized overlapping modules

or to wipe out the overlap and keep little number of relatively large modules?



Conclusions

In this concluding chapter, we will summarise the main results of the doctoral project described in this

dissertation. First, we will reformulate the research questions and discuss how we have successfully

answered them through the different chapters of this dissertation. Hence, we will provide a summary

of our main contributions. Then, we will point out a number of future research directions.

Contributions Summary

Over the last decade, several semantic reasoning algorithms and engines have been proposed to cope

with the computational complexity of inference tasks on expressive ontology languages such as OWL

2 DL. Huge research efforts have been dedicated to design efficient reasoning algorithms with highly

sophisticated optimisation techniques. Nevertheless, annual reasoner competition events have revealed

that there is no reasoning engine that can outperform in all input ontologies. Roughly speaking, the

performances of a reasoner are closely depending on the success or the failure of its optimizations tricks.

Hence, a reasoner could be optimized for some but not all the ontologies. By consequence, a variability

phenomena of reasoner empirical performances is often observed in practice. Furthermore, there is a

real lack of knowledge and support tools which would help pinpointing those ontology features which

are reasoner performances degrading factors. Hence, experts pre-established decision rules about the

appropriateness of a reasoner for an ontology based application are not efficient in practice, except for

trivial cases. All of these findings gave rise to new challenges in the area of ontology reasoning. Indeed,

a user is faced with the problems:

"How to gain insights about the empirical hardness of an ontology? How to choose the appropriate

reasoner for a given ontology, in order to achieve better performances than simply selecting an

arbitrary one?"

This thesis have dealt with these issues and tried to provide relevant and easy to understand answers

to an end user. The proposed solutions rely on empirical algorithmic analysis and employ supervised
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learning techniques. One of the main advantages of the empirical algorithmic analysis is that it allows

to investigate how algorithmic performance statistically depends on problem characteristics. Hence,

while trying to track down the performances of reasoners, the ontology key features could be identified.

The dependencies were modelled as predictive functions capable to anticipate the performances of a

reasoner for any given ontology. The latter ones should be described by a set of relevant features.

Another advantage of this kind of analysis is that it allows to compare and to automatically sort

different reasoners according to their expected performances over the same ontology. Indeed, future

reasoner empirical behaviours could be learned by an intelligent exploration of their past running.

Hence, no further experimentations are needed to decide which reasoner to select.

This research has led to general contributions in the field of ontology reasoning. We can point out

our contributions to distinct, but complementary, fields as follows:

(i) We proposed a rich set of comprehensive and efficiently computational features to model the

design complexity of OWL Ontologies. Our features were arranged into four categories covering

a broad range of syntactic, structural and semantic characteristic of the ontology components.

(ii) We proposed to handle to variability of reasoner performances by automatically predicting these

performances for any input ontology. We investigated the robustness of reasoners. By robustness,

we assign the ability of reasoner to correctly achieve a reasoning task within a fixed time limit.

We argued that the robustness should be adjudged under some computational and functional

constraints. This is why we chose to examine an online usage scenario where DL ontology

classification is the main required task.

(iii) We applied supervised leaning concepts to the problem empirically predicting the reasoner ro-

bustness. We proposed a learning methodology which employs our ontology feature suite and

relies on a rich set of advanced supervised machine learning techniques. Owing to the benefits

of this proposal, we modelled the robustness profile of a reasoner, in terms of predictive models

capable to anticipate its correctness and efficiency over any given ontology.

(iv) By employing the same methodology, we learned to identify the empirically hard ontologies.

The latter ones are ontologies difficult to manage by a homogeneous group of reasoners. The

reasoning methodology is the main criterion to assemble such kind of groups.

(v) The effectiveness of the proposed learning systems has been examined throughout a huge body

of experimentations. We investigated 6 well known reasoners and over 2500 ontologies. We

put into comparison various supervised learning algorithms and feature selection techniques in

order to train best reasoner predictive models. All of our models showed to be highly accurate

outperforming state-of-art solutions.

(vi) The trained models were compared and put into examination in order to reveal the most im-
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portant ontology features. These are the ones found to be imperative to ensure the accuracy

of the predictions. As a matter of fact, these features are the most correlated ones to the ex-

amined reasoner performances. We believe that such acquired knowledge would help revealing

the reasoner performances degrading factors. It would also enhance the improvement of the

ontology modelling methods, towards avoiding these factors.

(vii) We designed a novel system to support non-expert users in reasoner selection task. The main

goal of this system is to be able to automatically rank a set of candidate reasoners according

to their expected robustness over an input ontology. Our ranking framework follows a meta-

learning approach and operates within two stages: the offline stage to acquire the knowledge;

and the online stage to apply the ranking rules. The ranking is computed according to some

preference rules which take into consideration both the correctness and the efficiency of the

examined reasoners. The framework produces a consistent ranking with bucket order principals.

To the best of our knowledge, we are the first to consider more than one criteria in the ranking

process of reasoners.

(viii) We proposed two supervised ranking methods. The first one is based on single label prediction.

It takes advantage of the learned reasoner profiles. After predicting the performances of each

reasoner over the input ontology, an algorithm ranks them according to our preference rules.

The second method is based on multi-label learning techniques. A novel ranking mechanism was

introduced, that we called the Extended Multi-Label Ranking (EMLR) method. It combines

multi-label classification and multi-target regression techniques. Both the ranking and the rel-

evance of the reasoners are predicted in a consistent way. All of our experimental results witness

the effectiveness of our proposals. We achieved high quality ranking and outperformed existing

solutions.

(ix) We also examined the feasibility of employing the predictive model of the ontology overall hard-

ness to help identifying its most computational challenging sub-parts. The motivation behind

this proposal is to provide a user with some reduced subsets extracted from its empirically hard

ontology. These subsets are particularly suspected to be most difficult parts of the ontology with

respect to the reasoning tasks. To achieve this purpose, we first defined the concept of ontology

hard syntactic module. We proposed an extraction and identification algorithm of these modules.

Our solution relies on the atomic decomposition of an ontology and employs locality module ex-

traction techniques. Once the ontology atoms are computed and transformed into modules, the

hardness of the latter ones is predicted using our trained ML classification model. We obtained

first encouraging results, which would testify the potential benefits of our solution.

(x) All of our proposals were gathered and modelled as distinct services offered by one system, called

ADSOR, the "Advisor System over Ontology Reasoners". The system was designed to allow the
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different learning operations within an offline stage and to interact with the user requests in an

online stage. We have developed a Web application which puts into practice the design ideas of

the ADSOR system. The first version of this application is described in Annexe B.

Future Directions

Throughout the different stages of our doctoral research project, we made a number of choices to ensure

the successful completion of our work. However, some of these choices might have limited the ultimate

scope of the presented work. Consequently, a number of questions remain, and a range of directions

for future research are conceivable. We discuss a number of these possibilities; but we stress that this

list is by no means exhaustive.

Alternative reasoner correctness checking method Throughout our study, we highlighted the

need to examine the correctness of the reasoning results since reasoners would provide quite distinct

results over the same input ontology. Correctness is one important criteria when advising a user about

the appropriateness of a reasoner. However, very few works have addressed the issue of automatic

checking of the correctness. Researches in this field of study are just in their beginning. In our project,

we employed one basic correctness checking method which relies on the majority vote mechanism.

Surely, this not a faultless method, hence it will be worthwhile to investigate more advanced methods.

We should highlight that shifting to different reasoner correctness checking method would not affect our

learning or ranking respective methodologies. Only the reasoner evaluation process and by consequence

the collected data will undergo the changes. We believe that using more reliable correctness checking

method would grant more significant advices and thus the user satisfaction.

More feature and feature selection methods Our ontology feature suite could be extended

by considering the time spent to compute some of the critical features as a further indication of its

complexity. Such type of features was found to be relevant when predicting the performances of SAT

solvers. We have already mentioned that the feature selection methods, which we have employed in the

train of the reasoner robustness models, could further be extended. More specifically, we are intended

to investigate more recent feature discretization methods which have found to be more performing

than the one we used.

Advancing the reasoner ranking system: We introduced first design ideas of what could be

considered as a recommender system of ontology reasoners. Nevertheless, further improvements are to
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be planned, in particular the following ones:

1. More reasoners to rank first of all, we are planning to examine much more reasoners in order to

extend our meta-knowledge base, in particular ELK [KKS11] and Pellet [SPG+07]. We think that

our suggested rankings would be further appreciated whenever they cover a more significant number

of reasoners and more distinct reasoning methodologies. Therefore, for future work, we are planning

to study a different kind of reasoners, those capable to handle ontologies written in fuzzy description

logic [BS16]. Yet, to achieve this purpose, we must first extend our ontology feature set by new

dedicated features, to better capture the specificity of the fuzzy DLs.

2. More reasoner usage scenarios In our study, we focussed on the online classification scenario of OWL

ontologies. We fixed very tight time schedule and provided a relatively large amount of memory. For

future work, we are intended to examine further scenarios such as the use of reasoners within mobile

devices. Regarding this scenario, memory consumption should be reduced while keeping the same

level of efficiency. This is a real challenge for reasoners. Hence, it would be worthwhile to predict

their robustness under such constraints. Furthermore, our prediction models focus on the ontology

classification task, a TBox reasoning task. As a future direction, we are intending to investigate the

applicability of this technique to ABox reasoning tasks such as realisation and conjunctive query

answering. Actually, our ultimate goal is to conduct different reasoner evaluation campaigns under

a variety of machine, time and memory configurations and for different reasoning tasks. Once these

data is gathered and their corresponding predictive models are trained, new ranking criteria could

possibly be proposed.

3. Considering the user preferences in the ranking all the preference rules we used to rank the reasoners

are default ones, encoded within the system. It would be interesting to ask the user about its own

preferences and ranking conditions. Such information could be translated into criteria weights or

other forms of preference rules. Thus, it would be favourable to employ multi-criteria decision

making approaches, such as the Outranking or MAULT, to rank the reasoners.

4. Analysis of the user feedback in standard recommendation systems, the user feedbacks about the

provided recommendations are often requested and analysed to adjudge the quality of the system.

In some item recommender systems, these feedbacks are regarded as auxiliary valuable knowledge

and are reused to improve the future recommendations. In our context, this could not be valuable,

since our advises relies only on the observed behaviours of the ontology reasoners. However, it will

be interesting to request the user feedback as an indication about how satisfactory are our advices.

Improving the hard model extraction approach We are planning to conduct larger scale ex-

perimentations to be able to validate our results and more importantly to collect more data about how
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the atomic graphs of the existing ontologies are structured. We believe that we need to grain more

insights about these data structure in order to improve our hard modules identification mechanism.

We have already discussed other possible improvement directions when concluding Chapter 5. Yet,

we believe that the most interesting future prospects is to extend our work, so it could support the

identification of ontology hotspots with respect to a particular reasoner. Actually, this is no arduous

matter. It suffices to replace the predictive model of the ontology hardness by one of the already

trained reasoner runtime regression models. In this way, our extraction algorithm will be looking to

identify those ontology modules which are the most computationally expensive ones, comparing to the

required runtime to classify the original ontology by the examined reasoner.

Even more domain application for the reasoner ranking methods We addressed the problem

of reasoner selection from an end user perspective, and computed rankings to provide her/him with

some guidelines. Nevertheless, we are convinced that our ranking methods could be employed to

achieve different purposes. Two main future domain application could be investigated. These are:

• Building meta-reasoning system: a meta-reasoner could be based on the algorithm portfolio

approach. In this case, a set of reasoners are gathered into the portfolio together with an intelligent

selector capable to decide the most performing reasoner to handle an input ontology. Here, it would

be worthwhile to examine the benefits of our ranking method when considered as an intelligent

selector. However, to ensure that the meta-reasoner could outperform the existing engines, the time

overheard due to the prediction steps should be reduced. Hence, further optimisation steps should

be planned. One possible optimisation is to set a default reasoner to be launched whenever the

ontology under examination is a trivial case. Chainsaw [TP12] is another kind of meta-reasoner. It

extracts an ontology module for each user query and creates a suitable reasoner for this module to

be able to answer the query. The authors highlighted that they are still looking for a strategy to

choose the best suited reasoner for a given module. For the time being, they are working with a

couple of reasoners in some arbitrary way, with no concrete automatic selection. We are willing to

integrate our ranking method into this meta-reasoner and to conduct a new large scale study.

• Intelligent parameter tuning of reasoners: different reasoning strategies and configuration

parameters might exist within one reasoner to handle different categories of ontologies. To best

of our knowledge, none of the exiting reasoners employs the supervised modelling to achieve an

intelligent selection of these parameters. Indeed, by varying the parameter setting, different version

of the same reasoner emerges. The latter ones could be considered as independent reasoners. Thus,

a reasoner ranking model could be trained having the different versions as the possible alternatives.

Such model would make it possible to select the most performing reasoner variant, in other words,
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the most appropriate parameter settings to handle the input ontology in the most efficient way.

However, we should be aware that under such circumstances, the rank prediction is a highly time

sensitive operation. So, it must be achieved as quick as possible without damaging the overall

efficiency of the reasoner.
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APPENDIX

A Graph Theory Terminology

Notations and the basic terminology about graph theory used in this thesis are retrieved from [BM76].

Graph basic properties. A graph G = (V,E) is a non-empty set of vertices V (G) (also denoted by V ) and

a set of edges E(G) (also denoted by E). E(G) is a two element subset of V (G), i.e. E(G) = {(u, v)|u, v ∈ V (G)}.
In other words, each edge e ∈ E is said to join two vertices, (u,v) from V , which are called its endpoints. In

this case, u and v are adjacent vertices and e is an incident edge to u and v. When all the edges in the graph are

unordered pairs of vertices, then the graph is said to be undirected; otherwise, it is called a directed graph

or a digraph. If multiple edges are allowed between two vertices, we obtain a multigraph. A self-loop or

loop is an edge between a vertex and itself. An undirected graph without loops or multiple edges is known as

a simple graph. A (partial) subgraph of graph G is a graph H with V (H) ⊆ V (G) and E(H) ⊆ E(G).

Degree of vertices. The degree of a vertex v, denoted by deg(v), is equal to the number of edges incident

to this vertex, with loops counted twice. A vertex v with degree 0 is called isolated vertex, however a vertex

with degree 1 is called endvertex or a leaf. The degree of a graph, denoted by ∆(G), corresponds to the

maximal computed degree of the graph vertices set: ∆(G) = maxv∈V deg(v).

In digraphs, if e = (u, v) is a directed edge, then u is called the tail of e while v is said to be the head.

Accordingly, the indegree of vertex v, denoted by degin(v), is the number of the head endpoints adjacent to

v. Analogously, the outdegree of vertex v, denoted by degout(v), is the number of tail endpoints adjacent

from v. Thus, the degree of v in a digraph is equal to the sum of its indegree and outdegree: deg(v) =

degin(v)+degout(v). A vertex v, for which the degin(v) = 0 and the degout(v) > 0 is called a source, whereas

a sink represents a vertex having a degin(v) > 0 and a degout(v) = 0.

Paths and cycles. A path in graph (resp. digraph or multigraph) is a sequence of edges which connects

a sequence of vertices. More explicitly, let (v1, v2, . . . , vk) be a sequence of vertices such that vi 6= vj whenever

i 6= j, a sequence of edges (e1, e2, . . . , ek) is a path of length k if ∀i ∈ {1, .., (k − 1)}, ei = (vi, vi+1) is an edge.

In case where v1 = vk, then the path is said to be closed. A cycle is a closed path for which the edges and

the vertices are distinct ones except for the starting and the ending vertices. A graph without cycles is called

acyclic.
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Graph Connectivity. A graph is connected if any two of its vertices can be joined by a path. A graph

that is not connected is said to be disconnected. The resulting "pieces" of a disconnected graph are called

the components of the graph. More specifically, a connected component is a maximal connected subgraph

of a graph G. Each vertex belongs to exactly one connected component, as does each edge.

A digraph is called weakly connected if replacing all of its directed edges with undirected edges produces

a connected (undirected) graph. It is connected if it contains a directed path from u to v or a directed path

from v to u for every pair of vertices u, v. On the other hand, a digraph is strongly connected or strong if it

contains a directed path from u to v and a directed path from v to u for every pair of vertices u, v. The strong

components are the maximal strongly connected subgraphs.

A connected and acyclic graph is called a tree. Whereas, when all the pairs vertices in a graph are adjacent

to each other, then this graph is said to be complete. Let Kn be a complete graph with n vertices. In this

case, each vertex v in VKn
has deg(v) = (n − 1) and the number of edges of this kind of graphs is equal to

|EKn
| = n(n−1)

2 .

If erasing an edge of a connected graph would cause the graph to be disconnected, that edge is called a

bridge. Similarly, a cut vertex in a graph is a vertex that when removed (with its incident edges) creates more

components than previously in the graph. A graph is biconnected if it is connected and contains at least 3

vertices, but no cut vertex. A graph is 2-edge-connected if it is connected and contains at least 2 vertices,

but no bridge.
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B Implementation Details of

the ADSOR System

We implemented the proposed ADSOR system as a Web based application to offer an online access to our

services: the automatic ranking of reasoners and the extraction of ontology hard modules. ADSOR was im-

plemented in Java and according to the well known J2EE architecture. Advanced Web technologies were put

forward to achieve this implementation. All of the computing operations are coded in the background compon-

ents, which have access to our meta-knowledge base, while the front-end components ensure the display of the

Web pages.

The user needs to create an account to be able to login to the ADSOR system as shown in Figure B. All

of the user past operations and obtained results are already saved in the system data repository. The user

can access them from its personal space as depicted in Figure B. Using this interface, the user can also submit

its new request after loading its ontology and choosing the operation to achieve: ranking or extraction. The

Web interface which lists the ranking results is illustrated in Figure B. ADSOR outputs the computed feature

values used to evaluate the user ontology. Then, the ranked reasoners are listed together with some indications

such as the expected termination state (Success/Failure) and the estimated runtime in case of success. To

ease the access to the suggested reasoners, the official download links of the latter ones also provided. In case

of extraction request, the response does not come immediately. The hard module identification algorithm is

executed offline, since the the calculation procedure is a time consuming one. Nevertheless, the user is instantly

notified whether its ontology is hard or not. If this is the case, then it is informed that he will receive an email

as soon as the extracted modules are ready for download. The identified set of the hard modules are accessible

through the user personal space. The Web interface which lists the ranking results is depicted in Figure B.

The computed features of the examined ontology are illustrated in this web page, followed by the list of the

extracted modules. Some of basic characteristics of these modules are also outlined in this page.

We should highlight that this is an under development version of the ADSOR system. Some functionalities

are still not operational. As soon as the implementation and the bug fixing tasks are achieved, ADSOR will be

put online to be publicly used.
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Figure B.1: The login interface of the ADSOR system.

Figure B.2: The main running interface of the ADSOR system.
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Figure B.3: ADSOR web interface of the reasoner ranking results.
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Figure B.4: ADSOR web interface of the hard modules extraction results.
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