Cellule capacitive d’électrodialyse inverse pour la récupération d'énergie osmotique : vers des saumures réelles et augmentation de puissance
Auteur / Autrice : | Nan Wu |
Direction : | Annie Colin |
Type : | Thèse de doctorat |
Discipline(s) : | Physique et chimie des matériaux |
Date : | Soutenance le 18/09/2024 |
Etablissement(s) : | Université Paris sciences et lettres |
Ecole(s) doctorale(s) : | École doctorale Physique et chimie des matériaux (Paris ; 2000-....) |
Partenaire(s) de recherche : | Laboratoire : Chimie, Biologie, Innovation (Paris) |
établissement opérateur d'inscription : Ecole supérieure de physique et de chimie industrielles de la Ville de Paris (1882-....) | |
Jury : | Président / Présidente : Véronique Balland |
Examinateurs / Examinatrices : Annie Colin, Marie-Caroline Jullien, Cyril Picard, Mikhael Bechelany, Virginie Lair | |
Rapporteur / Rapporteuse : Marie-Caroline Jullien, Cyril Picard |
Mots clés
Résumé
Face aux problèmes de réchauffement climatique, trouver des ressources énergétiques propres et durables pour remplacer les combustibles fossiles conventionnels est d'une importance capitale. L'énergie osmotique demeure une ressource énergétique inexploitée avec un potentiel significatif. Dans ce travail, nous parvenons à une conversion efficace de l'énergie osmotique en électricité grâce à un processus de mélange bien contrôlé utilisant un système d'électrodialyse inverse capacitif (CRED). Il est démontré qu'un écart substantiel de densité de puissance existe entre le système CRED et la valeur maximale théorique, principalement en raison de l'efficacité de conversion faible du flux ionique-électronique dans les électrodes capacitifs. Pour pallier cette limitation, nous proposons la stratégie de boosting pour optimiser le régime de fonctionnement du système CRED. Des expériences et des modélisations confirment une amélioration de la performance énergétique du système CRED. Pour avancer vers des applications réelles, nous évaluons les performances du système CRED sous des solutions composées de mélanges ioniques complexes. Contrairement à la chute significative de la densité de puissance observée dans les systèmes RED classiques, le système CRED ne présente qu'une légère diminution lorsqu'il est soumis à des solutions avec un mélange d'ions divalents. Ce phénomène est attribué au renversement périodique des solutions dans les compartiments, qui atténue l'effet d'empoisonnement de la membrane. Ce résultat est ensuite validé par des tests à long terme avec des solutions réelles. Pour généraliser le système CRED dans un spectre plus large, nous proposons une cellule de gradient de pH avec des électrodes de MnO2 à pseudo-capacité. Elle utilise l'énergie osmotique établie dans un processus de capture de CO2 basé sur un électrolyte et vise à réduire le coût global du processus de capture de carbone. La cellule de gradient de pH présente une augmentation inattendue de la densité de puissance sous la stratégie de boosting. Cela est dû à la contribution de tension supplémentaire des électrodes en raison du changement de couverture fractionnelle lié aux réactions d'oxydoréduction. Cependant, elle reste dans le cadre du régime capacitif et est bien décrite par une modélisation CRED adaptée.