Thèse soutenue

Vers des solutions numériques bien posées et polyvalentes pour les théories tenseur-scalaires de la gravité avec écrantage : applications aux échelles sub-système solaire

FR  |  
EN
Auteur / Autrice : Hugo Lévy
Direction : Joël BergéJean-Philippe Uzan
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 29/10/2024
Etablissement(s) : université Paris-Saclay
Ecole(s) doctorale(s) : École doctorale Physique en Île-de-France (Paris ; 2014-....)
Partenaire(s) de recherche : Laboratoire : Office national d'études et recherches aérospatiales. Département Physique, Instrumentation, Environnement, Espace (DPHY) (Toulouse, Haute-Garonne) - Institut d'astrophysique de Paris (1936-....)
Référent : Faculté des sciences d'Orsay
graduate school : Université Paris-Saclay. Graduate School Physique (2020-....)
Jury : Président / Présidente : Philippe Brax
Examinateurs / Examinatrices : Clare Burrage, Meike List, Gilles Métris, Patrick Joly
Rapporteur / Rapporteuse : Clare Burrage, Meike List

Résumé

FR  |  
EN

Les théories tenseur-scalaires de la gravité font partie des alternatives à la Relativité Générale les plus convaincantes, résilientes, et riches en termes de phénoménologie. Les modèles encore viables aujourd'hui reposent sur des mécanismes d'écrantage afin d'être compatibles avec les tests locaux de la gravité, tout en conservant une certaine pertinence physique. La recherche de ces champs scalaires hypothétiques dépend alors de notre capacité à concevoir des expériences adaptées à leur phénoménologie. Hélas, cette tâche est grandement entravée par la difficulté de modéliser suffisamment précisément les effets de cinquième force dans des configurations réalistes. En effet, cela nécessite de résoudre des équations aux dérivées partielles semi-linéaires en présence de distributions de masse non-triviales, ce pour quoi les méthodes purement analytiques ne sont que d'un usage limité. Dans cette perspective, le présent travail de thèse traite ce problème via le développement d'un outil numérique polyvalent visant à obtenir des solutions bien posées aux équations de Klein-Gordon non-linéaires qui apparaissent dans de tels modèles de gravité modifiée. L'outil en question, nommé femtoscope, s'appuie sur la méthode des éléments finis. Celle-ci permet de représenter des géométries arbitrairement complexes et des problèmes multi-échelles par le biais de raffinement locaux du maillage. Les non-linéarités sont quant à elles traitées par la méthode de Newton. La nouveauté majeure apportée par femtoscope est sa gestion des conditions aux limites asymptotiques — i.e. lorsque le comportement du champ n'est connu qu'infiniment loin des sources — dont la prise en compte de manière appropriée est souvent essentielle en vue d'obtenir des solutions numériques pourvues de sens physique. Pour ce faire, nous utilisons la méthode des éléments finis inversés. Nous nous appuyons ensuite sur femtoscope pour étudier la gravité tenseur-scalaire aux échelles sub-système Solaire. En utilisant un modèle réaliste de la Terre, nous traitons la question relative à la détectabilité d'une cinquième force de type caméléon, au moyen de missions de géodésie spatiale telles que GRACE-FO. L'influence de l'atmosphère terrestre ainsi que la rétroaction d'un satellite sur le champ scalaire sont toutes deux prises en compte. Nous constatons que la cinquième force a un effet supposément mesurable sur la dynamique orbitale d'un point matériel, mais que la connaissance imparfaite de la distribution de masse à l'intérieur de la Terre donne lieu à des dégénérescences qui réduisent considérablement le pouvoir contraignant de ce type de mission. Ces dégénérescences peuvent en principe être levées en réalisant l'expérience à deux altitudes différentes. Enfin, nous ouvrons de nouvelles perspectives en explorant la possibilité de tester les théories tenseur-scalaires avec écrantage en se servant d'horloges atomiques. L'idée des expériences que nous décrivons est d'exploiter la contribution du champ scalaire sur le décalage vers le rouge gravitationnel, cette dernière étant absente en Relativité Générale. On souligne le fait que de telles expériences sont de nature profondément différente des recherches de cinquième force.